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Modeling, Reduction, and Control of a Helically Actuated Inertial
Soft Robotic Arm via the Koopman Operator
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Abstract— Soft robots promise improved safety and capabil-
ity over rigid robots when deployed in complex, delicate, and
dynamic environments. However the infinite degrees of freedom
and highly nonlinear dynamics of these systems severely com-
plicate their modeling and control. As a step toward addressing
this open challenge, we apply the data-driven, Hankel Dynamic
Mode Decomposition (HDMD) with time delay observables to
the model identification of a highly inertial, helical soft robotic
arm with a high number of underactuated degrees of freedom.
The resulting model is linear and hence amenable to control via
a Linear Quadratic Regulator (LQR). Using our test bed device,
a dynamic, lightweight pneumatic fabric arm with an inertial
mass at the tip, we show that the combination of HDMD and
LQR allows us to command our robot to achieve arbitrary
poses using only open loop control. We further show that
Koopman spectral analysis gives us a dimensionally reduced
basis of modes which decreases computational complexity
without sacrificing predictive power.

I. INTRODUCTION

While soft robotics has garnered significant attention in
the past decade and grown into a standalone research topic,
one of the prevailing challenges the field faces is the problem
of modeling and control. The high degrees of freedom, mate-
rial non-linearity, underactuation, and inherent hysteresis of
many of these technologies has precluded the development
of closed form, dynamic models that easily lend themselves
to traditional control strategies [1]-[3]. Instead, a variety of
methods have been introduced in an attempt to address this
challenge.

A majority of investigations to this end have relied on
simplifying assumptions, such as the (piecewise) constant
curvature ((P)CC) approach, as found in for example [4]—
[9]. Most of these approaches focus on developing mappings
from the actuator space (actuator pressure, tendon tension)
to the configuration space (curvature, arc length) and finally
to the task space (euclidean position and angle). While this
approach is macroscopically effective at predicting general
deformations, it fails to adequately capture the time evolution
of relevant quantities. As such, others have sought to build
closed-form dynamic models, compensated with controllers
based on feedback linearization [10], sliding mode control
[11], and domain restriction [12]. However, due to the infinite
degrees of freedom of these systems, closed form models are
inherently inaccurate. Moreover, the intrinsic non-linearity
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Fig. 1. Top: The steady state pose of the helically actuated, inertial soft

arm with an input to individual and pairs of lengthwise artificial muscles.
Bottom: With a linear model constructed via data-driven, Koopman operator
theoretic Hankel Dynamic Mode Decomposition (HDMD) and reduced in
dimensionality to n = 35 using Koopman mode analysis, we use the Linear
Quadratic Regulator (LQR) optimal control algorithm to control the robot
from an initial position (purple) through a dynamic transient pose (orange)
to its final pose (blue), closely aligned with the target position (red). Plots
of the commanded inputs and RMS error are shown, at right.

often ensures control systems be domain restricted or them-
selves non-linear.

Owing to these difficulties, a number of groups have
turned to data-driven approaches for producing linear system
representations. Numerous attempts to apply various machine
learning methods span the last decade, as in [13]-[17], for
example. In each of these investigations, the overarching
aim has been to fit a high dimensional linear operator to
the input-output dynamics of a soft robot arm. While they
have shown much higher efficacy than many of the closed-
form approaches above, they yet require immense amounts
of data to converge, and their models don’t necessarily intuit
any physical characteristics of the system. As such, they
often produce very large linear systems with limited domains



of applicability. To overcome these limitations, a relatively
new attention paid to a century-old approach in dynamical
systems theory has opened new avenues to accurate, dynam-
ically relevant models. This approach, Koopman Operator
Theory (KOT) [18], has been shown to be more effective
than other data-driven methods for soft robotic modeling and
control [19]. However, KOT applied to soft robotics is still
in its infancy and has yet to be utilized to its full theoretical
potential.

