
TimeCache: Using Time to Eliminate

Cache Side Channels when Sharing Software

Divya Ojha

Dept. of Computer Science

University of Rochester

Rochester NY, USA

dojha@cs.rochester.edu

Sandhya Dwarkadas

Dept. of Computer Science

University of Rochester

Rochester NY, USA

sandhya@cs.rochester.edu

Abstract—Timing side channels have been used to extract
cryptographic keys and sensitive documents even from trusted
enclaves. Specifically, cache side channels created by reuse of
shared code or data in the memory hierarchy have been exploited
by several known attacks, e.g., evict+reload for recovering an
RSA key and Spectre variants for leaking speculatively loaded
data.

In this paper, we present TimeCache, a cache design that
incorporates knowledge of prior cache line access to eliminate
cache side channels due to reuse of shared software (code and
data). Our goal is to retain the benefits of a shared cache of
allowing each process access to the entire cache and of cache
occupancy by a single copy of shared software. We achieve our
goal by implementing per-process cache line visibility so that the
processes do not benefit from cached data brought in by another
process until they have incurred a corresponding miss penalty.
Our design achieves low overhead by using a novel combination
of timestamps and a hardware design to allow efficient parallel
comparisons of the timestamps. The solution works at all the
cache levels without the need to limit the number of security
domains, and defends against an attacker process running on
the same core, on a another hyperthread, or on another core.

Our implementation in the gem5 simulator demonstrates that
the system is able to defend against RSA key extraction. We
evaluate performance using SPEC2006 and PARSEC and observe
the overhead of TimeCache to be 1.13% on average. Delay due
to first access misses adds the majority of the overhead, with the
security context bookkeeping incurred at the time of a context
switch contributing 0.02% of the 1.13%.

I. INTRODUCTION

Shared memory resources expose timing side channels that

can reveal information even in the presence of security mea-

sures such as process isolation and enclave separation. Cache

side channels leveraging shared memory have been shown

capable of extracting cryptographic keys, sensitive documents,

and data even from cryptographically secured enclaves [6].

Several classes of cache side channel attacks and defenses

have been developed in the literature [24].

In this paper, we focus on cache side channels created by

the reuse of shared software (code and data) in the memory hi-

erarchy. Shared software is an essential component to keeping

system costs low. For instance, shared libraries (code) are an

important optimization in modern computing systems to help

keep the memory footprint low. Likewise, services providing

access to large data stores result in data being shared across un-

trusted client requests. Access to the shared code or data leaves

a footprint in the memory hierarchy, which has been exploited

by several known attacks [49] [11] [23] [46] [9] [6] [18].

A typical cache side channel attack when sharing software

involves evicting the shared data (e.g., code from a shared

library) from the cache hierarchy and re-accessing it after the

victim’s execution (using evict+reload or flush+reload [46]).

A fast re-access is indicative of an access to the shared

location by the victim. If the shared library access is indexed

by a secret data, the attacker can infer the victim’s secret.

This attack model is used in attacks to leak cryptographic

keys [46], in Spectre I, Spectre II [18], NetSpectre [33], in

cross-tenant attacks to leak data in clouds providing Platform-

as-a-service [49], and in discovering key strokes [38].

There is another class of cache side channel attacks that do

not require shared memory and is not the focus of this work.

These attacks are referred to as contention or conflict-based

side channel attacks. Contention attacks are mitigated using

randomizing caches as in CEASER [27], CEASER-S [28],

and ScatterCache [13], or using very efficient multiple hashing

techniques like RPCache [40]. However, these techniques are

unable to prevent reuse attacks in shared memory. TimeCache

can work in conjunction with these techniques to provide a

holistic defense.

Reuse attacks on shared memory are more precise and

a handy tool for constructing more sophisticated attacks.

They are less noisy and are a preferred covert channel for

leaking speculatively loaded data [5], [18], [37]. Preventing

reuse attacks on shared memory will not only make the

attacker’s work difficult but also allow system providers to

deploy deduplication or copy-on-write sharing (e.g., unix-

style process fork operations or Docker-style containers) for

increased performance and reduced space utilization. Dedupli-

cation evaluation in the literature shows that its use can reduce

memory needs by a factor of 2-4x [15], [34] and increase

performance by up to 40% [34].

