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Abstract—Machine learning (ML) and artificial neural net-
works (ANNs) have been successfully applied to simulating
complex physics by learning physics models thanks to large data.
Inspired by the successes of ANNs in physics modeling, we use
deep neural networks (DNNs) to predict the radio signal strength
field in an urban environment. Our algorithm relies on samples
of signal strength collected across the prediction space and a 3D
map of the environment, which enables it to predict the scattering
of radio waves through the environment. While already extensive
body of research exists in spatial signal strength prediction, our
approach differs from most existing approaches in that it does
not require the knowledge of the transmitter location, it does
not require side channel information such as attenuation and
shadowing parameters, and it is the first work, to the best of
our knowledge, to use 3D maps to accomplish the task of signal
strength prediction.

Index Terms—deep learning, UAYV, wireless signal strength

I. INTRODUCTION

Mobile devices such as unmanned aerial vehicles (UAVSs) or
ground robots can optimize their location in order to maximize
the signal strength to a basestation or user equipment on the
ground. Various placement optimizations algorithms for signal
strength have been proposed to solve for optimal placement of
such UAVs or mobile robots. We can roughly divide the said
placement optimization algorithms into model-free and model-
based solutions. In model-free solutions the UAV does not aim
to predict the signal strength across the entire optimization
space but rather finds a path that maximizes the expected
increase in signal strength [1], [2]. Model-based solutions
rely on being able to predict the signal strength across the
optimization space and use that to find the optimal path to
maximize the signal strength [3], [4]. At the heart of model-
based solutions is some type of spatial signal strength predic-
tion algorithm, which relies on some prior information, such
as transmitter location, previously collected signal strength
measurements, estimated parameters of channel attenuation
and shadowing. The use of spatial signal strength prediction
algorithms extends beyond placement of mobile radio devices.
They are widely used to enable dynamic spectrum access
in cognitive radio networks, improve cellular coverage, and
facilitate power control.
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Given the growing importance of spatial signal strength
prediction algorithms, we address the limitations of algorithms
previously developed for this task by proposing a new deep-
learning-based spatial signal strength prediction algorithm.
Our algorithm differs in three key aspects compared to most
existing approaches: 1) it does not rely on the knowledge of
the location of source transmitter; 2) it does not rely on the
knowledge of the parameters of the shadowing and path loss
models and lastly, and 3) it incorporates the knowledge of the
3D map of the environment; 3D maps allow the algorithm
to predict scattering and blockage due to the buildings. Like
the existing prediction algorithms in literature, our proposed
algorithm relies on a small number of measurements collected
across a target space to predict the signal strength across
the remaining locations. DNNs are known to be universal
function approximators, which is why we use their capabilities
to learn the complicated relationship between 3D objects,
signal strength measurements and the entire signal strength
field. Another important feature of our algorithm is that rather
than simply predicting estimates of signal strength across the
target space, our algorithm models the signal strength as a
Gaussian random variable and predicts its mean and variance.
Knowing the signal strength prediction variance is particularly
important for path planning algorithms for UAVs and mobile
robots.

We briefly review and categorize previously developed
signal strength prediction algorithms. The most common ap-
proaches for prediction are adopted from the field of spatial
interpolation [5]-[8]. Among the interpolation methods, the
most common ones are inverse distance weighting (IDW),
gradient plus inverse distance squared (GIDS) and Kriging
interpolation, which relies on spatial statistics. Algorithms
based on Kriging interpolation rely on the location of the
source, while IDW or GIDS based algorithms normally do
not. Kriging approach is the most commonly used spatial
interpolation method since it can be tailored specifically to the
statistical models of wireless channel shadowing. Furthermore,
a variety of approaches were developed based on Bayesian
inference, which normally rely on statistical channel models
and source location as well [9]-[11]. Other stand-alone ap-
proaches were proposed based on low rank and sparse matrix
reconstruction [12] and minimum mean square error (MMSE)
estimation [13]. Deep learning (DL) has also been considered
in literature recently as of the time of this writing [14]-[16].
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Fig. 1: Overview of the parameters and variables. The set of
coordinates R refers to the locations where signal strength
measurements have been collected. The set of coordinates Q
refers to the entire set of discrete locations across the area of
interest.

