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Iron oxide-copper-gold deposits are a globally important source of copper, gold and critical

commodities. However, they possess a range of characteristics related to a variety of

tectono-magmatic settings that make development of a general genetic model challenging.

Here we investigate micro-textural and compositional variations in actinolite, to constrain the

thermal evolution of the Candelaria iron oxide-copper-gold deposit in Chile. We identify at

least two mineralization stages comprising an early 675–800 °C iron oxide-apatite type

mineralization overprinted by a later copper-rich fluid at around 550–700 °C. We propose

that these distinct stages were caused by episodic pulses of injection of magmatic-

hydrothermal fluids from crystallizing magmas at depth. We suggest that the mineralisation

stages we identify were the result of temperature gradients attributable to changes in the

magmatic source, rather than variations in formation depth, and that actinolite chemistry can

be used as a proxy for formation temperature in iron oxide-copper-gold systems.
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Iron oxide-copper-gold (IOCG) systemsQ1Q1 �Q2�Q2 are among the world’s
richest mineral deposits, making for highly profitable mining
operations1–3. By-product strategic elements including Co, U

and REE add to their attractiveness. Previous studies on impor-
tant IOCG deposits, such as Olympic Dam (Australia), Cande-
laria (Chile), and Salobo and Sossego (Brazil), have shown that
they are closely related to basement penetrating fault systems1,2,
and have undergone an early magnetite-actinolite event followed
by main-stage mineralization of copper and other elements4–6.
Even though there is abundant evidence for magmatic signatures
in IOCG deposits—geochemical and isotopic1,3,7—most of these
deposits show no apparent genetic relationship with exposed
coeval igneous intrusions1–3,7. Intrusions are inferred at depth
but the magmatic events leading to mineralization are not well
defined. Geochemical proxies, particularly the chemical compo-
sition and Fe-O-H-S isotopic signatures of selected silicates,
magnetite, and pyrite, have provided some insights into the
nature of the hydrothermal fluids8–17. Despite this progress, the
thermal evolution of IOCG systems in space and time remains
poorly constrained as IOCG deposits lack substantial quartz
veining hindering the use of fluid inclusion data18–22. In parti-
cular, the thermal and spatial evolution constraints of early Cu-
poor and Fe-rich alteration and the main Cu(-Au) mineralization
stages have not been addressed. Understanding the temporal and
spatial relationship between these two stages is critical to devel-
opment of a universally applicable genetic model. One of the
most common minerals found in both (early) Fe-rich and (later)
Cu-rich mineralization stages in IOCG deposits is actinolite,
(Ca2)(Mg4.5–2.2Fe0.5–2.5)(Si8O22)(OH)2. Experimental data
demonstrate that the thermal stability of actinolite depends on its
Fe and Mg content, which decrease linearly over a wide P-T
range, and is applicable as a proxy for estimating temperature of
formation23. Compositional variations in minerals have been
used previously for temperature estimations, e.g., titanium con-
tent in zircons24 or Mg-Fe silicate minerals in porphyry Cu-Au-
Mo systems25–31. In the case of actinolite, its composition has
been successfully used for estimating temperature of formation in
IOA and Cu-Ni-PGE deposits16,23,32–34, and preliminary data
using actinolite in IOCG deposits suggests that it could be simi-
larly useful16,35.Q3Q3 �Q4�Q4�Q5�Q5�Q6�Q6�Q7�Q7

In this contribution, we examine micro-textural and compo-
sitional variations of actinolite recovered along a ~1 km-long drill
core to determine the thermal evolution of the Candelaria IOCG
deposit. This study provides the empirical evidence indicating a
key role for successive magmatic fluid injections in the formation
of IOCG deposits and provides insight on how iron oxide-apatite
(IOA) and IOCG deposits genetically relate.

Geology and mineralization in the Candelaria-Punta del Cobre
district. The Candelaria-Punta del Cobre district is located south
of the city of Copiapó in northern Chile and comprises more than
nine active IOCG mines, all interpreted to be part of the same
hydrothermal system6 (Fig. SM1, Supplemental Material). IOCG
deposits in this district are spatially and temporally associated
with a north-northwest sinistral fault system and are interpreted
to be coeval with a northwest transpressive deformation6. Copper
mineralization is predominantly hosted in the Lower Cretaceous
(~135–132Ma) volcanic-sedimentary Punta del Cobre Formation
that is overlain by sedimentary marine sequences from the Lower
Cretaceous (132–130Ma) Chañarcillo Group6,36. An early calcic-
sodic alteration is observed towards the northwestern side of the
district followed by a widespread magnetite-actinolite alteration
formed between ~120 and 116 Ma6. This early magnetite-rich
alteration extends beyond all deposits in the district (both in
depth and laterally) and is observed as a fine grained pervasive

alteration that can completely replace the volcanic host rocks,
sharing similarities with the alteration mineralogy described in
IOA deposits37.

In the Candelaria deposit, Cu-Fe mineralization and its related
hydrothermal alteration are hosted mainly in volcanic/volcani-
clastic rocks of the Punta del Cobre Formation and extends to
depths in excess of 800 m. At these depths the early stage
magnetite-actinolite and calcic-sodic alteration assemblages are
overprinted by a chalcopyrite-magnetite-biotite–K-feldspar ± pyr-
ite ± actinolite mineralization/alteration dated at ca. 115Ma that
represents the main Cu mineralization stage in the area6,18. The
main ore body in the Candelaria deposit reaches up to 400 m in
thickness in the central part and thins towards the margins6,18.
Actinolite in the deposit occurs in veins together with Cu-(Fe)
sulfides, as massive granular aggregates with magnetite or Cu-(Fe)
sulfides, and as fine disseminations in the volcanic host rocks. In
all its forms, actinolite is a common alteration mineral in the
Candelaria deposit6 that can be associated with the Cu
mineralization stage (Fig. 1a–c) as well as the early Fe stage
(Fig. 1a), indicating that the mineral was formed during both
alteration/mineralization stages. These two alteration/mineraliza-
tion stages in the Candelaria district are broadly coeval with the
emplacement of the Copiapó Batholith located west of the main
deposits38, but there is no field evidence yet that ore-bearing
hydrothermal fluids were sourced directly from the batholith6.

