INTERNET OF THINGS AND SENSOR NETWORKS

ORCA: Enabling an Owner-Centric and
Data-Driven Management Paradigm for
Future Heterogeneous Edge-IoT Systems

Jianli Pan, Jianyu Wang, Ismail AlQerm, Yuanni Liu, and Zhicheng Yang

The authors present a novel
owner-centric management
paradigm named ORCA to address
the gaps left by the owner-centric
paradigm and empower loT asset
owners to effectively identify and
mitigate potential issues in their
own network premises, regardless
of vendors'/SPs' situations. ORCA
aims to be scalable and extensible
in assisting loT owners to perform
intelligent management through a
behavior-oriented and data-driv-
en approach.

Digital Object Identifier:
10.1109/MCOM.001.2000237

ABSTRACT

Integrating the Internet of Things (loT) and
edge computing in Edge-loT systems, converged
with machine intelligence, has the potential to
enable a wide range of applications in smart
homes, factories, and cities. Edge-loT can con-
nect many diverse devices, and loT asset owners
can run heterogeneous loT systems supported by
various vendors or service providers (SPs), using
either cloud or local edge computing (or both)
for resource assistance. The existing methods
typically manage the systems as separate verti-
cal silos, or in a vendor-/SP-centric way, which
suffers from significant challenges. In this article,
we present a novel owner-centric management
paradigm named ORCA to address the gaps left
by the owner-centric paradigm and empower loT
asset owners to effectively identify and mitigate
potential issues in their own network premises,
regardless of vendors’/SPs’ situations. ORCA aims
to be scalable and extensible in assisting loT own-
ers to perform intelligent management through
a behavior-oriented and data-driven approach.
ORCA is an ongoing project, and the preliminary
results indicate that it can significantly empow-
er loT system owners to better manage their loT
assets.

INTRODUCTION

The National Academy of Engineering (NAE)
identified 14 grand challenges our society faces
[1], including virtual reality, health informatics,
secure cyberspace, clean water, and urban infra-
structure. They can directly benefit from integrat-
ing artificial intelligence (Al), machine intelligence,
the Internet of Things (loT), edge computing, and
5G to closely work for citizens, businesses, and
the whole society. Future smart homes, facto-
ries, communities, and cities will also be empow-
ered. We envision a future Edge-loT environment
[2] converged with machine intelligence and
data-driven approaches to better serve people
and businesses. Edge-loT can connect massive
numbers of smart devices, and loT asset owners
can run heterogeneous loT systems supported
by various vendors’ or service providers’ (SPs’)
platforms, and can use either cloud or local edge
computing (or both) for resource assistance.
However, it is a significant challenge to scalably

and effectively manage such a dramatic number
and variety of devices, and heterogeneous Edge-
loT systems. Poor management partially contrib-
utes to large-scale botnet attacks and significant
financial loss [3]. Specifically, current loT systems
are typically managed by different vendors/SPs as
separate vertical silos [4]. The vendor-/SP-centric
management overly relies on vendors’ uneven
capabilities, and lacks transparency and cross-sub-
system insights for the owners. The owners are
also at risk of losing basic management capabil-
ities when vendors/SPs run into abnormal situa-
tions or go out of business.

In this article, we envision building a novel
owner-centric management paradigm to fill the
existing gaps and empower loT owners to man-
age across subsystems, which the vendors/SPs are
currently not able to do. The owners are in the
most capable and suitable position of in-premises
edge networks (not cloud) to effectively identify
and mitigate potential issues. The significance of
the new paradigm is multifold. First, it empowers
owners to manage diverse devices and complex
behavior, and can greatly reduce financial loss
due to management failure. Second, it enables
owners to manage across subsystems when sep-
arate silos are not fully interoperable and stan-
dardization falls behind. Third, it enables owners
to continue managing their assets even when ven-
dors/SPs stop support or are out of business.

