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Abstract—Machine learning (ML) cloud APIs enable develop-
ers to easily incorporate learning solutions into software systems.
Unfortunately, ML APIs are challenging to use correctly and
efficiently, given their unique semantics, data requirements, and
accuracy-performance tradeoffs. Much prior work has studied
how to develop ML APIs or ML cloud services, but not how
open-source applications are using ML APIs. In this paper, we
manually studied 360 representative open-source applications
that use Google or AWS cloud-based ML APIs, and found 70%
of these applications contain API misuses in their latest versions
that degrade functional, performance, or economical quality of
the software. We have generalized 8 anti-patterns based on our
manual study and developed automated checkers that identify
hundreds of more applications that contain ML API misuses.

I. INTRODUCTION

A. Motivation

Machine learning (ML) provides efficient solutions for a

number of problems that were difficult to solve with traditional

computing techniques; e.g., object detection and language

translation. ML cloud APIs allow programmers to incorporate

these learning solutions into software systems without design-

ing and training the learning model themselves [1], and hence

put these powerful techniques into the hands of non-experts.

Indeed, there are more than 35,000 open-source projects on

GitHub that use Google or Amazon ML Cloud APIs to solve

a wide variety of problems, among which more than 14,000

were created within the last 12 months.

While these APIs make it easy for non-experts to in-

corporate learning into software systems, there are still a

number of challenges that must be addressed to ensure that

the resulting applications are both correct and efficient. While

certain challenges come with the use of any third-party API,

this paper focuses on unique challenges for ML APIs that arise

due to the nature of learning itself.

Complicated data requirements. Machine learning tech-

niques are used to process digitalized real-world visual, audio

and text content. Although such content can be generated by

a huge variety of devices and encoding software, the suitable

input content and format (encoding, resolution, size, etc.) for

ML APIs are rather limited and often uniquely defined by

the DNN-training process. For example, cameras can produce

images in many formats, but the image sets on which ML

models are trained have a relatively small variety [2]–[8].

Thus, it is up to the API user to select the input or convert the

input into what the API can accept and effectively process.

Complicated cognitive semantics. Unlike traditional APIs

that are coded to perform well-defined algorithms, ML APIs

are trained to perform cognitive tasks whose semantics can-

not be reduced to concise mathematical or logical spec-

ifications, with inevitable overlap between different tasks;

e.g., to detect a book in a scene, a user might call ei-

ther image-classification or object-detection.

Users need a good understanding of these cognitive semantics

underlying ML APIs to pick the right API for the correspond-

ing software component and usage scenario. Additionally,

learning models operate in a continuous space (even if they

ultimately produce a discrete output, the discretization is the

last step in the model). Thus, it is up to users to understand

the result of these calls and ensure that they know how to use

the result correctly in the context of the software system.

Complicated tradeoffs. While many APIs offer tradeoffs

between engineering effort and performance (e.g., higher

performance APIs are more difficult to use), ML APIs have

additional tradeoffs to consider. The first is accuracy. As ML

APIs do not produce discrete ”correct” or ”incorrect” answers,

it is up to users to understand the probabilistic nature of

these API calls, how different data transformation and API

selection can affect the accuracy, and the exact accuracy

requirement of the corresponding software component. Fur-

thermore, the engineering effort involved in using ML APIs is

often related to transforming the input data, which can have

large effects on performance and accuracy. Finally, as these

APIs perform computation in the cloud, there is a monetary

cost associated with every call, which is again affected by

data transformation and API selection, and is yet another

tradeoff to consider. It is essential that users understand the

engineering/performance/accuracy tradeoffs of every ML API

call and ensure that their application’s requirements are met.

If ML API users do not address the above challenges, their

software systems can suffer from inefficiencies (in perfor-

mance or cost) and correctness issues. In addition, the fact

that these APIs do not produce binary correct/incorrect outputs

means that the resulting performance and accuracy losses can

be difficult to diagnose; e.g., in addition to catastrophic fail-

stop failures (which are at least easy to notice), misunderstand-

ing the API semantics produces lower accuracy and higher

cost software. Thus, while these APIs make it possible for

non-expert users to incorporate ML into software systems, it

is still necessary that users understand and avoid API misuses.

