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Existence of a quadruple point in a binary ferroelectric phase diagram
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In experimentally measured temperature-composition ferroelectric phase diagrams of BaTiO3-based binary
systems, a quadruple point where cubic (C), tetragonal (T), orthorhombic (O), and rhombohedral (R) phases
converge has been frequently reported in previous work. More interestingly, the quadruple points are experi-
mentally found to behave as a critical point with large enhancement in properties. However, it has remained a
fundamental question as to whether a quadruple point in a binary ferroelectric system defies the thermodynamic
phase rule and whether such a point necessarily goes critical. In this study, it is demonstrated by Landau theory
that a C-T-O-R quadruple point in a binary ferroelectric system can only exist in the form of a unique type of
critical point at which two first-order transition lines and two second-order ones meet, and such critical quadruple
points do not defy the thermodynamic phase rule. It is further shown that at such a critical C-T-O-R quadruple
point, the system exhibits infinitely large piezoelectric coefficients, which agrees with the high piezoelectricity
observed at the C-T-O-R quadruple point in a number of BaTiO3-based binary ferroelectric systems and also
helps to explain the large piezoelectricity obtained at the morphotropic phase boundaries of these quadruple
point based systems.
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I. INTRODUCTION

The Gibbs phase rules set constraints on the maximum
number of phases converging at a point in an equilibrium
phase diagram of a multicomponent system [1–4]. For exam-
ple, in the temperature-composition phase diagram of a binary
system when other control parameters such as pressure field
are fixed, the first phase rule regarding first-order phase tran-
sitions limits the maximum number of phases coexisting at
equilibrium to three and the second phase rule regarding crit-
ical phase transitions limits the maximum number of phases
becoming identical at a critical point to two [1–4]. Therefore,
it seems that for the temperature-composition ferroelectric
phase diagram of a binary BaTiO3-based ferroelectric solid
solution with other fields such as electric field and pressure
fixed, according to the above phase rules, the maximum num-
ber of ferroelectric phases converging at a point (either in
the form of first-order transitions or critical ones) could not
exceed three.

Despite the above phase rules, it has long been reported
in experiments that in the temperature-composition phase
diagram of BaTiO3-based binary ferroelectric systems such
as BaTi1–xZrxO3 [5], BaTi1–xSnxO3 [6], Ba1–xSrxTiO3, [7],
and (1–x)BaZr0.2Ti0.8O3-xBa0.7Ca0.3TiO3 (BZT-BCT) [8],
a quadruple point where cubic (C, Pm3̄m), tetragonal (T,
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P4mm), orthorhombic (O, Amm2) and rhombohedral (R,
R3m) phases converge always appears. More importantly,
it has been illustrated that such C-T-O-R quadruple points
always exhibit a near-critical ferroelectric transition which
are accompanied with high dielectric permittivity [9], high
energy-storage density [10], large electrocaloric effect [11],
and enhanced electrostrain [12] due to the flattened free
energy curves with respect to polarization at the critical tran-
sition. Thus, the experimentally reported quadruple point in
these binary ferroelectric systems is hard to understand be-
cause it seemingly violates the above Gibbs phase rule, not to
mention its critical behavior. Clearly a theoretical understand-
ing to the above puzzle not only makes a contribution to the
thermodynamics of ferroelectrics, but also may contribute to
a better understanding of the properties of this important class
of functional materials.

In this work, we use Landau theory to demonstrate that the
C-T-O-R quadruple point can exist in a binary ferroelectric
system only in the form of a unique type of critical point where
two first-order and two second-order transition lines meet;
such kind of critical quadruple point does not defy the phase
rule, which explains the experimentally observed critical
C-T-O-R quadruple point in BaTiO3-based binary ferroelec-
tric systems. We further show that this type of critical
quadruple point should be accompanied by infinitely large
piezoelectric coefficients, which agrees with the high piezo-
electricity obtained at the C-T-O-R quadruple point in some
binary lead-free BaTiO3-based ferroelectric systems and
allows us to explain the large piezoelectricity at the mor-
photropic phase boundary (MPB) in systems containing such
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a quadruple point. In addition, we find that for ternary fer-
roelectric systems the C-T-O-R quadruple point could exist in
the form of other types of special points such as near-isotropic
points and isolated critical points. This study could stimulate
experimental search of critical points in ferroelectric systems.