This work aims to advance the state-of-the-art in KOT
applied to soft robotics through the analysis of Koopman
modes. We do so by implementing HDMD on a tip-loaded,
inertial soft robotic arm exhibiting both bending and twisting
(Fig. 1). Using the spatial positions of 15 motion tracking
points and their time delays as observables, HDMD captures
the fundamental physics of our system [20]. KOT enables
us to weigh the relative importance of each of the system’s
fundamental modes to the dynamics we are interested in.
We then project the resulting model onto a reduced basis
of the most important Koopman modes. This approach
enables us to substantially reduce the order of the model
without significant loss of controllability. Notably, we do so
with no pre-optimization of observables or extensive data
postprocessing, and with training data on the order of 10*
samples.

What follows is a description of our soft robotic arm,
an introduction to KOT and the details of our modeling
approach, our experimental setup and data acquisition meth-
ods, our results, and a discussion of open questions to be
addressed in future work.

II. SOFT ROBOTIC ARM DESIGN

Due to the difficulty of the problem at hand, one approach
is to simplify the testbed to simplify the modeling. Instead,
to understand the limitations of the KOT based modeling,
we sought to produce a difficult-to-analyze soft arm. This
manifested in the concurrent objectives of: fast response
times, highly non-linear deformation, and a highly inertial
and underactuated system.

We created a pneumatic system capable of generating
low-latency, agile actuation over a wide range of inputs.
This design was fabricated with lightweight 50 micron thick
silicone-impregnated ripstop nylon (sil-nylon), and actuated
via three lengthwise fabric artificial muscles of the same
material, as presented in [21]. The main body was fabricated
to a 2cm diameter using a silicone adhesive (Smooth-On
Sil-poxy) with the fiber reinforcement aligned axially. The
three 1.25cm diameter muscles were similarly constructed,
however their fiber weave was oriented with a 45° offset
with respect to the main body’s axial direction. The mass of
the arm with three muscles is a mere 12 g. The input valves
that supply the air to the muscles were chosen to enable at
least 60 L/min of flow at 200 kPa to ensure high power input.
Additionally, the exhaust valves through which the air leaves
empty to vacuum to increase the speed of the robot.

To achieve a complicated, non-linear actuation pattern, the
muscles were axially aligned on the body with a slight offset,

varying among the muscles, to produce different helical
deformations from each (Fig. 1, Top) as described in [22].
To achieve extreme curvature, the main body was fixtured to
a workbench and the muscles were affixed under pretension.

Finally, to create a highly inertial system with deforma-
tions not directly controlled by the muscles, a 40 g mass was
adhered to the tip of the robot.

III. CONTROL SYSTEM MODELING VIA KOOPMAN
OPERATOR THEORY

The standard method of representing dynamical systems
involves defining a state space M with states x € M that
evolve according to the discrete-time dynamical system

xt=T(x). (D)

Here T is the possibly nonlinear state transition function
T:M—M.

The non-linearity of soft robot dynamics limits the avail-
ability of suitable state-space control algorithms. We in-
stead turn to an operator-theoretic perspective of dynamics
of observables [18]. Observables are real-valued functions
defined on the state space f: M — R. The set of all possible
observables forms a vector space that is usually infinite
dimensional. The Koopman operator X is defined by

Kf:=foT.

This operator describes the evolution of observables as the
states move along orbits dictated by (1). Even though the
underlying state space system is nonlinear, the operator X
is linear. The process of approximating this operator with a
finite dimensional matrix is described in Section III-A.

We are interested in describing the Koopman operator for
systems of the form xT = T(x,u) where u € U are user
specified inputs. We follow the process outlined in [23] to
build this generalization. The first step is to define the space
of all input sequences [(U) = {(u;)}>|u; € U} where U is
the set of admissible inputs. The discrete-time dynamics T
now act on the extended state space S =M x [(U). Given
observables g : S — R, we now define the corresponding
Koopman operator

(:Kg) (x7 (”l)‘zx:O) = g(T()Cﬂ/to), (”l)zo;()) (2

We seek a finite dimensional linear input/output system
which approximates the action of X on a finite set of chosen
observables.