Existing solutions for reuse attacks partition the cache [7],

[17], [26], [39], [40] or implement constant time algo-

rithms [20], [30], [31], both resulting in increased latency.

Partitioning has been seen to be associated with higher over-

heads due to both reduction in the effective cache size for

individual processes, and due to potential aliasing of the

shared memory in the cache, depending on the system design.

375

2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA)

978-1-6654-3333-4/21/$31.00 ©2021 IEEE
DOI 10.1109/ISCA52012.2021.00037

2
0
2
1
 A

C
M

/I
E

E
E

 4
8
th

 A
n
n
u
al

 I
n
te

rn
at

io
n
al

 S
y
m

p
o
si

u
m

 o
n
 C

o
m

p
u
te

r
A

rc
h
it

ec
tu

re
 (

IS
C

A
)

| 9
7
8
-1

-6
6
5
4
-3

3
3
3
-4

/2
1
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/I

S
C

A
5
2
0
1
2
.2

0
2
1
.0

0
0
3
7

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 14,2021 at 21:55:23 UTC from IEEE Xplore. Restrictions apply.

At the end of the 32 iterations, if it is determined that Tc >

Ts, as latched in the left-hand S-R latch, the bitline drivers

for which the S-R latch has been set, and the wordline for the

s-bit corresponding to the hardware context, are enabled, to

write a 0 into the s-bits.

VI. EVALUATION

We implemented TimeCache in the gem5 cycle-accurate

simulator [4] using L1I and L1D caches of 32KB each and

an L2 (LLC) cache of 2MB. We added a timestamp and

a per-hardware-context s-bit to each cache line, which are

manipulated as described in Section IV. The process context

for a request packet in the cache is determined by the CR3

register within the simulator. Changes in the CR3 register are

used to trigger the timestamp comparisons and the s-bit saves

and restores.

Table I specifies the real and simulation system parameters

used for the evaluation.

TABLE I: Evaluation setup

Real Processor

Core i7-7700, 3304.125
L1D, L1I, L2, LLC cache 32K, 32K, 256K, 8192K

gem5 Simulator

Core TimingSimpleCPU, 2GHz
L1D, L1I, LLC cache 32K, 32K, 2048K

The following subsections present an analysis and evalu-

ation of the security and the performance overheads of our

timestamp-based defense on the gem5 simulator.

A. Security Analysis

The attack depends on a fast reload due to another process.

The attack can be broken if no process is allowed a cache hit

due to another process. If the first access by a process to an

existing cache line is never a cache hit, the attacker remains

oblivious of the data being cached beforehand and cannot learn

if some shared data was accessed by another process. The

second access is of no significance to the attacker. Allowing

unaltered access beyond the first access is sufficient to ensure

security while not significantly compromising performance. A

reuse attack in TimeCache is prevented as follows:

• Attacker evicts a shared location

• Attacker waits for the victim process to execute, resulting

in shared data being cached

• Attacker accesses the shared data but does not experience

a cache hit due to the victim’s caching

The additional information tracked for the defense includes

timestamps and the s-bits, which is saved and restored by

trusted software, and protected from unprivileged access.

1) Microbenchmark functionality evaluation: In order to

confirm the correct operation of the timestamp-based ap-

proach, we created a microbenchmark attack consisting of a

pair of child and parent processes accessing a shared memory-

mapped array of size equal to 256 cache lines. The parent

process acts as the attacker, i.e., flushes the shared array and

yields the processor. The victim’s execution follows, where

it writes a value repeatedly to the shared array. The parent

process then wakes up and performs timed reads of the entire

array. A hit is considered a successful attack. The attacker

does not see any hit with our defense simulation enabled in

gem5.

if parent

flush shrd_mem;

sleep;

read shrd_mem; // cache hit

else

read shrd_mem;

2) Attacking RSA: We use the flush+reload technique

to attack the GnuPG version of RSA, as described in the orig-

inal paper [46]. The attack was tested both on real hardware

and the gem5 simulator, both running Linux. The attacker is

an independent program, sharing the same machine and hence

the caches.

