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Abstract— Under line-of-sight (LOS) network conditions,
multi-input multi-output (MIMO) wireless communications can
increase the channel capacity between a team of robots and a
multi-antenna array at a stationary base station. This increased
capacity can result in greater data throughput, shortening the
time necessary to complete channel-limited data aggregation
tasks. To take advantage of this higher capacity channel, the
robots in the team must be positioned to maximize complex
channel orthogonality between each robot and receiver antenna.
Using geometrically motivated assumptions, we derive trans-
mitter spacing rules that can be easily be added on to existing
path plans to improve backhaul throughput for data offloading
from the robot team, with minimal impact on other system
objectives. We demonstrate the effectiveness of the approach—
both in ideal as well as realistic channels outside the domain
of our simplifying assumptions—with numerical examples of
robot-coordinated path plans in two example environments,
achieving up to 42% improvement in task completion times.

I. INTRODUCTION

In recent years there has been considerable focus on
deployment of multi-robot teams for cooperative field mis-
sions [1]. To work around issues of intermittent connectivity
and limited communication bandwidth robots must operate
autonomously when disconnected, periodically seeking the
location of high-strength communication links to transmit
collected data and receive updates from the base station [2]–
[8]. This limits the ability for continuous data streaming
throughout a sensing task. Real-time streaming is particularly
necessary in applications where autonomous operation is
currently unsolved or would require more computation than
is reasonable to carry on the robots, such as in tracking
and surveillance or human-driven inspection tasks. Other
applications, in particular search and rescue missions, may
also require real-time streaming due to the time critical
immediacy of the underlying objective. Several approaches
to maintaining connectivity for all time are possible; many
relevant robotics works in path planning, however, pose sens-
ing and capacity as a multi-objective optimization problem
subject to a static channel map [9], [10].
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(a) When sensing data is distributed along one dimension,
transmitters can change their altitude to generate separation
∆z to improve communication capacity.

(b) When sensing data is distributed along two dimensions,
transmitters maintain a fixed altitude and travel with separation
∆z within the horizontal plane to improve communication
capacity.

Fig. 1: Two example scenarios of a multi-receiver, multi-
transmitter system where communication-aware techniques
are applied to improve transmission throughput in time-
critical sensing missions.

In this paper, we employ spatial multiplexing (SM), a
distributed multi-input multi-output (MIMO) communica-
tion technique [11]–[13]. The SM communication system
attempts to increase the communication capacity (i.e. data
throughput) by using multiple transmit and receive antennas
to send unique data streams simultaneously. SM is typically
used in cluttered (or rich scattering) environments because
independent fading aids in decoding signals at the receiver.
SM can provide throughput gains in line-of-sight (LOS)
environments as well, but requires care in placement of
antennas in addition to typical signal processing for decoding
streams [14]–[17]. Work has been done to create virtual
antenna arrays using unmanned aerial vehicles (UAVs) as
dedicated network enhancers for signal relay applications,
among others [18]–[21]. In this work we use the same
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principles given in [14]–[17] to create mobile virtual arrays
capable of coordination within a cluster to enhance network
link quality while simultaneously moving and collecting data.

SM can significantly enhance the quality of network links
subject to path loss to facilitate improved real-time data
aggregation in LOS-dominant areas, i.e. areas where other
causes of intermittent signals such as shadowing or multipath
fading are not pronounced. In this work we mitigate data
stream correlation caused by interference among robots by
positioning transmitters such that communication channels
have an optimized phase offset. We do so by constraining
robot transmitters to uniform linear arrays (ULA) [14], [15].
In largely unobstructed areas, boustrophedon flight plans
are the standard for aerial coverage missions [22], [23]. In
this work we show the flight planner can enjoy significant
capacity gains by integration of ULA configurations into pre-
existing boustrophedon plans, with little effort in adoption.
Futhermore, our ULA adaptation ensures that the ground
coverage of the sensing field of view is a superset of the
coverage set of the prior unmodified trajectories.