Prior work studies software development for ML. For ex-

ample, recent work proposes methods for finding bugs in ML

libraries [9]–[15]. Other work finds bugs related to designing

and training ML models [16]–[49]. However, to the best of our





Google Cloud AI AWS AI IBM Cloud Watson Microsoft Azure Cognitive Services

Vision
Image Vision AI

Rekognition
Visual RecognitionS Computer Vision, Face

Video Video AI - Video IndexerA

Language
NLP Cloud Natural LanguageS Comprehend Natural Language UnderstandingS Text Analytics

Translation Cloud TranslationS TranslateS Language Translator Translator

Speech
Recognition Speech-to-Text TranscribeA Speech to Text Speech to Text

Synthesis Text-to-SpeechS Polly Text to SpeechS Text to Speech

TABLE I: ML tasks supported by four popular ML cloud services. Subscript S: only a synchronous API is offered for this

task; subscript A: only an asynchronous API is offered; no subscript: both synchronous and asynchronous APIs are offered.

All Apps New Apps
Google AWS Google AWS

Vision
Image 7916

8818
4221

2951
Video 674 231

Language
NLP 4632 4291 2341 1969

Translation 1192 7681 476 2865

Speech
Recognition 9439 5155 3291 2222

Synthesis 2190 6375 1037 1986

Total (w/o duplicates) 35376 14049

TABLE II: # of applications using different types of ML APIs

on GitHub. New Apps refer to those created after 08-01-2019.

Since there are many toy applications on GitHub, we

manually checked about 1200 randomly selected applications,

which use Google/Amazon ML APIs, to obtain these 360 non-

trivial applications. We manually confirmed they each target a

concrete real-world problem, integrate the ML API(s) in their

workflow, and conduct some processing for the input or the

output of the ML API, instead of simply feeding an external

file into the ML API and directly printing out the API result.

We do not have a way to accurately check how seriously these

applications have been used in the real world, and it is possible

that some of these 360 applications have not been widely used.

B. Anti-pattern identification methodology

Because of the young ages of ML API services and hence

the applications under study, we could not rely on known

API misuses in their issue-tracking systems, which are very

rare. Instead, we must discover API misuses unknown to the

developers by ourselves.

Since there is no prior study on ML API misuses, our

misuse discovery can not rely on any existing list of anti-

patterns. Instead, our team, including ML experts, carefully

studies API manuals, intensively profiles the API functionality

and performance, and then manually examines every use of an

ML API in each of the 360 applications for potential misuses.

For every suspected misuse, we design test cases and run

the corresponding application or application component to see

if the misuse truly leads to reduced functionality, degraded

performance, or increased cost comparing with an alternative

way of using ML APIs, which we designed. When one misuse

is identified, we generalize it and check if there are similar

misuses in other applications. We repeat this process for many

rounds until we converge to the results presented in this

paper. During this process, we report representative misuses to

corresponding application developers, receiving confirmation

for many cases. All the manual checking is conducted by two

of the authors, with their results discussed and checked by all

the co-authors.

We identify a wide variety of applications as containing ML

API misuses including those both: small and large, young and

old, AWS and Google-API based. This variety of misuses indi-

cates that they are not rare mistakes by individual programmers

and do not appear to diminish with software growth, age, or

API provider.

C. Profiling methodology

In section V, we profile several projects to evaluate their

performance before and after optimization. We use real-world

vision, audio, or text data that fits the scenario of correspond-

ing software. We profile the end-to-end latency for each related

module and also the whole process: from user input to final

output. By default, we run each application under profiling

five times for each input and reported the average latency.