On a real machine, we install a non-stripped GnuPG library

and locate the offsets for the Square, Multiply, and Reduce

functions. The shared library has the encryption algorithm

for exponentiation, which performs a sequence of Square-

Reduce-Multiply-Reduce for processing a key bit value 1 and a

sequence of Square-Reduce when processing a clear bit. RSA

encryption is an example where the control flow through the

shared library is indexed using secret information, i.e., in this

case, bit values from the secret key.

In the original attack, the attacker flushes the cache and

then accesses the memory location for the Square, Multiply,

and Reduce functions in a loop, using the time to process a

1 or 0 bit coupled with whether or not accesses hit in the

cache to extract information about the key being used. In our

evaluation, we simplify the attack and assume a cache hit in

the attacker process represents a successful attack.

We calculate the time required for a cached and uncached

access on the experimental real machine and set that as

the threshold for the cache hit. The attacker program is

an independent program running a loop to flush and read

memory. Reading the timestamps must be fenced/ordered with

respect to the memory access being timed to avoid speculative

loads. The attack goes through, i.e., the independent attacker

program gets hits for its accesses as a simultaneously running

victim process performs an encryption. We are able to launch

the attack both on a real machine and in gem5 full-system

simulation mode.

Our defense in gem5 disallows any cache hit in the attacker

process since the attacker’s timed access is preceded by a flush.

The defense allows a cache hit in a process only if it has

suffered a cache miss for its first access. Since the access

after the flush to a cached data is the first access, which is

delayed, the attacker does not perceive a hit. This attack was

the key demonstration for the flush+reload attack and our

defense successfully breaks the attack.

3) S-bits Do Not Introduce Additional Side Channels: The

additional s-bits do not introduce additional side channels for

the following reasons:

381

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 14,2021 at 21:55:23 UTC from IEEE Xplore. Restrictions apply.

• a process executing on a hardware context will not see

s-bits associated with other hardware contexts

• s-bits are saved and restored at a context switch so that

a process will only ever be able to access its own s-bits

• s-bits are saved in process-specific data structures in

software, accessed only at a context switch, and are only

accessible to a trusted computing base

• s-bit saves and restores at a context switch are constant

time operations and therefore do not leak information

B. Performance Evaluation

1) First Access Delay: We evaluate the performance over-

head of our first-access delay mechanism by simulating bench-

marks from SPEC2006 for 1 billion instructions in gem5

using full system simulation mode. We run two instances

of each SPEC2006 benchmark on a single core with and

without TimeCache. Figure 7 presents the normalized exe-

cution time (execution time using TimeCache/execution time

without TimeCache) of each benchmark. When running two

instances of the same benchmark, the number of first accesses

is impacted by sharing benchmark-specific code and shared

libraries in the shared caches while context switching across

these processes. For instance, while running two instances

of h264, the memory shared between the processes includes

benchmark-specific code and the libc routines for file op-

erations like fopen, lseek, memset, and free. In addition to

the above, kernel-space memory is shared across processes

and accesses to kernel subroutines, system calls, and kernel

data structures may incur first access misses when executing

in privileged mode within a process context. We also run a

combination of different benchmarks on a single core, where

the shared access is limited to shared libraries and kernel

space memory. The geometric mean of overheads across all

workloads is 1.13%.

Figure 8 shows first accesses misses per thousand instruc-

tions. The last-level cache is expected to have a greater number

of first access misses compared to the L1 cache, as it is

larger and retains more shared content. The larger first access

MPKI in wrf and perlbench is due to their larger shared

instruction memory footprint. An interesting observation is

that both perlbench and wrf have higher first access MPKI

in the last-level cache when run with the same benchmark.

However, when run together their effective first access misses

are lower because of cache contention. Similarly, lbm and

leslie3d also have lower effective first access misses due to

capacity evictions when sharing the cache with namd and

gobmk.