However, there are significant technical bar-
riers to enabling this new paradigm. First, exist-
ing methods in industry and academia either only
manage small device variety in dedicated silos
and only consider simple behavior, or use limited
data source such as network traffic. In such tasks,
simple statistic or machine learning methods suf-
fice, and they can afford relatively expensive sam-
ple labeling. But the owners may have to manage
a large device variety and complex behavior
patterns, and large-scale sample labeling also
becomes economically infeasible. Second, the
existing methods do not account for scalability
and extensibility to accommodate owners’ grow-
ing management interests. Target behavior may
also have different complexity, and the modeling
approaches should be customizable to balance
between performance and cost. Third, the existing
data-driven management methods in both indus-
try and academia focus on small scopes, and they
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lack a holistic full-cycle data-driven approach to
empower the loT owners across the whole man-
agement cycle of “observing, synthesizing, and
responding.”

In this article, we aim to present a scalable and
extensible owner-centric management framework
named ORCA to assist loT owners to perform
intelligent management for diverse devices and
heterogeneous Edge-loT systems through a full-cy-
cle data-driven approach. Specifically, ORCA
holistically addresses the above technical barriers
via a series of unique designs and contributions.
First, it adopts a unique behavior-oriented and
data-driven approach to allow owners to model
complex behavior of diverse devices and hetero-
geneous Edge-loT systems utilizing various data
sources. Second, ORCA allows the owners to scal-
ably and extensibly define and deploy multi-lev-
el observable “behavior” models (output as
“insights”), identify suitable modeling approaches
based on behavior complexity and data features,
and balance performance and cost. Third, ORCA
provides full-cycle customized data-driven tool-
sets for the loT owners to model device behavior,
synthesize cross-silo group behavior, and make
intelligent management decisions without being
required to have deep technical expertise. Fourth,
ORCA runs at edge premises instead of in the
cloud, avoids excessive data transmission and
delay, and can manage when offline. It is run by
owners, independent of the existing functions in
silos, and can continue managing when vendors
stop support or even go out of business.

The rest of the article is organized as follows.
The following section is related work and the
current vendor/SP-centric paradigm. The ORCA
rationale is discussed next. The ORCA architec-
ture and the data-driven 3-step loT management
are presented. Next, we present some preliminary
evaluation and discussions. The conclusions fol-
low.

CURRENT I0T MANAGEMENT AND
VENDOR/SP-CENTRIC PARADIGM

In this section, we discuss the current related
work and issues on loT management.

RELATED WORK

loT management has been studied on individual
aspects such as trust, resource, energy/power,
data, and privacy management. Management has
also been closely tied to specialized devices in
industrial factory machinery, power grid, water
network, and supply chain. For example, prog-
nostics and health management (PHM) [5] for
industrial machinery health diagnostics has been
heavily researched using recent statistical and
machine learning methods. Such industrial appli-
cations have recently been moved to the cloud
and managed by vendors/SPs as separate silos
[4]. Some examples include Amazon AWS loT,
IBM Watson loT, Google Cloud loT, and small
vendors renting cloud space to provide support.
Inside each silo, machine-learning-based loT ana-
lytics are performed for predictive maintenance,
big data inference, and anomaly identification.
Mobile device management (MDM) [6] deals
with smartphone management with limited types
of devices and operating systems (OSs). Its goals

and scopes are different from loT management.
Another category of works use machine learning
techniques over data traffic for device fingerprint-
ing, behavior analysis, and intrusion detection.
Typical commercial products include Extreme
loT Defender, Zingbox, and Cisco Appdynam-
ics. However, using only traffic analysis is limit-
ed. The used machine learning methods require
expensive labeling, and are inadequate to model
very diverse devices and growing management
interests. In addition, “horizontal” efforts [7] aim
for better interoperability among silos. Example
efforts include standardization, industry alliances,
loT ontologies [8], and market convergence. The
horizontal process is relatively slow, and by itself it
cannot lead to owner-centric management.

