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GLOBAL EXISTENCE FOR
NERNST-PLANCK-NAVIER-STOKES SYSTEM IN RN ∗

JIAN-GUO LIU∗∗ AND JINHUAN WANG†

Abstract. In this note, we study the Nernst-Planck-Navier-Stokes system for the transport and
diffusion of ions in electrolyte solutions. The key feature is to establish three energy-dissipation equal-
ities. As their direct consequence, we obtain global existence for two-ionic species case in Rn, n≥2,
and multi-ionic species case in Rn, n= 2,3.
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1. Introduction
The Nernst-Planck-Navier-Stokes (NPNS) system, describing the transport and dif-

fusion of ions in electrolyte solutions, plays an important role in many physical and
biological system [1, 5], such as ion particles in the electrokinetic fluids [7, 10], and
ion channels in cell membranes [2, 8]. An introduction to some of the basic physical,
biological and mathematical issues can be found in [11].

The NPNS system [6] reads

∂tu+u ·∇u+∇p= ∆u−
( N∑
i=1

zici
)
∇φ, (1.1)

∂tci+∇·(ciu) = ∆ci+∇·(zici∇φ), i= 1,...,N, (1.2)

−∆φ=
N∑
i=1

zici, i= 1,...,N, (1.3)

∇·u= 0, (1.4)

where x∈Rn, t>0. We impose the following initial conditions

ci(x,0) = c0i (x), i= 1,...,N, x∈Rn, (1.5)

u(x,0) =u0(x), x∈Rn. (1.6)

Here u=u(x,t) and p=p(x,t) are the velocity and pressure of electrolyte solutions,
respectively, ci= ci(x,t) are the i-th ionic species concentrations, zi∈R is valence of the
i-th ion, i= 1,...,N , and φ is the electric potential. In the above system, we choose all
physical parameters to be 1 for simplicity in representation. When initial data c0i are
non-negative functions, then ci are still non-negative, i= 1,...,N .
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The system (1.1)-(1.4) has the following two free energy-dissipation relations

d

dt
F1(t)+D1(t) = 0, (1.7)

d

dt
F2(t)+D2(t) = 0, (1.8)

where

F1(t) =
1

2

∫
Rn
|u|2dx+

1

2

∫
Rn
|∇φ|2dx, (1.9)

D1(t) =

∫
Rn
|∇u|2dx+

∫
Rn

(
N∑
i=1

zici)
2dx+

∫
Rn

(
N∑
i=1

z2i ci)|∇φ|2dx, (1.10)

F2(t) =

N∑
i=1

∫
Rn
ci logcidx, (1.11)

D2(t) =

N∑
i=1

∫
Rn

|∇ci|2

ci
dx+

∫
Rn

(

N∑
i=1

zici)
2dx. (1.12)

In the two-ionic species case including one species of cations (z1>0) and one species
of anions (z2<0), denote c+ = z1c1 and c−=−z2c2. Then the NPNS system is reduced
to

∂tu+u ·∇u+∇p= ∆u−(c+−c−)∇φ, (1.13)

∂tc+ +∇·(c+u) = ∆c+ + |z1|∇·(c+∇φ), (1.14)

∂tc−+∇·(c−u) = ∆c−−|z2|∇·(c−∇φ), (1.15)

−∆φ= c+−c−, (1.16)

∇·u= 0 (1.17)

with the initial conditions

u(x,0) =u0(x), c+(x,0) = c0+(x), c−(x,0) = c0−(x). (1.18)

Local existence for the NPNS system coupled from the Navier-Stokes equations in
the whole space was obtained in [9]. In this note, we will prove global existence for
this model in the whole space. There is a family of additional free energy-dissipation
relations for (1.13)-(1.17), i.e., for any p≥1

d

dt
(|z2|‖c+‖pLp + |z1|‖c−‖pLp)+D3(t) = 0, (1.19)

where

D3(t) :=
4(p−1)

p

(
|z2|‖∇c

p
2
+‖2L2 + |z1|‖∇c

p
2
−‖2L2

)
+(p−1)|z1||z2|

∫
Rn

(cp+−c
p
−)(c+−c−)dx≥0. (1.20)

For the narrative convenience, we specially take z1 = 1,z2 =−1 below. Using the free
energy-dissipation relations (1.7) and (1.19), which will be proved in Section 2, together
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with some standard analysis, we have the following theorem on global existence of
bounded solutions for models (1.13)-(1.17).