Fig. 1 shows an example of two situations where ULA
adaptation is used to increase communication throughput.
Robots maintain an inter-transmitter distance, dt, for a total
distance of (m − 1) · dt from the 1st to the mth robot
in the direction ~dt, where M is the total number of robot
transmitters. Inter-transmitter distance changes with respect
to the x-coordinate of the 1st robot. In Fig. 1a robots adjust
the altitude differential prescribed by dt as they collect data
along a path. This configuration captures applications such
as powerline [24]–[27], bridge [28]–[32], and pipeline in-
frastructure inspection [33]–[35]. In Fig. 1b robots maintain
constant altitude while dt changes within the horizontal
plane containing the receiver antennas. This approach is
appropriate for applications requiring real-time transmission
in coverage missions such as search and rescue [10], [36]
and surveillance [37]–[39].

A. Motivating Example

In remote missions with MIMO wireless infrastructure,
robot teams may sacrifice available throughput via naı̈ve
positioning. In a UAV coverage mission, there are several
boustrophedon possibilities; considering various options can
mitigate interference and make a substantial difference in the
rate of data transmission.

Using the communication model given in Sec. II-B, we
create the example depicted in Fig. 2 where UAVs sweep
an area of interest without a particular spatio-temporal ob-
jective, such as in the monitoring of a forest fire. The UAV
transmitters in scenario (a) are subject to nearly identical
(highly correlated) SM channels due to poor positioning.
UAVs achieve an average communication capacity of 2.41
bps/Hz and 1.51 bps/Hz for the closer and more remote
transmitters respectively. In scenario (b) the UAVs reorient
with respect to receivers. Here both transmitters achieve
approximately the same average capacity of 7.08 bps/Hz.
This means that on average they can transmit 3.6 times the
data over the same time interval.

Fig. 2: Two possible paths transmitters may take without
changing the mission objective. Black arrows indicate direc-
tion of travel. The robots traverse the dark green paths in 1
hour. Because robots minimize interference in (b), they travel
much farther.

Assuming we always meet sensing requirements, we mo-
tivate our work using time as a performance metric. For
a clear side-by-side comparison of MIMO methods, we
enforce the even distribution of data over a spanned area.
Transmitter velocity is defined as a function of available
capacity: transmitters may only move as fast as the rate at
which they can transmit data in real-time. Reassessing the
previous example, the dark green colored portion of paths
represent the sensing area covered by UAVs in 1 hour. In
scenario (a) the UAVs collectively cover 554 m of ground
while in scenario (b) the UAVs cover 2 km. It is clear then
that scenario (b) is preferable, and at no cost to the sensing
objective.

B. Contributions

In this paper we develop the integration of ULA forma-
tions with flight plans for real-time data aggregation tasks.
To the best of the authors’ knowledge, this is the first
work to incorporate SM MIMO approaches based on the
analysis of complex communication signals into a mobile,
simultaneous sensing and transmitting multi-robot system.
This research characterizes the advantages of LOS SM
approaches as as tool for communications enhancement, and
serves as a foundation for solving SM-aware path plans for
sophisticated sensing objectives. Results showing up to a
42% improvement in task completion times in analytical
examples and 29% in realistic simulation further demonstrate
the effectiveness of this research.

II. PROBLEM SETUP

M robots are simultaneously sending independent data
streams using SM communications to N fixed ground re-
ceivers, where N ≥ M . We examine two tasks where
behavior is constrained to an in-plane Cartesian workspace
W ⊂ R2. In all cases, robot velocity is throttled by available
capacity in the “sensing direction”. In the one-dimensional
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(1D) case robots travel in series, and collect data along a
line. Robots may change altitude at any velocity, but may not
move along their sensing path faster than they can transmit
data. In the 2D scenario data is distributed in two directions;
robots are only sensing, however, when traveling along the
boustrophedon path.

A. Motion Model

At time instant t, the mth transmitter is located at pm(t)
and the nth receiver is located at qn. Mobile transmitter
motion is defined by a first-order, discrete-time, kinematic
model, pmi+1

= pmi
+ vmi

dti, where pm, vm ∈ R2

are the transmitter position and velocity for transmitter m
respectively. The propagation time from state i to i + 1 is
the scalar value dti. All solutions are found using a grid-
based approach consisting of equally spaced waypoints.