Actinolite sampling and temperature calculations. Samples for
this study were collected from a 1000 m-long drill core that tra-
verses the main Cu ore bodies and the underlying magnetite-rich
rocks at Candelaria (Fig. 2). Actinolite was sampled systematically
throughout the length of the drill core from both Fe-rich and Cu-
rich zones, providing a comprehensive and representative sample
set (full description in Table SM1, Supplemental Material). In
areas with Cu mineralization, distinguishing petrographically
among actinolite from the early Fe and main Cu stages is chal-
lenging. However, backscattered electron (BSE) images of the
analyzed samples reveal micro-textural variations, including
actinolite grains with marked core-to-rim chemical zoning, acti-
nolite overgrowths on earlier actinolite, chemically homogenous
actinolite, and small crystal cumulates (Fig. 2; Fig. SM2, Supple-
mental Material). The different textures identified through BSE
images allowed to determine some constraints regarding the
different processes involved in the formation of the different
actinolite grain types (e.g., overgrowths or replacement), although
there is no exact relationship between the textures and each
mineralization/alteration stage.
The chemical composition of actinolite was determined using

electron probe microanalysis (EPMA; Table SM2, Supplemental
Material), including high-resolution quantitative X-ray wave-
length-dispersive spectrometry (WDS) maps of representative
grains from both stages. Model temperatures were determined
using the experimental data of Lledo and Jenkins23, who derived a
polynomial regression based on experimentally controlled crystal-
lization temperatures and the Fe-number (Fe#= XFe/[XFe+ XMg];
concentrations are in atomic %) of actinolite for each analysis.
The calculated temperature uncertainty for extracting a tempera-
ture of stability will depend on the Ca a.p.f.u.23. Varying the Ca
content from 1.6 to 1.9 a.p.f.u23 shifts the calculated temperature
boundary in about 25 °C for a variation. As our Ca a.p.f.u. results
are within this range, our temperature estimation errors are
estimated at less than 25 °C.
The composition of actinolite, and therefore its Fe# used for

calculating temperatures, can also be sensitive to prograde and
retrograde metamorphic reactions39, amphibole morphology40,
large changes in pressure conditions41, and the presence of
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Fig. 1 Drill core samples showing actinolite associated with both the main Cu mineralization and the early Fe stage at the Candelaria deposit. Image (a)
corresponds to sample LD1687-70 (depth 1109.5 m) where actinolite is observed as a pervasive alteration together with magnetite, but with no Cu sulfides.
Image (b) corresponds to sample LD1687-35 (depth 585.12 m) where actinolite is observed close to Cu-sulfide mineralization but not clearly coeval. Image
(c) shows sample LD1687-63 (depth 1001.3 m) where actinolite is observed finely disseminated in the host rock and in a cumulate surrounding pyrite.
Image (d) shows a chalcopyrite-pyrite-actinolite vein crosscutting the andesite host rock with pervasive actinolite-magnetite alteration (sample LD1687-13
depth 203.6m). Further details for each sample can be found in Table SM1 (Supplemental Material).

Fig. 2 Calculated temperatures of actinolite crystallization plotted as a function of depth in drill core LD1687. Letters a–e indicate samples with
calculated temperature distribution maps (see Fig. 3). Letters correspond to the maps in Fig. 3. The vertical plots display variation of the Fe, Cu, and Au
grades with depth at Candelaria (whole rock data obtained from 2m-long half drill core samples, Lundin Mining, internal report). Orange stars correspond
to average temperature values from early actinolite textures (e.g., grain cores), and error bars correspond to maximum temperature uncertainty when
a.p.f.u. Ca deviates from 1.823.
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coexisting minerals that can incorporate or buffer Fe and Mg39.
In the Candelaria deposit, the composition of the host rocks is
relatively uniform6, actinolite composition is independent of
grain morphology or texture (Fig. 2; Figs. SM2 and SM3),
pressure conditions are mostly homogeneous and estimated at
about ~1 kbar16, and there are no important overprinting
metamorphic events in the area6,18. Although kinetic effects can
also influence mineral growth and chemical zoning42,43, these are
not considered to be important in this study as only one sample
shows quasi-cyclic zoning (or oscillatory zoning) in its chemical
composition (Fig. 3c; Fig. SM3). Therefore we interpret the
variation in the composition of actinolite to be predominantly
related to changes in temperature. Based on these observations,
each EPMA analysis was linked to a corresponding actinolite
texture at the microscale, (green circles in Fig. 2; Supplemental
Data 1 and Table SM2), and temperatures were calculated for
each data point (Supplementary Data 1). Textures, such as core,
rim, replacement (early), or replacement (late), were used to
establish a temporal relationship of actinolite textures in relation
to temperature formation conditions. Temperature averages
shown as orange stars in Fig. 2 were determined from the earlier
paragenetic textures present in the samples (core or replacement
(early)), in samples with no early textures average temperatures
were calculated from the remaining textures (cumulate or
homogeneous).
In addition to temperatures calculated based on the Fe#, we

computationally converted the Fe and Mg concentrations from
WDS maps of representative actinolite grains from the Fe- and
Cu-rich events into temperature maps. This was achieved by

making a volumetric (3D) image stack filled with the WDS maps,
which were subsequently reshaped into a planar (2D) array for
each element of interest. A polynomial regression based on the
Mg-Fe temperature proxy23 was applied for each pixel using the
2D arrays. This technique allowed visualization of inferred
temperature gradients at a microscale within individual actinolite
grains, providing insights into temperature fluctuations within
and among single crystals (see Methods section).

Results
Calculated actinolite formation temperatures range from ~550 to
~800 °C (Figs. 2 and 3). However, the average temperature cal-
culated for early actinolite grains (i.e., cores and high-temperature
overgrowths) increases with depth down the drill hole (orange
stars in Fig. 2). The temperatures calculated from the actinolite
chemistry show a broadly inverse relationship with Cu and Au
grades (Fig. 2).

The maps of temperature distribution in actinolite (Fig. 3)
reveal a complex crystallization history, with intracrystalline
variations ≥200 °C that reflect strong Fe and Mg zonations
(Fig. 3a–e). In the shallow levels of the deposit (row a in Fig. 2),
intracrystalline chemical zonation of actinolite reveals domains of
moderate temperature (~650–600 °C) surrounded by replacement
textures formed at lower temperature (600–550 °C) (Fig. 3a).
Overgrowths on actinolite cores with non-equilibrium growth
textures are recognized at intermediate to deeper levels of the
deposit (Fig. 2, rows b–e), indicating at least two stages of acti-
nolite formation (Fig. 3b–e). In the deepest levels of the system
(Fig. 2, rows d–e), the composition of actinolite cores indicate

Fig. 3 Temperature variation and zonation of actinolite grains. a–e Grain-scale temperature maps of representative actinolite samples from drill core
LD1687. f Histogram showing number of pixels extracted from temperature maps vs. actinolite temperatures. g Solubility curve of CuCl:HCl as a function of
temperature for a HCl-bearing fluid saturated with respect to chalcopyrite; fO2 conditions correspond to the pyrite-pyrrhotite-magnetite buffer46.
Temperature maps axis is scaled in micrometers.
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early high temperatures (~800–750 °C) and overgrowths with
lower temperatures (~680–600 °C) (Fig. 3d, e). In some actinolite
grains at intermediate depth, alternating compositional layers
(“hot-cold-hot”) record complex temperature fluctuations that
could be interpreted as pulsed crystallization or continuous
growth under different kinetic conditions (Fig. 3c).

The intra and intercrystalline grain-scale temperature varia-
tions are represented in histograms constructed from each pixel
in the temperature maps (Fig. 3f, Fig. SM4 and Supplementary
Data 2). Two distinct main temperature clusters are observed in
Fig. 3f; a high-temperature cluster-1 (~800–675 °C) and a low-
temperature cluster-2 (~700–550 °C). Most actinolite cores dis-
play high-temperature values (e.g., Fig. 3d; Table SM2, Supple-
mental Material) coincident with cluster-1. In contrast, most
overgrowths are characterized by lower temperatures concordant
with cluster-2 values, and representing a later stage (Table SM2,
Supplemental Material). Besides showing distinct differences in
their temperature, the two clusters also display differences in their
major element compositions, most notably chlorine (Table SM3,
Supplemental Material).