Theorem 1.1 (Existence for two-ionic species case). Assume that n≥2, u0∈
L2(Rn;Rn), c0+,c

0
−∈L1

+∩L2(Rn) and F1(0)<∞. Then for any T >0, there is a global
weak solution (u,c+,c−) satisfying regularities

u∈L∞(0,∞;L2(Rn;Rn))∩L2(0,T ;H1(Rn;Rn)), (1.21)

c+,c−∈L∞(0,∞;L1
+∩L2(Rn))∩L2(0,T ;H1(Rn)), (1.22)

∇φ∈L∞(0,∞;L2(Rn))∩L2(0,T ;H1(Rn)), (1.23)

∂tu∈L2(0,T ;W−1,
n
n−1 (Rn;Rn)), (1.24)

∂tc+,∂tc−∈L2(0,T ;W−1,
n
n−1 (Rn)). (1.25)

Moreover, if c0+,c
0
−∈L1

+∩L∞(Rn), then the weak solutions have the uniform L∞-bound,
i.e., there exists a constant C such that

‖c+‖L∞(0,∞;L∞(Rn)) +‖c−‖L∞(0,∞;L∞(Rn))≤C. (1.26)

For the multi-ionic species system (1.1)-(1.4), recently, Constantin and Ignatova [6],
using the relative entropy method, obtained global existence and stability results in two
dimensional bounded domain with blocking or selective boundary conditions for the
ionic concentrations. In this paper, we will prove global existence for the model (1.1)-
(1.4) in the whole space Rn, n= 2,3. As usual, we can use the first moment m1(t) to
show the tightness of ci, i= 1,...,N . Let

m1(t) :=

N∑
i=1

mi
1(t) =

N∑
i=1

∫
Rn
|x|cidx, m0(t) :=

N∑
i=1

∫
Rn
cidx≡m0. (1.27)

We have the following existence theorem.

Theorem 1.2 (Existence for the multi-ionic species case). Assume that n= 2,3,
u0∈L2(Rn;Rn), c0i ∈L1

+∩L logL(Rn), m1(0)<∞, F1(0)<∞ and F2(0)<∞. Then
for any T >0, there is a global weak solution (u,c1,...,cN ) satisfying regularities

u∈L∞(0,∞;L2(Rn;Rn))∩L2(0,T ;H1(Rn;Rn)), (1.28)

ci∈L∞(0,∞;L1
+∩L logL(Rn)), ci∈L

8
3 (0,T ;L

4
3 (Rn)), i= 1,...,N, (1.29)

∇φ∈L∞(0,∞;L2(Rn))∩L2(0,T ;H1(Rn)), (1.30)

∂tu∈L2(0,T ;W−1,
4
3 (Rn;Rn)), ∂t(∇φ)∈L 4

3 (0,T ;W−2,
4
3 (Rn)). (1.31)

Remark 1.1. We remark that the family of additional free energy-dissipation relations
(1.19) may not hold for the case with more than two ionic species. The last term in
(1.20) may be negative for the multi-ionic species. For example, taking N = 3,z1 =
1,z2 =− 1

2 ,z3 =− 1
2 , we can easily construct three real numbers (a,b,c) such that(

ap− b
p+cp

2

)(
a− b+c

2

)
<0.

Remark 1.2. Theorem 1.1 and Theorem 1.2 show global existence for two-ionic
species case in Rn, n≥2, and multi-ionic species case in Rn, n= 2,3, respectively. Re-
search on the uniqueness of solutions will be our further work.
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2. Free energy-dissipation equalities
In this section, we derive mass conservation, two energy-dissipation equalities and

a Lp-energy-dissipation equality.

Proposition 2.1 (Mass conservation). Let ci(x,t) be non-negative solutions to (1.1)-
(1.4). Then ci(x,t) has the following conservation of mass∫

Rn
ci(x,t)dx≡

∫
Rn
c0i (x)dx=:mi

0, i= 1,...,N. (2.1)

The proof of Proposition 2.1 is standard, refer to [3]. The second property below
gives the two free energy-dissipation equalities to the model (1.1)-(1.4).

Proposition 2.2 (Two free energy-dissipation equalities). Let (u,c1,...,cN ) be solu-
tions to (1.1)-(1.4). Then the two energy-dissipation relations in (1.7)-(1.8) hold.

