

1 **Unusual layer-by-layer growth of epitaxial oxide islands during Cu oxidation**

2 **Authors:** Meng Li¹, Matthew T. Curnan^{1,2}, Michael A. Gresh-Sill¹, Stephen D. House^{1,3},
3 Wissam A. Saidi^{2*} and Judith C. Yang^{1,3,4*}

4 **Affiliations:**

5 ¹Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA
6 (USA)

7 ²Department of Mechanical Engineering & Materials Science, University of Pittsburgh,
8 Pittsburgh, PA (USA)

9 ³Environmental TEM Catalysis Consortium (ECC), University of Pittsburgh, Pittsburgh, PA
10 (USA)

11 ⁴Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA (USA)

12 *Correspondence to alsaidi@pitt.edu, judyyang@pitt.edu

13 **ABSTRACT**

14 Elucidating metal oxide growth mechanisms is essential for precisely designing and
15 fabricating nanostructured oxides with broad applications in energy and electronics.
16 However, current epitaxial oxide growth methods are based on macroscopic empirical
17 knowledge, lacking fundamental guidance at the nanoscale. Using correlated *in situ*
18 environmental transmission electron microscopy, statistically-validated quantitative analysis,
19 and density functional theory calculations, we show epitaxial Cu₂O nano-island growth on
20 Cu is layer-by-layer along Cu₂O(110) planes, regardless of substrate orientation,
21 contradicting classical models that predict multi-layer growth parallel to substrate surfaces.
22 Growth kinetics show cubic relationships with time, indicating individual oxide monolayers
23 follow Frank-van der Merwe growth whereas oxide islands follow Stranski-Krastanov
24 growth. Cu sources for island growth transition from step edges to bulk substrates during
25 oxidation, contrasting with classical corrosion theories which assume subsurface sources
26 predominate. Our results resolve alternative epitaxial island growth mechanisms, improving
27 the understanding of oxidation dynamics critical for advanced manufacturing at the

29 **nanoscale.**

30

31 **INTRODUCTION**

32 Advanced manufacturing of nanostructured metal oxides (MOs) is essential for myriad
33 applications including energy, electronics, sensors, photocatalysts, bio-medicine, and recently for
34 quantum computing^{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Thus, precise, scalable synthesis and processing of
35 nanostructured MOs are in much demand.¹³ Microfabrication methods, such as thermal oxidation,
36 reactive sputtering, and atomic layer deposition, are promising approaches for preparing large
37 batches of epitaxially nanostructured MO^{14,15}. However, current nano-oxide fabrication methods,
38 for which oxidation is a vital step, are empirically based. To better predict and control the shape of
39 nanostructured MOs, a fundamental understanding of the oxide nanocrystal growth process is
40 essential. Established oxidation theories of Wagner¹⁶ and Cabrera-Mott¹⁷ treat the oxidation
41 process exclusively from a macroscopic viewpoint assuming simplified, continuous uniform layers.
42 While these models have been successful in guiding fabrication of amorphous oxide films – such
43 as SiO₂ – and corrosion mitigation, they have little predictive power for describing nanostructured
44 MOs due to their lack of atomic crystalline considerations. This shortcoming greatly hinders the
45 industrial manufacturing of nanostructured MOs.

46 Borrowing from thin-film growth theories, MO nanocrystals that attach to a metal substrate
47 epitaxially during the growth of three-dimensional (3D) oxide islands are explained using the
48 Stranski-Krastanov (layer-plus-island) growth mode^{14, 18}. However, this model is defined from an
49 interfacial energy viewpoint, leaving the kinetic process of how these nanostructures form
50 uncertain. One well-accepted kinetic process is the multilayer growth mechanism, which explains
51 the formation of 3D islands as the simultaneous growth of multiple layers stacked parallel to the

52 substrate surface, forming “wedding cake”-shaped islands.^{19, 20, 21} For example, islands on (100)
53 substrates form by the concurrent growth of multiple stacked layers along the (100) plane.²¹
54 However, 3D islands with faceted crystal surfaces are also widely observed, such as pyramidal Ge
55 and Si islands in quantum dots^{22, 23, 24}, nano-wedge-shaped Fe islands²⁵, and 3D Cu₂O islands on
56 Cu^{26, 27, 28, 29}. While these faceted crystal surfaces are at variance with the multilayer growth
57 mechanism, it remains unclear whether the deviations are due to the early or the later stages of the
58 island growth. The lack of direct observation of the growth dynamics at the atomic scale has
59 hindered establishing a fundamental mechanistic explanation for the growth of the 3D epitaxial
60 islands. Recent developments in *in situ* environmental transmission electron microscopy (ETEM)
61 – with which material systems can be examined under relevant reaction conditions – offer a
62 solution to this problem, enabling the direct observation of growth dynamics.^{4, 30, 31} However, the
63 results heretofore have been qualitative at best. Extracting statistically meaningful quantitative
64 atomic-scale growth kinetics from the *in situ* movies, which is critical for understanding atomic-
65 scale growth mechanisms, has become the new challenge.

66 Herein we perform *in situ* ETEM oxidation experiments on copper – the most well-studied
67 model material for oxidation that forms epitaxial oxide islands – to provide direct, atomic-scale
68 observations of the growth dynamics of 3D epitaxial oxide islands during oxidation. Quantitative
69 atomic-scale information was extracted using advanced image analysis techniques. By correlating
70 the experimental observations and statistical validation of growth kinetics with DFT modeling, we
71 present an unusual epitaxial layer-by-layer growth mechanism for the oxide island along a
72 preferred surface facet, unforeseen by previous crystal growth theories.