Discussion
Temperature controls on mineral precipitation. The two tem-
perature clusters in Fig. 3f indicate that the Candelaria IOCG
deposit was formed during two distinct mineralization stages as
potentially part of one evolving hydrothermal system. These
correspond to a widespread high-temperature magnetite-actino-
lite stage (cluster-1) and a more localized lower-temperature Cu
stage (cluster-2).
The early, high-temperature cluster-1 stage (800–675 °C) is

related to abundant magnetite-actinolite that is ubiquitous at
depth. At an estimated constant pressure of 100MPa, Fe(II),
which will be transported as FeCl2 in a hydrothermal fluid, will
precipitate as magnetite at temperatures above ~500 °C16,44,45.
These findings indicate that magnetite precipitation, as inferred
from calculated actinolite temperatures, occurred over the range
800–550 °C, with most of the data falling within the range of
~800–675 °C (cluster-1; Fig. 3f). The data indicate the presence of
a high-temperature Fe-rich stage at Candelaria, which correlates
with the early magnetite-actinolite alteration (Fig. 1a) that has
been documented in the Candelaria district6.

In contrast, Cu grades increase at intermediate and shallow
levels at Candelaria (Fig. 2), broadly correlating with cluster-2
lower temperatures (cluster-2: 550–700 °C). Cluster-2 tempera-
tures (Fig. 3f) overlap with temperatures over which Cu reaches
maximum solubility in a HCl-bearing hydrothermal fluid at
100MPa, saturated with chalcopyrite at oxygen (fO2) and sulfur
(fS2) fugacities buffered by the assemblage pyrite-pyrrhotite-
magnetite46 (Fig. 3g). These conditions can be extrapolated to
those for the formation of the Candelaria deposit6,16, where the
mineral buffering assemblage for fS2 is the same as the mineral
paragenesis identified in the main ore body6,18. Our findings
suggest that the low-temperature actinolite (cluster-2), often
found as overgrowths on higher-temperature actinolite cores
(cluster-1, e.g., Fig. 3d; Table SM2, Supplemental Material),
records a hydrothermal event where Cu-rich fluids cooled from
~750 °C to temperatures below ~550 °C47, explaining the
observed broad correspondence between high Cu grades and
lower actinolite temperatures (Fig. 2). The implication is that Cu
precipitated as chalcopyrite once the hydrothermal fluid cooled
below ~550 °C, as indicated by available sulfur isotope and
limited fluid inclusion data15,18 and correspondent with chalco-
pyrite precipitation temperatures calculated experimentally47.

The two temperature clusters determined from the composi-
tion of actinolite are interpreted as two distinct hydrothermal

stages and are consistent with data from other IOCG and IOA
deposits. Actinolite cluster-1 temperatures (Fig. 3f) correlate well
with values calculated for Andean IOAs using δ18O and δD
isotope thermometry (e.g., Fe-rich stages in the Marcona district
in Perú and the Quince prospect in Chile)16,48 and actinolite
chemistry (e.g., El Romeral and Los Colorados deposits in
Chile)32,49. The paragenesis of the early high-temperature stage in
the Candelaria-Punta del Cobre district is identical to the
mineralization/alteration paragenesis in Andean IOA deposits
(magnetite-actinolite e.g., Cerro Negro Norte, El Romeral, Los
Colorados, Marcona)34,50–52. Therefore, the early alteration stage
in Candelaria is analogous to high-temperature Fe-rich miner-
alization in IOA deposits. In contrast, lower actinolite tempera-
tures (cluster-2) related to the Cu-rich IOCG stage are consistent
with experimentally determined chalcopyrite solubility
conditions46,47 (Fig. 3g).

Mineralization episodes triggered by tapping reservoirs of
magmatic-hydrothermal fluids. The observations and modeling
reported here support an early, high-temperature Fe-rich stage
followed by a lower-temperature Cu-rich one, with magnetite and
actinolite ubiquitous to both, but chalcopyrite only occurring in
the latter. Figure 4 illustrates a genetic model for the formation of
the Candelaria deposit, which relates the early Fe-rich stage with
the later Cu-rich mineralization, and can be applied to the whole
district and potentially other IOCG deposits. The model takes
into account the two distinct hydrothermal stages and is con-
sistent with geological observations and empirical data collected
for Cordilleran IOCG systems6,18,50,53–55. In addition, it inte-
grates recent models of Fe transport proposed for IOA
deposits56–60. These two styles of mineralization (IOCG and
IOA) commonly overlap in time and space, and several studies
have proposed a genetic link between them, with magnetite-rich
mineralization corresponding to the deeper hotter roots of Cu-
rich (IOCG) systems7,61–66. Our model further expands this
genetic link by proposing that both styles of mineralization
formed at Candelaria by superposition within the same (strati-
graphic) levels (Fig. 4).
Trace element data for magnetite and pyrite together with

δ37Cl data from the Candelaria system indicate that hydrothermal
fluids in the district were sourced from intermediate to mafic
silicate magmas15,16,67, gabbro to diorite in composition, formed
in the Upper Jurassic to Lower Cretaceous magmatic arc of
northern Chile68,69. Dioritic magmas formed under these
conditions would be enriched in volatiles together with Fe, Cu,
S, and Cl70,71. Exsolution of a magmatic-hydrothermal volatile
phase from the silicate melt would start during cooling of the
parental magma. Volatile exsolution may be triggered by prior
magnetite crystallization, as demonstrated experimentally59,72,73,
where exsolving magmatic-hydrothermal fluid bubbles nucleate
on magnetite microlites to form a magnetite-fluid suspension that
rises through the intrusive body57,73 scavenging metals, and
forming an accumulation of a metal-rich fluid in the upper part of
the magma body57 (Fig. 4a). This zone of Fe-, Cu-, and S-rich
fluid accumulation, analogous to volatile concentration reported
for pre-eruptive magma chambers beneath arc volcanoes and
processes invoked in the formation of porphyry Cu deposits74,
would go through periodic sealing and rupture potentially related
to movement of deep crustal, sinistral strike-slip faults (Fig. 4b).
Mineralization in the Candelaria district is hosted in rocks that
are ca. 15Ma older than the main Cu event6; therefore, the
formation of structurally-related “paths” for hydrothermal fluids
to ascend, i.e., the deep crustal sinistral strike-slip faults, would
have been crucial for fluid flow into older volcano-sedimentary
stratigraphy. In the Candelaria-Punta del Cobre district,
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extensional faults, initiated during the formation of the
sedimentary basin that overlays the ore bodies, were inverted at
the same time as hydrothermal activity6. Increased fault slip
would rupture the carapace above crystallizing intrusions and
enhance structural permeability in overlying rocks. Fluid flow
would be focused by buoyancy-driven propagation through fluid-
filled fractures75, promoting efficient ascent of the deep fluid
accumulated in fractures in the upper crystallizing parts of the
viscous magma, and allowing fluid redistribution in the shallow
levels of the system76–78 (Fig. 4c). Actively deforming structures
can produce pipe-like pathways linking deep reservoirs to shallow
crustal levels79,80. The process could lead to a repetitive cycle with
hydrothermal fault sealing, fluid reaccumulation, increased
pressure and consequent fault rupture81,82. This “tapping” of
the fluid reservoir would permit high-temperature magmatic-
hydrothermal fluids to ascend under adiabatic conditions,
precipitating early magnetite44 (Fig. 4b) with paragenetically-
related, high-temperature actinolite (cluster-1, Fig. 3g), and
generating the Fe-rich, IOA-style of mineralization.
Subsequent evolution of distinct pulse(s) of Cu- and S-bearing

magmatic-hydrothermal fluid from the source magmatic system
(Fig. 4c) and cooling of this fluid as it ascends through pre-
existing superjacent structures results in precipitation of lower-
temperature actinolite (cluster-2, Fig. 3g), magnetite (Fe is still
soluble at these temperatures), and Cu-(Fe) sulfides (chalcopyrite
and pyrite, once the fluid cools to temperatures lower than
~550 °C). If the hydrothermal fluid is oxidized15,16, it would
precipitate hematite instead of magnetite, consistent with
observations in some IOCG deposits, such as Mantoverde22,53