Proof. Multiplying u and ziφ to (1.1) and (1.2) respectively, integrating them in
Rn and using ∇·u= 0, we obtain that

d

dt

1

2

∫
Rn
|u|2dx=−

∫
Rn
|∇u|2dx−

∫
Rn

(
N∑
i=1

zici)u ·∇φdx, (2.2)∫
Rn
ziφ∂tcidx+

∫
Rn
ziφ∇·(ciu)dx=

∫
Rn
ziφ∆cidx+

∫
Rn
ziφ∇·(zici∇φ)dx, (2.3)

i= 1,...,N . Summing (2.3) from 1 to N , we have

d

dt

1

2

∫
Rn
|∇φ|2dx=

∫
Rn

(

N∑
i=1

zici)u ·∇φdx−
∫
Rn

(

N∑
i=1

zici)
2dx

−
∫
Rn

(

N∑
i=1

z2i ci)|∇φ|2dx. (2.4)

Hence by (2.2) and (2.4), we deduce

dF1

dt
+

∫
Rn
|∇u|2dx+

∫
Rn

(

N∑
i=1

zici)
2dx+

∫
Rn

(

N∑
i=1

z2i ci)|∇φ|2dx= 0. (2.5)

Now we prove the second free energy-dissipation relation (1.8). Taking 1+logci as
a test function on both sides of (1.2), summing them and using ∇·u= 0, we have

dF2

dt
+4

N∑
i=1

∫
Rn
|∇
√
ci|2dx+

∫
Rn

(
N∑
i=1

zici)
2dx= 0. (2.6)

This completes the proof of Proposition 2.2.

Moreover, for two-ionic species case we also have the Lp-energy-dissipation relation
(1.19).

Proposition 2.3. Let (u,c+,c−) be solutions to the model (1.13)-(1.17). Then the
Lp-energy-dissipation relation (1.19) holds.

Proof. Multiplying pcp−1+ and pcp−1− (p≥1) to equations (1.14) and (1.15) respec-
tively, integrating them in Rn, and using ∇·u= 0, we get

d

dt
‖c+‖pLp +

4(p−1)

p

∫
Rn
|∇cp/2+ |2dx=

∫
Rn
pcp−1+ ∇·(c+∇φ)dx, (2.7)
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d

dt
‖c−‖pLp +

4(p−1)

p

∫
Rn
|∇cp/2− |2dx=−

∫
Rn
pcp−1− ∇·(c−∇φ)dx. (2.8)

A simple computation gives that∫
Rn
pcp−1+ ∇·(c+∇φ)dx=−(p−1)

∫
Rn
cp+1
+ dx+(p−1)

∫
Rn
cp+c−dx, (2.9)∫

Rn
pcp−1− ∇·(c−∇φ)dx=−(p−1)

∫
Rn
cp−c+dx+(p−1)

∫
Rn
cp+1
− dx. (2.10)

Hence summing (2.7) and (2.8), and using (2.9) and (2.10), we have

d

dt
(‖c+‖pLp +‖c−‖pLp)+

4(p−1)

p

∫
Rn
|∇cp/2+ |2dx+

4(p−1)

p

∫
Rn
|∇cp/2− |2dx

+(p−1)

∫
Rn

(cp+1
+ +cp+1

− −cp+c−−c
p
−c+)dx= 0. (2.11)

Due to

cp+1
+ +cp+1

− −cp+c−−c
p
−c+ = (cp+−c

p
−)(c+−c−)≥0,

hence (1.19) holds.

3. Global existence for the two-ionic species case
In this section, we show global existence of bounded solutions for the model (1.13)-

(1.17) by using the energy-dissipation equalities (1.7) and (1.19), in order to prove
Theorem 1.1. The process is standard. For completeness, we outline a proof below.

At first, a regularized problem for (1.13)-(1.17) is constructed as follows

∂tuε+uε ·∇uε+∇pε= ∆uε−(cε+−cε−)∇φε, (3.1)

∂tc
ε
+ +∇·(cε+uε) = ∆cε+ +Jε ∗(∇·((Jε ∗cε+)Jε ∗∇φε)), (3.2)

∂tc
ε
−+∇·(cε−uε) = ∆cε−−Jε ∗(∇·((Jε ∗cε−)Jε ∗∇φε)), (3.3)

−∆φε= cε+−cε−, (3.4)

∇·uε= 0, (3.5)

cε+(x,0) = cε0+ (x) := c0+(x)∗Jε, cε−(x,0) = cε0− (x) := c0−(x)∗Jε, (3.6)

uε(x,0) =uε0(x) :=u0(x)∗Jε, (3.7)

where Jε(x) is defined by the standard mollifier J(x) satisfying
∫
Rn J(x)dx= 1.