VARIOUS MANAGEMENT MODES AND THE
VENDOR/SP-CENTRIC PARADIGM

Depending on the actual cases and business
models, different management modes exist. loT
systems can be managed either by owners them-
selves locally or by specialized vendors/SPs at
the edge or clouds. We consider two key factors:
owners’ characteristics and capabilities, and the
vendors/SPs’ expertise and capability. On one
hand, various owners may have very different
expertise and capability. The first category is that
the owners run very dedicated applications such
as Industry 4.0 factories, smart vehicle charging
networks, and camera-based security events
detection. In these cases, the owners are either
very capable and can manage all the specialized
devices by themselves locally or at the edge, or
rely on very powerful vendors/SPs such as Goo-
gle and Amazon to manage at the edge or cloud.
For these ideal cases, existing management meth-
ods may suffice. The second category includes
less ideal cases in that the common loT owners
are much less capable, and they barely have ade-
quate expertise or tools to manage things all by
themselves. On the other hand, various vendors/
SPs on which the owners rely may also have very
different capability. For example, they may range
from powerful companies such as Amazon and
Google to vendors of many cheap devices that
barely provide any management.

Meanwhile, it has become common that loT
owners may own and run multiple systems in their
networks, and they rely on various vendors/SPs
to manage these systems separately. For example,
a smart home owner may run NEST on Google's
cloud for thermostat, Amazon’s Echo on AWS
cloud for voice assistant, and some cheap origi-
nal equipment manufacturer (OEM) IP cameras
from small vendors on rented cloud spaces. These
subsystems are either managed by owners them-
selves or in a vendor/SP-centric way, that is, by
different device vendors or SPs vertically as sepa-
rate silos [4] that typically do not share interfaces,
data, and insights. Within the foreseeable future,
the loT market will remain scattered with various
sizes of vendors/SPs using different software and
platforms. The standardization process remains
relatively slow, and the interoperability between
different platforms is limited.

In addition, a series of emerging trends will
bring even more difficulties to management. First,
there are increasing numbers of devices and grow-
ing management interests. Second, the devices
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Devicesandapplications  Datatpe 4 G01)  onsty,  imtomsity _ seniviy

Emfer.gg‘i“gcl‘ﬁfﬁé'tt;‘Zferc‘ifgf)“se Video/audio High High High
VR/AR related applications Video 20r3 High High High
Home voice assistant Audio Medium Medium/low High

Cognitive assistance Video/audio 20r3 High/medium High/medium Medium

Building access face detection Video Medium Medium/low Medium

Personal identification imﬁ;gi/?é - Medium/low Medium/low Medium
Home health monitoring Text Low Low Low
Common smart home devices Text/audio Medium/low Low Low
Low-level sensors Text Low Low Low

TABLE 1. Example Edge-loT systems and characteristics.
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FIGURE 1. Owner-centric vs. vendor/SP-centric paradigms.

can be very diverse [9] in constraints, network
types (wireline/wireless), protocols (Wi-Fi/Eth-
ernet/5G), network patterns (point-to-point and
point-to-multipoint [P2P/P2MP]/multihop), media
types (text/audio/video), and characteristics (run-
ning modes, bandwidth, and response frequency).
They may show a wide range of behavior pat-
terns. Third, heterogeneous loT systems have var-
ious quality requirements. Some typical examples
are shown in Table 1, which includes resource-in-
tensive and latency-sensitive applications (in light
gray). The existing management practices of the
loT systems have fallen short, which has been par-
tially reflected in widespread large-scale botnet
attacks and significant financial losses caused by
millions of poorly managed smart loT devices in
recent years [3].

OWNER-CENTRIC PARADIGM AND RATIONALE

In this section, we discuss the new paradigm and
the designing rationale.