(Chile) and Olympic Dam83,84 (Australia). Repeated, temporally
distinct, fault reactivation may result in different pulses of
hydrothermal activity as evidenced by actinolite micro-textures
(Fig. 3a–e) and by overlapped actinolite and sulfide mineraliza-
tion (Fig.1d). Further, if the fluid reservoir is periodically
recharged with fluids from the underlying magmatic system,

compositionally banded textures observed in actinolite grains
would record such temperature (and fluid composition) fluctua-
tions (Fig. 3c).

The main Cu mineralization stage at Candelaria would have
occurred when ascending fluid(s) cooled to temperatures below
~550 °C precipitating chalcopyrite, due to the sharp drop in
chalcopyrite solubility47 (Fig. 3g; Fig. 4d). Furthermore, the
presence of early magnetite might have facilitated the precipita-
tion of Cu sulfides85, as suggested by geological observations and
petrographic evidence of chalcopyrite replacing early magnetite in
the Candelaria deposit (Fig. SM5). As cooling progresses,
chalcopyrite precipitation will continue, reaching a peak at
temperatures of 550–400 °C15,18,47 (Fig. 4d).
The observation of two temporally distinct hydrothermal

alteration/mineralization stages is consistent with episodic
replenishment of an evolving crustal magmatic system where
the magmatic-hydrothermal fluid evolve from newly emplaced
magma that either underplates previously emplaced magma or
forcibly intrudes and mixes with previously emplaced
magma76,77. Such buoyancy-driven outgassing of magmatic-
hydrothermal fluid from magma can efficiently transfer fluid-
soluble elements such as those found in IOCG deposits76. The
chemistry of a magmatic-hydrothermal fluid exsolved from a
silicate melt is controlled by the pressure, temperature, oxidation
state, and composition of the melt from which it exsolves86,87.
The low concentration of Cu and S in the first fluid stage,
evidenced by the modally minor amount of sulfide coeval with
early magnetite and actinolite, is consistent with the evolution of
a magmatic-hydrothermal fluid from a magma that had lost Cu
and S to a sulfide crystal/liquid, which was not subsequently
resorbed prior to degassing and was not resorbed during the
degassing event86,88. The fluid responsible for the subsequent Cu-
sulfide-rich stage could have outgassed from the same evolving
magma body and resulted in resorption of earlier formed Cu-
sulfide crystal/liquid, or could have evolved from a newly

Fig. 4 Schematic model for the Candelaria IOCG district. a Slow cooling of a dioritic intrusion and separation of a fluid phase, coalescence of the fluid
phase, and encapsulation of magnetite microlites to form a magnetite-fluid suspension accumulation under overpressure conditions that scavenges Fe, Cu,
Au, S, and Cl57,58. b The accumulated fluid is sporadically “tapped” by active, deep crustal sinistral strike-slip faults initially associated with the formation of
the sedimentary basin. Fault movement allowed the ascent of high-temperature Fe-rich fluids. c Further fault movement would allow the ascent of (Cu, Fe)-
rich fluids; Cu in the fluid increases due to increased solubility of CuCl at ~650 °C. d Fluids cooling to temperatures of about 600 °C; further cooling to
~500 °C of the ascending hydrothermal fluids by convection causes Cu precipitation. Peak chalcopyrite mineralization occurs at temperatures of ~400 °C.
At the final stage, hydrothermal fluids would have interacted with external, basin derived fluids, which would have added reduced sulfur into the system in
the form of pyrite but no important Cu mineralization20. *Depth estimated for pressure conditions of 100MPa.
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emplaced magma where the released volatiles overcame capillary
resistance and ascended along permeable channels developed in
overlying, older crystal mush77. The efficient ascent of a
magmatic-hydrothermal fluid in such evolving magmatic systems
is transient and dependent entirely on the rate of supply of
ascending magmatic-hydrothermal fluid78. Intermittent degassing
events could explain the superimposed magnetite-actinolite and
younger magnetite-actinolite-Cu-sulfide mineralization events at
Candelaria. The precise timing between hydrothermal stages is
yet to be properly evaluated by further geochronological studies.
Understanding the timeframe between these two stages in the
Candelaria-Punta del Cobre district will be essential for better
characterizing the magmatic evolution of the hydrothermal
system responsible for mineralization, and its connection to
magmatic sources.

A different paradigm that connects IOA and IOCG miner-
alization. Our genetic model involving at least two distinct stages
of hydrothermal activity introduces an important addition to how
we understand the evolution and connection between IOA and
IOCG mineralization styles. As noted, previous studies have
suggested a spatial and temporal relationship between IOA and
IOCG mineralization, where the IOA could represent the roots of
an IOCG system7,58,62,64. Further, the presence of minor sulfides
in IOA deposits (e.g., Los Colorados, El Romeral, Cerro Negro
Norte)52 and early, pre-Cu mineralization, magnetite-actinolite in
IOCG deposits (e.g., El Espino, Mantoverde, Mina Justa, Raúl
Condestable, Dominga)50,53–55,89 point to a transition between
IOA and shallow IOCG mineralization styles. However, those
authors assumed that both IOA and IOCG mineralization were
the result of a single cooling fluid. Although this may be the case
for IOA deposits and small, vein-type IOCG systems7,58,62,64, our
data reveal that there were at least two distinct stages of hydro-
thermal activity involved in the formation of a world-class IOCG
deposit, which are superimposed. These stages correspond to
hydrothermal fluids of contrasting temperatures, and possibly
with distinct ligand and metal budgets derived from an evolving
magmatic source(s).

Conclusions
The deposit-scale actinolite data presented here are used as a
proxy to determine mineralization temperatures and provide a
tool to trace the evolution of IOCG mineral systems. Further-
more, our results offer a different explanation for how the Cu-
deficient IOA-type mineralization relates spatially to Cu-rich
IOCG deposits. We propose that both mineralization styles can
represent temporally distinct nonequivalent hydrothermal stages
albeit part of the same metallogenic system. We argue that IOA-
type and IOCG mineralization styles should not necessarily be
viewed as related to formation depth, but rather be the result of
temperature gradients and an evolving magmatic source affecting
hydrothermal fluid composition and circulation. Most impor-
tantly, we argue that world-class IOCG deposits such as Cande-
laria are formed by distinct, episodic pulses of hydrothermal
activity. The detailed understanding of the characteristics and key
controls of the magmatic-hydrothermal evolution responsible for
the formation of large IOCG deposits, and therefore the factors
that control metal transfer, is a critical step in the development of
new strategies for successful exploration. Therefore, the results
presented here open opportunities for Cu exploration in districts
that are historically rich in Fe. It also supports the use of com-
positional variations in actinolite as a proxy for formation tem-
perature estimates that could potentially be applied to determine
thermal gradients at the district and even regional scales, and
hence could be used as an effective vectoring tool.