Since u0∈L2(Rn;Rn), c0+,c
0
−∈L1

+∩L∞(Rn) and F1(0)<∞, we have

‖uε0‖L2(Rn)≤‖u0‖L2(Rn), Fε1 (0)≤F1(0), (3.8)

‖cε0+ ‖L1∩L∞(Rn)≤‖c0+‖L1∩L∞(Rn), ‖cε0− ‖L1∩L∞(Rn)≤‖c0−‖L1∩L∞(Rn), (3.9)

where Fε1 (t) is defined by

Fε1 (t) =
1

2

∫
Rn
|uε|2dx+

1

2

∫
Rn
|∇φε|2dx.

Next, we give some uniform estimates of solutions to the model (3.1)-(3.7). The
process is similar to that of obtaining the energy-dissipation equalities (1.7) and (1.19).
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Proposition 3.1. Assume that u0∈L2(Rn;Rn), c0+,c
0
−∈L1

+∩L2(Rn) and F1(0)<∞.
Let (uε,c

ε
+,c

ε
−) be solutions to (3.1)-(3.7). Then uε and φε satisfy the following uniform

estimates

‖uε‖L∞(0,∞;L2(Rn)) +‖∇uε‖L2(0,∞;L2(Rn))≤C, (3.10)

‖∇φε‖L∞(0,∞;L2(Rn))≤C. (3.11)

Proof. Multiplying uε, φε and −φε to (3.1), (3.2) and (3.3) respectively, integrating
them in Rn and using ∇·uε= 0, we obtain that

d

dt

1

2

∫
Rn
|uε|2dx=−

∫
Rn
|∇uε|2dx−

∫
Rn

(cε+−cε−)uε ·∇φεdx, (3.12)∫
Rn
φε∂tc

ε
+dx=

∫
Rn
∇φε ·(cε+u)dx+

∫
Rn
φε∆c

ε
+dx

−
∫
Rn
∇(Jε ∗φε) ·(Jε ∗cε+∇(Jε ∗φε))dx, (3.13)∫

Rn
φε∂tc

ε
−dx=

∫
Rn
∇φε ·(cε−u)dx+

∫
Rn
φε∆c

ε
−dx

+

∫
Rn
∇(Jε ∗φε) ·(Jε ∗cε−∇(Jε ∗φε))dx. (3.14)

Subtracting (3.14) from (3.13), we have

d

dt

1

2

∫
Rn
|∇φε|2dx−

∫
Rn

(cε+−cε−)uε ·∇φεdx

=−
∫
Rn

(cε+−cε−)2dx−
∫
Rn
Jε ∗(cε+ +cε−)|∇(Jε ∗φε)|2dx. (3.15)

Hence by (3.12) and (3.15), we deduce

d

dt

(
1

2

∫
Rn
|uε|2dx+

1

2

∫
Rn
|∇φε|2dx

)
=−

∫
Rn
|∇uε|2dx−

∫
Rn

(cε+−cε−)2dx−
∫
Rn
Jε ∗(cε+ +cε−)|∇(Jε ∗φε)|2dx, (3.16)

which implies the estimates (3.10) and (3.11).

Proposition 3.2. Assume that u0∈L2(Rn;Rn), c0+,c
0
−∈L1

+∩L2(Rn) and F1(0)<∞.
Let (uε,c

ε
+,c

ε
−) be solutions to (3.1)-(3.7). Then cε+ and cε− satisfy the following uniform

estimates

‖cε+‖L∞(0,∞;L1∩L2(Rn)) +‖cε−‖L∞(0,∞;L1∩L2(Rn))≤C, (3.17)

‖∇cε+‖L2(0,∞;L2(Rn)) +‖∇cε−‖L2(0,∞;L2(Rn))≤C, (3.18)

‖∇φε‖L∞(0,∞;Lr(Rn))≤C,
n

n−1
<r≤ 2n

n−2
, (3.19)

where C is a constant independent of ε.