II. LANDAU FREE ENERGYMODELS

The Landau free energy, f , of a BaTiO3-based binary
ferroelectric system in an unconstrained state can be written
as a Landau polynomial of polarization vector P (P1, P2, P3)
truncated at the sixth order:

f = αP2 + β1P4 + γ1P6 + β2
(
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where P is the length of the polarization vector P (P1, P2, P3);
α,β1,β2,γ1, γ2, γ3 are the Landau coefficients depending on
concentration (c) and temperature (T). The first three terms
at the right-hand side of Eq. (1) are isotropic while the last
three terms are anisotropic. The Landau polynomial in Eq. (1)
has been derived and employed in previous works on Landau
theory of ferroelectric materials [13,14]. A sixth-order rather
than eighth-order Landau polynomial is employed because it
is both necessary and sufficient to describe all four phases
(C, T, O, and R) considered in the studied systems and the
contributions of higher-order terms such as eighth order to the
free energy are rather small when P is small near the Curie
temperature (TC) [13,15]. Equation (1) is written in terms of
polarization vector P (P1, P2, P3) to distinguish different fer-
roelectric phases (T, O, and R). For simplicity, the free energy
in Eq. (1) is first transformed to polynomials containing only
scalar P rather than P (P1, P2, P3). This is possible because
for T, O, and R ferroelectric phases, P1, P2, and P3 have the
following relationships with P: P1 = P, P2 = P3 = 0 for T,
P1 = P2 =

√
2

2 P, P3 = 0 for O, and P1 = P2 = P3 =
√

3
3 P for

R. The free energy for T, O, and R phases can then be written
as a function of P as follows:

fT = αP2 + β1P4 + γ1P6, (2)
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where fT, fO, and fR are the free energy of the T, O, and R
phases, respectively.

III. RESULTS

There are four kinds of phase transitions in the vicinity of
the C-T-O-R quadruple point in experiments [5–8], i.e., C-T,
C-R, T-O, and O-R. Both the T-O and O-R transitions have
to be first order because the symmetry elements of the T,
O, and R phases do not have a group-subgroup relationship
[14]. On the other hand, the C-T and C-R transitions can be
either first order or second order from the symmetry argu-
ment [14]. The second-order Landau coefficient in Eq. (1), α

[α = α0(T − T0), where α0 is a positive constant and T0 is the
Curie-Weiss temperature], is positive at first-order transitions
(TC > T0) and zero at second-order transitions (TC = T0) [15].
Thus, from Eqs. (2) and (4), we know that the order of the
C-T and C-R transitions at the C-T-O-R quadruple point has
to be the same. Therefore, there are two possibilities with
regard to the nature of the four phase transitions in the vicinity
of the quadruple point: (1) All four transitions (C-T, C-R,
T-O, and O-R) are first-order, which is designated as case 1;
(2) C-T and C-R transitions are second-order while T-O and
O-R transitions are first-order, which is designated as case 2.
Note that here we emphasize “in the vicinity” of the quadruple
point rather than exactly at it because the order of transition
might change on the quadruple point as required by the four-
phase convergence.

For case 1, i.e., all four transitions are first order in the
vicinity of the quadruple point, we can derive a relation-
ship among the Landau coefficients at the quadruple point as
shown below. Here C-T, C-O, and C-R rather than C-T, C-R,
T-O, and O-R transitions are considered for simplicity. First
let us consider a first-order C-T ferroelectric transition at the
Curie temperature. Two thermodynamic requirements need to
be satisfied at this C-T transition: First, the free energy of the
C phase and that of the T phase should be equal; second, the
free energy of the T phase should be a local minimum. That
is, the first derivative of the free energy of the T phase with
respect to P at PT should be zero (PT is the polarization length
of the T phase at the Curie temperature). With the first require-
ment, we can obtain an equation, αP2

T + β1P4
T + γ1P6

T = 0,
while with the second requirement, we can obtain another
equation, 2αPT + 4β1P3

T + 6γ1P5
T = 0. Combining the two

equations, PT can be eliminated and the following relationship
among the Landau coefficients at the Curie temperature can be
established:

β2
1 = 4αγ1. (5)

A similar analysis can be performed for the first-order C
to R and C to O ferroelectric transitions and thus two more
relationships among the Landau coefficients at the C-T-O-R
quadruple point can be obtained:

(
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Equations (5)–(7) contain only the six Landau coefficients
α,β1,β2,γ1, γ2, γ3 without any other unknown parameters. It
is impossible to determine all the values of the six coefficients
due to the limited number of equations (i.e., three), but some
of them can be determined. For example, it can be deduced
from Eqs. (6)–(8) that (see Supplemental Material [16])

β2 = γ2 = γ3 = 0, (8)

or

α = β1 = β2 = 0. (9)
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Therefore, Eqs. (5)–(7) have two possible mathematical
solutions as represented by Eqs. (8) and (9). The first one
given by Eq. (8) represents an isotropic case (all anisotropic
terms are zero) where the first-order T-O and O-R transitions
become barrierless at the C-T-O-R quadruple point while the
C-T and C-R transitions are still first order. Note that the
transitions among T/O/R cannot be barrierless due to the sym-
metry argument [14], although the inclusion of eighth-order
and/or higher-order terms in Eq. (1) could make the transi-
tions among T/O/R have small barriers. Therefore, Eq. (8)
could give a nearly isotropic C-T-O-R quadruple point. The
second solution given by Eq. (9) represents a case where the
first-order C-T, C-O, and C-R transitions all become critical at
the C-T-O-R quadruple point because the fourth-order coeffi-
cients in Eqs. (2)–(4) are all zero. Therefore, Eq. (9) represents
an isolated critical quadruple point at which four first-order
transition lines meet. However, both these cases have a low
probability to exit in a binary ferroelectric system. This is
because the three Landau coefficients (β2, γ2, γ3 or α, β1, β2)
all depend only on c and T in a binary ferroelectric system.
The three equations, α(c, T ) = 0, β1(c, T ) = 0, β2(c, T ) = 0
or β2(c, T ) = 0, γ2(c, T ) = 0, γ3(c, T ) = 0 represent three
curves in the c-T space and the probability for them to inter-
sect at a single point is rather low. Nevertheless, these two
cases are highly possible in a ternary ferroelectric system
because of the sufficient independent variables, i.e., c1, c2,
and T.

For case 2, i.e., the C-T and C-R transitions are second-
order while the T-O and O-R transitions are first order in
the vicinity of the quadruple point, we can also deduce a
relationship among the Landau coefficients at the quadruple
point. From the second-order nature of the C-T and C-R
transitions, it can be deduced from Eqs. (2) and (4) that α = 0,
β1 > 0, β1+ β2

3 > 0, and that the equilibrium polarization at
the quadruple point is zero. On the other hand, as the composi-
tion moves away from the quadruple point to the C-T and C-R
sides, the stable ferroelectric phase below the phase transition
points becomes T and R, respectively. It can be deduced that
β2 ≈ 0 at the quadruple point [15]. Therefore, for case 2, the
following conditions have to be satisfied: α = 0, β2 ≈ 0, and
β1 > 0. Such conditions are possible in a binary ferroelectric
system because α(c, T ) = 0 and β2(c, T ) ≈ 0 represent two
curves and β1(c, T ) > 0 represents a region in the c-T space
of a binary ferroelectric system and thus the probability of the
two curves intersecting at a point in a given region is not low.
Specifically, when α = β2 = 0 and β1> 0 at the quadruple
point, a phase diagram that can be formed is illustrated in
Fig. 1, where at the quadruple point, two second-order and
two first-order transition lines intersect (see Supplemental
Material [16]).

IV. DISCUSSIONS

A. Why do quadruple points in binary BaTiO3-based
ferroelectric systems not violate the phase rule?

The above work tells us that although seemingly defy-
ing both the first and second phase rule as mentioned in
the introduction [1–4], a C-T-O-R quadruple point in the
temperature-composition phase diagram of a binary BaTiO3-

FIG. 1. A binary ferroelectric phase diagram with a unique type
of critical C-T-O-R quadruple point where two first-order and two
second-order transition lines intersect. It is constructed by a Landau
polynomial [Eq. (1)] with α = β2 = 0 and β1 > 0 at the quadruple
point. The solid lines represent first-order transition lines and the
dashed lines represent second-order transition lines.

based ferroelectric system actually does not necessarily
violates the phase rule. This is due to the reason that the
four different phases appearing in the BaTiO3-based binary
systems, i.e., C, T, O, and R, involve symmetry breaking. For
“symmetry-breaking” systems, both the first and second phase
rules might not apply [17,18].