B. Communication Model

We derive our model based on perfect knowledge of a path
LOS-dominant channel, an approximation suitable for open
spaces with minimal obstruction. When a transmitter sends
the data symbols x ∈ CM , the received symbols will be as
follows

y = Hx+ n (1)

where H ∈ CN×M is the channel matrix, and [H]n,m
represents the channel between the mth transmitter and
the nth receiver. n ∈ CN is a Gaussian random variable
modeling the additive white Gaussian noise.

One way to measure the amount of information that can
be sent over a communication channel is the capacity. For a
MIMO channel, the capacity is given by

C = log
(
det
(
I + ρHHH

))
, (2)

where ρ is the signal-to-noise-ratio of the signal.
Our focus in this paper is on scenarios that occur in

an open environment, where the communication channel
is assumed to be dominated by the line-of-sight (LOS)
component. The elements of the channel matrix in that case
can be modeled using

hn,m = [H]n,m =
λ

4π‖pm − qn‖
exp

(
j
−2π‖pm − qn‖

λ

)
(3)

where ‖pm−qn‖ is the distance between the transmitter and
the receiver and λ is the wavelength.

The transmitters are assumed to be sending independent
data streams. Each transmitter does not have the data of
the other transmitter, hence, all the processing has to be
done at the receiver. At the receiver side, we assume that
linear minimum-mean-squared-error MMSE combining is
used. When using MMSE combining, the maximum rate
obtained by the mth stream is given by [13]

Cm = log

1 + PmhHm

N0I +

M∑
i 6=m

Pihih
H
i

−1 hm

(4)

where Pm is the transmit power of the mth transmitter, N0

is the noise power spectral density, hm is the mth column of
H, and (·)H denotes the Hermitian transpose. In this analysis
we assume that all transmitters have the same power P , i.e,
Pm = P for all m.

III. EFFECTS OF TRANSMITTER POSITION ON THE
MIMO NETWORK

In the LOS environment, changing path length with respect
to receivers effects the channel and capacity according to
(3), (4) respectively. If robots are transmitting far away from
receivers, small displacements have little impact on chan-
nel magnitude, which can be approximated by ‖hm,n‖ ≈
λ

4πR ∀ m,n. R in this equation approximates dm,n = ‖pm−
qn‖ defined in (3), constraining robots to a small cluster.
Under these conditions we generate uncorrelated channels
by positioning robots to achieve streams with a 360◦ · 1/M
phase offset to a given receiver. Formally, the eigenvalues
of expression HHH should be nonzero to achieve a high
rank LOS channel matrix and high capacity, which can be
achieved by consideration of channel phase alone.

In the adaptation of path plans we use heuristics from [14],
[15] to pose the communication problem as a mobile ULA.
A ULA assumes at a given way point, robots are equally
spaced. Specifically, signal orthogonality can be achieved
through state-dependent phase adjustment,

N−1∑
n=0

exp

(
jn
−2πdr∆z

λRx

)
= 0. (5)

This phasing relationship implies the relation,

dr∆z

Rx
=

λ

N
(6)

between adjacent robots. The above relation generally applies
when R is large, and when arrays are parallel, i.e. when R
is equal to its projection Rx and dt = ∆z. In this research
we apply (6) to scenarios outside of these constraints, but
find it remains useful when constraints are relaxed.

For simplification, we analyze the capacity of transmitter
2, C2, using the N ×M = 2 × 2 case. We assess relative
performance of three SM approaches to path planning using
(4). In all approaches dr = 5 m. Increasing dr serves to
decrease the separation ∆z required to achieve a high rank
H . For all parameters used to evaluate capacity, see Table I.
The first of three approaches is a naı̈ve baseline where ∆z =
0 m, the second is a method with a fixed value of ∆z = 150
m, and the third uses the linear relation (6). In each approach
p1(t) = f(R(t)) is specified by the path planner. The
location of the second robot transmitter, p2(t), is then fully
defined by the sensing parameter ∆x and the communication
parameter ∆z, thus p2(t) = f(R(t),∆x,∆z).