All experiments were done on the same machine, which

contains a 16-core Intel Xeon E5-2667 v4 CPU (3.20GHz),

25MB L3 Cache, 64GB RAM, and 6×512GB SSD (RAID

5). It has a 1000Mbps network connection, with twisted pair

port. Note that all the machine-learning inference is done by

cloud APIs remotely, instead of on the machine locally.

IV. FUNCTIONALITY-RELATED API MISUSES

Through manual checking, we identified three main types of

API misuses that commonly affect the functional correctness

of applications, as listed in Table III (white-background rows).

They are typically caused by developers’ misunderstanding

of the semantics or the input data requirements of machine

learning APIs, and can lead to unexpected loss of accuracy

and hence software misbehavior that is difficult to diagnose.

Note that, although the high-level patterns of these misuses,

such as calling the wrong API and misinterpreting the outputs,

naturally occur in general APIs, the exact root causes, code

anti-patterns, and tackling/fixing strategies are all unique to

ML APIs, as we discuss below.

A. Calling the wrong API

Unlike traditional APIs that are programmed to each con-

duct a clearly coded task, ML APIs are trained to perform

tasks emulating human behaviors, with functional overlap

among some of them. Without a good understanding of these

APIs, developers may call the wrong API, which could lead

to severely degraded prediction accuracy or even a completely

wrong prediction result and software failures. We discuss three

pairs of APIs that are often misused below.



What challenges Related APIs and Inputs Service Impact # (%) of Problematic Apps.
did developers encounter? Provider Manual Auto

Should Have Called a Different API

Complicated cognitive semantic overlap
across APIs

text-detection vs. document-text-detection G Low Accuracy 6 ( 11%) -
image-classification vs. object-detection AG Low Accuracy 5 ( 9%) -
sentiment-detection vs. entity-sentiment-detection G Low Accuracy 4 ( 5%) -

ASync vs. Sync Language-NLP A Slower - 3 (43%)
Complicated tradeoffs: Input-Accuracy-Perf. ASync vs. Sync Speech Recognition G Slower 7 ( 78%) 203 (83%)

ASync vs. Sync Speech Synthesis A Slower - 2 (22%)

Vision-Image API vs. annotate-image AG Slower 7 ( 78%) -
Language-NLP API vs. annotate-text AG Slower 11 (100%) -Unaware of parallelism APIs
Regular API vs Batch API AG Slower Workload dependent

Should Have Skipped the API call

Complicated tradeoffs: Input-Performance Speech Synthesis APIs with constant inputs AG Slower, More Cost 15 ( 25%) 279 (17%)

Complicated tradeoffs: Accuracy-Performance Vision-Image APIs with high call frequency AG Slower, More Cost 3 ( 3%) -

Should Have Converted the Input Format

Complicated data requirements all APIs without input validation, transformation AG Exceptions 206 ( 57%) -

Complicated tradeoffs: Input-Accuracy-Perf. Vision-Image APIs with high resolution inputs AG Slower 106 ( 88%) -

Language-NLP APIs with short text inputs AG More Cost 4 ( 3%) -
Complicated tradeoffs: Input-Accuracy-Cost Speech recognition APIs with short audio inputs AG More Cost 1 ( 2%) -

Speech synthesis APIs with short audio inputs AG More Cost 1 ( 2%) -

Should Have Used the Output in Another Way

Complicated semantics about outputs sentiment-detection G Low Accuracy 24 ( 39%) 360 (37%)

Total number of benchmark applications with at least one API misuse AG 249 (69%)

TABLE III: ML API misuses identified by our Manual checking and Automated checkers. “A” is for AWS and “G” for Google.

The %s of problematic apps are based on the total # of apps using corresponding APIs in respective benchmark suite. Note

that, 133 apps contain more than one type of API misuses; the average number of API misuses in each application is 1.3.

Text-detection and document-text-detection

are both vision APIs designed to extract text from images,

with the former trained for extracting short text and the

latter for long articles. Mixing these two APIs up will

lead to huge accuracy loss. Our experiments using the

IAM-OnDB dataset [57] show that text-detection has

about 18% error rate in extracting hand-written paragraphs,

and can only extract individual sentences—not complete

paragraphs—when processing multi-column PDF files; yet,

document-text-detection makes almost no mistakes

for these long-text workloads. This huge accuracy difference

unfortunately is not clearly explained in the API documenta-

tion and is understandably not known by many developers.