(OWNER-CENTRIC V'S, VENDOR/SP-CENTRIC PARADIGMS

For common owners, overly relying on the ven-
dor/SP-centric paradigm may incur significant lim-
itations. Thus, we propose a new owner-centric
paradigm named ORCA to fill the existing gaps
left by the vendor/SP-centric paradigm (not to
replace the application logic of individual silos),
and provide much-needed advanced designs
to empower those vulnerable and incapable
loT owners to better manage various heteroge-

neous loT systems. Specifically, ORCA addresses
the challenges as follows. First, various vendors/
SPs may have very uneven technical capabilities,
and the powerful vendors/SPs cannot manage
devices across silos. This may result in poor man-
agement of some devices (e.g., some OEM IP
cameras) by less capable vendors/SPs. They can
become weak links, and be compromised and
used as springboards by hackers to launch inter-
nal attacks. ORCA provides owners with basic
management for these vulnerable devices so
that they will not be easily exploited by hackers.
Second, the management functions of various
vendors/SPs are typically separate and not trans-
parent, and the owners generally have no way to
gain cross-subsystem insights. For example, the
owners may want to know whether the shared
resource pool is being responsibly used by differ-
ent subsystems, and whether devices abnormally
interact with others managed by different ven-
dors/SPs. ORCA will allow the owners to manage
beyond silos and extract useful cross-system or
group insights by performing better data analy-
sis defined by the owners and serving their own
objectives. The owners are in a better position to
judge how these groups of devices from different
vendors can be managed to serve the owners’
purposes and fit with its current facilities. Third,
when specific vendors/SPs experience tempo-
rary/permanent situations, stop support, or go out
of business, the owners are at risk of losing basic
management capabilities over their own assets.
ORCA will continue providing basic management
support even if the above situations occur, and
it will reduce management lapses that hackers
can exploit. Fourth, instead of managing from the
cloud, ORCA manages at the owners’ network
premises, which does not incur large volumes of
data transmission and long delay, and does not
require the owner network to be always online.
We compare the two paradigms in Fig. 1 via a
simple smart home example with four silos includ-
ing subsystems using the cloud or edge. It also
shows the three types of horizontal efforts includ-
ing standardization, interoperability alliances, and
market convergence, and illustrates their relation-
ship. Horizontal progress can potentially alleviate
some of the challenges and help management
with better data quality and availability, and hence
benefit ORCA'’s performance. However, horizon-
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FIGURE 2. Scalable and extensible behavior models.

tal progress does not automatically lead to own-
er-centric management. Even in a “perfect” world
with full standardization and interoperability, and
with fewer silos, management is still done in a
vendor/SP-centric way. The horizontal vision has
a relatively long way to go.

BEHAVIOR-ORIENTED AND DATA-DRIVEN APPROACHES

We define “behavior” as the patterns that the loT
owners want to observe based on their extensible
management interests of different levels [10]:

1. B1: device-level interests such as hardware
failure, software malfunction, and remaining
lifetime

2. B2: network-level interests such as traffic pat-
terns, unsafe connections, and botnet activ-
ities.

3. B3: cloud/edge interests such as requested
resource, offloaded tasks, and response time

4. B4: group and subsystem-level interests such
as how groups behave in B1 to B3

In ORCA, to generate device behavior insights
in a timely manner and at suitable cost, special-
ized machine learning models are needed that
are suitable to the behavior complexity and can
appropriately balance between performance and
cost for both model training and operation. The
overall idea is illustrated in Fig. 2. The owner will
be able to deploy behavior models flexibly and
extensibly based on device types and their man-
agement interests (B1-B4). Moreover, ORCA is
data- and insight-driven. The device-level behavior
modeling results are used to synthesize group and
system-level behavior, and they are further used
to assist owners to make intelligent management
responses.

ORCA ARCHITECTURE AND
DATA-DRIVEN THREE-STEP MANAGEMENT

In this section, we focus on the ORCA architec-
ture and the proposed data-driven three-step loT
management.