We analyze each method in Figs. 3 and 4. From (6) we
see that ∆z is given by the x-position of robot 1, Rx (Fig.
3a). Fig. 3b maps C2 as robot transmitters move along a
line 20 km in the x-direction, sweeping over transmitter
ground separation, ∆x ∈ [0, 500] m. The plot illustrates
the effect of changing the ∆x parameter on capacity in the
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(a) Communication parameter ∆z is plotted
as a function of distance in the x-direction
from receivers and the sensing parameter ∆x.
Parameter ∆z varies with Rx only.
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(b) Capacity is plotted as a function of dis-
tance in the x-direction from receivers and
the sensing parameter ∆x. Here Rz = 0.
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(c) Plot depicting average capacity over
total x-distance traveled for varying val-
ues of ∆x.

Fig. 3: Plots showing the ∆z and capacity calculated for 3 SM path planning approaches for a 2 transmitter, 2 receiver system
where travel is in the x-direction with varying ground distance between receivers, ∆x. The plot in (a) also corresponds to
Fig. 4.
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(a) Capacity is plotted for as a function of dis-
tance from receivers in the x and z-directions
using a boustrophedon path plan for the value
∆x = 50.
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(b) Capacity is plotted for as a function of dis-
tance from receivers in the x and z-directions
using a boustrophedon path plan for the value
∆x = 500.
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(c) Plot depicting average capacity over
total x-distance traveled and lateral dis-
tance Rz from receivers.

Fig. 4: Plots showing the capacity calculated for 3 SM path planning approaches in a 2 receiver, 2 transmitter system where
travel is in the x and z-directions using boustrophedon path plans of differing transmitter separation, ∆x.

path following 1D scenario. Here ∆x can be small if sensor
redundancy is required, or UAVs performing heterogeneous
sensing tasks travel in a tight cluster. Otherwise large ground
separation can allow for robots to collect data independently.
To better approximate a parallel array system in the 1D
case, if receivers are on the ground, transmitter 1 moves at
ground level, i.e. R = Rx. As ground distance from receivers
increases, we see attenuation of capacity from path loss. We
also see slight attenuation as transmitter ground separation,
∆x, increases. This is expected given we are relaxing the
small cluster and parallel array relations.

Figs. 4a and 4b refer to the 2D scenario, where sensing
requirements generate motion in both the x and z-directions.
Two values of ∆x were chosen, 50 and 500 m, for the
purpose of demonstrating the effect of the parallel array and
small cluster relaxations. The plots illustrate the effect of
motion in the z-direction that causes receiver and transmitter
arrays to become “less parallel”. The map is generated via
the calculation of C2 as robot transmitters move along a

boustrophedon path (see Fig. 1b). The robots move in the
x-direction, Rx, by the same distance as the shown in the
1D case. They move 10 km in the z-direction, with robot 2
moving outside the sensing region of interest (ROI) to satisfy
the ∆z requirement (see Sec. IV for explanation). With
receivers located at the origin, the plots give us information
about a square 20 × 20 km region due to symmetry. As
expected, we see the attenuation of C2 as R becomes large.
To address parallel ULA constraints, methods accounting for
Rz in (6) can be applied [16].

All capacity maps demonstrate the effectiveness of the
mobile ULA, or linear ∆z method in mitigating interference
issues in broad areas of transmitter travel. This is also demon-
strated in Figs. 3c and 4c. In Fig. 3c, methods are compared
based on the average capacity over the entire distance of
robot travel, for each value of ∆x. We see in this figure that
because Rz was constrained to be zero, the more “parallel”
relationship between transmitter and receiver arrays resulted
in clearer performance gains. Fig. 4c shows the average
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capacity value for total travel in the x-direction over the
increasing interval [0, Rz]. The solid line corresponds to Fig.
4a and the dashed to Fig. 4b. The convergence in dashed lines
as Rz increases shows the compounding effect of a large dt

R
ratio, in addition to large Rz .