We further evaluate the overhead due to first access delay

in the last-level cache when running pthread-based PARSEC

benchmarks using 2 threads on 2 separate cores. We do this

using system emulation mode in the simulator, where the clone

syscall is emulated to allocate the new thread to another core.

The geometric mean of the overheads due to TimeCache is

0.8%, as shown in Figure 9a. Since the threads execute on

different cores, L1I and L1D for both cores have no first access

misses, as shown in Figure 9b. In the case of PARSEC, each

thread incurs first access misses for accesses across different

execution contexts at the LLC for both code and data.

The exact overheads and the change in the number of

misses per thousand instructions (MPKI) for the last-level

cache is presented in Table II. The increase in execution time is

proportional to the increase in MPKI, which changes both due

to additional first accesses and due to the change in caching

behavior from incurring first access misses. The increase in

MPKI is small, which explains the low overhead.

TABLE II: SPEC2006 and PARSEC execution time overhead,

2MB LLC MPKI

Workload Overhead
MPKI LLC

Baseline
MPKI LLC
TimeCache

2Xspecrand 0.9908 0.0035 0.0238
2Xlbm 1.0039 14.0349 14.138

2Xleslie3d 1.0751 20.6163 24.3556
2Xgobmk 0.9961 3.2832 3.3361

2Xlibquantum 1.0001 5.8532 5.8831
2Xwrf 1.0135 4.7286 4.8964

2Xcalculix 1.0548 0.2099 0.2672
2Xsjeng 0.999 16.7773 16.8382

2Xperlbench 1.0134 1.021 1.1582
2Xastar 1.0107 0.5654 0.6144

2Xh264ref 1.014 0.555 0.5953
2Xmilc 1.0026 16.4722 16.5295

2Xsphinx3 0.9982 0.2648 0.3118
2Xnamd 1.0108 0.1623 0.2181

2Xgromacs 0.9992 0.292 0.3703
leslie+gobmk 0.9996 22.3133 22.3669

namd+lbm 1.0579 6.3764 7.1136
milc+zeusmp 1.0024 12.5757 12.6121

lbm+wrf 1.0007 9.7181 9.7898
h264+sjeng 1.0108 9.0769 9.1915

perl+wrf 1.0143 1.3984 1.4626
cactus+leslie 1.0034 21.2749 21.3736
gobmk+astar 0.9994 1.1053 1.1469

zeusmp+gromacs 1.0035 5.6352 5.5924

average 1.0113 7.2630 7.5077

fluidanimate 1.029 0.1317 0.1583
raytrace 1.0015 0.2833 0.2836

blackscholes 1.0013 0.0466 0.0511
x264 1.0052 0.8264 0.8634

swaptions 1.0025 0.0051 0.0053
facesim 1.0086 3.3585 3.3589

average 1.008 0.1702 0.1808

2) LLC Size Sensitivity Analysis: To analyze the sensitivity

of our design to cache size, we evaluate the performance over-

head with different LLC sizes for the single benchmark/single

core tests (Figure 10). Since the bigger caches are expected

to have lower eviction rates for the same workload, there are

effectively fewer first accesses, resulting in a smaller additional

delay. Hence, we see the performance overhead in bigger

caches to be smaller. Our analysis with 2MB, 4MB, and

8MB LLC sizes shows an average performance overhead of

1.13%, 0.4%, and 0.1%, respectively. With the increasing size

of the last-level cache, the baseline MPKI reduces as the cache

can retain a larger fraction of the working set memory [14],

resulting in fewer first access misses after a context switch.

These numbers indicate that the defense scales well with larger

caches.

382

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 14,2021 at 21:55:23 UTC from IEEE Xplore. Restrictions apply.

IX. DISCUSSION

Sharing software is an important component of computing

systems for efficiency and consistency. This work eliminates

a channel for the leak of secret data via monitoring a victim’s

access to shared content using shared caches. In the absence

of shared content, shared caches still allow a victim’s access

behavior to be monitored, but the information channel is

far less accurate. In particular, a “Prime+Probe” attack fills

(primes) an entire cache set, and infers the cache set accessed

by the victim, based on whether the attacker’s probe hits or

misses. Proposed defenses for a “Prime+Probe” attack include

a randomizing cache [28] [21]. These defenses do not work

for attacks against shared content, which provides a more

accurate/less noisy channel of information. TimeCache in

conjunction with these defenses can provide a more complete

defense.