A. Approximation of Koopman Operators for Control Sys-
tems

The Koopman operator in its fully infinite dimensional
form is not practically realizable, so we seek a finite dimen-
sional approximation. Under certain conditions, the Hankel
Dynamic Mode Decomposition (HDMD) [20,24] provably
converges to the Koopman operator in the limit of infinitely
many observables and data snapshots [25]. The practical
considerations behind our choices of observables and gen-
eration of training data are discussed in V-A. The following
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Fig. 2. Description of Koopman lifting process and reduction to a state
space representation. If the (possibly nonlinear) map T (x,u) is known, a
state space representation can be immediately developed. If not, a linear
evolution of observables z can be projected onto the state space after learning
the relationship z* = Az + Bu.

exposition on the HDMD algorithm is closely based on [23],
and is shown in Fig 2.

Given K measurements of the system xj =T(xj,uj), we
build the following data matrices:

X=[x ..xg], Xt =[x ..xf], U=[us ... ug).(3)

We then choose a vector of m observables
£(x) = [fi(x) ... fu(2)]". (4)
Next, we build the lifted data matrices
Xiiee = [f(x1) ... f(xk)], Xfift = [f(xf) f(x})] 5)
We seek to approximate the action of the extended Koopman
operator (2) as follows:

+
Xlift

=AX1;isc +BU (6)

In order to approximate A and B, we recast this equation as
a minimization problem

min||X o —AXyice —BUr M)

which has the solution

;
[A Bl =X{ .. ( {Xlli]ft} > ®)

where { is the Moore-Penrose pseudoinverse. The A and B
matrices form a dynamical system relevant not to states in
the state space but to an extended set of states formed by
the vector of observables z = f(x). The resulting system is

7" =Az+ Bu. 9)

We are often interested in the spectral properties of the
Koopman operator because they give us physical informa-
tion about the multiple coupled time-dependent processes
inherent to our system. HDMD can be used to approximate
the discrete part of this spectrum [25]. We seek the triplet
(Ai, 9i(x),v;) of Koopman eigenvalues, eigenfunctions, and
modes, respectively. The eigenvalues and Koopman modes
are simply the eigenvalues and eigenvectors of the HDMD
matrix A. The resulting modes also form a convenient basis
onto which we can project our dynamics as demonstrated
in Figs 8 and 9. Computation of the eigenfunctions requires

w; which are the eigenvectors of the conjugate transpose
of A. After these are normalized so that (v;,;w;) = &;j,
the eigenfunctions are given by the complex inner product

(I)i(x) = <x,W[>.
B. Koopman-based Optimal Control
HDMD gives us the model
¥ = Az+Bu
x = Cz

(10)
(an

This model is simple enough that we can apply well known
optimal control methods such as the Ricatti-equation based
Linear Quadratic Regulator [26]. We define the cost function

K
T=Y [(xi—xres)" Q(xi —xree) +uf Ruy] (12
i=1

where x..¢ is the desired position and Q and R are diagonal
state and input penalty matrices, respectively. The minimiz-
ing solution to the cost function J is given by the discrete
time algebraic Riccati equation. The resulting gain matrix K
is used to develop the control law defined by

up = —K(zj — 2res).
Zi+1 = Azi + Bu; (13)
xi = Cziy1-

This signal is the optimal stabilizing solution taking the
present initial state to the desired state, x,c¢.

IV. EXPERIMENTAL SETUP AND METHODS
A. Setup and Training

To apply the approach presented in Sec. III to our robot
described in Sec. II, we built a 1.8 m x 1.8m x 1.5m frame
using T-slotted aluminum, with the top face 2/3 covered
with plywood to support our robot and driving circuitry. A
hole was cut into the plywood through which a rigid pipe
extension was passed, that included through-holes for the
pneumatic tubing. The robot body was affixed to this pipe
extension, and tubing routed to the muscles. The pressuriza-
tion of the muscles is controlled by six Clippard DV-2M-12
proportional valves, with three each for input and exhaust,
one input-exhaust pair attached to each muscle. The main
body is held at a constant pressure of 100kPa throughout
testing, while the muscles are each controlled in a range of
0-200 kPa.

