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Abstract – Thanks to their flexibility, soft robotic devices 
offer critical advantages over rigid robots, allowing 
adaptation to uncertainties in the environment. As such, soft 
robots enable various intriguing applications, including 
human-safe interaction devices, soft active rehabilitation 
devices, and soft grippers for pick-and-place tasks in 
industrial environments. In most cases, soft robots use 
pneumatic actuation to inflate the channels in a compliant 
material to obtain the movement of the structure. However, 
due to their flexibility and nonlinear behavior, as well as the 
compressibility of air, controlled movements of the soft 
robotic structure are difficult to attain. Obtaining physically-
based mathematical models, which would enable the 
development of suitable control approaches for soft robots, 
constitutes thus a critical challenge in the field. The aim of 
this work is, therefore, to predict the movement of a 
pneumatic soft robot by using a data-driven approach based 
on the Koopman operator framework. The Koopman 
operator allows simplifying a nonlinear system by “lifting” its 
dynamics into a higher dimensional space, where its behavior 
can be accurately approximated by a linear model, thus 
allowing a significant reduction of the complexity of the 
design of the resulting controllers. 

Keywords – soft robots, Koopman operator, nonlinear 
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I. INTRODUCTION 

Owing to their compliant behavior, when compared to 
traditional rigid (or, as sometimes referred to in literature, 
hard [1]) robots, soft robots offer important advantages. 
They are made of highly compliant (soft) materials, which 
allow them to adapt their shape to environmental 
constraints and obstacles, making possible their efficient 
use in cluttered surroundings [2, 3]. Although such devices 
are currently still mostly employed by researchers in 
experimental systems, the number of examples of their 
practical use is increasing. Soft robots are, hence, used in 
various interesting applications, including human-safe 
interaction devices and soft grippers for pick-and-place 
tasks in industrial environments [2–4]. Furthermore, soft 
robotic devices represent a promising technology in 
medical applications, where they can be used as actuating 
(exoskeletal) components in active rehabilitation devices 
for human motion assistance [5], particularly for stroke 
patients [2, 4, 6]. 

Pneumatic actuation with air used as the working fluid, 
is often employed to inflate the hollow compliant structure, 
which enables the motion of the end-effector of the soft 
robot [3]. The high compliance, which represents one of the 
main advantages of these devices, at the same time makes 
their dynamical behavior highly nonlinear. In fact, the 
inherent nonlinear behavior, high dimensionality, as well as 
the compressibility of air, makes pneumatic soft robots very 
complex to model. On the other hand, mathematical 
modelling is necessary to synthetize an appropriate control 
system that enables the controlled movements of this class 
of devices. The modeling of soft robotic systems is 
furthermore an important subject because it shortens the 
time used for their design and deployment. 

The Koopman operator, in turn, allows a linearized 
representation of nonlinear dynamical systems, exhibiting 
excellent performances. This mathematical tool is, 
therefore, increasingly suggested for modelling and control 
in e.g. biology, power grids, fluid dynamics, traffic or DC 
motors controls. What is more, the Koopman operator was 
recently successfully applied to model and control a factual 
complex positioning system, aimed at nanometric precision 
positioning, characterized by multiple sources of intricate 
mechanical nonlinearities induced by friction [7-10]. 

The aim of this work is, therefore, to provide an 
advanced tool for modelling the behavior of a 
pneumatically-driven soft robotic device, available at the 
premises of the University of California Santa Barbara 
(UCSB), by employing a data-driven machine learning 
approach based on Koopman operator theory [7-10]. The 
developed model creates the preconditions to synthetize a 
motion controller allowing to attain a precise tracking 
control of the end-effector of the used soft robotic device. 