ORCA ARCHITECTURE OVERVIEW

The ORCA architecture is presented in Fig. 3. It
works at the network edge and integrates the loT
device side and the resource side. The device

side includes multiple types of devices and sub-
systems. The resource side consists of multiple
edge servers comprising virtual machines, and
communication and computation resources. The
acquired data from both sides go through quality
improvement, and the resulted data samples are
used to train or retrain the models. The device
behavior manager will profile the device behav-
ior based on managers’ interests, and decide
the appropriate candidate models based on the
data time dependency and the behavior com-
plexity. The group behavior manager synthesizes
device-level behavior into group-level insights by
clustering, and group resource usage trends by
long short-term memory (LSTM)-based predic-
tion [13]. The intelligent response manager will
utilize the insights from the device manager and
group manager to make intelligent decisions in
device-level predictive maintenance, and qual-
ity of experience (QoE)-based intelligent edge
resource allocation. Specifically, the device pre-
dictive maintenance module will further inspect
the group outliers identified by the clustering and
make behavior predictions using an online and
lightweight OL-ARIMA [12] approach. It will then
generate a device list for further maintenance.
The resource allocation module aims to build a
QoE model, takes various behavior insights as
parameters, and allocates edge resources using
a two-stage deep online learning method, with
the goals of maximizing users’ satisfaction and
edge resource utilization, and encouraging good
behavior.

DATA-DRIVEN THREE-STEP MANAGEMENT

“Observing”: Owner-Centric Device-level
Behavior Modeling: This step focuses on loT own-
ers’ device manager role and aims to profile and
model various behaviors of diverse devices for
heterogeneous [oT systems from an owner-centric
perspective with growing management interests.

Behavior Profiling: We first profile multi-level
new behavior targets, exploit various data sourc-
es, and map the behavior targets to suitable
models. The device behavior profiling workflow
is shown in Fig. 4. The workflow inputs are the
target behavior that the owners choose to model
for a specific type of device, and the outputs are

The resource allocation
module aims to build a QoE
model, takes various behav-
ior insights as parameters,
and allocates edge resources
using a two-stage deep
online learning method,
with the goals of maximizing

users' satisfaction and edge
resource utilization, and
encouraging good behavior.
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FIGURE 3. ORCA architecture.

the trained models that have learned the patterns
of normal device behavior. To jointly consider
performance, cost, and scalability, we formulate
behavior modeling as a one-class classification
problem [11] in order to avoid difficult and expen-
sive labeling for anomalies of diverse devices and
relatively low frequency for specific faults, and
leverage the relatively ample “normal” behavior
data to train the one-class classifiers. The behavior
models will output the devices’ current abnor-
mal degree, comparing it to the normal or healthy
condition. For example, if an loT owner wants
to define a behavior model for an IP camera in
the B2 category focusing on its traffic pattern, the
model output will be a score measuring its abnor-
mal degree. If the camera is having a software
malfunction or a botnet attack, the model will out-
put a score in an alarming range. Depending on
behavior types (B1 to B3), various data sources
related to multi-level features across the loT refer-
ence model are used to prepare training samples
and dataset.

Behavior Modeling: We then map the behav-
ior target to the suitable modeling methods based
on two data attributes, time dependency and fea-
ture dimensionality, in order to balance between
performance (speed/accuracy) and cost (training/
operation). First, key behavior data may be either
time series or non-time series data. Time-series
data are generated periodically at fixed intervals
such as sensors’ data or network packets with
natural timestamps, and the patterns may exist in
the time dependency. Non-time-series data have
little or no time dependency between instances.
Second, complex behavior’s high feature dimen-
sionality may cause high data sparsity, and require
advanced modeling approaches and more training
samples. Thus, to effectively learn high-dimension-
al feature distributions in the one-class classfiers,
we integrate the generative adversarial network
(GAN) [14] with encoder-decoder networks
(GAN-ED) for non-time-series behavior model-
ing, and integrate LSTM [13] with ED networks
(LSTM-ED) for time-series behavior modeling. In
the GAN-ED model, we incorporate an encoder
network into the original GAN framework. The
encoder advances its learning ability, which com-
presses the inputs into low-dimensional feature
vectors through the mutual training process with

the generative and discriminative networks in
GAN. In the LSTM-ED model, we employ LSTM
neurons in the hidden layers for both the encod-
er and the decoder networks to learn the time
dependencies between the input features. For
simpler behavior with low dimensionality of the
non-time-series data, we develop a simpler meth-
od based on one-class support vector machine
(OC-SVM) for fast and less costly modeling, and
an agile and lightweight prediction method based
on multivariate autoregressive integrated moving
average (MARIMA) for time series data.