74

RESULTS

75

Layer-by-layer Cu₂O growth along Cu₂O(110)

76

3D Cu₂O islands were formed by oxidizing single-crystalline Cu films inside the ETEM at 300 °C under 0.3 Pa O₂. In agreement with previous studies^{32, 33}, these Cu₂O islands share cube-on-cube epitaxy with the Cu substrate. The Cu₂O islands on Cu(100) were reported to follow the Stranski-Krastanov (S-K) growth mode, in which a transition from 2D wetting layers to 3D islands was observed beyond a critical thickness³⁴. According to previous models^{33, 35}, the oxide is expected to grow along the Cu surface, such as along Cu₂O(100) on Cu(100). However, as shown in Movie S1 and Figure 1, we found that the Cu₂O islands on both Cu(100) and (110) surfaces (Supporting Note 1, Figures S2-S5, and Movies S2-S4) grew along the Cu₂O(110) planes in a layer-by-layer adatom growth mode. This is usually observed in Frank-van der Merwe (F-M) growth where the interface mismatch energy is negligible, leading to the formation of a thin-film, instead of islands, along the substrate surface. Our study shows that although the resultant Cu₂O island follows the S-K growth mode, the formation of each 3D island follows a layer-by-layer growth along a certain plane that is not necessarily parallel to the substrate surface, contradicting classical predictions.

90

Cu₂O monolayer growth kinetics

91

To better understand the growth kinetics of each monolayer, we performed quantitative analysis on the boxed area in Figure 1d on the atomically aligned movie to measure the size evolution of each layer over time (Figure 1f, Supporting Note 3). As illustrated in Figure 1e, each new layer is a 2D flake that grows in both planar directions. Although TEM images only provide 2D through-thickness projections of the growing new layer, given that the two directions are

equivalent {110} planes, the projected length evolution in one dimension can be used to estimate the growth in both directions. The nucleation sites of each Cu₂O monolayer (Figs. 1g & S6) were randomly distributed on the previously-grown layer, indicating identical nucleation energetic favorability across all sites. Despite that the layer edges typically proceeds in stairs (Figure 1g), the total projected lengths (*l*) all exhibited a similar smooth growth trend following a cube root relationship with time (*t*): $l^3 = A t$ (referred to as cubic relationship for short hereafter, Figures 1h, S14, and Supporting Note 3). As a result, the growth rate of the island size is quasi-linear along the [110] direction and cubic along [100] and [010] directions. Interestingly, typical oxide thickness curves found in bulk Cu oxidation experiments in this temperature range also follow cubic rates³⁶, which were explained based on classical oxidation theory¹⁷ due to the formation and diffusion of cation vacancies through an oxide layer that fully covers the metal surface. However, this explanation does not apply to our sample, since the metal surface near the oxide island is still exposed. Instead, we argue that the cubic growth rate of each oxide monolayer could be explained using the diffusion-limited 2D growth kinetics of F-M thin-film growth¹⁹. In this growth mode, a full layer forms by coalescence of several single-monolayer-thick 2D flakes, where each flake grows with $l^3 \sim t$ scaling^{37, 38, 39}. The main difference with the thin-film F-M growth is that the observed growth of the oxide monolayer in our samples is due to the nucleation of a single “flake”, rather than many flakes as in thin-films. This difference is likely because the effective substrate for the growth of the oxide layer is relatively small compared to typical thin-film substrates. Presumably, as the MO islands grow in size, layer formation through the coalescence of more than one flake would occur. Hence, the observed $l^3 \sim t$ growth kinetics of each monolayer indicates a diffusion-limited process, possibly due to surface diffusion of Cu and O atoms to form adatoms at the Cu₂O monolayer edge.

119 The growth trajectories also exhibited coordinated increments and oscillations between
120 multiple layers (Figure 1g-i). To substantiate these sudden changes, a multivariate time-series
121 statistical analysis⁴⁰ was performed (l^3 vs. t) to evaluate when breaks in otherwise continuous
122 growth occur^{37, 38, 41}. The statistically defined structural breaks⁴⁰, shown in Figure 1i and
123 Supplemental Note 4, are attributed to two types of events, namely the nucleation of new layers
124 (N2-N7) and concerted diffusion events (P1-P6) describing the simultaneous change of growth
125 rates among several layers. Nucleation events generally led to a growth rate decrease in previously
126 grown layers, indicating that Cu and O attachment to the nucleating new layer is preferred to
127 attachment to previous layers. This is likely caused by the Ehrlich-Schwöbel effect⁴², in which
128 downward diffusion across a surface step is prohibited due to an extra energy barrier.^{42, 43, 44}
129 Concerted diffusion events generally showed sudden decreases in the growth rates of new layers
130 and increases in those of previous layers. This indicates a cross-layer diffusion of Cu/O sourced
131 from the new Cu₂O monolayer to feed the growth of former layers, which corresponds to
132 adjustment of the top of the Cu₂O island from an initially zig-zagged surface to a flat Cu₂O(100)
133 facet (Figure S7-8). Hence, both the oxide monolayer growth trend and variations in monolayer
134 growth indicate a diffusion-limited layer-by-layer growth process resembling the F-M thin-film
135 growth mode, although the overall oxide island follows the S-K mode.