The remainder of this paper is organized as follows: in 
Section II a brief introduction to the Koopman operator 
theory, with application to nonlinear dynamical systems, is 
provided, followed in Section III by the description of the 
devised experimental set-up. The modelling procedure 
based on the experimentally acquired motion data and the 
thorough analyses of the obtained results are described in 
Section IV. In Section V, the main conclusions are finally 
drawn, and an outlook to future work is provided. 
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II. KOOPMAN OPERATOR THEORY IN SYSTEMS’ 

MODELLING AND CONTROL 

The Koopman operator theory allows a linearization of 
highly-nonlinear dynamical systems, exhibiting, in terms of 
accuracy, performances superior to other linear predictors, 
such as those based on local linearization or the so-called 
Carleman linearization [7]. The respective method for 
calculating linear predictors is relatively simple and, 
contrary to physically-based models grounded on 
knowledge of material properties and first-order principles, 
it is data-driven, i.e., it depends on experimental input-
output data only, while it provides a global and smooth 
view of systems’ behavior even for longer prediction 
intervals [7, 10, 11]. The Koopman operator represents, 
thus, a machine learning data-driven method that can be 
used to obtain a state-space representation of the model of 
the studied device [11, 12]. Its numerical approximations 
allow “lifting” the nonlinear dynamics of the considered 
factual device (i.e., of its state-space model) into a higher 
dimensional space of so-called observables (i.e., simple 
scalar functions), where the behavior of the considered 
system can be predicted by a simpler yet accurate linear 
(though higher dimensional [12]) model [7, 10]. 

What is more, the nonlinearities pertaining to many 
physical systems would often imply the need to use 
nonlinear control approaches that are associated with large 
computational times, as well as stability and robustness 
issues, especially in higher-dimensional problems [8]. 
Koopman operator theory, recently introduced to the 
control community as well [7, 13], allows, in turn, a 
significant simplification of the model-based design of the 
controller and reduces the computational complexity in 
real-time applications [8]. In other words, the obtained 
Koopman-based linear predictors can be used to design 
controllers that can cope with the nonlinear dynamics of the 
controlled nonlinear system, although they rely on linear 
control design approaches such as the Model Predictive 
Controller (MPC), the Linear Quadratic Regulator (LQR), 
the H-infinity method (H∞) or similar [7, 10]. 

In the herein considered case, a suitable modelling of 
soft robot is particularly important, as it allows developing 
feedforward predictors that should, as precisely as 
possible, predict the behavior of the physical system. 
Feedforward controllers are complemented in this case 
with a feedback term that compensates for the eventual 
minor model uncertainties and external disturbances only 
[11]. If, in turn, the control system would rely mostly on 
the feedback term, the advantages induced by the 
compliance of the soft robot would be highly reduced, as 
it is well-known that the feedback term tends to increase 
the overall stiffness of the controlled system [14]. 

Taking into account the stated advantages, Koopman 
operator theory is applied to an innovative soft robotic 
device described in the following section. 

III. EXPERIMENTAL SET-UP 

The experiments conducted in the framework of this 
study are performed on a soft robotic experimental device 
developed at UCSB and depicted in Fig. 1 [15]. The device 
consists of a flexible air-tight envelope (“skin”) and two 
“muscles”, inflated each via an independent pressure input 

unit (designated in Fig 1 with “A”). A PhaseSpace Inc. 
Impulse X2E Motion Capture System (indicated with “B”), 
consisting of six cameras and eight active LED trackers 
attached to the characteristic points at the surface of the soft 
robot (see label “C” in Fig 1), is used to collect motion data. 
The used motion tracking device enables a sampling 
frequency of up to ~1 kHz and a sub-millimeter motion 
resolution [16]. Given its high sampling rate, the same 
motion capture system will likely be used in the second 
phase of the work as the displacement feedback for the 
closed-loop position control of the robot’s end-effector. 

The herein considered open-loop experiments are 
conducted by exciting the system via two randomized 
(white-noise) inputs in the form of PWM voltage signals 
applied to the proportional electromagnetic valves 
(indicated in Fig. 1 with “D”) that generate the respective 
pressure output on each of the two “muscles”, while the 
“skin” is inflated to a constant pressure. The same 
controller utilized for commanding the control signals to 
the muscles, and recording the real-time pressure in each of 
them, is also used to trigger the motion capture system and 
inherit its sampling frequency, thus synchronizing the 
input-output data. The acquired data consists, then, of time-
related sets of x-y (planar) coordinates relating to the 
motion of each of the LED trackers. This information is 
used next to obtain the corresponding data-driven model of 
the soft robot by employing Koopman operator theory. 