IV. MOTION PLANNING

Using the scenario from Sec. II, time is tabulated as a
performance measure for different SM approaches in a 2×2
MIMO system. SM methods from the previous section are
applied, and the widely adopted time-division multiple access
MIMO approach (TDMA) is also included [11]. Sec. IV-A
uses analytical equations given by the communication model
while Sec. IV-B uses realistic channel data taken from a ray
tracing simulation. Robots are constrained to move at the
same velocity, and the previously defined motion model is
used to calculate the total time to complete a task, T =∑n−1
i=0 dti.

A. Motion Planning Using the LOS Equation

Temporal solutions to more specific path plans using the
general concepts covered are given in this section. Simulation
parameters are listed in Table I.

TABLE I: Simulation Parameters

Parameter Definition
bandwidth 1 MHz
data density 25 Mb/m
sensing velocity C2/25 m/s
carrier frequency 1 GHz
transmission power 20 dBm
dr 5 m
∆x 50, 150, 300, 450 m
1D Rx, Rz Rx ∈ [1, 3] km, Rz = 70, 220 m

(depending on method)
2D Rx, Rz Rx ∈ [1, 3] km, Rz = [0, 500] m
grid resolution 10 m

1) 1D Path Planning: Adjustment to 1D path plans are
made using the four SM approaches– zero ∆z, fixed ∆z, lin-
ear ∆z, and TDMA. In the first, both robots are constrained
to have the same altitude. Under this constraint, empirically
performance increases with an increase in altitude, Rz = 220
m and ∆z = 0. The second maintains a fixed altitude
differential, Rz = 70 and ∆z = 150 m. The third uses
the linear approach, where Rz = 70 m and ∆z varies
according to (6). Depending on the needs of the application,
we assume these altitude constraints –amounting to focal
distance changes in an imaging application, for example–
can be accommodated. Waypoints for the TDMA approach
are equivalent to the zero ∆z method. The capacity for this
approach is given by,

Cm = fm log
(
1 + ρhHmhm

)
. (7)

It assumes maximal ratio combining, fm is the fraction
of time allocated to UAV m. Results are shown in Table
II. Results are consistent with previous analysis, however,

because robots maintain an altitude above the receiver array
ground position as they travel, we expect some changes in
performance, namely the degradation of capacity gains for
the linear method.

TABLE II: Trial Times and Gains

Case ∆x(m) TDMA
Zero

∆z (hr)
Fixed

∆z (hr)
Linear

∆z (hr) Gain %

1D

50 2.172 2.116 1.704 1.086 36.27

150 2.196 1.455 1.676 1.109 23.78

300 2.232 1.273 1.689 1.163 8.64

450 2.266 1.307 1.739 1.356 -3.75

2D

50 11.415 15.695 11.351 6.521 42.55

150 3.806 3.380 3.764 2.456 27.34

300 2.208 1.670 1.935 1.644 1.56

450 1.681 1.228 1.340 1.351 -10.02

In Table II gain values listed are computed gain = Ta−Tl

Ta
×

100. The linear ∆z method is denoted by subscript l versus
lowest alternative method a.

2) 2D Path Planning: The same four ∆z constraints from
1D planning are used to compute solutions to boustrophedon
complete coverage flight plans. A sensing ROI consists of
all waypoints defining the zero ∆z method. If a z-offset
occurs between robots, one robot will travel outside the ROI.
An example of a boustrophedon for the linear ∆z method
is shown in Fig. 6b. Similar to 1D planning, this research
assumes path plan augmentation can be accommodated. We
choose a region where the upper bound of Rz is kept
proportionately low, from previous analysis we expect the
linear method to be effective. Table II demonstrates the
ROI generates large performance gains by the linear method
when inter-robot spacing is lower. Given transmitter travel
of [1, 3] km in the x-direction is not large, performance loss
by increasing ∆x is pronounced.