In order to train our model, we produced inputs that would
allow the robot to explore the entire space of configurations
that are relevant to our control scenarios. The training inputs
were required to be within the bounds u € [0.3,0.85] (values
given as a percentage of duty cycle), which is the active
region for the valves. In the first of two training regimes,
150 randomly generated Gaussians were superimposed to
create a smoothly varying signal that was sufficiently random
to guarantee that the robot would explore the entire state
space slowly and without overshoot. In the second regime,
step inputs of random height were commanded to produce
massive overshoot and settling to multiple input-modified
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Fig. 3. Experimental setup, with the robot in an unactuated state.

equilibria. The exhaust signal, v, was defined by 1 —u. These
inputs were then deployed to a Raspberry Pi Model 4B. A
trigger signal was also defined to synchronize the Raspberry
Pi and our motion capture system.

Information about the position and shape of the manipula-
tor is gathered via motion capture (PhaseSpace Impulse X2E)
with fifteen LED trackers and eight cameras. Five LEDs are
attached along the axis of each muscle. This entire process
is described in Fig. 3.

After 30 minutes of training data were acquired, they were
segmented into training sets and verification sets. The model
was trained on half the data, while the other half was used
for reconstruction and optimal control objectives.

B. Verification

After training our model, we sought to apply it towards
commanding the robot from the origin to a static pose. As
described in Sec. IV-A, we extracted states the robot achieved
from the verification set. These states were then incorporated
into the optimal control scheme provided in (13) at a number
of different model reductions, and the inputs generated were
supplied to the robot as described above. The results for these
tests are shown in Sec. V.

V. RESULTS

Here we present the results of our application of the mod-
eling described in Sec. III to the soft robot arm introduced in
Sec. II. We first discuss how our model predicts the dynamics
of our system with a variety of observable choices, and then
continue with the results of our open loop optimal control
efforts to achieve two poses.

A. Koopman for Prediction

We perform a convergence study on the reconstruction
power of our Koopman models as a function of the number of
snapshots for a range of observables. This process allowed
us to develop a dictionary of observables suitable for our
system. Given a particular choice of observables and number
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Fig. 4. The error egys vs number of time samples for a range of monomial
observables. Here x indicates a column vector of the positions of all 15
motion tracker points. The extended state z = [x;...;x'] is formed by stacking
the element-wise powers of x from x! up to and including x'. We see a
decrease in predictive power as the order of monomials increases.

of training samples, we build the corresponding linear input-
output system with A, B, and C matrices. This linear model
is applied to N = 27000 samples of verification data. These
particular samples are not included in the training data in
order to give us a fair evaluation of the predictive power
of our models. The linear system produced via (8) and (9)
evaluate the evolution of these initial conditions over a single
time step. The single-step reconstruction error is given by
. ”x:r, predict _xi+, actual”F

+, actual
[l *S = xillr
where x;” *°** is the evolution of x; measured by the
motion capture system and x;” """ is the evolution
predicted by the HDMD model. We use the root mean square

(RMS) of the individual e; errors to score our model:

1) Choice of Observables: We tested two different
choices for observables. First, we used the set of monomials
ranging from order 1-4, as described in [27], as well as
additional monomials up to order 11. We found that these
basis functions performed poorly for our highly inertial, non-
linear system (Fig. 4). As can be seen, prediction diverges
with increasing monomial power, likely due to the higher
order of error propagation.

Second, we tested time delay observables. Fig. 5 shows
the results of this analysis, with the opposite trend observed
compared to Fig. 4. We believe this is due to the fact that
the momentum of the robot exists in the span of the time
delays. We use 10 time delay observables for the rest of our
analysis.

2) Twenty-second Reconstruction: After choosing time
delay observables, we attempted to reconstruct a 20 second
trajectory. We started at the initial condition for a step input,
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Fig. 6.  Left: Reconstruction of a step input over a 20s time interval,
showing the X, y, and z positions (in millimeters). Right: Single step RMS
reconstruction error.

and iterated forward in time using the known inputs (Fig.
6). While the reconstruction generally tracked the actual
behavior, it missed the high frequency ringing found in the
real robot. Instead, a lower frequency oscillation appears to
be present. That said, given the per-step reconstruction error
of 15% shown in Fig. 5, we note that the tracking error
shown in Fig. 6 does not propagate as such across hundreds
of steps but instead remains bounded.