IV. MODELLING OF THE RESPONSE OF THE SOFT ROBOT 

As pointed out, the infinite-dimensional Koopman 
operator is an emerging tool for the advanced modeling of 
highly-nonlinear dynamical systems. Identifying a 
nonlinear model by using experimental data implies, in 
turn, solving non-linear optimization problems based on an 
extensive knowledge of system’s behavior [11, 17]. 

A. Application of Koopman Operator Theory to the Soft 
Robotic Device 

It is supposed here that the discrete-time representation 
of the used soft robotic dynamical system in the time step 
𝑡  can be defined in the state space as [7, 11]: 

 𝑥 = 𝑓(𝑥 , 𝑢 ), (1) 

Figure 1.  Experimental set-up at UCSB: soft robot (A), motion capture 
device (B), LED tracker (C) and electromagnetic pressure valves (D) 
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where 𝑥 = 𝑥(𝑡 ) ∈  𝛸 ⊆ ℝ  is the state of the system, 
while 𝑢 ∈ ℝ  is the control input in the discrete time step 
𝑡 . It is assumed next that, by applying to the state space 
the vector of lifting functions 

Ψ(𝑥) = 𝜓 (𝑥), … , 𝜓 (𝑥) = 𝑧 ∈ 𝑀 ⊆ ℝ , where 
𝜓 : 𝑋 → ℝ, 𝑖 = 1, … , 𝑁 are the chosen observable 
functions, the evolution in the lifting space M has the form: 

 
𝑧 = 𝐀𝑧 + 𝐁𝑢  

 𝑥 = 𝐂𝑧     
(2) 

where 𝐀 is system’s matrix, 𝐁 is the control matrix, 𝐂 is 
the projection operator from the lifting space to the state 
space, while 𝑧 = Ψ(𝑥 ). 

The aim of the work is, therefore, to predict the motion 
behavior of the soft robotic device based on the 
standardized state-space model defined by (2). 

The Koopman operator 𝒦  associated to the original 
system is the infinite-dimensional linear operator acting on 
the generalized observables 𝜙: 𝑋 → ℝ  as 𝒦𝜙(𝑥) =
𝜙 𝑓(𝑥, 𝑢) .  Since the aim here is to obtain the time-
domain prediction of the behavior of the studied dynamical 
system, the Extended Dynamic Mode Decomposition 
(EDMD) algorithm, which relies mainly on least square 
regression, is adopted next to construct the finite-
dimensional approximations of the Koopman operator [17, 
18]. By applying EDMD on the observable functions 
{𝜓 (𝑥), … , 𝜓 (𝑥)}, the finite-dimensional approximation 
of the compression of the Koopman operator on the linear 
subspace, spanned by these functions, is hence obtained 
[17, 18]. Furthermore, with the assumption that in the 
lifted space the dynamical system evolves according to (2), 
in the considered problem the representation of this finite 
dimensional approximation will be of the form  
[A, B], and can be obtained as the solution of the 
minimization problem [7]: 

 min
𝐀,𝐁

‖Ψ(𝑥 ) − 𝐀Ψ(𝑥 ) − 𝐁𝑢 ‖  .   (3) 

In the data-driven framework, by denoting 𝐗 =
[Ψ(𝑥 ), … , Ψ(𝑥 )] , 𝐘 = [Ψ(𝑥 ), … , Ψ(𝑥 )]  and 
𝐔 = [u , … , u ], the matrices A and B can be obtained 
by finding an analytical solution to (3) by using [7]: 

 [𝐀, 𝐁] = 𝐘 𝐗 , 𝐔  (4) 

where  denotes the Moore-Penrose pseudoinverse of a 
function. It has to be noted here that matrix U, which 
contains the input control signals, remains non-lifted. 