136 **DFT calculations on Cu₂O monolayer growth mechanism**

137 To better understand why the oxide grows along the Cu₂O(110) plane in disagreement with
138 classical theories, DFT calculations were performed to study the earlier-stage atom-by-atom oxide
139 growth events. Gas-solid interfacial energies (γ) were calculated for the (100) and (110) Cu₂O
140 surface planes that are predominantly observed in our experiments. As shown in Figure 2a and
141 detailed in Supporting Note 5, Cu_xO_y surface units were sequentially added to these planes to

142 simulate layer growth. For flat Cu₂O surfaces (column *i* in Figure 2a), Cu-O terminated Cu₂O(110)
143 had the lowest γ . Upon adding Cu_xO_y surface units, Cu₂O(110) surfaces with exposed Cu-O layers
144 invariably had the lowest γ . These surfaces include structures *i* and *iii* for Cu-O terminated
145 Cu₂O(110) and structure *ii* for Cu-terminated Cu₂O(110), and their favorability is attributable to
146 their terminal, ionically bonded O-Cu-O chains (Figure S21-S23). In contrast, O-terminated
147 Cu₂O(100) had the highest γ , regardless of the number of Cu_xO_y surface units added to it. Such
148 instability coincides with the undercoordination of exposed O atoms (Figure S20). Since Cu₂O(100)
149 structures must produce less-stable O terminations during its growth, oxide growth along
150 Cu₂O(110) is preferable to Cu₂O(100). Simulated adatom adsorption events forming Cu_xO_y surface
151 unit *ii* (hollow data points in Figure 2a and Supporting Note 6) further support this conclusion.
152 Therefore, γ trend comparisons show that Cu₂O(110) forms thermodynamically more favorable
153 flat surfaces, grown Cu₂O monolayers, and single adatom interfaces than Cu₂O(100), in agreement
154 with the experimental results.

155 Nudged elastic band simulations of the diffusion events along the oxide island surface
156 further verified the experimentally observed layer-by-layer growth kinetics along the Cu₂O(110)
157 plane (Supporting Note 7). Figure 2b compares the preferred diffusion mechanisms required to
158 make an oxide layer on Cu terminated Cu₂O(110) and Cu₂O(100) surfaces. The most favorable
159 rate-limiting diffusion process for forming Cu-O layers on Cu-terminated Cu₂O(110) is single O
160 diffusion with inter-channel endpoints (diffusion barrier of $\Delta = 0.35$ eV), and the matching Cu
161 diffusion process to place Cu on top of that O is barrierless with favorable adsorption energy (E_{ads}
162 = -2.58 eV). In comparison, the most favorable rate-limiting O diffusion process on a Cu-
163 terminated Cu₂O(100) surface is in-channel single O diffusion ($\Delta = 0.75$ eV). The matching Cu
164 diffusion process places Cu on top of that O, yielding a large barrier ($\Delta = 1.02$ eV) and less-

165 favorable adsorption energy ($E_{ads} = -0.24$ eV). The corresponding process for forming Cu layers
166 on Cu-O terminated $\text{Cu}_2\text{O}(110)$ is in-channel single Cu diffusion ($\Delta = 0.42$ eV, Figure S29). Rate-
167 limiting step comparisons favor $\text{Cu}_2\text{O}(110)$ over $\text{Cu}_2\text{O}(100)$ not only across the initial and final
168 states of the oxide layer formation process (0.42 eV vs. 1.02 eV) but also for each transient
169 diffusing atom composition. Therefore, Cu and O prefer to diffuse to $\text{Cu}_2\text{O}(110)$ island growth
170 fronts over $\text{Cu}_2\text{O}(100)$ fronts, further validating prior experimental outcomes.

171 **Cu source for Cu_2O island growth**

172 The source of Cu during Cu_2O growth also warranted investigation. Traditional oxidation
173 theory¹⁷ argues that Cu is supplied from the metal||oxide interface through diffusion across the
174 oxide, leading to an interface shift toward the metal side. However, as seen in Figures 1 and S6,
175 the Cu|| Cu_2O interfaces predominantly remained unchanged during the oxidation process,
176 particularly during the initial period of oxidation when there are few nucleated Cu_2O islands. This
177 indicates that there must be other sources for Cu instead of the substrate Cu. A recent study found
178 Cu_2O island growth with gradual height decreases of the surrounding Cu surface steps⁴⁵, inferring
179 that Cu detaching from step edges might be the source. However, direct evidence for this claim
180 has been lacking. Figure 3 and Movie S5 show that during oxidation of Cu(100) facets with several
181 one-atomic-layer-high surface steps, these steps retreated when Cu_2O grew, while the Cu|| Cu_2O
182 interface remained unchanged. Due to the thickness difference between the Cu film and the Cu_2O
183 island, the amount of Cu lost from the surface steps is comparable to the amount of Cu added to
184 Cu_2O . This indicates that Cu detaching from step edges is the source of Cu for Cu_2O growth in the
185 early oxidation stage. Later, the Cu|| Cu_2O interface migrates toward the Cu substrate, indicating
186 that in later stage oxidation, the substrate serves as the Cu source. The transition between Cu
187 sources is determined by the distance from the nearest step edge (Figure 3d), which is explainable

188 by Cu diffusion. When the oxide island is near a step edge, Cu detached from surface steps can
189 easily diffuse to the oxide island via surface diffusion. However, when there are very few surface
190 steps or the oxide island is far away from the surface steps, bulk Cu diffusion from the Cu substrate
191 to the gas||oxide interface becomes more efficient. As shown in Supporting Note 8, even on
192 reconstructed Cu surfaces, the diffusion barrier of Cu surface diffusion is still lower than that of
193 bulk diffusion, leading to less-faceted oxide shapes during the interfacial Cu sourcing stage.