B. Koopman Optimal Control

After analysing our modeling approach, we then test
its efficacy for controlling our system. We first describe
our methodology for trimming modes, then show how the
reduced order model compares to the full-state model for

control.

1) Selection of Koopman Modes: Fig. 7 shows the eigen-
values 4; of the resulting HDMD matrix. These eigenvalues
approximate the eigenvalues of the Koopman operator and
are shown with bubble sizes scaled with respect to their
respective approximate Koopman mode powers |¢;(x)| which
are evaluated for every x in the training data and averaged.
The eigenvalues corresponding to low mode power often
correspond to modes associated with measurement noise.
Often, these modes can be removed from the model with
the added bonus of reducing the dimension of the model. To
do this, we build a matrix whose column vectors are the N
Koopman modes we wish to keep V = [v; ... vy]. We then
project our state space matrices onto the basis of Koopman
modes A = V~!AV and B = V~'B. The green eigenvalues
in Fig. 7 represent the 35 modes with the largest mode
power. The corresponding reduced order model produced
the controller that successfully executed the static reference
tracking problem in the bottom part of Fig 1.

Koopman Eigenvalues
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Fig. 7. Koopman eigenvalues A; scaled by their mode powers |¢;(z)|

averaged over all of the training data. Top: The entire distribution of
Koopman eigenvalues. Bottom: Zoomed in view of the distribution of
eigenvalues. The 35 eigenvalues with the largest mode power are given
in green.

2) Control with Reduced Dimension Model: We choose
two poses that the robot has achieved in the training period.
We then solve the LQR problem, given in Sec. III-B, with
the full state model and with reduced dimension models,
created according to the description in Sec. V-B.1. The input
sequences are then determined in simulation according to
(13), and deployed to the robot.

Figure 8 shows the result for a variety of mode powers for



achieving the first pose. This pose is shown in the bottom
half of Fig. 1, for the n = 16 test. In open loop, we are
capable of achieving state RMS error of 25%. We note the
full state solution fails to perform as well as the trimmed
modes, possibly due to noise present in the full state model.
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Fig. 8. Error egys in commanding the robot in open loop to the first pose
(shown in Fig. 1) for a variety of mode trimmings.

We then repeat this process for the second pose (Figs. 9
and 10). In this case, all but the 7-mode controller outperform
the full state model at steady state (beyond 25 s), although
to a lesser extent than in the first case. These two examples
suggests that the most prominent dynamics of this robot are
effectively captured in only a few Koopman modes. The
differential performance across tests for a given set of modes
implies that their power is trajectory dependent. If one knows
the set of behaviors they desire a robot to complete, this
result allows for the informed selection of modes to balance
performance and model size.
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Fig. 9. Error erys in commanding the robot in open loop to the second

pose (shown in Fig. 10) for a variety of mode trimmings.

VI. DISCUSSION AND CONCLUSION

The potential of soft robots is exciting, with their ability
to conform and adapt to unknown environments and embody
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Fig. 10. Position, input, and error plots of controlling the robot to the
second pose using n = 16 modes, corresponding to the orange curve in Fig.
9.

inherent human safety. Of course, to successfully realize
this potential, effective modeling and control approaches
must be developed. Here we show that Koopman Operator
approaches are a viable path of investigation towards these
ends. We present an approach to produce an approximate,
low order model with relatively little data, minimal computa-
tional cost, and no a priori understanding of the input-output
dynamics of the system. This approach is also amenable to
traditional linear control schemes, such that existing strate-
gies can produce viable control laws, even in open loop, for
these highly nonlinear, inertial, and underactuated systems.

That said, this work is still preliminary. We do not yet
capture the fast dynamics of this system, and see our model
predicting significantly slower evolution than the real robot
achieves. Additionally, we have limited our study to open
loop control to understand the extent to which our model
can predict behavior, but without closed-loop control, we
are limited in the tasks we can command this robot to
complete. Finally, much work is to be done in understanding
the optimal, minimal selection of modes to achieve the
desired behavior. Future work is planned to both advance
the construction of our models to simultaneously reject noise
and capture faster dynamics, and to implement closed loop
control to understand the edges of behaviors this robot can
be commanded to display.
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