In our benchmark suite, 52 applications used at least

one of these two APIs, among which 6 applications (11%)

use the wrong API. For example, PDF-to-text [58] uses

text-detection to process document scans, which is

clearly the wrong choice and makes the software almost

unusable for scans with multiple columns.

Image-classification and object-detection

are both vision APIs that offer description tag(s) for the

input image. The former offers one tag for the whole image,

while the latter outputs one tag for every object in the im-

age. Incorrectly using image-classification in place

of object-detection can cause the software to miss

important objects and misbehave; an incorrect use along the

other direction could produce a wrong image tag.

In our benchmark suite, 57 applications use at least one

of these two APIs, among which 5 applications (9%) pick

the wrong API to use. For example, Whats-In-Your-Fridge

[51] is expected to leverage the in-fridge camera to tell a user

what products are currently inside the fridge. However, since

it incorrectly applies image-classification, instead of

object-detection, to in-fridge photos, it is doomed to

miss most items in the fridge—a severe bug that makes this

software unusable. Similarly, Phoenix [59] is expected to

detect fire in photos and warn users, but incorrectly uses

image-classification. Therefore, it is very likely to

miss flames occupying a small area. We have reported this

misuse to developers and they have confirmed this bug.

Similar problems also exist in language APIs. For exam-

ple, sentiment-detection and entity-sentiment

-detection can both detect emotions from an input article.

However, the former judges the overall emotion of the whole

article, while the latter infers the emotion towards every

entity in the input article. Mis-use between these two APIs

can lead to not only inaccurate but sometimes completely

opposite results, severely hurting the user experience. In our

benchmark suite, 86 applications used these APIs, among

which 4 applications (5%) use the wrong one.

Summary Above API mis-uses form an important and new

type of semantic bugs: the machine-learning component of

software suffers unnecessary accuracy losses due to simple

API-use mistakes, which we refer to as accuracy bugs. Accu-

racy bugs in general are difficult to debug, as they are difficult

to manifest under traditional testing and developers may easily

blame the underlying DNN design without realizing their

own, easily fixable, mistakes. The particular accuracy bugs

discussed here involve some of the most popular APIs, used

by more than half of the applications in our suite, and hence

are particularly dangerous. We reported some of these bugs to

a few actively maintained applications recently, and already

got two bug reports confirmed by developers.

One may tackle this problem through a combination of



response = client.analyze_sentiment(document=document,

encoding_type=encoding_type)

···

sentiment = response.document_sentiment.score

···

if avg_sentiment < 0:

message = '''Your posts show that you might not be '

going through the best of time. '''

Fig. 2: Misinterpreting outputs in JournalBot [62]

program analysis, testing, and DNN design support. Some

of these misuses may be statically detected by checking

how the API results are used—if only one tag or senti-

ment result is used following a object-detection or

entity-sentiment-detection call, there is a likely

mis-use. Mutation testing that targets these misuse patterns

could also help—we can check whether the software behaves

better when replacing one API with the other. Finally, it is also

conceivable to extend the DNN or add a simple input classifier

to check if the input differs too much from the training inputs

of the underlying DNN, similar to the problem of identifying

out-of-distribution samples tackled by recent ML work [60].

B. Misinterpreting outputs

Related to the probabilistic nature of cognitive tasks, DNN

models operate on high-dimensional continuous representa-

tions, yet often ultimately produce a small discrete set of

outputs. Consequently, ML APIs’ outputs can contain com-

plicated, easily misinterpretable semantics, leading to bugs.

A particularly common mistake concerns the sentiment

detection API from Google’s NLP service. This API re-

turns two floating point numbers, score and magnitude.