“Synthesizing”: Owner-Centric Group and
Subsystem Behavior Modeling: This step focuses
on the loT owners’ application and resource man-
ager roles, and aims to synthesize group and sub-
system level behavior and resource usage insights
for the following management decision making.

Group/Subsystem Behavior Synthesizing:
This stage aggregates individual devices” behavior
scores, synthesizes group behavior, and identi-
fies outliers. We allow the loT owners to flexibly
define “groups” as loT subsystems (e.g., all the
IP cameras for a video surveillance subsystem),
locations (e.g., all devices on a specific floor of
a building), or device batches (e.g., all devices
procured in the same batch with similar software
and hardware configurations). With such group-
ing, we can run clustering to synthesize group
insights and identify potential “outliers,” and help
owners find out the device numbers with low-
est or highest scores, and the current and histor-
ical score distributions for loT subsystems. These
insights can help understand system dynamics
and identify problematic devices. They can help
owners find out whether the devices have lower
scores than other areas for a location/network.
These insights can help identify large-scale bot-
net activities or malfunction caused by faulty loT
gateways.They can also help decide whether they
are showing similar low scores for a device batch.
These insights can help identify batches that need
updates or attention.

Group/Subsystem Resource Usage Predic-
tion: This stage synthesizes how the shared edge
resources are currently being or will be used by
groups or subsystems. For example, if a video
cognitive subsystem uses 90 percent of the total
edge resource while contributing only 10 percent
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of the financial revenue, loT owners may be moti-
vated to rebalance the resource budgets among
subsystems. Similarly, for abnormal cases when
the group resource usage with certain locations/
networks or device batches reaches alarming
ranges, it may justify certain management actions.
In addition, if the group resource usage insights
are combined with accurate and prompt predic-
tion, they can help loT owners to efficiently allo-
cate the shared edge resources to the different
subsystems, better prepare for large-scale abnor-
mal incidents, and protect the overall welfare of
these systems. A typical candidate tool is LSTM.

“Responding”: Owner-Centric and Data-Driv-
en Management Responses: This step takes all
loT owners’ roles, as device, application, and
resource manager, and aims to enable the loT
owners to make well-informed and intelligent
management decisions at the edge to manage
individual devices and the shared edge resources
among all subsystems.

Device-Level Predictive Maintenance: The loT
devices’ behavior can be very dynamic. To identi-
fy devices that need future maintenance with con-
fidence, we conduct behavior prediction over the
group outliers identified in the above second step.
Behavior prediction in heterogeneous Edge-loT
needs to handle multiple behavior models, large
amounts of historical records, random behavior
pattern changes with stationary and non-station-
ary distributions, varied prediction window lengths
for different reaction delays, and fast and cost-effi-
cient prediction.

Intelligent Edge Resource Allocation: With
the obtained insights, we then aim to intelligently
allocate edge resource to jointly optimize user
experience and resource utilization, while con-
taining bad behavior. We design a novel resource
allocation scheme that does two things. First, we
build a new QoE model to quantify the devices’
satisfaction, which comprises heterogeneous sub-
systems’ QoS requirements and priorities. The
model accounts for a device’s current and pre-
dicted behavior, group behavior, and predicted
edge resource usage. Second, we build a novel
two-stage deep online learning [15] scheme
to jointly optimize user experience and edge
resource usage across subsystems.

EVALUATION AND DISCUSSIONS

In this section, we conduct preliminary evalua-
tions on scalability both qualitatively and quanti-
tatively.