Proof. Multiplying 2cε+ and 2cε− to equations (3.2) and (3.3) respectively, integrating
them in Rn, and using ∇·uε= 0, we get

d

dt
‖cε+‖2L2 +2

∫
Rn
|∇cε+|2dx= 2

∫
Rn

(Jε ∗cε+)∇·(Jε ∗cε+∇(Jε ∗φε))dx, (3.20)
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d

dt
‖cε−‖2L2 +2

∫
Rn
|∇cε−|2dx=−2

∫
Rn

(Jε ∗cε−)∇·(Jε ∗cε−∇(Jε ∗φε))dx. (3.21)

A simple computation gives

2

∫
Rn

(Jε ∗cε+)∇·(Jε ∗cε+∇(Jε ∗φε))dx=−
∫
Rn

(Jε ∗cε+)2(Jε ∗(cε+−cε−))dx, (3.22)

2

∫
Rn

(Jε ∗cε−)∇·(Jε ∗cε−∇(Jε ∗φε))dx=−
∫
Rn

(Jε ∗cε−)2(Jε ∗(cε+−cε−))dx. (3.23)

Hence summing (3.20) and (3.21), and using (3.22) and (3.23), we have

d

dt
(‖cε+‖2L2 +‖cε−‖2L2)+2

∫
Rn
|∇cε+|2 + |∇cε−|2dx

=−
∫
Rn

(
(Jε ∗cε+)2−(Jε ∗cε−)2

)(
Jε ∗cε+−Jε ∗cε−

)
dx≤0,

which implies (3.17) and (3.18).
Moreover, using the Equation (3.4) and the weak Young inequality, we obtain

‖∇φε‖Lr ≤C
∥∥∥ 1

|x|n−1
∥∥∥
L

n
n−1
w

‖cε+−cε−‖Ls ,
1

r
+1 =

n−1

n
+

1

s
, 1<s≤2.

Together with (3.17), this implies (3.19).
Furthermore, using the regularized equations (3.1)-(3.3), and the uniform estimates

in Proposition 3.1 and Proposition 3.2, we can directly obtain the following proposition.
Since the estimate is standard, we omit the details.

Proposition 3.3. Assume that u0∈L2(Rn;Rn), c0+,c
0
−∈L1

+∩L2(Rn) and F1(0)<∞.
Let (uε,c

ε
+,c

ε
−) be solutions to (3.1)-(3.7). Then for any T >0, there is a constant C

such that (uε,c
ε
+,c

ε
−) satisfy the following estimates uniformly in ε

‖∂tuε‖L2(0,T ;W
−1, n

n−1 (Rn))
≤C, (3.24)

‖∂tcε+‖L2(0,T ;W
−1, n

n−1 (Rn))
+‖∂tcε−‖L2(0,T ;W

−1, n
n−1 (Rn))

≤C. (3.25)

Finally, we use compactness argument to complete the proof of Theorem 1.1.

Proof. (Proof of Theorem 1.1.) Since the solutions (uε,c
ε
+,c

ε
−) of the regularized

problem (3.1)-(3.7) satisfy all the estimates in Proposition 3.1, Proposition 3.2 and
Proposition 3.3, using the Aubin-Lions lemma, we can obtain that there is a subsequence
still denoted as uε, c

ε
+ and cε− and limit functions u, c+ and c− satisfying the regularities

(1.21)-(1.25) such that

uε→u in L2(0,T ;L2
loc(Rn)), (3.26)

cε+→ c+ in L2(0,T ;L2
loc(Rn)), (3.27)

cε−→ c− in L2(0,T ;L2
loc(Rn)). (3.28)

Hence the standard compactness argument implies that there is a global weak solution
(u,c+,c−) for the model (1.13)-(1.17), and they satisfy all the regularities (1.21)-(1.25).

Now we prove that weak solutions have the uniform L∞-bound. Using (2.11), we
can get for any t>0 and p≥1, it holds that

‖c+‖pLp +‖c−‖pLp +

∫ t

0

D3(s)ds≤‖c+0 ‖
p
Lp +‖c−0 ‖

p
Lp .
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Due to c0+,c
0
−∈L1∩L∞(Rn), we know that there is a constant C independent of p such

that

‖c+(·,t)‖Lp(Rn) +‖c−(·,t)‖Lp(Rn)≤C, t∈ [0,∞), (3.29)

which means (1.26).