194 **Mechanism of 3D Cu₂O island growth**

195 Based on the above discussion and the energetic data summarized in Table S7, the
196 mechanism of the unusual epitaxial oxide island growth processes during Cu oxidation,
197 summarized in Figure 4, is:

198 a) Due to surface reconstruction, O₂ dissociation on the Cu surface is inhibited, so O
199 adatoms are provided by O₂ dissociative absorption on Cu₂O surfaces^{2, 46}. The preferred diffusion
200 barriers and adsorption energies of O on Cu₂O(110) over those on Cu₂O(100) suggest more
201 diffusing O atoms will be present on the Cu₂O(110) surface.

202 b) When there are Cu surface steps nearby, Cu adatoms detached from Cu step edges
203 diffuse to Cu₂O surfaces via surface diffusion. Because of the preferred diffusion barriers and
204 adsorption energies of Cu on Cu₂O(110), more Cu atoms will diffuse on Cu₂O(110) than
205 Cu₂O(100). Due to the lower surface energy of Cu₂O(110) and more favorable adsorption energies
206 of Cu and O on the Cu₂O(110) step, Cu₂O nuclei will form on Cu₂O(110). This is followed by the
207 growth of Cu₂O monolayers in an atomic adsorption process directed toward the growth front of
208 the new layer. The vapor deposition process to grow oxides can be viewed as an extreme case of
209 this scenario, where there are sufficient mobile Cu atoms present to directly react with O atoms⁴⁵.

c) The new Cu_2O layer grows in this adatom growth method until the edge of the layer reaches the ridge of the previous Cu_2O layer, then a new Cu_2O layer nucleates following the steps in a) and b). This leads to the observed layer-by-layer growth along $\text{Cu}_2\text{O}(110)$. For each monolayer, the growth of a new Cu_2O layer on the $\text{Cu}_2\text{O}(110)$ facet follows the diffusion-limited Frank-van der Merwe growth process with cubic growth rate $l^3 \sim t$. However, due to the preference of $\text{Cu}_2\text{O}(110)$ over $\text{Cu}_2\text{O}(100)$ in both kinetics and energetics, the overall Cu_2O island follows the Stranski-Krastanov growth model. When the Cu surface steps are far away, substrate Cu will feed Cu_2O growth by interfacial diffusion via place exchange with Cu vacancies in Cu_2O islands.

DISCUSSION

Using DFT, we have investigated the energetics of several of the most probable diffusion paths, and corresponding thermodynamic states, that are proposed to underline studied experimental observations. However, a complete understanding of studied oxide growth dynamics is beyond the capabilities of DFT alone, especially when considering the many possible diffusion processes that induce concerted oxide nucleation and growth processes over multiple island layers. Comparisons between statistical conclusions and ETEM observations made in “Correlating Statistical Results with Experimental Observations” (Supplementary Note 4) demonstrate that limitations in Cu sourced from adjacent island layers contribute to observed island shapes and relative layer growth rates. Therefore, the combination of surface orientations and terminations predicted by simulation, island shape evolution by ETEM observations, and relative growth rates characterized by statistical conclusions, is needed to completely depict oxide growth dynamics.

Our results provide direct, atomic-scale growth dynamics of 3D epitaxial oxide island growth. Instead of multilayer growth along substrate surfaces to form wedding-cake shaped islands,

232 we found the growth of 3D epitaxial oxide islands follows a layer-by-layer growth mechanism
233 along a preferred facet. The growth kinetics of each oxide monolayer is consistent with predictions
234 from the diffusion-limited 2D Frank-van der Merwe growth model³⁷ for thin-films. To our
235 knowledge, this is the first atomic-resolution experimental proof of the atomic-level growth
236 dynamics of 3D islands. Our study sheds new light on the epitaxial oxide growth mechanism and
237 provides a deeper understanding of the dynamic processes involved in initial oxidation, which will
238 ultimately help to precisely predict, design, and control nanostructured oxide growth. Our findings
239 would apply to other metals – such as Al⁴⁷, Ni-Cr^{4, 48}, Mo³⁰, Mg^{49, 50} and Ag⁵¹ – where a similar
240 layer-by-layer oxide growth was observed for the islands, though without confirmation on the early
241 stages. Moreover, this work demonstrates that with meticulous *in situ* TEM experiments and
242 advanced data analysis, statistically meaningful quantitative atomic-scale growth kinetics can be
243 resolved. When complemented with correlated theoretical simulations, such work will promote the
244 understanding of nanoscale dynamics to a new level.

245 **Methods:** Provided in Supporting Information.

246 **Data availability:** All data is available in the main text or the Supplementary Materials
247 (Supplementary Movies S1-S5, Methods, Supplementary Notes 1-8, Supplementary Notes 1-8,
248 Supplementary Figures 1-31, and Supplementary Tables 1-7)

249 **Code availability:** The code for *in situ* movie analysis and statistical analysis are available
250 from the corresponding author on request.

252 **References:**

- 253 1. Hansen PL. Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper
254 Nanocrystals. *Science* **295**, 2053-2055 (2002).
- 256 2. Gattinoni C, Michaelides A. Atomistic details of oxide surfaces and surface oxidation: the
257 example of copper and its oxides. *Surface Science Reports* **70**, 424-447 (2015).

260 3. Luc W, *et al.* Two-dimensional copper nanosheets for electrochemical reduction of
261 carbon monoxide to acetate. *Nature Catalysis*, (2019).

262 4. Luo L, *et al.* Atomic origins of water-vapour-promoted alloy oxidation. *Nature Materials*,
263 1-6 (2018).

264 5. Mortazavi N, *et al.* Interplay of water and reactive elements in oxidation of alumina-
265 forming alloys. *Nature Materials* **17**, 610-617 (2018).