Methods
Electron microprobe point analysis was performed at the Electron Microbeam
Analysis Laboratory, University of Michigan by using a Cameca SX-100 with a
voltage of 15 kV, a current of 20 nA and a 2 μm beam. We measured Si, Ti, Al, V,
Cr, Mn, Fe, Ni, Mg, Ca, Na, F, and Cl. All results, counting times, standards, and
detection limits are listed in the Supplemental Material.

WDS X-ray maps were acquired on a JEOL 8530 F field-emission electron probe
microanalyzer equipped with five wavelength-dispersive spectrometers at the
Center for Microscopy, Characterization and Analysis (CMCA), University of
Western Australia, Perth, WA. The elements Si, Ti, Al, Mn, Fe, Mg, Ca, Na, and Cl
were measured. Detection limit maps were acquired for these elements and applied
as the minimum cutoff values. Map acquisition utilized a 15 kV accelerating vol-
tage, 100 nA beam current and a fully focused beam. Pixel dimensions were chosen
between as 0.5, 1, or 2 μm2 depending on the size of the map area, and 150 ms per
pixel dwell time. Data were processed using the Calcimage® software package and
output to Surfer®.

Temperature maps were obtained by extracting each pixel from the WDS map as
a XYZ point using Surfer® and exporting this as a.txt map. The.txt maps were then
processed in Python by using the matplotlib package. For this an empty 3D stack
was first created and then filled with the.txt maps for each element in the WDS
maps. The 3D stack was then reshaped into a 2D array where each row contains the
pixels of one element. The 2D array allowed us to work with pixels as elemental
concentration data. First we isolated the actinolite grains from the rest of the map
by using Ca combined with Si concentrations. Once we had all the pixels corre-
sponding to the actinolite grains, we applied the Lledo and Jenkins (2008) poly-
nomial regression on each pixel by using the Fe and Mg concentrations. Then we
reshaped the resulting 2D data array back into a 3D one and plotted the tem-
perature WDS map using the matplotlib function “imshow()”. The final images
obtained are those shown in Fig. 2a–e.

Data availability
The authors declare that the data supporting this study and needed to reproduce it are
available within the paper, its supplementary information and stored at Science Data
Bank https://doi.org/10.11922/sciencedb.01103.

Code availability
The authors declare that the code used for this research is publicly stored in Figshare
https://doi.org/10.6084/m9.figshare.15125421.

Received: 8 December 2020; Accepted: 27 August 2021;
Published online: xx xxx 2021

References
1. Groves, D. I., Bierlein, F. P., Meinert, L. D. & Hitzman, M. W. Iron oxide

copper-gold (IOCG) deposits through earth histoiy: Implications for origin,
lithospheric setting, and distinction from other epigenetic iron oxide deposits.
Econ. Geol. 105, 641–654 (2010).

2. Williams, P., Barton, M., Fontbote, L., Mark, G. & Marshick, R. Iron oxide
copper-gold deposits: Geology, space-time distribution, and possible modes of
origin. Econ. Geol. 371–405 (2005). Q8Q8

3. Barton, M. D. In Treatise on Geochemistry: Second Edition, vol. 13, 515–541
(Elsevier Ltd., 2013).

4. Apukhtina, O. B. et al. Early, deep magnetite-fluorapatite mineralization at the
olympic dam Cu-U-Au-Ag deposit, South Australia. Econ. Geol. 112,
1531–1542 (2017).

5. deMelo, G. H. C. et al. Temporal evolution of the giant Salobo IOCG deposit,
Carajás Province (Brazil): constraints from paragenesis of hydrothermal
alteration and U-Pb geochronology. Miner. Depos. 52, 709–732 (2017).

6. del Real, I., Thompson, J. F. H. & Carriedo, J. Lithological and structural
controls on the genesis of the Candelaria-Punta del Cobre Iron Oxide Copper
Gold district, Northern Chile. Ore Geol. Rev. 102, 106–153 (2018).

7. Sillitoe, R. Iron oxide-copper-gold deposits: an Andean view. Miner. Depos.
38, 787–812 (2003).

8. Rusk, B. G. et al. Compositions of magnetite Q9Q9and sulfides from barren and
mineralized IOCG deposits in the eastern succession of the Mt Isa Inlier,
Australia BT—Geological Society of America, 2009 annual meeting. Geol. Soc.
Am. 41, 84 (2009).

9. Rusk, B. et al. Hydrothermal Iron Oxide Copper-Gold & Related Deposits: a
global perspective—advances in the understanding of IOCG deposits, vol. 3,
201–218 (2010). Q10Q10

10. Monteiro, L. V. S. et al. Spatial and temporal zoning of hydrothermal
alteration and mineralization in the Sossego iron oxide-copper-gold deposit,
Carajás Mineral Province, Brazil: Paragenesis and stable isotope constraints.
Miner. Depos. 43, 129–159 (2008).

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-021-00265-w ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT | _#####################_ | https://doi.org/10.1038/s43247-021-00265-w |www.nature.com/commsenv 7

https://doi.org/10.11922/sciencedb.01103
https://doi.org/10.6084/m9.figshare.15125421
www.nature.com/commsenv
www.nature.com/commsenv


UNCORRECTED P
ROOF

11. Montreuil, J.-F., Potter, E. G., Corriveau, L. & Davis, W. J. Element mobility
patterns in magnetite-group IOCG systems: the Fab IOCG system, Northwest
Territories, Canada. Ore Geol. Rev. 72, 562–584 (2016).

12. Huang, X. W. et al. Trace element composition of iron oxides from IOCG and
IOA deposits: relationship to hydrothermal alteration and deposit subtypes.
Miner. Depos. 54, 525–552 (2019).

13. Li, R. et al. Using integrated in-situ sulfide trace element geochemistry and
sulfur isotopes to trace ore-forming fluids: example from the Mina Justa IOCG
deposit (southern Perú). Ore Geol. Rev. 101, 165–179 (2018).

14. Childress, T. M. et al. Formation of the Mantoverde iron oxide-copper-gold
(IOCG) deposit, Chile: insights from Fe and O stable isotopes and
comparisons with iron oxide-apatite (IOA) deposits. Miner. Depos. 55,
1489–1504 (2020).

15. del Real, I., Thompson, J. F. H. F. H., Simon, A. C. & Reich, M. Geochemical
and isotopic signature of pyrite as a proxy for fluid source and evolution in the
Candelaria-Punta del Cobre Iron Oxide Copper-Gold District, Chile. Econ.
Geol. 115, 1493–1518 (2020).

16. Rodriguez-Mustafa, M. A. et al. A continuum from iron oxide copper-gold to
iron oxide-apatite deposits: evidence from Fe and O stable isotopes and trace
element chemistry of magnetite. Econ. Geol. 115, 1443–1459 (2020).