4. Global existence for the multi-ionic species case in Rn, n= 2,3
As usual, we first show the bound of the first moment m1(t) and use it to determine

the boundedness of the Fisher information, in order to give weak convergence of cεi in

the Sobolev space L2(0,T ;L
4
3 (Rn). Moreover, we estimate the time derivative of ∇φε

for proving its strong convergence in L2(0,T ;L4
loc(Rn). Let us begin from estimating

the first moment m1(t).

Proposition 4.1 (Estimate of the first moment). Let (u,c1,...,cN ) be solutions to
(1.1)-(1.4). Then for any σ>0, there is a constant C(σ) such that the first moment
m1(t) satisfies the following relation

2
d

dt
m1(t)≤C(σ)+σ

N∑
i=1

‖∇
√
ci‖2L2(Rn) +σ‖∇u‖2L2(Rn)

+σ

N∑
i=1

∫
Rn
z2i ci|∇φ|2dx, i= 1,...,N. (4.1)

Proof. Multiplying |x| to the Equation (1.2), integrating in Rn, we have

d

dt
mi

1(t) =

∫
Rn

x ·u
|x|

cidx−
∫
Rn

x ·∇ci
|x|

dx−
∫
Rn
zici

x

|x|
·∇φdx. (4.2)

Notice that for any 0<t<∞, it holds that∣∣∣∫
Rn

x

|x|
ciudx

∣∣∣≤‖ci‖
L

4
3 (Rn)

‖u‖L4(Rn), (4.3)∣∣∣−∫
Rn

x

|x|
∇cidx

∣∣∣≤∫
Rn
|∇ci|dx≤2‖ci‖

1
2

L1(Rn)‖∇
√
ci‖L2(Rn), (4.4)∣∣∣−∫

Rn
zici

x

|x|
·∇φdx

∣∣∣≤ (∫
Rn
z2i ci|∇φ|2dx

) 1
2
(∫

Rn
cidx

) 1
2 . (4.5)

Plugging (4.3)-(4.5) into (4.2), and using (2.1) and (1.7), we obtain

d

dt
mi

1(t)≤‖ci‖
L

4
3 (Rn)

‖u‖L4(Rn) +C

(
‖∇
√
ci‖L2(Rn) +

(∫
Rn
z2i ci|∇φ|2dx

) 1
2

)
. (4.6)

Since

‖ci‖
L

4
3 (Rn)

=‖
√
ci‖2

L
8
3 (Rn)

≤C‖
√
ci‖2(1−θ)L2(Rn)‖∇

√
ci‖2θL2(Rn)≤C‖∇

√
ci‖2θL2(Rn), (4.7)

where θ= 1
4 for n= 2, and θ= 3

8 for n= 3. And using the Young inequality, we know
that for any σ>0, it holds that

2
d

dt
mi

1(t)≤C(σ)+σ‖∇
√
ci‖2L2(Rn) +σ

∫
Rn
z2i ci|∇φ|2dx+

σ

N
‖∇u‖2L2(Rn), (4.8)
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i= 1,...,N . Summing (4.8) from 1 to N , we get (4.1).

Combining (2.5), (2.6) and (4.1) and taking σ= 1
2 , we deduce

d

dt
(F1 +F2 +2m1(t))+

1

2

∫
Rn
|∇u|2dx+2

∫
Rn

(
N∑
i=1

zici)
2dx

+
1

2

∫
Rn

(
N∑
i=1

z2i ci)|∇φ|2dx+
7

2

N∑
i=1

∫
Rn
|∇
√
ci|2dx≤C. (4.9)

Based on Proposition 4.1 and the free energy-dissipation relation (1.8), we will
deduce a series of a prior estimates, which are helpful for proving global existence of
weak solutions to the model (1.1)-(1.4).