266 6. Sáenz-Trevizo A, *et al.* *Functional nanostructured oxides: Synthesis, properties, and*
267 *applications*. Elsevier Inc. (2018).

268 7. McKee RA, Walker FJ, Chisholm MF. Physical structure and inversion charge at a
269 semiconductor interface with a crystalline oxide. *Science* **293**, 468-471 (2001).

270 8. Scully JR. The COVID-19 Pandemic, Part 1: Can Antimicrobial Copper-Based Alloys
271 Help Suppress Infectious Transmission of Viruses Originating from Human Contact with
272 High-Touch Surfaces? *CORROSION* **76**, 523-527 (2020).

273 9. Netzer FP. "Small and beautiful" - The novel structures and phases of nano-oxides.
274 *Surface Science* **604**, 485-489 (2010).

275 10. Cong S, Tian Y, Li Q, Zhao Z, Geng F. Single-crystalline tungsten oxide quantum dots for
276 fast pseudocapacitor and electrochromic applications. *Advanced Materials* **26**, 4260-4267
277 (2014).

278 11. Chu YH. Van der Waals oxide heteroepitaxy. *npj Quantum Materials* **2**, 1-5 (2017).

279 12. Zhu Q, Zou L, Zhou G, Saidi WA, Yang JC. Early and transient stages of Cu oxidation:
280 Atomistic insights from theoretical simulations and in situ experiments. *Surface Science*
281 **652**, 98-113 (2016).

282 13. Basic Energy Sciences(BES) DoE. Basic Research Needs for Transformative
283 Manufacturing (Brochure). (2020).

284 14. Barth JV, Costantini G, Kern K. Engineering atomic and molecular nanostructures at
285 surfaces. *Nature* **437**, 671-679 (2005).

286 15. Tersoff J, Teichert C, Lagally MG. Self-organization in growth of quantum dot
287 superlattices. *Physical Review Letters* **76**, 1675-1678 (1996).

300
301 16. Wagner C, Hammen H. Conductivity and oxygen excess in cuprous oxide. *Zeitschrift für*
302 *Physikalische Chemie* **40**, 197-206 (1938).

303
304 17. Cabrera N, Mott NF. Theory of the oxidation of metals. *Reports on Progress in Physics*
305 **12**, 308-308 (1949).

306
307 18. Franchy R. Growth of thin, crystalline oxide, nitride and oxynitride films on metal and
308 metal alloy surfaces. *Surface Science Reports* **38**, 195-294 (2000).

309
310 19. Brune H. Epitaxial Growth of Thin Films. In: *Surface and Interface Science* (ed^(eds))
311 (2014).

312
313 20. Jesson DE, Chen KM, Pennycook SJ. Kinetic pathways to strain relaxation in the Si-Ge
314 system. *MRS Bulletin* **21**, 31-37 (1996).

315
316 21. Michely T, Krug J, Concepts B. Layer-By-Layer Growth and Growth Manipulation.
317 (ed^(eds)). Springer Berlin Heidelberg (2004).

318
319 22. Medeiros-Ribeiro G, Bratkovski AM, Kamins TI, Ohlberg DAA, Williams RS. Shape
320 transition of germanium nanocrystals on a silicon (001) surface from pyramids to domes.
321 *Science* **279**, 353-355 (1998).

322
323 23. Ross FM, Tromp RM, Reuter MC. Transition states between pyramids and domes during
324 Ge/Si island growth. *Science* **286**, 1931-1934 (1999).

325
326 24. Mo YW, Swartzentruber BS, Kariotis R, Webb MB, Lagally MG. Growth and
327 equilibrium structures in the epitaxy of Si on Si(001). *Physical Review Letters* **63**, 2393-
328 2396 (1989).

329
330 25. Shvets IV, Murphy S, Kalinin V. Nanowedge island formation on Mo(1 1 0). *Surface*
331 *Science* **601**, 3169-3178 (2007).

332
333 26. Lyubinetsky I, Lea AS, Thevuthasan S, Baer DR. Formation of epitaxial oxide nanodots
334 on oxide substrate: Cu₂O on SrTiO₃(1 0 0). *Surface Science* **589**, 120-128 (2005).

335
336 27. Markworth PR, Liu X, Dai JY, Fan W, Marks TJ, Chang RPH. Coherent island formation
337 of Cu₂O films grown by chemical vapor deposition on MgO(110). *Journal of Materials*
338 *Research* **16**, 2408-2414 (2001).

340 28. Ottosson M, Lu J, Carlsson JO. Chemical vapour deposition of Cu₂O on MgO(100) from
341 CuI and N₂O: aspects of epitaxy. *Journal of Crystal Growth* **151**, 305-311 (1995).

342 29. Zhou G, Yang JC. In-Situ TEM Studies of Oxidation. *In-Situ Electron Microscopy: Applications in Physics, Chemistry and Materials Science*, 191-208 (2012).

345 30. Yu J, *et al.* Atomic Mechanism in Layer-by-layer Growth via Surface Reconstruction. *Nano Lett.*, (2019).

348 31. Li L, *et al.* Surface-step-induced oscillatory oxide growth. *Physical Review Letters* **113**,
349 1-5 (2014).

351 32. Yang JC, Zhou G. In situ ultra-high vacuum transmission electron microscopy studies of
352 the transient oxidation stage of Cu and Cu alloy thin films. *Micron* **43**, 1195-1210 (2012).

354 33. Zhou G, Yang JC. Initial Oxidation Kinetics of Cu(100), (110), and (111) Thin Films
355 Investigated by in Situ Ultra-high-vacuum Transmission Electron Microscopy. *Journal of
356 Materials Research* **20**, 1684-1694 (2005).