Among them, score ranges from −1 to 1 and indicates

whether the input text’s overall emotion is positive or negative;

magnitude ranges from 0 to +∞ and indicates how strong

the emotion is. According to Google’s documentation [61],

these two numbers should be used together to judge the

sentiment of the input text: when the absolute value of either

of them is small (e.g., Score < 0.15), the sentiment should be

considered neutral; otherwise, the sentiment is positive when

score is positive and negative when score is negative.

In our benchmark suite, 62 applications have used this API,

among which 24 have used the API results incorrectly (39%).

For example, a journal app JournalBot [62] (Figure 2)

uses this API to judge the emotion in a user’s journal and

displays encouraging messages when the emotion is negative.

Unfortunately, it considers the journal to be emotionally neg-

ative checking only that score < 0. This interpretation often

leads to wrong results and hence unfitting messages—when

the magnitude is small or the score is a small negative

value, the emotion should be neutral even if score < 0. We

have reported it to developers and they confirmed this bug.

Summary Incorrectly using ML API results can again lead

to accuracy bugs that are difficult to debug. We reported

some of these bugs to a few actively maintained applications

recently, and already got three bugs confirmed by developers.

This above problem about sentiment detection can be alle-

viated by automatically detecting result misuse through static

program analysis, which we discuss in Section VII.

C. Missing input validation

Inputs to ML APIs are typically real-world audio, image,

or video content. These inputs can take many different forms,

with different resolutions, encoding schemes, and lengths.

Unfortunately, developers sometimes do not realize that not

all forms are accepted by ML APIs, nor do they realize that

such input incompatibility can be easily solved through format

conversion, input down-sampling, or chunking. As a result,

lack of input validation and incompatibility handling are very

common, and can easily cause software crashes.

Many ML APIs have input requirements and an exception

is thrown at an incompatible input. For example, the Google

speech recognition APIs have formatting requirements (i.e.,

single channel, using 16 bit samples for LINEAR PCM) and

size requirements (< 1 minute for synchronous APIs) for

audio inputs; vision APIs have size requirements (i.e., < 5

MB for AWS and < 10 MB for Google) for image inputs.

Among the 360 benchmark applications, 11% choose to

use APIs that do not require input validation, about one third

make the effort to guarantee their input validity through input

checking and transformation, and yet more than half of the

applications made no effort to guarantee input compatibility

(206 applications). Furthermore, none of these 206 applica-

tions handle exceptions thrown by API calls, and hence can

easily encounter software crashes due to incompatible inputs.

For example, Automatic-Door [63] takes input camera

images and decides to open or close a door using face

verification through the AWS API compare-faces. Since

compare-faces requires the input image to be smaller than

5 MB, without any input checking and transformation, this

software could be completely unusable if it happens to be

deployed with a high resolution camera.

Summary Input checking and transformation is particularly

important for ML APIs, considering the wide variety of real-

world audio and visual content, and is unfortunately ignored by

developers at an alarming rate—206 out of 360 applications,

severely threatening software robustness. This problem can be

alleviated by automatically detecting and warning developers

of the lack of input validation or exception handling. Even bet-

ter, we can design a wrapper API that automatically conducts

input checking and transformation (e.g., image down-sampling

and audio chunking), which we will present in Section VII.

V. PERFORMANCE-RELATED API MISUSES

Through manual checking, we identify and categorize 4

main types of ML API mis-uses that can lead to huge perfor-

mance loss and user experience damage (see Table III, blue-

background rows). They are typically related to ML APIs’

complicated tradeoffs among input-transformation effort, per-

formance, and accuracy.



A. How important are performance anti-patterns?

To motivate the study below, we first check whether the

performance of ML APIs matters for software user experience.

First, the latency of ML APIs are significant, ranging from

close to one second to several minutes for typical inputs. Based

on our profiling, in vision tasks, most APIs takes 0.2-0.6 sec-

onds to process a low-resolution image with 550×400 pixels,

and almost one full second to process a high-resolution image.