In [14], generative adversarial neural networks are used and
the authors in [15] use deep completion auto-encoders. The
reference [16] used DL to estimate the path loss component of
a channel but not shadowing and fading. Like our approach,
the cited DL approaches do not rely on user location or
statistical channel models and its parameters. However, the
DL algorithm we are proposing differs in that it outputs a
probability distribution over inferred signal strength and in
that it can utilize 3D map information.

The remainder of this paper is organized as follows. In Sec.
IT we define the system model. In Sec. III, we explain our
proposed approach and its basic building blocks. In Sec. IV
we explain how we obtained the dataset to train our algorithm
and the details of the training. In Sec. V we showcase our
results and provide our explanations for them. Finally, in Sec.
VI, we summarize this paper and the main outcomes while
also addressing the future steps.

II. SYSTEM MODEL

In this section we define the scenarios in which our algo-
rithm is designed to operate, introduce operating variables and
explain our assumptions.

We consider a rectangular urban area of interest (Aol) of
width w and length [, for which we have a database of major
buildings and objects that can be used to construct a 3D map
of the environment, such as the one shown in Fig. 1. The
coordinates of a point in the Aol are denoted by (z,y,h),
where x and y correspond to the horizontal coordinates and h
is the altitude. The communication occurs between an outdoor
ground user (GU) at an altitude hgy and a UAV or a mobile
robot at an altitude hyay. The GU is not necessarily located
within the Aol. The GU is also assumed to be permanently
stationary or stationary for the period of time for which we
are trying to predict the signal strength over the Aol.

Let v(z,y, h) be the logarithm of the channel gain between
the GU and a transceiver at location (z,y, h) and Pr g, be
the transmit power in dBm, then the received signal power at
(x,y,h) is Prapm + v(x,y,h). We assume that the gain is
reciprocal, i.e. the gain of transmission from the GU to the
UAV is equal to gain of transmission from the UAV to the
GU.

In a line-of-sight (LOS) scenario, where the signal reaches
the receiver along the straight line path, the gain can be
accurately predicted using path-loss models and by knowing
the antenna properties of the receiver and the transmitter. In
a non-line-of-sight (NLOS) environment, where the received
signal is an addition of the straight line paths and the re-
flected and diffracted paths, prediction of the gain becomes
challenging. The most accurate tools for prediction of the
gain in such environments are ray-tracing software which
use 3D maps of the transmission environment to simulate
all possible paths between the transmitter and the receiver.
However, ray tracing software is computationally expensive
and 3D maps of the transmission environments are gener-
ally not available, which is why researchers and engineers
normally resort to statistical models of the gain. In such
models, the gain ~(x,y,h) is split into three components,
")/(I, Y, h) = ’l/)PL (QC, Y, h)'H/)SH(% Y, h)‘H/’F(x, Y, h)’ where
Ypr(x,y,h) is the path loss due free space attenuation,
Vs (z,y,h) is the loss due to shadowing and ¢p(z,y,h)
is the loss due to random fading. While ¥pr(x,y, h) can be
accurately predicted knowing the antenna properties of the
receiver and the transmitter, ¥ sy (z,y, h) and Y (x,y, h) are
modelled as random variables with some appropriately fitted
probability distributions. ¥sp(z,y,h) is often modelled as
correlated over time and space, while g (z, y, h) is modelled
as an ii.d. random variable. For example, ¥sg(x,y,h) is
often modeled as normal random variable with exponentially
decaying spatial correlation according to the Gudmundson
model [17].