358 34. Zhou G, *et al.* In situ atomic-scale visualization of oxide islanding during oxidation of Cu
359 surfaces. *Chemical Communications* **49**, 10862-10864 (2013).

361 35. Holloway PH, Hudson JB. Kinetics of the reaction of oxygen with clean nickel single
362 crystal surfaces. *Surface Science* **43**, 123-140 (1974).

364 36. O'Reilly M, *et al.* Investigation of the oxidation behaviour of thin film and bulk copper.
365 *Applied Surface Science* **91**, 152-156 (1995).

367 37. Bartelt MC, Evans JW. Scaling analysis of diffusion-mediated island growth in surface
368 adsorption processes. *Physical Review B* **46**, 12675-12687 (1992).

370 38. Tang L-H. Island formation in submonolayer epitaxy. *Journal de Physique I* **3**, 935-950
371 (1993).

373 39. Evans JW, Thiel PA, Bartelt MC. Morphological evolution during epitaxial thin film
374 growth: Formation of 2D islands and 3D mounds. *Surface Science Reports* **61**, 1-128
375 (2006).

377 40. Chow GC. Tests of equality between sets of coefficients in two linear regressions.
378 *Econometrica: Journal of the Econometric Society*, 591-605 (1960).

380

381 41. Chi H, *et al.* In situ environmental TEM observation of two-stage shrinking of Cu₂O
382 islands on Cu(100) during methanol reduction. *Physical Chemistry Chemical Physics* **22**,
383 2738-2742 (2020).

384

385 42. Zhu Q, Saidi WA, Yang JC. Enhanced Mass Transfer in the Step Edge Induced Oxidation
386 on Cu(100) Surface. *The Journal of Physical Chemistry C* **121**, 11251-11260 (2017).

387

388 43. Zhu Q, Saidi WA, Yang JC. Step-induced oxygen upward diffusion on stepped Cu(100)
389 surface. *Journal of Physical Chemistry C* **119**, 251-261 (2015).

390

391 44. Zhu Q, Saidi WA, Yang JC. Step-Edge Directed Metal Oxidation. *Journal of Physical
392 Chemistry Letters* **7**, 2530-2536 (2016).

393

394 45. Zhou G, Luo L, Li L, Ciston J, Stach EA, Yang JC. Step-edge-induced oxide growth
395 during the oxidation of Cu surfaces. *Physical Review Letters* **109**, 1-5 (2012).

396

397 46. Yu X, Zhang X, Tian X, Wang S, Feng G. Density functional theory calculations on
398 oxygen adsorption on the Cu₂O surfaces. *Applied Surface Science* **324**, 53-60 (2015).

399

400 47. Oh SH, *et al.* Oscillatory Mass Transport in Vapor-Liquid-Solid Growth of Sapphire
401 Nanowires. *Science* **330**, 489-493 (2010).

402

403 48. Luo L, *et al.* In situ atomic scale visualization of surface kinetics driven dynamics of
404 oxide growth on a Ni-Cr surface. *Chemical Communications* **52**, 3300-3303 (2016).

405

406 49. Zheng H, *et al.* Direct atomic-scale observation of layer-by-layer oxide growth during
407 magnesium oxidation. *Applied Physics Letters* **104**, 141906-141906 (2014).

408

409 50. Cao F, *et al.* Atomistic Observation of Structural Evolution during Magnesium Oxide
410 Growth. *The Journal of Physical Chemistry C* **120**, 26873-26878 (2016).

411

412 51. Zhu Q, *et al.* Defect-driven selective metal oxidation at atomic scale. *Nature
413 Communications* **12**, 6-13 (2021).

414

415

416

417 **ACKNOWLEDGEMENTS**

418 We acknowledge Mr. Xianhu Sun (SUNY Binghamton), Hao Chi, and Henry Ayoola
419 (University of Pittsburgh) for helpful discussions and assistance in experiments. The
420 experimental work was performed at the Petersen Institute of NanoScience and Engineering
421 (PINSE) Nanoscale Fabrication and Characterization Facility (NFCF) at University of
422 Pittsburgh. We thank NFCF staff Mr. Matt France and Dr. Susheng Tan for their assistance. This
423 research used resources of the Environmental TEM Catalysis Consortium (ECC), which is
424 supported by the University of Pittsburgh and Hitachi High Technologies. Computational
425 resources were provided by the University of Pittsburgh Center for Research Computing (CRC),
426 the Extreme Science and Engineering Discovery Environment (XSEDE) supported by the
427 National Science Foundation (NSF OCI-1053575), and at the Argonne Leadership Computing
428 Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-
429 06CH11357. **Funding:** This work is supported by the National Science Foundation (NSF DMR-
430 1410055, NSF DMR-1508417, and NSF CMMI-1905647).