Lemma 4.1. Assume that u0∈L2(Rn;Rn), c0i ∈L1
+∩L logL(Rn), m1(0)<∞ and

F1(0),F2(0)<∞. Then for any T >0, there is a constant C such that the following
estimates hold

‖u‖L∞(0,∞;L2(Rn)) +‖∇u‖L2(0,∞;L2(Rn))≤C, (4.10)

‖∇
√
ci‖L2(0,T ;L2(Rn))≤C, i= 1,...,N, (4.11)

‖ci‖
L

8
3 (0,T ;L

4
3 (Rn))

≤C, i= 1,...,N, (4.12)

‖∇φ‖L∞(0,∞;L2(Rn)) +‖∇φ‖L2(0,T ;H1(Rn))≤C. (4.13)

Proof. By (1.7), we easily know that (4.10) holds, and thus

‖u‖L4(0,∞;L4(Rn))≤C, for n=2, (4.14)

‖u‖
L

8
3 (0,∞;L4(Rn))

≤C, for n=3. (4.15)

Using the Carleman-type inequality [4]∫
{ci≤1}

ci| logci|dx≤mi
1(t)+

8π

e
, (4.16)

we obtain that there is a constant C independent of t such that it holds that

F1 +F2 +2m1(t)+C≥
N∑
i=1

∫
Rn
ci logcidx+2m1(t)+C≥0. (4.17)

Combining (4.9) and (4.17), and using the initial assumptions, we have

N∑
i=1

∫ T

0

∫
Rn
|∇
√
ci|2dxdt+

∫ T

0

∫
Rn

(
N∑
i=1

zici)
2dxdt≤C. (4.18)

Hence the Equation (1.3) and (4.18) imply that (4.11) and∫ T

0

∫
Rn

(∆φ)2dxdt≤C. (4.19)

The fact ∫
Rn

(∆φ)2dx=

∫
Rn
|∇2φ|2dx, for any 0<t<T,
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together with (4.19) imply that (4.13) holds. Moreover, combining (4.7) and (4.11), and
noticing 2θ≤ 3

4 , then by the Hölder inequality, we obtain∫ T

0

‖ci‖
8
3
4
3

dt≤C
∫ T

0

‖∇
√
ci‖

16θ
3

2 dt=C

∫ T

0

‖∇
√
ci‖22dt≤C.

That is (4.12).

Now using (4.10)-(4.13), we derive some estimates on time derivative of ∇φ and u.

Lemma 4.2. Assume that u0∈L2(Rn;Rn), c0i ∈L1
+∩L logL(Rn), m1(0)<∞, F1(0)<

∞ and F2(0)<∞. Then for any T >0, there is a constant C such that

‖∂t(∇φ)‖
L

4
3 (0,T ;W−2, 4

3 (Rn))
≤C, (4.20)

‖∂tu‖
L2(0,T ;W−1, 4

3 (Rn))
≤C. (4.21)

Proof. For any v∈C∞c (Rn;Rn), v can be decomposed into

v=w+∇ψ, ∇·w= 0.

Hence

〈v,∂t(∇φ)〉= 〈∇ψ,∂t(∇φ)〉= 〈ψ,∂t
(
−∆φ

)
〉= 〈ψ,∂t(

N∑
i=1

zici)〉. (4.22)

Multiplying zi to the Equation (1.2) and summing them from i= 1 to N , we deduce
that

∂t(
N∑
i=1

zici)+∇·((
N∑
i=1

zici)u) = ∆
( N∑
i=1

zici
)

+∇·((
N∑
i=1

z2i ci)∇φ).

So, we can compute

〈ψ,∂t(
N∑
i=1

zici)〉= 〈∇ψ,(
N∑
i=1

zici)u〉+〈∆ψ,
( N∑
i=1

zici
)
〉−〈∇ψ,((

N∑
i=1

z2i ci)∇φ)〉. (4.23)

Noticing that

|〈∇ψ,((
N∑
i=1

z2i ci)∇φ)〉|≤‖∇ψ‖L∞
(

N∑
i=1

(∫
Rn
z2i cidx

) 1
2
(∫

Rn
z2i ci|∇φ|2dx

) 1
2

)
, (4.24)

and using the Hölder inequality for the right-hand side of (4.23), we have

〈ψ,∂t(
N∑
i=1

zici)〉≤ ‖∆ψ‖L4‖
( N∑
i=1

zici
)
‖
L

4
3

+‖∇ψ‖L∞‖
( N∑
i=1

zici
)
‖
L

4
3
‖u‖L4

+C‖∇ψ‖L∞
( N∑
i=1

∫
Rn
z2i ci|∇φ|2dx

) 1
2 . (4.25)
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By the free energy-dissipation relation (1.7), (4.12), (4.14) and (4.15), we deduce∫ T