Our main objective is the prediction of the signal strength
between the GU and the UAV based on previously collected
measurements of signal strength across the Aol and 3D map
of the Aol. The measurements may have been collected by
the UAV itself as it explores the space and/or by a number
of sensors that collect the measurements across the space.
Our algorithm does not rely on any statistical models of the
channel. Rather, we use DL models to capture the relationship
between measurements of signal strength, 3D map of the
transmission environment and the expected signal strength at
a location in the Aol.

We focus on predicting the signal strength at the altitude of
the UAV hy, and we assume that the measurements of signal
strength that are used to inform the prediction are collected
at the same altitude. Our approach is demonstrated for 2D,
however extension to 3D is viable with a more complex DL
architecture and with more data. The space is discretized
into a grid with grid points equally spaced by separation d
as shown in Fig. 1. We denote the coordinates of a grid
point as g and the set of all grid points in the Aol is Q
(9] = Z—’zl). Furthermore, the coordinates of grid points at
which measurements have been collected are denoted as r
and the set of all such coordinates is denoted as R. The
measured signal strength values in dBm at coordinates » € R
are denoted as x € RI®I and the 3D map of the environment
is denoted as M. The signal strength values in dBm at all
coordinates are denoted as y € RI€l. The signal strength at
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coordinates that are obstructed by the buildings is naturally
zero. We use an indicator binary variable z € Z‘QQ‘, where
[z]; = 0 if the location g¢; is obstructed by a building, i.e. it
is indoor, and [z]; = 1 is outdoor.

III. PROPOSED APPROACH

In this section we explain our approach and the details of its
building blocks. Inspired by the successes of neural networks
in physics modeling, we apply neural networks to modelling
of the propagation of radio signals. While radio propagation
in an urban environment can be modeled using ray tracing
software, neural network can be trained to accomplish the
same task while requiring far less computing power. Moreover,
unlike a ray tracing software, our algorithm does not need to
know the location of the transmitter. Instead, our algorithm
relies on previously collected signal strength measurements
and 3D maps to accomplish signal strength prediction without
knowing user locations. We assume that the main environment
scattering objects are static, similar to other spatial signal
prediction algorithms.

A. Algorithm and loss function

We now describe our deep learning algorithm and the loss
function used to train it.

Let ¥ denote the predicted signal strength value. Instead
of simply predicting the expected value of ¥, we predict a
probability distribution of §, f(§|x, M). Predicting a prob-
ability distribution of ¥ rather than just the expected value
of ¥ is important for path planning algorithms that would
guide a UAV or a mobile robot to a location of maximum or
sufficient signal strength. Based on the Gudmundson model
of shadowing, we chose Gaussian distribution with mean p
and covariance X as a fit for f(§y|x, M). Our algorithm
learns the mappings from (x, M) to p and X, which we
denote as p(x, M) and X(x,M). The function u(x, M) is
parametrized by a DNN p(x, M) with parameters 6 and the
function X(x, M) is parametrized by a DNN o2 (x, M) with
parameters w. In order to reduce the complexity of the neural
network, we assume that 3(x, M) is a diagonal matrix and so
o2 (x, M) € RI9l. We denote the fitted Gaussian distribution
as fG,w(y|X7 M)

The loss function is based on Kullback—Leibler (KL) diver-
gence between f(y|x, M) and fp ., (§|x, M),

N

1 —

L(0,w) = N E AT diag (z) diag (02 (x;, M;)) YA+
i=1

o (17 (los(diag(2)0 (x0))) (1)

where N is the number of training samples. Each training
sample consists of x, M and y. For the ease of exposition,
we introduced a substitute variable A = py(x, M) —y. We
modified the KL divergence loss function to only include error
for the outdoor coordinates by including z in the expression.
The variable z needs to be known for training but not for
prediction during run time. The loss function is minimized to

train the algorithm: (0, w) = argming ,, £. The minimization
is performed using a stochastic gradient descent algorithm,
as is common for training deep-learning models. The training
details will be explained in Sec. IV.