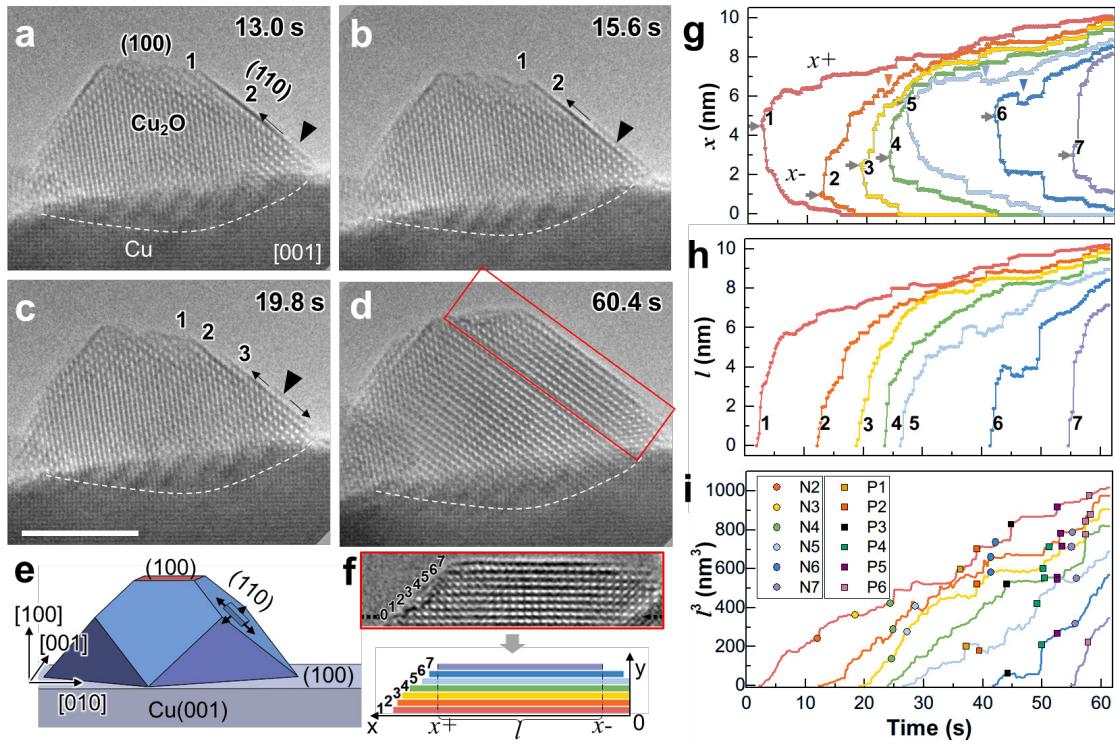
431 **Author contributions:** J.C.Y. and W.A.S. conceived and directed the project. M.L.
432 conducted the experiments, data analysis, and drafted the manuscript. M.T.C. conducted DFT
433 simulations and statistical analysis. M.A.G and S.D.H assisted with the data analysis. All authors
434 contributed to results discussion and manuscript refinement.

435 **Competing interests:** Authors declare no competing interests.