B. Unique type of critical quadruple point

The above results suggest that a C-T-O-R quadruple point
can exist in the temperature-composition phase diagram of a
binary BaTiO3-based ferroelectric system only in the form
of a unique type of critical point at which two first-order
transition lines and two second-order transition lines meet
(Fig. 1). This type of critical point differs from the conven-
tional tetracritical point where four second-order transition
lines meet [17,18], as well as from the isolated critical quadru-
ple point where four first-order transition lines meet [19,20].
Note that the conventional tetracritical point has been exam-
ined thoroughly in previous theoretical studies [17,18,21] and
the isolated critical quadruple point has been reported in fer-
romagnetic systems [22] or liquid crystals [19] and is possible
in a ternary ferroelectric system as derived above [Eq. (9)].

C. Comparison with experimental results in BaTiO3-based
binary ferroelectric systems

The experimental studies on binary ferroelectric
systems such as BaZr0.2Ti0.8O3-xBa0.7Ca0.3TiO3 [23,24],
BaTiO3-xCaHfO3 [25], and BaTiO3-xBaHfO3 [26] have
suggested a C-T-O-R quadruple point closer to an isolated
critical point (α = β1 = β2 = 0) at which four first-order
transition lines meet based on observations that when the
composition deviates from the quadruple point composition,
the thermal hystereses for the C-T, C-R, T-O, and O-R
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FIG. 2. (a) p−e loop and (b) s−e loop at the unique type of critical quadruple point shown in Fig. 1. p, e, s are reduced polarization,
electric field, and strain, respectively. The slopes of both curves at e = 0 approach infinity, which indicates infinitely large ε33 and d33.

transitions all gradually increase. There could be three
possibilities for this disagreement: (a) The coupling
between polarization and strain may slightly renormalize
the fourth-order term in Eq. (2) and would change the
second-order transition near the quadruple point to weak first
order [27]; (b) the experimental binary phase diagrams could
have a very limited composition range of the second-order
transition lines in Fig. 1 (β1 approaches 0 at the quadruple
point), which makes the quadruple point look like an isolated
critical point. This is because when β1 approaches 0 at the
quadruple point, the quadruple point on the phase diagram
shown in Fig. 1 will asymptotically evolve to an isolated
critical point where α = β1 = β2 = 0; (c) the quadruple point
measured in the experiments may not be a real quadruple
point but a quasiquadruple point with two triple points (i.e.,
C-T-R and T-O-R) close to each other [28].

D. Piezoelectricity at the critical C-T-O-R quadruple point

The criticality of the C-T-O-R quadruple point in a binary
ferroelectric system can resolve the controversy on the origin
of high piezoelectric property at the MPB (specifically the
T-O phase boundary) of the quadruple-point-bearing BaTiO3-
based binary ferroelectric systems such as BZT-BCT [23].
The T-O phase boundary in BZT-BCT shows a much larger
d33 (620 pC/N) than that found at the T-O boundary in pure
BaTiO3 (<200 pC/N) [29]. Whether this high piezoelectricity
is related to the C-T-O-R quadruple point of the system has
been a controversial issue since its discovery [30,31]. Below
we will show that d33 at this type of critical quadruple point
exhibits an infinitely high value and thus the high d33 at the T-
O boundary of quadruple-point-bearing ferroelectric systems
is related to the quadruple point.