B. DNN design

In this subsection we describe the DNN blocks g (x, M)
and 02 (x, M). The design of the two DNN blocks is identical,
however the parameters # and w will be different since
po(x, M) learns to output the mean and o2(x, M) the
variance of fy ., (¥|x, M). The two DNNs are composed of
three different blocks:

po(x, M) = g (n(t(x, M)))
025 (%, M) = 9, (n(t(x, M)))

where t(-) is a transformation block which we describe below,
n(-) is a normalization block and ¢ is a convolutional neural
network (CNN).

The inputs x, M are transformed into a 3D tensor X
through the transformation ¢(-). Let X € R, where X];
is equal to the signal strength at (id, jd, hy), if (id, jd, hy) €
‘R, and is equal to cp, otherwise. cy, is a padding value that
is set to a very low value outside of the reasonable range
of signal strength values. Similarly, let M & Ra*%, where
[M], ; is equal to the building height at (id, jd). The matrices
M and X are stacked into a 3D tensor of size é X % X 2,
which we denote as X.

In n(-), the tensor X is normalized such that all entries
scale to -1 to 1.

We use a CNN in the DNN block since CNNs consist of
spatial filters that enforce a local connectivity pattern between
neurons of adjacent layers. This architecture ensures that the
learned filters produce the strongest response to a spatially
local input pattern. This feature is suitable for our problem
since signal strength at a location is more correlated to adja-
cent signal strength measurements and 3D topology then the
further away 3D topology and signal strength measurements.
The CNN used is U-Net, which was first used for image
segmentation and later for various other applications [18]. The
U-Net architecture used is shown in Fig. 2 when 7 = é = 64.
The green and grey rectangles correspond to CNN layers with
the numbers on top indicating the number of layers while the
numbers on the side denote the size of each layer. Note that
the rectangle with the number 2048 overlaying it is a single
fully connected layer of size 2048. The output is flattened into
a vector of size % = |Q|.

IV. DATASET AND ALGORITHM TRAINING

In this section we describe how we obtained the dataset
used for training and testing of the algorithm.

The main tool used for generating the dataset was the Wire-
less InSite ray-tracing software. The software takes in the 3D
model of the environment, along with other parameters, such
as transmission frequency, transmitter location and bandwidth,
to trace the radio propagation paths and calculate the signal
strength at the desired points.
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Fig. 2: Overview of the U-Net CNN architecture used.

In order to create an expansive set of environments, we used
a handcrafted script to generate Manhattan-grid-like urban
environments. The script starts by dividing a rectangular area
into city blocks with random dimensions. Then, open spaces
and rectangular-base buildings are added within those blocks.
The outputs from Wireless InSite were then processed in
Python and used to train the algorithm.

In total, we generated 45 urban environments of size 400m
by 400m each. In each environment, we placed transmitters
uniformly spaced at 80m apart, which equates to 25 trans-
mitter positions per environment. However, if a transmitter
location happens to be indoor following the said uniform
spacing pattern, we removed that transmitter. For each trans-
mitter position, in each environment, Wireless InSite was used
to calculate the signal strength values over a grid of points
spaced at d at an altitude hyay. The calculations were ran
for narrowband signals over a frequency of 800 MHz and the
transmitted power was 20 dBm.

The data generated in 30 out of 45 environments was used
to train the algorithm while the data from the remaining 15
environments was used as the evaluation dataset. The Aol
dimensions selected were w = [ = 240m, hence to obtain
X, M and y, only the data from a randomly selected w x [
portion of an 400m x 400m environment was sampled. We
obtain x by selecting a random subset of entries of y. We
do not model any measurement error when generating x. The
spacing d was 4m.

We used the Adam optimization algorithm, which is an
extension of the stochastic gradient descent algorithm to
minimize the loss function in Eq. (1) [19]. The default
configuration parameters for Adam in Tensorflow were used.
A constant learning rate of 10~5 with a batch size of 64 was
used. The training takes about 6 hours to complete running
on a machine with a GeForce GTX 1060 GPU.