436 **Supplementary Materials:**

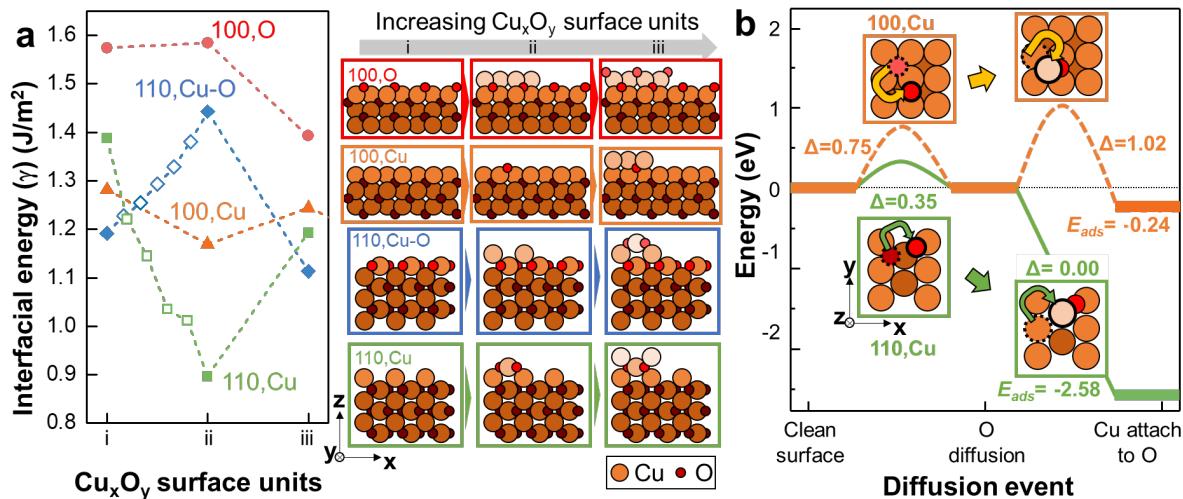
437 Supplementary Movies 1-5

438 Supplementary Information

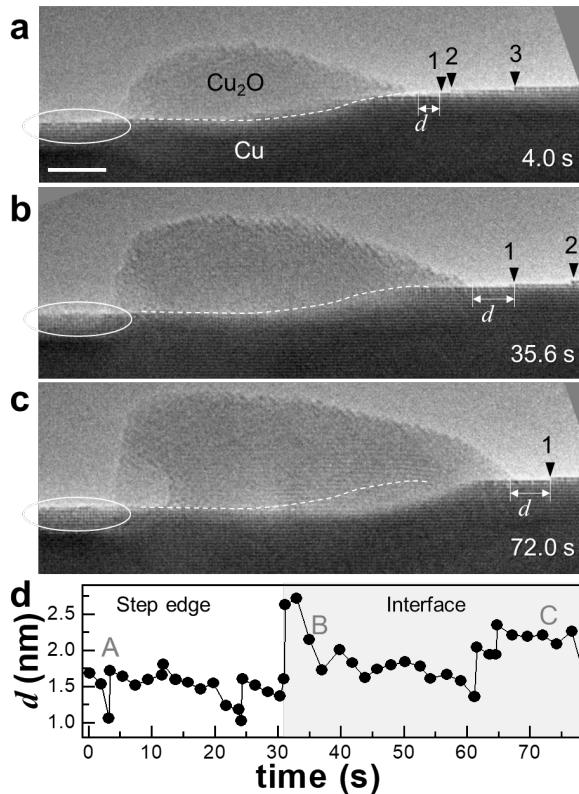

439 Supplementary Methods

440 Supplementary Notes 1-8

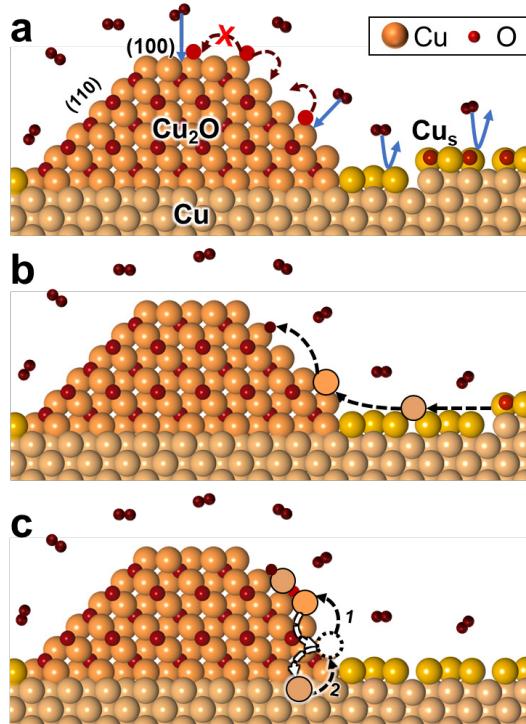
441 Supplementary Figures 1-31


442 Supplementary Tables 1-7

443 Supplementary References (1-49)


444
445 **Figure 1 | Layer-by-layer growth of Cu₂O island along Cu₂O(110) during Cu(100)**

446 **oxidation.** **a-c** Snapshots from Movie S1 showing adatom growth of the 2nd Cu₂O new layer at
447 300 °C and $p_{O_2} = 0.3$ Pa. The layer nucleation site (triangle) and growth direction (arrow) are
448 indicated. Scale bar: 5 nm. **d** The island top forms a flat Cu₂O(100) plane over time. **e** Schematic
449 3D model of the Cu₂O island with a growing new layer. **f** The boxed area from **(d)**, reoriented for
450 growth trajectory measurement, with a corresponding schematic defining the measured data
451 plotted in **(g-i)**. **g** Growth trajectory coordinates of the left (x+) and right (x-) ends of each layer
452 with time, namely when measuring from the right side of the image defined in **(f)**. Nucleation
453 sites on each layer, marked by gray arrows, indicate a random site distribution. These two ends
454 show stepwise growth with oscillations marked by triangles and matching colors. **h** The
455 projected length (l) of each layer shows a similar trend with smoother curves. **i** Statistically
456 defined breakpoints in growth rates indicate nucleation events (N) and interlayer atom diffusion
457 events (P).


458

459 **Figure 2 | DFT-calculated interfacial energies and diffusion energies for Cu_2O (110) and**
 460 **(100) surfaces. a** Most favorable structure γ during Cu_2O monolayer growth for $\text{Cu}_2\text{O}(110)$ with
 461 Cu (green) and Cu-O (blue) terminations, and $\text{Cu}_2\text{O}(100)$ with Cu (orange) and O (red)
 462 terminations. The corresponding atomic structures are shown to the right of the plot, with
 463 matching border colors. Hollow data points between *i-ii* show adatom adsorption events forming
 464 the first Cu_xO_y surface unit. **b** Most-favorable Cu and O diffusion events on Cu_2O surfaces
 465 linking Δ and E_{ads} . Insets with matching border colors show top-down views of the
 466 corresponding atomic structures. Cu and O atoms are colored in orange and red, respectively.
 467 Brighter/darker colors indicate a higher/lower z position.

468

469 **Figure 3 | Cu sources for Cu_2O nano-island growth.** **a-b** Cu_2O grows while surface steps (1-3, marked by triangles) retreated and the $\text{Cu}||\text{Cu}_2\text{O}$ interface (dashed lines) remained unchanged. (Scale bar: 5 nm). **c** When surface steps were far from the Cu_2O island, Cu_2O continued to grow and the $\text{Cu}||\text{Cu}_2\text{O}$ interface started to migrate towards Cu. **d** A plot of the measured distance (d) between the Cu_2O island and step edge “1” with time. d suddenly increased at ~ 31 s, leading to the transition from step edge Cu to bulk Cu consumption.

475

476 **Figure 4 | Schematic of Cu_2O growth mechanism.** **a** Dissociative adsorption of O_2 (red atoms)
 477 is blocked on the reconstructed Cu surface (Cu_s , gold atoms) and performed on Cu_2O . Given
 478 lower diffusion barriers and favorable O adsorption energies on $\text{Cu}_2\text{O}(110)$, more O atoms
 479 segregate toward $\text{Cu}_2\text{O}(110)$. **b** When Cu steps are nearby, Cu adatoms detached from Cu step
 480 edges, diffuse to Cu_2O islands, and attach to O atoms to form Cu_2O monolayers, given favorable
 481 Cu and O E_{ads} on $\text{Cu}_2\text{O}(110)$ steps. **c** When Cu surface steps are far away, substrate Cu will feed
 482 the growth of Cu_2O via interface diffusion, namely through place exchange with Cu vacancies
 483 (dashed circle). Cu atoms from Cu_2O , the Cu surface, and the Cu bulk are colored orange, gold,
 484 and beige, respectively. O atoms are colored dark red.