Other approaches to defending against more recent attacks

like Spectre either stall execution, or make speculative in-

structions invisible to succeeding load requests [43] [16].

They do not prevent non-speculative cache side channels.

Speculative side channel attacks rely on conventional side

channels for leaking speculatively loaded data to the attacker,

i.e., the data is eventually leaked via a conventional side

channel. By breaking conventional cache attacks, we also

prevent speculative side channel leaks.

X. CONCLUSION

We have designed and evaluated a timestamp-based defense

against timing side channel attacks that rely on reuse of shared

software in caches to learn secret information. TimeCache

works across context switches and prevents attacks from cross-

core, same core, or SMT contexts, and at any level of cache,

without the need for cache partitioning. To perform timestamp

comparisons in parallel, we use an SRAM array that allows

bit-serial, timestamp-parallel comparison with easy transposed

access. We have evaluated the defense against microbench-

mark attack programs and the classic flush+reload attack

using the gem5 simulator. On SPEC2006 and PARSEC, the

performance overhead is 1.13% and 0.8% on average, most of

which is due to delaying first accesses, with copying process-

specific s-bits at context switches adding 0.024%. Our defense

against timing side channels through shared software retains

the benefits of allowing processes to utilize the entire cache

capacity of a shared cache and allows cache and memory

pressure reduction through data deduplication and copy-on-

write sharing.

XI. ACKNOWLEDGEMENTS

This work was supported in part by National Science Foun-

dation (NSF) Awards CNS-1618497 and CNS-1900803. We

thank Sreepathi Pai for his feedback during early discussions

of the ideas in this paper.

REFERENCES

[1] Kernel samepage merging (memory deduplication). https:
//kernelnewbies.org/Linux 2 6 32#Kernel Samepage Merging .
28memory deduplication.29, 2017.

[2] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An evaluation
of directory schemes for cache coherence. In International Symposium

on Computer Architecture (ISCA), pages 280–289, June 1988.

[3] Kenneth E. Batcher. Bit-serial parallel processing systems. IEEE

Transactions on Computers, (5):377–384, 1982.

[4] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar
Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The GEM5
simulator. SIGARCH Comput. Archit. News, 39(2):1–7, August 2011.

[5] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, et al. Fallout: Leaking data on meltdown-resistant
cpus. In Proceedings of the 2019 ACM SIGSAC Conference on Computer

and Communications Security, pages 769–784, 2019.

[6] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang
Lin, and Ten H Lai. SGXpectre attacks: Stealing Intel secrets from SGX
enclaves via speculative execution. arXiv preprint arXiv:1802.09085,
2018.

[7] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan L Cox, and Sandhya
Dwarkadas. Shielding software from privileged side-channel attacks. In
27th {USENIX} Security Symposium ({USENIX} Security 18), pages
1441–1458, 2018.

[8] Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan,
Ravi Iyer, Dennis Sylvester, David Blaauw, and Reetuparna Das. Neural
cache: Bit-serial in-cache acceleration of deep neural networks. In
Proceedings of the 45th Annual International Symposium on Computer

Architecture, pages 383–396. IEEE Press, 2018.

[9] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Man-
gard. Flush+ flush: a fast and stealthy cache attack. In International

Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment, pages 279–299. Springer, 2016.

[10] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template
attacks: Automating attacks on inclusive last-level caches. In 24th

{USENIX} Security Symposium ({USENIX} Security 15), pages 897–
912, 2015.

[11] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games–
bringing access-based cache attacks on aes to practice. In 2011 IEEE

Symposium on Security and Privacy, pages 490–505. IEEE, 2011.