B. Evaluation under realistic conditions

To determine how MIMO SM methods perform under
realistic conditions, the channel was simulated using ray
tracing software [40]. The ray tracing simulation accounts
for reflected paths due to the environment in addition to
LOS. A dataset was generated for an urban environment in
the city of Ottowa shown in Fig. 5. The transmitters and
receivers were placed on a plane at a height of 60 meters,
above all buildings. This setup emulates a base station placed
on a tower receiving data from UAVs. The channel was
simulated using a grid of transmitters spanning the city with
a separation of 10 m communicating to two receivers 1 m
apart located 320 meters west of origin. Capacity was then
calculated according to (2) as 2 transmitters were positioned
at points on the grid.

Data from trials for varying separation values between
transmitters is shown in Table III. The fixed ∆z = 30 m for
all trials. Realistic channel properties result in lower channel
magnitudes and higher mission completion times. For the 25
m case, the fixed method proved best by a wide margin. A 30
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60m

1m

550 m

10m RxTx Grid
230 m

(a) South view of simulation environment. Transmitters and
receivers are on the same plane at a height of 60 m above all
buildings. The transmitters were simulated on a grid with
separation of 10 m, while the receivers have a separation of
1 m.

Rx

900m

(b) South-east view of the environment show-
ing the simulated city.

Fig. 5: The ray tracing simulation was performed in an
urban environment spanning 550 m × 900 m. The simulated
channel accounts for reflections occurring due to buildings
along with the LOS path.

TABLE III: Trial Times and Gains

∆x(m) TDMA
Zero

∆z (hr)
Fixed

∆z (hr)
Linear

∆z (hr) Gain %

12.5 33.31 43.57 30.52 29.95 1.87

25 15.56 19.63 12.75 16.41 -28.71

50 9.16 13.73 7.87 6.94 11.82

100 5.35 7.00 5.32 3.74 29.70

m separation fared the best for conditions, but it is difficult to
apply intuition to achieve these results. Capacity for the case
of ∆x = 100 m is shown in Fig. 6a. We see in this plot the
same trends for the capacity of the linear ∆z method, where
performance gains are highest as R increases. We also see an
increase in relative performance as ∆x increases. This may
be due to the minimized trade-off of fewer instances when
robots must travel outside the ROI, and less lateral travel in
the z-direction.

The path plan for the case where the distance between
boustrophedon rows, ∆x, is equal to 50 m is shown in Fig.
6b. The robots begin at z = 0 and move in a back and
forth “lawnmower” motion. The boxes indicate an assumed
sensing field of view. The dotted lines show the robot
trajectories, where it is assumed robots are not imaging as
they travel from one boustrophedon row to the next. The
dashed black rectangle is the ROI, spanning 775 m in the
x-direction and 350 m in the z-direction. It is assumed all
robots with nonzero ∆z offset were continuously imaging,
thus their velocity was throttled even when travel outside of
the ROI occurred.

(a) Capacity is calculated using a ray tracing simulation of
city conditions for a boustrophedon path plan with ∆x =
100.

0 200 400 600

z (m)

0

200

400

600

800

x
 (

m
)

robot 1

robot 2

(b) The two robots move in a boustrophedon with a row
separation of 50 m. The dashed black rectangle is the
sensing ROI, all methods cover this region. In the linear
∆z method shown, robots increasingly travel outside the
ROI as they travel away from receivers.

Fig. 6: A capacity map corresponding to ∆x = 100 m
and a boustrophedon map corresponding to ∆x = 50 m.
The linear ∆z method boustrophedon shown is one of 4
MIMO approaches to coverage planning in a realistic city
environment.

V. CONCLUSIONS

In this work we analyze the benefit of SM methods for
MIMO network enhancement in data aggregation tasks. By
characterizing the capacity within a workspace we identify
trends impacting communications throughput for a path fol-
lowing and coverage task. Based on this analysis we identify
regions where ULA heuristics for static array design can
improve capacity in a mobile sensing task. We validate our
approach via simulations using both analytical and realistic
approaches. In the future we plan account for motion in the
z-direction of travel [16], [17]. This will add complexity
because changes in ∆z will result from displacements in
all directions of travel. This extension allows for inclusion
of more sophisticated sensing tasks while still achieving
optimized communication.
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