0

‖∆ψ‖L4‖
( N∑
i=1

zici
)
‖
L

4
3
dt≤C‖∆ψ‖

L
8
5 (0,T ;L4(Rn))

, (4.26)

∫ T

0

‖∇ψ‖L∞‖
( N∑
i=1

zici
)
‖
L

4
3
‖u‖L4 dt≤C‖∇ψ‖L4(0,T ;L∞(Rn)), (4.27)

∫ T

0

‖∇ψ‖L∞
( N∑
i=1

∫
Rn
z2i ci|∇φ|2dx

) 1
2 dt≤C‖∇ψ‖L2(0,T ;L∞(Rn)). (4.28)

Hence it holds that ∫ T

0

〈ψ,∂t(
N∑
i=1

zici)〉dt≤C‖ψ‖L4(0,T ;W 2,4(Rn)). (4.29)

Therefore (4.22) and (4.29) imply that∫ T

0

〈v,∂t(∇φ)〉dt≤C‖v‖L4(0,T ;W 2,4(Rn)),

which means that (4.20) holds. Using (4.10)-(4.13), a similar process can also give
(4.21). This completes the proof of Lemma 4.2.

Proof. (Proof of Theorem 1.2.) A regularized problem for (1.1)-(1.4) is given
by the following equations

∂tuε+uε ·∇uε+∇pε= ∆uε−(
N∑
i=1

zic
ε
i )(Jε ∗∇φε), (4.30)

∂tc
ε
i +∇·(cεiuε) = ∆cεi +∇·(zicεiJε ∗∇φε), (4.31)

−∆φε= (
N∑
i=1

zic
ε
i )∗Jε, (4.32)

∇·uε= 0, (4.33)

cεi (x,0) = cε0i (x) := ci0(x)∗Jε, (4.34)

uε(x,0) =uε0(x) :=u0(x)∗Jε. (4.35)

Since u0∈L2(Rn;Rn), c0+,c
0
−∈L1

+∩L logL(Rn), m1(0)<∞, F1(0)<∞ and F2(0)<
∞, we have

‖uε0‖L2(Rn)≤‖u0‖L2(Rn), ‖cε0i ‖L1(Rn) =‖ci0‖L1(Rn) (4.36)

mε
1(0)<m1(0)+C, Fε1 (0)≤F1(0), Fε2 (0)≤F2(0), (4.37)

where C is independent of ε, mε
1(t) and Fε2 (t) are defined by

mε
1(t) :=

N∑
i=1

∫
Rn
|x|cεi dx, Fε2 (t) =

N∑
i=1

∫
Rn
cεi logcεi dx.

It is directly checked that the solutions (uε,c
ε
1,...,c

ε
N ) of the regularized problem

(4.30)-(4.35) for n= 2,3 satisfy the energy-dissipation relations (1.7) and (1.8), and the
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property of the first moment. Thus we have all the estimates in Lemma 4.1 and Lemma
4.2, i.e.,

‖uε‖L∞(0,∞;L2(Rn)) +‖∇uε‖L2(0,∞;L2(Rn))≤C, (4.38)

‖∇
√
cεi‖L2(0,T ;L2(Rn))≤C, i= 1,...,N, (4.39)

‖cεi‖L 8
3 (0,T ;L

4
3 (Rn))

≤C, i= 1,...,N, (4.40)

‖∇φε‖L∞(0,∞;L2(Rn)) +‖∇φε‖L2(0,T ;H1(Rn))≤C, (4.41)

‖∂t(∇φε)‖
L

4
3 (0,T ;W−2, 4

3 (Rn))
≤C, (4.42)

‖∂tuε‖
L2(0,T ;W−1, 4

3 (Rn))
≤C. (4.43)

Hence using the Aubin-Lions-Simon lemma [12, Corollary 4] and the uniform esti-
mates (4.38)-(4.43), we can obtain that there is a subsequence still denoted as uε, φε,
cεi and limit functions u, φ and ci satisfying the regularities (1.28)-(1.31) such that

uε→u in L2(0,T ;L4
loc(Rn)),

∇φε→∇φ in L2(0,T ;L4
loc(Rn)).

Furthermore by the estimate (4.40), we deduce

cεi⇀ci, i= 1,...,N, in L2(0,T ;L
4
3 (Rn)). (4.44)

Hence the standard compactness argument implies that there is a global weak solution
for the model (1.1)-(1.4). This completes the proof of Theorem 1.2.
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