[12] Wei-Ming Hu. Lattice scheduling and covert channels.
In Proceedings 1992 IEEE Computer Society Sympo-

siumhttps://www.overleaf.com/project/6056a658ee81be9ae173d875

on Research in Security and Privacy, page 52. IEEE, 1992.

[13] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross processor
cache attacks. In Proceedings of the 11th ACM on Asia conference on

computer and communications security, pages 353–364, 2016.

[14] Aamer Jaleel. Memory characterization of workloads using
instrumentation-driven simulation. Web Copy: http://www. glue. umd.

edu/ajaleel/workload, 2010.

[15] Keren Jin and Ethan L Miller. The effectiveness of deduplication on
virtual machine disk images. In Proceedings of SYSTOR 2009: The

Israeli Experimental Systems Conference, pages 1–12, 2009.

[16] Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song,
Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Safe-
spec: Banishing the spectre of a meltdown with leakage-free speculation.
arXiv preprint arXiv:1806.05179, 2018.

[17] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas De-
vadas, and Joel Emer. Dawg: A defense against cache timing attacks
in speculative execution processors. In 2018 51st Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pages 974–
987. IEEE, 2018.

[18] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Ham-
burg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. Spectre attacks: Exploiting speculative execution.
arXiv preprint arXiv:1801.01203, 2018.

[19] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu Song,
and Nael Abu-Ghazaleh. Spectre returns! speculation attacks using
the return stack buffer. In 12th {USENIX} Workshop on Offensive

Technologies ({WOOT} 18), 2018.

[20] Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari,
and Elaine Shi. Ghostrider: A hardware-software system for memory
trace oblivious computation. ACM SIGPLAN Notices, 50(4):87–101,
2015.

386

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 14,2021 at 21:55:23 UTC from IEEE Xplore. Restrictions apply.

[21] F. Liu, H. Wu, K. Mai, and R. B. Lee. Newcache: Secure cache
architecture thwarting cache side-channel attacks. IEEE Micro, 36(5):8–
16, Sep. 2016.

[22] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas,
Gernot Heiser, and Ruby B Lee. Catalyst: Defeating last-level cache
side channel attacks in cloud computing. In 2016 IEEE international

symposium on high performance computer architecture (HPCA), pages
406–418. IEEE, 2016.

[23] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee.
Last-level cache side-channel attacks are practical. In 2015 IEEE

Symposium on Security and Privacy, pages 605–622. IEEE, 2015.

[24] Maria Mushtaq, Muhammad Asim Mukhtar, Vianney Lapotre, Muham-
mad Khurram Bhatti, and Guy Gogniat. Winter is here! a decade
of cache-based side-channel attacks, detection & mitigation for rsa.
Information Systems, page 101524, 2020.

[25] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: the case of aes. In Cryptographers’ track at the RSA

conference, pages 1–20. Springer, 2006.

[26] D Page. Partitioned cache architecture as a ėide-channel defence
mechanism. 2005.

[27] Moinuddin K Qureshi. Ceaser: Mitigating conflict-based cache attacks
via encrypted-address and remapping. In 2018 51st Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pages 775–
787. IEEE, 2018.

[28] Moinuddin K Qureshi. New attacks and defense for encrypted-address
cache. In Proceedings of the 46th International Symposium on Computer

Architecture, pages 360–371. ACM, 2019.

[29] Kartik Ramkrishnan, Stephen McCamant, Pen Chung Yew, and Antonia
Zhai. First time miss: Low overhead mitigation for shared memory cache
side channels. In 49th International Conference on Parallel Processing-

ICPP, pages 1–11, 2020.

[30] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing digital
side-channels through obfuscated execution. In 24th {USENIX} Security

Symposium ({USENIX} Security 15), pages 431–446, 2015.

[31] Ashay Rane, Calvin Lin, and Mohit Tiwari. Secure, precise, and fast
floating-point operations on x86 processors. In 25th {USENIX} Security

Symposium ({USENIX} Security 16), pages 71–86, 2016.

[32] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Man-
gard. Fantastic timers and where to find them: high-resolution mi-
croarchitectural attacks in javascript. In International Conference on

Financial Cryptography and Data Security, pages 247–267. Springer,
2017.