QUALITATIVE EVALUATION AND DISCUSSIONS

First, for the vendor/SP-centric paradigm, a ven-
dor like Google or Amazon may have to manage
in central locations (clouds) for large numbers
of devices residing in many owners’ domains. In
comparison, for ORCA, in each owner’s domain,
the number of devices they own and manage
is much less. Second, ORCA incorporates scal-
ability and extensibility supports. As illustrated in
Fig. 2, in ORCA, the required number of trained
and deployed behavior models is approximately
O(M*N). It is decided by the number of device
types N (e.g., cameras and drones) and the num-
ber of behavior models M (B1 to B4) for each
device type. With such design, the overall model
cost of ORCA will increase polynomially, regard-
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less of the possible exponential increase of the
number of devices. Thus, qualitatively speaking,
when a new device type comes to the market,
ORCA will be able to scale up efficiently with the
loT device variety N. When the owner wants to
extend his/her management interests, ORCA will
be able to scale up by increasing new manage-
ment interests M. In addition, to balance the cost
(training/operation) and performance (speed/
accuracy) for the loT behavior models, ORCA
provides four candidate modeling approaches
for the owners to choose based on the feature
dimensionality and data time dependency.

QUANTITATIVE EVALUATION AND DISCUSSIONS

We also present a quantitative evaluation on scal-
ability. We build a testbed with several typical 1oT
devices such as IP cameras and temperature sen-
sors, and an ORCA manager using a Raspberry Pi
3 with 1.4 GHz CPU, 1 GB RAM, and 16 GB stor-
age. The behavior dataset consists of time-series
(TS) and non-time-series (NTS) samples. TS sam-
ples are collected every 30 minutes where each
sample is a single-variate sequence with 90 data
points. NTS are sampled once per minute where
each sample has 80 features from B1 to B4. We
evaluate behavior modeling cost by implement-
ing the four models proposed earlier, where
GAN-ED and LSTM-ED have two neural layers
with 64 and 32 neurons in both the encoder and
decoder networks. For NTS, behavior measuring
tasks are uniformly distributed in 1 minute. With
these configurations, we observe the following
results. First, the size of one TS sample and one
NTS sample are about 1 kB and 0.5 kB, respec-
tively. Suppose that the loT devices number is
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The evaluation results
demonstrate that all the
models can run on the
ORCA server with very
limited resource cost. In
our experiment settings, a

resource-constrained Rasp-
berry Pi-based ORCA manager
can manage a fair number of
devices while causing limited

network traffic and storage

overhead.

Model Model
Model X .
Model size (kB) running running
time (ms)  memory (MB)
0C-SVM 103 6 97
MARIMA 36 12 84
GAN-ED 345 62 163
LSTM-ED 630 233 184

TABLE 2. Costs of the four models.

120 in the service coverage of one manager: the
total behavior data size for all devices are 60 kB
per minute for TS and 120 kB every 30 minutes
for NTS. Second, we observe the key scalability
parameters including models’ sizes, running time,
and running memory in Table 2. For model size,
LSTM-ED is the biggest among them, and each
one takes only 630 kB. For running time, the one-
time behavior evaluation takes at most 233 ms,
which meets the responding latency requirement
of ORCA. For the running memory, we observe
that the runtime memory consumption of any
model does not exceed 184 MB. The evaluation
results demonstrate that all the models can run on
the ORCA server with very limited resource cost.
In our experiment settings, a resource-constrained
Raspberry Pi-based ORCA manager can manage
a fair number of devices while causing limited net-
work traffic and storage overhead.

CONCLUSIONS

It is a significant challenge to manage massive
numbers of diverse devices and heterogeneous
Edge-loT applications. The current methods most-
ly manage these systems as separate vertical
“silos,” or in a vendor/SP-centric way, which suf-
fers from a series of limitations. To address the
challenges, in this article, we propose a new own-
er-centric paradigm named ORCA empowered
by data-driven approaches and machine learn-
ing techniques. ORCA aims to fill the gap and
complement the missing pieces of the existing
management approaches. It provides a scalable
and extensible framework for loT asset owners
to perform data-driven three-step management
to complete the “observing, synthesizing, and
responding” management cycle. The preliminary
evaluation demonstrates the effectiveness of the
proposed ideas. Our future work includes further
validation and integration of the building pieces.
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