In language tasks, a 5000-character input takes 0.60 (± 0.05)

seconds for synchronous APIs and as many as 413 (± 58)

seconds for asynchronous APIs.1 In speech tasks, a 30-second

short audio clip takes 7.1 (± 1.5) seconds with synchronous

APIs and 13.6 (± 4.9) seconds with asynchronous APIs.2

Second, we find that more than one third of the benchmark

applications have (soft) latency deadlines of a couple of

seconds or less, with their service quality directly affected by

ML APIs. Many of them (114 out of 360) involve ML APIs in

their critical user-interactive workflow and hence need the API

result to return within a couple of seconds to maintain good

software interactivity [64], [65]; in addition, some applications

(11 out of 360) process streaming data, audio, video, and

others, from a sensor, and hence have to finish each API call

in less than one second [66] to avoid data loss. Even for those

applications that do not have tight deadlines, typically one

would still hope an output to be generated in a few minutes,

which could still be challenging, as these applications typically

feed a large amount of data to ML APIs.

Clearly, inefficient use of ML APIs can cause severe damage

to user experience, as we will see in real examples below.

B. Misuse of asynchronous APIs

The same ML task can often be performed with multiple

APIs, a synchronous version, an asynchronous version, and

sometimes a streaming version (see Table I). The different

versions have complicated and sometimes counter-intuitive

tradeoffs between input transformation, performance, and ac-

curacy that often confuse developers and lead to surprisingly

wide-spread and severe misuses based on our study.

A common problem is related to asynchronous ML APIs. In

many concurrent programs, asynchronous functions are used to

gain performance through improved concurrency at the cost of

extra development effort. In most ML applications, the tradeoff

is the opposite: asynchronous ML APIs are called without

improved concurrency and huge performance loss in exchange

for less effort in input transformation.

The benefit of asynchronous ML APIs is clearly docu-

mented: they allow much longer audio/text inputs than syn-

chronous APIs. For example, in Google speech recognition

service, the synchronous API takes audio up to 1-minute long,

while the asynchronous API can take up to 480 minutes [67].

The performance downside of asynchronous APIs is un-

fortunately not quantitatively specified in the documentation.

1Profiled with AWS Comprehend on three types of inputs: a philosophy
text, a novel with conversations, and a CNN news article.

2Profiled with Google Speech-to-Text on three different inputs: a news
broadcast, an online lecture, and a WSJ audio. Data format: avg (± std)

In our profiling, synchronous and streaming APIs are about

twice as fast as asynchronous APIs in Google Speech-to-Text

service, as shown in Figure 3.a. The difference is even bigger

for AWS Comprehend service (i.e., NLP). Since its multi-file

synchronous API has built in parallelism, the speed up over

asynchronous API can be as many as 400X (Figure 3.b).

Making things worse, most applications call asynchronous

ML APIs synchronously, with the caller blocking itself until

the API returns and no other concurrent execution on going,

and hence has no way to compensate for the poor performance.

Among the 44 benchmark applications using Google speech

recognition APIs, 9 use the asynchronous API. 7 out of

9 make the asynchronous call in a synchronous way. Our

automated checker confirms this trend: 203 out of 246 GitHub

applications call this asynchronous API in a synchronous way.

Clearly, many of these asynchronous APIs could be replaced

with synchronous or streaming APIs, with a huge performance

improvement (up to 400X as profiling shows). We demonstrate

these optimizations using a few benchmark examples below.

Replacing with synchronous call. Answering-Machine

[68] applies the asynchronous speech recognition API to every

voice mail and then sends specific text messages to slack

accounts based on the transcript returned by the API call. Since

the typical length of a voice mail is 30 seconds [69], it could

have checked the size of every voice mail first, which takes

0.002 seconds in our profiling, and then used the synchronous

API for most of the voice mails with a huge speedup: for a

30.0-second voice mail, the asynchronous Speech-to-Text API

takes 16.5 (± 5.9) seconds and yet the synchronous API takes

only 8.9 (± 1.0) seconds—a huge latency improvement.