The projection operator relating to the data vector X is 
determined next as [7]: 

 𝐂 = 𝐗 𝐗𝒍𝒊𝒇𝒕. (5) 

Based on the obtained model, the p step horizon 
prediction of the behavior of the system �̂� , from an 
initial state 𝑥  can be computed recursively, for 𝑖 =
1, … , 𝑝, where the initial state of recursion is given by �̂� =

 Ψ 𝑥 , as [7, 11]: 

 
�̂� = 𝐀�̂� + 𝐁𝑢  

𝑥 = 𝐂 �̂� . 
(6) 

B. Results and Discussion 

In the considered case the open loop planar motion 
coordinates x and y of the end-effector of the used soft 
robot, as measured at discrete time points for determined 
input pressures (i.e., control inputs 𝑢 ) at each of the two 
muscles, represent the attained data points 𝑥 . 

The sampling time in the numerical experiments is, in 
turn, set to 1 ms. Two sets of lifting functions are then 
considered in the EDMD algorithm. The first set consist of 
first-order monomials (r=1), where the lifting space 
coincides with the original state-space. On the other hand, 
the second batch of lifting functions is enlarged with 
second-order monomials (r=2). Taking into account the 
number of data points, the dimensions of matrices 𝐗  
and 𝐘  are 𝑁 × 160 000. 

The preliminary experimental motion data of a specific 
LED tracker on the end effector of the studied UCSB soft 
robotic device, overlaid by the respective learned 
responses for different prediction horizons, as obtained by 
applying the above Koopman operator-based approach, 
are thus compared in Figures 2 – 4. The depicted responses 
are given for an approximate 1 s time-frame, randomly 
chosen in the experimental data set. From the presented 
results, it can be deduced that the modeled responses 
follow very well the experimental data for a 10 ms 
prediction step. For larger prediction steps, the delay 
between the modeled and the experimental responses 
increases. However, it can be noticed that even for a 30 ms 
prediction time, the modeled response follows still the 

Figure 2.  Comparison of the measured and predicted planar motion of 
the end effector of the soft robot for 10 time steps equaling a 10 ms 

prediction interval 

1171
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 01,2021 at 19:17:56 UTC from IEEE Xplore.  Restrictions apply. 



experimental data with good accuracy. A further 
mathematical analysis of the goodness of fit of the 
modeled vs. experimental data is performed next, based on 
the order of monomials and the length of the prediction 
horizon, using as the relevant indicator the Mean Absolute 
Error (MAE) normalized over the mean value of the 
measured data points (the normalized MAE indicator is 
hence designated as NMAE): 

 

MAE =
1

𝑁
|𝑥 − 𝑥 | 

NMAE =
MAE

�̅�
. 

(7) 

The calculated NMAE values for the considered 
experimental set-up are hence reported in Table 1. It can 
be seen that the deviation between the modeled and the 
experimental response slightly decreases when higher 
order monomials are used as the lifting functions while, 

evidently, the value of the NMAE indicator increases with 
longer prediction step. 

The obtained results represent, therefore, a good basis 
for the development of controllers that would enable the 
precise tracking of the end-effector of soft robots. 

V. CONCLUSIONS AND OUTLOOK 

The experimental identification of the behavior, and the 
respective Koopman operator-based modelling of an 
innovative soft robotic experimental device, is performed 
in this work. The acquisition of experimental motion data 
is based in this frame on the excitation of the system by 
random input signals. Based on the attained experimental 
data, a state-space model of the system is built by 
employing a finite-dimensional Extended Dynamic Mode 
Decomposition Koopman operator approximation. The 
comparison of the experimental responses with those 
obtained from simulations on the obtained Koopman-based 
model, for different prediction steps, allows establishing 
that the modelled responses follow accurately the 
experimental data. 

Based on the proposed modelling approach, in the next 
phases of the work further experimental tests will be 
conducted to acquire larger set of experimental data with 
the goal of extending the accurate prediction window. 
Furthermore, advanced control typologies, e.g. based on 
MPC, LQR, H∞ or similar linear control design methods, 
will be synthetized with the aim of attaining the precise 
tracking control of soft robotic devices. 
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