[33] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and
Daniel Gruss. Netspectre: Read arbitrary memory over network. In
European Symposium on Research in Computer Security, pages 279–
299. Springer, 2019.

[34] Prateek Sharma and Purushottam Kulkarni. Singleton: system-wide
page deduplication in virtual environments. In Proceedings of the 21st

international symposium on High-Performance Parallel and Distributed

Computing, pages 15–26, 2012.

[35] Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang. Limiting cache-
based side-channel in multi-tenant cloud using dynamic page coloring.
In 2011 IEEE/IFIP 41st International Conference on Dependable Sys-

tems and Networks Workshops (DSN-W), pages 194–199. IEEE, 2011.

[36] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Checkmate:
Automated synthesis of hardware exploits and security litmus tests. In
2018 51st Annual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO), pages 947–960. IEEE, 2018.

[37] Stephan Van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
Ridl: Rogue in-flight data load. In 2019 IEEE Symposium on Security

and Privacy (SP), pages 88–105. IEEE, 2019.

[38] Daimeng Wang, Ajaya Neupane, Zhiyun Qian, Nael B Abu-Ghazaleh,
Srikanth V Krishnamurthy, Edward JM Colbert, and Paul Yu. Unveiling
your keystrokes: A cache-based side-channel attack on graphics libraries.
In NDSS, 2019.

[39] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C Myers, and
G Edward Suh. Secdcp: secure dynamic cache partitioning for efficient
timing channel protection. In Proceedings of the 53rd Annual Design

Automation Conference, page 74. ACM, 2016.

[40] Zhenghong Wang and Ruby B Lee. New cache designs for thwarting
software cache-based side channel attacks. ACM SIGARCH Computer

Architecture News, 35(2):494–505, 2007.

[41] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz,
Daniel Gruss, and Stefan Mangard. Scattercache: thwarting cache attacks
via cache set randomization. In 28th {USENIX} Security Symposium

({USENIX} Security 19), pages 675–692, 2019.
[42] Wenjie Xiong and Jakub Szefer. Leaking information through cache lru

states. In 2020 IEEE International Symposium on High Performance

Computer Architecture (HPCA), pages 139–152. IEEE, 2020.
[43] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christo-

pher Fletcher, and Josep Torrellas. Invisispec: Making speculative
execution invisible in the cache hierarchy. In 2018 51st Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 428–441. IEEE, 2018.

[44] Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep Torrellas.
Secure hierarchy-aware cache replacement policy (sharp): Defending
against cache-based side channel attacks. In 2017 ACM/IEEE 44th

Annual International Symposium on Computer Architecture (ISCA),
pages 347–360. IEEE, 2017.

[45] Fan Yao, Milos Doroslovacki, and Guru Venkataramani. Are coherence
protocol states vulnerable to information leakage? In 2018 IEEE

International Symposium on High Performance Computer Architecture

(HPCA), pages 168–179. IEEE, 2018.
[46] Yuval Yarom and Katrina Falkner. Flush+ reload: A high resolution,

low noise, l3 cache side-channel attack. In 23rd {USENIX} Security

Symposium ({USENIX} Security 14), pages 719–732, 2014.
[47] Danfeng Zhang, Yao Wang, G Edward Suh, and Andrew C Myers. A

hardware design language for timing-sensitive information-flow security.
Acm Sigplan Notices, 50(4):503–516, 2015.

[48] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards practical page
coloring-based multicore cache management. In Proceedings of the 4th

ACM European conference on Computer systems, pages 89–102. ACM,
2009.

[49] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
Cross-tenant side-channel attacks in paas clouds. In Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications

Security, pages 990–1003, 2014.
[50] Hongzhou Zhao, Arrvindh Shriraman, and Sandhya Dwarkadas. SPACE:

Sharing Pattern-Based Directory Coherence for Multicore Scalability.
In International Symposium on Parallel Architectures and Compilation

Techniques (PACT), September 2010.

387

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 14,2021 at 21:55:23 UTC from IEEE Xplore. Restrictions apply.