17. Schlegel, T. U., Wagner, T., Boyce, A. & Heinrich, C. A. A magmatic source of
hydrothermal sulfur for the Prominent Hill deposit and associated prospects
in the Olympic iron oxide copper-gold (IOCG) province of South Australia.
Ore Geol. Rev. 89, 1058–1090 (2017).

18. Marschik, R. & Fontboté, L. The Candelaria-Punta del Cobre iron oxide Cu-
Au (-Zn-Ag) deposits, Chile. Econ. Geol. 96, 1799–1826 (2001).

19. Marschik, R. & Kendrick, M. A. Noble gas and halogen constraints on fluid
sources in iron oxide-copper-gold mineralization: Mantoverde and La
Candelaria, Northern Chile. Miner. Depos. 50, 357–371 (2015).

20. Kendrick, M. A., Phillips, D. & Miller, J. M. L. Part I. Decrepitation and
degassing behaviour of quartz up to 1560 °C: analysis of noble gases and
halogens in complex fluid inclusion assemblages. Geochim. Cosmochim. Acta
70, 2540–2561 (2006).

21. Schlegel, T. U., Wagner, T., Wälle, M. & Heinrich, C. A. Hematite breccia-
hosted iron oxide copper-gold deposits require magmatic fluid components
exposed to atmospheric oxidation: evidence from prominent hill, Gawler
Craton, South Australia. Econ. Geol. 113, 597–644 (2018).

22. Rieger, A. A., Marschik, R. & Diaz, M. The evolution of the hydrothermal
IOCG system in the Mantoverde district, northern Chile: new evidence from
microthermometry and stable isotope geochemistry. Miner. Depos. 47,
359–369 (2012).

23. Lledo, H. L. & Jenkins, D. M. Experimental investigation of the upper thermal
stability of Mg-rich actinolite; implications for Kiruna-type iron deposits. J.
Petrol. 49, 225–238 (2008).

24. Watson, E. B., Wark, A. D. A. & Thomas, A. J. B. Crystallization
thermometers for zircon and rutile. Contrib. Mineral Petrol. 151, 413–433
(2006).

25. Wilkinson, J. J. et al. The chlorite proximitor: a new tool for detecting
porphyry ore deposits. J. Geochem. Explor. 152, 10–26 (2015).

26. Wilkinson, J. J., Baker, M. J., Cooke, D. R. & Wilkinson, C. C. Exploration
targeting in porphyry Cu systems using propylitic mineral chemistry: a case
study of the El Teniente deposit, Chile. Econ. Geol. 115, 771–791 (2020).

27. Cooke, D. R. et al. Using mineral chemistry to detect the location of concealed
porphyry deposits—an example from Resolution, Arizona. in International
Applied Geochemistry Symposium, 1–6 (2015).Q11Q11

28. Jacobs, D. C. & Parry, W. T. Geochemistry of Biotite in the Santa Rita
Porphyry Copper Deposit, New Mexico. Econ. Geol. 74, 860–887 (1979).

29. Selby, D. & Nesbitt, B. E. Chemical composition of biotite form the casino
porphyry Cu-Au-Mo mineralization, Yukon, Canada: Evaluation of magmatic
and hydrothermal fluid chemistry. Chem. Geol. 171, 77–93 (2000).

30. Afshooni, S. Z., Mirnejad, H., Esmaeily, D. & Asadi Haroni, H. A. Mineral
chemistry of hydrothermal biotite from the Kahang porphyry copper deposit
(NE Isfahan), Central Province of Iran. Ore Geol. Rev. 54, 214–232 (2013).

31. Moshefi, P., Hosseinzadeh, M. R., Moayyed, M. & Lentz, D. R. Comparative
study of mineral chemistry of four biotite types as geochemical indicators of
mineralized and barren intrusions in the Sungun Porphyry Cu-Mo deposit,
northwestern Iran. Ore Geol. Rev. 97, 1–20 (2018).

32. Bilenker, L. D. et al. Fe–O stable isotope pairs elucidate a high-temperature
origin of Chilean iron oxide-apatite deposits. Geochim. Cosmochim. Acta 177,
94–104 (2016).

33. Hanley, J. J. & Bray, C. J. The trace metal content of amphibole as a
pboximityindicatob fob Cu-Ni-PGE minebalization in the footwall of the
sudbuby igneous complex, Ontabio, Canada. Econ. Geol. 104, 113–125 (2009).

34. Rojas, P. A. et al. A genetic link between magnetite mineralization and diorite
intrusion at the El Romeral iron oxide-apatite deposit, northern Chile. Miner.
Depos. 53, 947–966 (2018).

35. Craveiro, G. S., Villas, R. N. N. & Xavier, R. P. Mineral chemistry and
geothermometry of alteration zones in the IOCG Cristalino deposit, Carajás
Mineral Province, Brazil. J. South Am. Earth Sci. 92, 481–505 (2019).

36. Marschik, R. et al. Age of Cu(-Fe_-Au mineralization and thermal evolution of
the Punta del Cobre district, Chile. Miner. Depos. 32, 531–546 (1997).

37. Palma, G., Barra, F., Reich, M., Simon, A. C. & Romero, R. A review of
magnetite geochemistry of Chilean iron oxide-apatite (IOA) deposits and its
implications for ore-forming processes. Ore Geol. Rev. 126, 103748 (2020).

38. Marschik, R. & Söllner, F. Early cretaceous U-Pb zircon ages for the Copiapo
plutonic complex and implications for the IOCG mineralization at Candelaria,
Atacama Region, Chile. Miner. Depos. 41, 785–801 (2006).

39. Green, C. J. et al. Metamorphic amphiboles in the Ironwood Iron-Formation,
Gogebic Iron Range, Wisconsin: Implications for potential resource
development. Am. Mineral. 105, 1259–1269 (2020).

40. Ross, M., Nolan, R. P. & Nord, G. L. The search for asbestos within the Peter
Mitchell Taconite iron ore mine, near Babbitt, Minnesota. Regul. Toxicol.
Pharmacol. 52, S43–S50 (2008).

41. Jenkins, D. M. & Bozhilov, K. N. Stability and thermodynamic properties of
ferro-actinolite: a re-investigation. Am. J. Sci. 303, 723–752 (2003).

42. Jamtveit, B. Oscillatory zonation patterns in hydrothermal grossular-andradite
garnet: nonlinear dynamics in regions of immiscibility. Am. Mineral. 76,
1319–1327 (1991).

43. Putnis, A., Fernandez-Diaz, L. & Prieto, M. Experimentally produced
oscillatory zoning in the (Ba, Sr)SO4 solid solution. Nature 358, 743–745
(1992).

44. Simon, A. C., Pettke, T., Candela, P. A., Piccoli, P. M. & Heinrich, C. A.
Magnetite solubility and iron transport in magmatic-hydrothermal
environments. Geochim. Cosmochim. Acta 68, 4905–4914 (2004).

45. Scholten, L. et al. Solubility and speciation of iron in hydrothermal fluids.
Geochim. Cosmochim. Acta 252, 126–143 (2019).

46. Migdisov, A. A., Bychkov, A. Y., Williams-Jones, A. E. & van Hinsberg, V. J. A
predictive model for the transport of copper by HCl-bearing water vapour in
ore-forming magmatic-hydrothermal systems: Implications for copper
porphyry ore formation. Geochim. Cosmochim. Acta 129, 33–53 (2014).