V. RESULTS

In this section, we compare the performance of our algo-
rithm on the testing data set against several benchmarks.
We use three different benchmarks for comparison:

1) 3D-map-blind approach: This approach is identical in
every way to our proposed approach, except it only uses
x as the input. By comparing the proposed algorithm
against this approach we are verifying that our algorithm
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Fig. 3: Average absolute error of our algorithm and the three
benchmarks when the number of measurements is varied from
0.3 % to 3 % of |Q)|.

is successful at utilizing 3D maps and can arrive at a
better prediction as a result.

2) Least-squares (LS) approach: This approach only pre-
dicts E[y] and is identical to our proposed ap-
proach in every other way. This approach only learns
1o(x, M) and the loss function is a least squares re-
gression against the true signal strength values: £(6) =
%Zf\il ATdiag (z;) A;. Of course, this approach is
lacking since it does not predict the variance of its
prediction, which is an important feature as we have
explained earlier.

3) Kriging interpolation method: This is one of the most
common approaches to spatial signal strength predic-
tion. The details of the implementation of this approach
can be found in [6], for example, where a distributed
and a centralized implementation are covered (we ap-
ply the centralized version). With this approach, the
parameters of the path-loss and shadowing model are
estimated from the collected measurements. Using these
parameters, we determine the path-loss component of
the channel gain. Then, with the path loss accounted
for, we use Kriging spatial interpolation to estimate the
shadowing. The Kriging approach cannot incorporate
the use of 3D maps like our algorithm and it also
requires knowing the location of the GU, therefore it
is not an equal-grounds benchmark for out algorithm.
Nevertheless, we include it due to its popularity and
since we were not able to find any other equal-grounds
comparison for our algorithm.

We perform evaluation for two different methods of collec-

tion of signal strength measurements, x:

1) Uniform random placement of measurements: The sam-
ples are uniformly and randomly spread across the
Aol. This would correspond to sensors randomly placed
across the Aol, for instance.

2) Random-trajectory placement of measurements: This
would correspond to a UAV moving across the Aol on
a random trajectory and collecting the measurements.
While a real UAV would not move on a random trajec-
tory, we use a random trajectory to emulate measure-
ments collection of UAV on some planned path. The
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Fig. 5: An example with measurements collected on a random trajectory. The average absolute error for the Kriging approach
was 14.17 dBm while the error for the our approach was 11.11 dBm.

random trajectory is essentially a random walk across
the grid of the Aol where at each step the previous
step is repeated at a probability p. This is done to add
a momentum to the random movement and reduce the
number of changes in direction of the movement.
We describe the results for each method of sample collection
separately.

A. Mean absolute error

The first metric that we use for comparison is the mean
absolute error: 1,7 (y — E[y])" diag (z) (y — E[y]). The error
is taken over only the outdoor locations. The mean absolute
error is measured over the 15 validation environments with
different sampling of measurements.

1) Uniform random placement of measurements: We show
the results for uniformly spaced measurements. In Fig. 3a we
vary the number of measurements expressed as the percentage
of |Q| from 0.3 % to 3 %. Our proposed approach outperforms
all three of the benchmarks.

First, it has a slight edge over the LS approach at a higher
number of measurements and a more significant advantage
with a low number of measurements. This indicates that by
learning to predict the distribution of the signal strength rather
than just the expectation, the algorithm can perform well with
a small number of measurements.

Furthermore, the results in Fig. 3a show that our proposed
algorithm particularly benefits from 3D map knowledge when
there is only a small number of measurements available.

Most importantly, our proposed algorithm outperforms the
Kriging approach for all levels of collected measurements,
even without knowing the transmitter location. Our algorithm
does this by relying on 3D maps and a learning-based ap-
proach. Furthermore, we should mention that for a realistic
Aol, our algorithm is in practice significantly faster than the
Kriging approach since the neural network forward pass is
less complex than the the steps of the Kriging approach.