We first calculate the polarization (P)-electric field (E)
loop, and strain (S)-E loop of the novel type of critical
quadruple point. Under the constraint that α = β2 = 0 at the
quadruple point, the free energy shown in Eq. (1) becomes
f = β1P4 + γ ′P6 (β1 > 0, γ ′ > 0), where γ ′ = γ1 for the T
phase, γ ′ = γ1 + 1

4γ2 for the O phase, and γ ′ = γ1 + 2
9γ2 +

1
27γ3 for the R phase. Under an external electric field E along
the polarization direction of one ferroelectric phase such as
[001]C of the T phase, a coupling term, −EP, enters the free

energy and the total free energy becomes f = β1P4 + γ ′P6 −
EP. From ∂ f

∂P = 0, a relationship between P and E can be
obtained: E = 4β1P3 + 6γ ′P5. Defining a reduced electric
field e and a reduced polarization p as e = E

4×(
2
3 )

3/2 β1
5/2

γ ′3/2

and

p = ( 3γ ′
2β1

)1/2P, we obtain e = p5 + p3. The p-e loop of the
mixed-type critical quadruple point is shown in Fig. 2(a). We
then calculate the electrostrain of the critical quadruple point
according to S = QP2 (where S is strain and Q is the elec-
trostrictive coefficient) and establish a relationship between S
and E, i.e., E = 4β1( S

Q )3/2 + 6γ ′( S
Q )5/2. Defining a reduced

strain, s = 3γ ′
2β1

S
Q , we obtain e = s3/2 + s5/2. The s-e loop of

the critical quadruple point is shown in Fig. 2(b).
It is readily seen from Figs. 2(a) and 2(b) that both the

p-e and s-e loops of this type of critical quadruple point are
hysteresis free. Moreover, the slopes of both curves at e = 0
approach infinity, which suggests that a small electric field can
induce a large polarization and strain at the critical quadruple
point. Therefore, both ε33 and d33 approach infinity at this
unique type of critical quadruple point. It is noted that at a
second-order or critical transition infinite dielectric permittiv-
ity has been obtained theoretically in previous work [32] while
the infinitely large piezoelectric d33 has not been predicted.
The calculation result of infinitely large piezoelectric d33 at
the critical quadruple point here can also be understood by
the transverse instability mechanism proposed by Ishibashi
and Iwata [32] and the polarization extension mechanism pro-
posed by Damjanovic [33]. More importantly, it agrees with
experimental observations that maximum d33 was found at the
quadruple point of several BaTiO3-based binary systems such
as BaZrxTi1–xO3 and BaSnxTi1–xO3 [34,35].

The T-O phase boundary of BZT-BCT starts from the
quadruple point and thus could inherit the vanishing energy
barrier and infinitely large d33 of the unique type of critical
quadruple point. As a result, the T-O boundary composition
close to the critical quadruple point of the BZT-BCT system
should have small energy barriers between different phases
and large d33 [23]. This is in sharp contrast to the T-O phase
boundary in pure BaTiO3 or K0.5Na0.5NbO3 where no quadru-
ple points exist and a large energy barrier is expected between
T and O phases. As a result, the piezoelectricity at the T-O
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boundary of BaTiO3 or K0.5Na0.5NbO3 is much lower (100–
200p C/N) than that (620 pC/N) found at the T-O boundary
in BZT-BCT [23,29]. In addition, the theoretically infinitely
large d33 at the critical quadruple point is in sharp contrast
to those at conventional first-order ferrroelectric transitions.
It has been calculated that at the first-order paraelectric to
ferroelectric transition of pure BaTiO3, d33 is enhanced but
not an infinite value at the Curie tempreature (TC) [33].

E. Generality of the criticality of C-T-O-R quadruple point
in binary ferroelectric systems

The above derivation is parameter free and, thus,
suggests that the criticality of the C-T-O-R quadru-
ple point in a binary ferroelectric system is a system-
independent, general phenomenon. This explains why in so
many different BaTiO3-based binary ferroelectric systems
such as BaZr0.2Ti0.8O3-xBa0.7Ca0.3TiO3 (BZT-BCT) [23,24],
BaTiO3-xCaHfO3 [25], and BaHfxTi1–xO3 [26], the C-T-O-
R quadruple point is always critical or near critical. Few
exceptions have been found so far in experiments for bulk
BaTiO3-based ferroelectric systems. Therefore, by designing
a C-T-O-R quadruple point in binary ferroelectric systems, we
can always expect a critical transition, which is accompanied
by superior properties including high dielectric permittivity,
high piezoelectric coefficient, high energy density, large elec-
trocaloric effect, and large electrostrain [9–12,34,35]. The
generality of criticality of a quadruple point in a binary fer-
roelectric system demonstrated in this work could stimulate
research into finding more quadruple point compositions with
critical ferroelectric transitions. In addition, the above deriva-
tion also suggests that through designing a C-T-O-R quadruple
point in a ternary or even quaternary system, a near-isotropic
critical point [Eq. (8)] or an isolated critical point [Eq. (9)]
could be achieved, which might also exhibit exceptional prop-
erties due to the criticality.