47. Williams-Jones, A. & Migdisov, A. Experimental constraints on the transport
and deposition of metals in ore-forming hydrothermal systems. Soc. Econ.
Geol. Spec. Publ. 18, 77–96 (2014).

48. Chen, H. et al. Contrasting fluids and reservoirs in the contiguous Marcona
and Mina Justa iron oxide-Cu (-Ag-Au) deposits, south-central Perú. 46,
677–706 (2011). Q12Q12

49. Rojas, P. A. et al. New contributions to the understanding of Kiruna-type iron
oxide-apatite deposits revealed by magnetite ore and gangue mineral
geochemistry at the El Romeral deposit, Chile. Ore Geol. Rev. 93, 413–435
(2018).

50. Chen, H. et al. Evolution of the Giant Marcona-Mina Justa Iron Oxide-
Copper-Gold District, South-Central Peru. Econ. Geol. 105, 155–185 (2010).

51. Salazar, E. et al. Trace element geochemistry of magnetite from the Cerro
Negro Norte iron oxide−apatite deposit, northern Chile. Miner. Depos. 55,
409–428 (2020).

52. Reich, M. et al. Trace element signature of pyrite from the los colorados iron
oxide-apatite (IOA) Deposit, Chile: a missing link between andean ioa and
iron oxide copper-gold systems? Econ. Geol. 111, 743–761 (2016).

53. Benavides, J. et al. The Mantoverde iron oxide-copper-gold district, III Región,
Chile: the role of regionally derived, nonmagmatic fluids in Chalcopyrite
mineralization. Econ. Geol. 102, 415–440 (2007).

54. De Haller, A. & Fontboté, L. The rauc-condestable iron oxide copper-gold
deposit, central coast of peru: Ore and related hydrothermal alteration, sulfur
isotopes, and thermodynamic constraints. Econ. Geol. 104, 365–384 (2009).

55. Lopez, G. P., Hitzman, M. W. & Nelson, E. P. Alteration patterns and
structural controls of the El Espino IOCG mining district, Chile.Miner. Depos.
49, 235–259 (2014).

56. Knipping, J. L. et al. Trace elements in magnetite from massive iron oxide-
apatite deposits indicate a combined formation by igneous and magmatic-
hydrothermal processes. Geochim. Cosmochim. Acta 171, 15–38 (2015).

57. Knipping, J. L. et al. Giant Kiruna-type deposits form by efficient flotation of
magmatic magnetite suspensions. Geology 43, 591–594 (2015).

58. Simon, A. C. et al. Kiruna-type iron oxide-apatite (IOA) and iron oxide
copper-gold (IOCG) deposits form by a combination of igneous and
magmatic-hydrothermal processes: evidence from the Chilean Iron Belt. Soc.
Econ. Geol. Special Publ. 21, 89–114 (2018).

59. Knipping, J. L., Webster, J. D., Simon, A. C. & Holtz, F. Accumulation of
magnetite by flotation on bubbles during decompression of silicate magma.
Sci. Rep. 9, (2019). Q13Q13

60. Troll, V. R. et al. Global Fe–O isotope correlation reveals magmatic origin of
Kiruna-type apatite-iron-oxide ores. Nat. Commun. 10, (2019). Q14Q14

61. Oreskes, N. & Einaudi, M. T. Origin of rare earth element-enriched hematite
breccias at the Olympic Dam Cu-U-Au-Ag deposit, Roxby Downs, South
Australia. Econ. Geol. 85, 1–28 (1990).

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-021-00265-w

8 COMMUNICATIONS EARTH & ENVIRONMENT | _#####################_ | https://doi.org/10.1038/s43247-021-00265-w |www.nature.com/commsenv

www.nature.com/commsenv


UNCORRECTED P
ROOF

62. Espinoza, S., Véliz, H., Esquivel, J., Arias, J. & Moraga, A. The cupriferous
province of the coastal range, northern Chile. Andean Copper Depos. 5, 19–32
(1996).

63. Davidson, G. J., Paterson, H., Meffre, S. & Berry, R. F. Characteristics and
origin of the oak dam East Breccia-Hosted, iron oxide Cu-U-(Au) Deposit:
Olympic Dam region, Gawler Craton, South Australia. Econ. Geol. 102,
1471–1498 (2007).

64. Barra, F. et al. Unraveling the origin of the Andean IOCG clan: a Re-Os
isotope approach. Ore Geol. Rev. 81, 62–78 (2017).

65. Ootes, L. et al. A Paleoproterozoic Andean-type iron oxide copper-gold
environment, the Great Bear magmatic zone, Northwest Canada. Ore Geol.
Rev. 81, 123–139 (2017).

66. Corriveau, L., Montreuil, J. F. & Potter, E. G. Alteration facies linkages among
iron oxide copper-gold, iron oxide-apatite, and affiliated deposits in the great
bear magmatic zone, Northwest Territories, Canada. Econ. Geol. 111,
2045–2072 (2016).

67. Chiaradia, M., Banks, D., Cliff, R., Marschik, R. & Haller, A. Origin of fluids in
iron oxide-copper-gold deposits: constraints from??37Cl, 87Sr/86Sri and Cl/
Br. Miner. Depos. 41, 565–573 (2006).

68. Scheuber, E. & Gonzalez, G. Tectonics of the Jurassic-Early Cretaceous
magmatic arc of the north Chilean Coastal Cordillera (22°–26°S): a story of
crustal deformation along a convergent plate boundary. Tectonics 18, 895–910
(1999).

69. Pichowiak, S. In Tectonics of the Southern Central Andes 203–217 (Springer
Berlin Heidelberg, 1994).

70. Wallace, P. J. Volatiles in subduction zone magmas: concentrations and fluxes
based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 140,
217–240 (2005).

71. De Vivo, B., Lima, A. & Webster, J. D. Volatiles in magmatic-volcanic systems.
Elements 1, 19–24 (2005).

72. Hurwitz, S. & Navon, O. Bubble nucleation in rhyolitic melts: experiments at
high pressure, temperature, and water content. Earth Planet. Sci. Lett. 122,
267–280 (1994).

73. Pleše, P. et al. Dynamic observations of vesiculation reveal the role of silicate
crystals in bubble nucleation and growth in andesitic magmas. Lithos
296–299, 532–546 (2018).

74. Blundy, J., Mavrogenes, J., Tattitch, B., Sparks, S. & Gilmer, A. Generation of
porphyry copper deposits by gas-brine reaction in volcanic arcs. Nat. Geosci.
8, 235–240 (2015).

75. Rivalta, E. & Dahm, T. Acceleration of buoyancy-driven fractures and
magmatic dikes beneath the free surface. Geophys. J. Int. 166, 1424–1439
(2006).

76. Chelle-Michou, C., Rottier, B., Caricchi, L. & Simpson, G. Tempo of magma
degassing and the genesis of porphyry copper deposits. Sci. Rep. 7, (2017).Q15Q15

77. Parmigiani, A., Degruyter, W., Leclaire, S., Huber, C. & Bachmann, O. The
mechanics of shallow magma reservoir outgassing. Geochem. Geophys.
Geosyst. 18, 2887–2905 (2017).