We give a concrete example in Fig. 4 where we have a
scenario with 0.5 % measurements and compare our algorithm
to the Kriging approach. For our algorithm, we only show the
1o (x;, M;) output. We purposely select a case with a small
number of measurements since the performance of the two
algorithms is similar with a high number of measurements. For
scenarios with a small number of measurements, the Kriging
algorithm is only capable of estimating the path-loss trend,
while it gives little prediction of how the signal strength is
perturbed by the NLOS components. Our algorithm gives an
estimate which is much closer to the actual signal strength
field. Using the building knowledge, it correctly predicts
which areas will be occluded to the radio signals and which
have better access to the signal.

2) Random-trajectory placement of measurements: The
benefit of our proposed algorithm is even more significant
when samples are collected on a random trajectory across the
Aol, as seen in Fig. 3b. All four approaches perform worse
compared to the uniform random placement of measurements,
since the measurements are clustered closer together and it is
more difficult to make inference across the entire Aol.

In this case, we omit the results for the 3D-map-blind
approach since its performance is far worse compared to
other three approaches. It seems that the prediction of signal
strength becomes more challenging when measurements are
clustered together and without knowing the 3D map of the
environment.

Our proposed algorithm performs similarly to the LS ap-
proach, however the difference is more significant relative to
the Kriging approach. The Kriging approach depends on mea-
surements being correlated to where signal strength needs to
be predicted, which cannot be guaranteed with measurements
collected on a single path.

An example case is given in Fig. 5 with the number
of measurements being 3% of |Q|. Our algorithm again
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Fig. 6: Median log-likelihood of our algorithm and the two
benchmarks when the number of measurements is varied from
0.3 % to 3 % of |Q)|.

gives a more nuanced prediction of the signal strength field
even without knowing the transmitter location and correctly
predicts which areas will be occluded from and which exposed
to the signal.

B. Goodness of fit

To evaluate the goodness of fit of our approach, we measure
the log-likelihood of the validation data-set with the predicted
mean E[y], and variance, Var[y]. Since the distribution of the
fitted variable is Gaussian, the negative log-likelihood is given
by 55 (v — E[y))" diag (2) diag (Var[3)) " (v — E[3]) +
ﬁlT (diag (z) log (Var[y])). The log-likelihood is measured
only over the outdoor locations. The Kriging approach also
outputs mean and variance of the prediction, therefore we can
treat the prediction as a Gaussian random variable and cal-
culate the log-likelihood. The median negative log-likelihood
across many Monte-Carlo iterations for the two sample col-
lection methods is shown in Fig. 6.

Our algorithm achieves a lower median negative log-
likelihood than both the Kriging and 3D-map-blind approach,
which means that our approach achieves a better model fit
to the test data. The fact that negative log-likelihood of
the proposed approach is lower than that of the 3D-map-
blind approach suggests that our algorithm successfully takes
advantage of the 3D map information. We omit the data for
the 3D-map-blind approach for the random trajectory samples
in Fig. 6b, since it performs much worse than the proposed or
Kriging approach. Most importantly, the proposed algorithm
achieves a better fit than the Kriging approach for all levels of
collected measurements, with the improvement being drastic
for measured samples collected on a random trajectory.

VI. CONCLUSIONS

In this work, we have shown that deep learning can be used
to predict radio signal propagation in an urban environment
and we present a deep learning algorithm that can successfully
accomplish this. Our algorithm successfully utilizes 3D maps
to assist its prediction and provides a stochastic prediction
of signal strength. It performs better than the benchmark
solution for signal strength prediction, with the improvement
being drastic when the prior signal strength measurements

are collected on a path rather than being uniformly randomly
placed. So far, our algorithm has only been evaluated in an
environment simulated by a ray-tracing software and future
work will involve a proof of concept with real outdoor
measurements.
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