Jiang-Jung-Dian [70] is an application that automatically

generates meeting reports. It needs more than 8 minutes (i.e.,

490 seconds) to process a one-minute meeting recording (all

numbers are averaged based on five runs). Our profiling shows

that uploading the audio file and downloading the results

together only take 1.1 seconds, and yet the majority of the time

is spent in an asynchronous Speech-to-Text API call and then

an asynchronous text Comprehend API call, with the latter

alone taking close to 7 minutes (410 seconds). If we replace

it with AWS synchronous multiple-file Comprehend API, the

API execution time drops from 410 seconds down to only 0.97

seconds (more than 400X speedup!), and hence is no longer a

performance bottleneck. In fact, the AWS synchronous multi-

file Comprehend API can take in 25 documents at a time with

each document containing up to 5000 characters, big enough

to hold the transcript of several hours’ meetings.

Replacing with streaming call. Much real-world audio

content takes a streaming form, and is supported by streaming

APIs for several audio-related ML tasks, like the speech recog-

nition service in Google Cloud [71] (AWS offers streaming

APIs but not for Python programs). These streaming APIs

can either be directly applied to a local audio file, which

was the setting in Figure 3.a, or to a streaming input. They

offer unique benefits for a streaming input: (1) they can start

processing input and returning inference results before the

whole audio finishes; (2) they support an unlimited length of





synchronous multiple files API only have very minor word

difference, with the latter offering a 1.5X speedup for a 4500-

character sample email (0.44 seconds vs. 0.66 seconds). The

total time saving for all the emails will be significant.

Samaritan [78] is another example. It first uses a speech

recognition API to get transcript from a doctor’s voice mes-

sage, and then uses an NLP API to detect entities from the

transcript. In addition to the entity-detection task discussed

above, the speech recognition task is also suitable for a

batching optimization: chunking an audio file by silence every

10-15 seconds typically has minor impact on the output, as

speech recognition DNNs usually are trained on short audio

snippets (e.g. VCTK dataset [79] mostly consists of 2-6 second

audio clips, and Google Audioset [80] consists of less than 10

second audio clips). Furthermore, a doctor’s voice message is

often long enough to get chunked into multiple 10–15 second

clips which can be processed in parallel.

Summary: The mentioned parallelism APIs are rarely used

in our benchmark suite, appearing in only 1 out of the 360

applications. Static analysis can be used to identify ML APIs

sequentially applied to the same input data, and suggest or

automate an optimization that uses annotate* APIs. By

dynamically checking the input size to some ML APIs like

speech recognition and entity detection, data-parallel opti-

mization can be done by calling batch APIs, which we have

implemented as API wrappers (Section VII).

D. Making skippable API calls

Sometimes, an API call can be skipped at the cost of slightly

higher engineering effort or slight, but often indiscernible

by human, functionality difference. Lack of understanding of

these tradeoffs leads to some unnecessary API calls.

API calls with constant inputs. Among the 60 benchmark

applications that use the speech synthesis API, 15 (25%) of

them call this API with a constant string input and thus could

have replaced the API call with a pre-recorded audio. As we

will see in Section VII, our automated checker found that this

is indeed a prevalent problem in hundreds of applications.

An example is Sounds-Of-Runeterra [81] (Figure 4), a

card game extension that improves game accessibility to

visually impaired users. It contains multiple unnecessary calls

to Google speech synthesis API, each generating an audio clip

for one constant string, e.g., “You won”, “Exiting application”,

etc. Replacing each of them with a pre-recorded audio clip can

save 0.9 seconds and associated monetary cost for each API

call.

API calls with excessive frequency. Sometimes, a pro-

gram repeatedly invokes an image-processing API at high

frequency. Reducing the invocation frequency can lead to huge

performance improvement with little to no perceivable output

difference to human users. Among 120 vision benchmarks, 3

of them fall into this anti-pattern.