F. Comparison with lead-based binary MPB system

For lead-based binary MPB systems such as
PbZrO3-PbTiO3 (PZT) and PbMg1/3Nb2/3O3-PbTiO3

(PMN-PT), normally a C-T-R triple point is observed
[36,37]. At the C-T-R triple point, it is not necessary that the
triple point has to be a critical point. Instead, it is possible
that C-T, C-R, and T-R transitions at the triple point are
all first order. This is because for first-order C-T and C-R
transitions at the triple point, the number of equations that are
required to be satisfied simultaneously is only two [Eqs. (5)
and (6)], which does not exceed the number of independent
variables in a binary ferroelectric system (c and T). However,
in experiments the C-T-R triple point in lead-based systems
seems to also exhibit near-criticality [38], the reason of which
remains elusive. Theoretically, these critical triple points
should also have large piezoelectricity. However, as far as
we know experimental data of d33 at the C-T-R triple point
are lacking in these lead-based MPB systems such as PZT
and PMN-PT. On the other hand, it should be noted that
the theoretically large piezoelectricity at the critical triple or
quadruple point might be diminished by the depoling effect
in experiments.

It should also be mentioned that monoclinic phases (MA,
MB, and MC) have been reported in lead-based MPB systems
[39], which are supposed to play an essential role in the large
piezoelectricity of these lead-based systems. These mono-
clinic phases cannot be stabilized by a sixth-order Landau
free energy and eighth- and higher-order terms are required
in the Landau polynomial [14]. However, our recent work has
found that the monoclinic phase could be stabilized by long-
range elastic and electrostatic interactions in a multidomain
state even under a sixth-order Landau polynomial [40,41]. In
addition, in the lead-free BaTiO3-based MPB systems, mon-
oclinic phases do not exist in the phase diagrams and the T,
O, and R ferroelectric phases in these systems can be well
stabilized by a sixth-order Landau polynomial [14]. There-
fore, the eighth- and higher-order terms are not considered
in this study.

V. CONCLUSIONS

In summary, to theoretically understand the existence of
C-T-O-R quadruple points and their criticality in binary
BaTiO3-based ferroelectric systems reported experimentally,
we have used Landau theory to show that the C-T-O-R quadru-
ple point could only occur in the temperature-composition
phase diagram of a binary ferroelectric system in the form of
a unique type of critical point where two first-order transition
lines (T-O and O-R) and two second-order transition lines
(C-T and C-R) meet, and such critical quadruple points do
not defy the thermodynamic phase rule. This type of criti-
cal quadruple point has been demonstrated to be consistent
with the experimentally found criticality of the quadruple
point in various binary ferroelectric systems. In addition,
theoretically the piezoelectric coefficient d33 at this type of
critical quadruple point is shown to have an infinitely large
value, which is consistent with the experimental observations
of the largest d33 at the quadruple point in BaZrxTi1–xO3

and BaSnxTi1–xO3 systems. It also explains why the MPB
of a quadruple-point-bearing ferroelectric system shows a
much higher d33 value than that found at a polymorphic
phase boundary of conventional ferroelectrics not originat-
ing from a quadruple point. The criticality of the C-T-O-R
quadruple point found in this study is general and holds
for any binary ferroelectric systems. For ternary ferroelectric
systems, the C-T-O-R quadruple point could exist in other
forms of special points such as a near-isotropic point or
an isolated critical point. The findings of this study could
shed light on future design of high-performance ferroelectrics,
including high-piezoelectricity materials, large-electrocaloric
materials, high-permittivity capacitors, and high-electrostrain
materials and, thus, could motivate experimental studies
searching for critical quadruple point based ferroelectric
systems.
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