78. Candela, P. A. Combined chemical and physical model for plutonic
devolatilization: a non-Rayleigh fractionation algorithm. Geochim.
Cosmochim. Acta 58, 2157–2167 (1994).

79. Cox, S. F. Coupling between deformation, fluid pressures, and fluid flow in
Ore-producing hydrothermal systems at depth in the crust. Econ. Geol. 100,
39–75 (2005).

80. Cox, S. F. Injection-driven swarm seismicity and permeability enhancement:
Implications for the dynamics of hydrothermal ore systems in high fluid-flux,
overpressured faulting regimes—an invited paper. Econ. Geol. 111, 559–587
(2016).

81. Sibson, R. H. Selective fault reactivation during basin inversion: potential for
fluid redistribution through fault-valve action. Geol. Soc. Lond. Spec. Publ. 88,
3–19 (1995).

82. Sibson, R. H., Robert, F. & Poulsen, K. H. High-angle reverse faults, fluid-
pressure cycling, and mesothermal gold-quartz deposits. Geology 16, 551
(1988).

83. Haynes, D. W., Cross, K. C., Bills, R. T. & Reed, M. H. Olympic Dam ore
genesis: a fluid mixing model. Econ. Geol. 90, 281–307 (1995).

84. Roberts, D. E. & Hudson, G. R. T. The Olympic Dam copper-uranium-gold
deposit, Roxby Downs, South Australia. Econ. Geol. 78, 799–822 (1983).

85. Zhao, J., Brugger, J., Chen, G., Ngothai, Y. & Pring, A. Experimental study of
the formation of chalcopyrite and bornite via the sulfidation of hematite:

Mineral replacements with a large volume increase. Am. Mineral. 99, 343–354
(2014).

86. Audétat, A., Simon, A., Hedenquist, J., Harris, M. & Camus, F. In Geology and
genesis of major copper deposits and districts of the world-A tribute to Richard
H. Sillitoe 553–572 (2012). Q16Q16

87. Audétat, A. The metal content of magmatic-hydrothermal fluids and its
relationship to mineralization potential. Econ. Geol. 114, 1033–1056 (2019).

88. Halter, W. E., Pettke, T. & Heinrich, C. A. The origin of Cu/Au ratios in
porphyry-type ore deposits. Science 296, 1844–1846 (2002).

89. Veloso, E. A. et al. Trace elements distribution in magnetite: the Q17Q17relationship
between tectonics and hydrothermal fluid flow in the Dominga Fe-Cu deposit,
Coastal Cordillera, Northern Chile. AGUFM 2019, V33C–V30259 (2019).

Acknowledgements
This study was funded by ANID through Millennium Science Initiative Program
(NCN13_065) to M.R. and Fondecyt postdoctoral Grant 3200532 to I.D.R. Additional
support was provided by ANID through FONDECYT grant #1190105. A.C.S.
acknowledges support from NSF EAR #1924142. All samples were obtained from the
Candelaria deposit with permission from Lundin Mining. Lundin Mining is acknowl-
edged for their field support.

Author contributions
All the authors contributed substantially to the paper as a team including sampling, data
acquisition and interpretation, construction of the model, and writing. I.D.R. and M.R.
conceived and designed the study. EPMA data acquisition was carried out by I.D.R.,
A.D., and M.P.R. Actinolite thermometry and compositional data inversion in WDS
maps was carried out by I.D.R. under the supervision of M.R. The conception of the
evolution model was proposed by I.D.R. and M.R. with substantial contribution and
discussion with F.B., A.S., J.T., A.D., and M.R. All the authors analyzed and discussed the
data and revised the manuscript, which was written by I.D.R. and M.R.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s43247-021-00265-w.

Correspondence and requests for materials should be addressed to IreneDel Real.

Peer review information Communications Earth & Environment thanks the anonymous
reviewers for their contribution to the peer review of this work. Primary Handling Editor:
Joe Aslin. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-021-00265-w ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT | _#####################_ | https://doi.org/10.1038/s43247-021-00265-w |www.nature.com/commsenv 9

https://doi.org/10.1038/s43247-021-00265-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsenv
www.nature.com/commsenv


UNCORRECTED P
ROOF

AOP

QUERY FORM

Communications Earth & Environment

Manuscript ID [Art. Id: 265]

Author

Editor

Publisher

Journal: Communications Earth & Environment

Author :- The following queries have arisen during the editing of your manuscript. Please answer by making
the requisite corrections directly in the e.proofing tool rather than marking them up on the PDF. This will
ensure that your corrections are incorporated accurately and that your paper is published as quickly as
possible.

Query
No.

Description Author’s Response

AQ1 Since the references were not cited in numerical order, they have been renumbered in
the order of appearance. Please check.

AQ2 Reference [53] is a duplicate of [44] (original reference) and hence the repeated
version has been deleted. Please check.

AQ3 Please check your article carefully, coordinate with any co-authors and enter all final
edits clearly in the eproof, remembering to save frequently. Once corrections are
submitted, we cannot routinely make further changes to the article.

AQ4 Note that the eproof should be amended in only one browser window at any one time;
otherwise changes will be overwritten.

AQ5 Author surnames have been highlighted. Please check these carefully and adjust if the
first name or surname is marked up incorrectly. Note that changes here will affect
indexing of your article in public repositories such as PubMed. Also, carefully check
the spelling and numbering of all author names and affiliations, and the corresponding
email address(es).

AQ6 You cannot alter accepted Supplementary Information files except for critical changes
to scientific content. If you do resupply any files, please also provide a brief (but
complete) list of changes. If these are not considered scientific changes, any altered
Supplementary files will not be used, only the originally accepted version will be
published.



UNCORRECTED P
ROOF

AOP

QUERY FORM

Communications Earth & Environment

Manuscript ID [Art. Id: 265]

Author

Editor

Publisher

Journal: Communications Earth & Environment

Author :- The following queries have arisen during the editing of your manuscript. Please answer by making
the requisite corrections directly in the e.proofing tool rather than marking them up on the PDF. This will
ensure that your corrections are incorporated accurately and that your paper is published as quickly as
possible.

Query
No.

Description Author’s Response

AQ7 If applicable, please ensure that any accession codes and datasets whose DOIs or other
identifiers are mentioned in the paper are scheduled for public release as soon as
possible, we recommend within a few days of submitting your proof, and update the
database record with publication details from this article once available.

AQ8 Please provide volume number for reference 2.

AQ9 Please check the journal name in reference 8.

AQ10 Please provide publisher's name for reference 9.

AQ11 Please provide publisher's name for reference 27.

AQ12 Please provide journal name for reference 48.

AQ13 Please provide page range for reference 59.

AQ14 Please provide page range for reference 60.

AQ15 Please provide page range for reference 76.

AQ16 Please provide publisher's name for reference 86.

AQ17 Please check the journal name in reference 89.


	Formation of giant iron oxide-copper-gold deposits by superimposed, episodic hydrothermal pulses
	Outline placeholder
	Geology and mineralization in the Candelaria-Punta del Cobre district
	Actinolite sampling and temperature calculations

	Results
	Discussion
	Temperature controls on mineral precipitation
	Mineralization episodes triggered by tapping reservoirs of magmatic-hydrothermal fluids
	A different paradigm that connects IOA and IOCG mineralization

	Conclusions
	Methods
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