For example, Ns-Tool [82] is a game screen monitoring

application. Every second, it takes a screenshot of the game

and applies the text-detection API to check whether

the screen is locked; if so, it sends a message through the

def _stop(self):

audio = self.transform_text_to_audio_as_bytes_io(

"Exiting application.")

···

def transform_text_to_audio_as_bytes_io(self, string,

language_code = DEFAULT_LANGUAGE_CODE):

voice_request = build_voice_request(string, language_code)

response = self.client.synthesize_speech(

voice_request.synthesis_input,

voice_request.voice_config,

voice_request.audio_config)

···

Fig. 4: Skippable call@ Sounds-Of-Runeterra [81]

internet to the user. Clearly, this causes unnecessary waste

of computation resources, because the auto-sleep duration is

at least several minutes and a couple of seconds’ delay in

sending out the reminder message would not matter to users.

As another example, Tags [83] is a video scene-detection

application. It applies the image classification API to analyze

every frame of the input video; it then splits the video into

smaller pieces based on where the image-classification output

changes; and eventually outputs the video splits and the label

of each split to the user. Clearly, we could apply the image

classification API at a much sparser rate (e.g., once every other

frame or even sparser) with big performance improvement and

little impact to output quality, as most of the adjacent video

frames are similar to each other and a miss of a couple of

frames is probably un-perceivable to human eyes.

Summary: These problems also occur with other APIs as

well, although not as common as that for speech synthesis

and vision-image APIs. We reported some of the constant-

input speech-synthesis problems to a few actively maintained

applications recently, and already got three bugs confirmed.

We have built a static checker to automatically identify

speech synthesis API call with a constant input (Section VII);

future research could design a dynamic controller to adjust

API call frequency, balancing functionality and performance.

E. Unnecessarily high-resolution inputs

Vision APIs accept inputs with a range of resolutions and

impose a complicated tradeoff among input, performance, and

accuracy that is often ignored by developers—with higher

input resolution, the performance degrades greatly, while the

inference accuracy increases and then saturates quickly.

This tradeoff is not explained clearly in the tutorial: AWS

tutorial did not offer any resolution suggestion; Google vision

APIs did suggest image resolution to be 640 x 480, which is

ignored by most developers. To better understand this tradeoff,

we conducted an experiment with 100 randomly collected

high resolution images in four categories (Dog, Bufferfly,

Scooper, and Wardrobe). We down-sampled each image to

create 6 more images with different resolutions as shown in

Figure 5, and then feed them each into the Google image

classification API. As shown in the figure, the round-trip API





transcribe.start_transcription_job(...)

while True:

status = transcribe.get_transcription_job(...)

if status[...] in ['COMPLETED', 'FAILED']:

break

time.sleep(···)

operation = client.long_running_recognize(config, audio)

result = operation.result()

Google Cloud Speech-to-Text

AWS Transcribe

Fig. 6: Using asynchronous API in synchronously (Blue lines

contain key code structures used by our checker)

result fields. Unfortunately, HTML code analysis is currently

not covered by our checker.

B. Asynchronous API call checker

As discussed in Section V-B, many applications in our

benchmark suite call asynchronous APIs in a synchronous,

blocking way, and hence suffer reduced performance for no

benefit. To automatically identify this problem, our checker

first identifies all the places where an asynchronous API is

called and then the application immediately waits on the result,

following the common API usage patterns shown in Figure 6.

The checker then looks for other concurrent execution. If not,

this pattern is tagged as a place for performance optimization.

To accurately identify code snippets that can execute con-

currently with an asynchronous API call is difficult. Our

checker examines if the function f calling the asynchronous

API, or the callers of f , ever appears in the same Python

file with any multi-thread and multi-process related Python

APIs, in which case our checker conservatively thinks that

f may be calling the asynchronous API concurrently with

other execution in the program. Otherwise, this is reported

as a performance problem.

Our checker is applied to 246 GitHub python applications

using Google’s Speech-to-Text asynchronous API, and reports

203 applications that issue at least one asynchronous call,

while the caller blocks to wait for the result without other

concurrent execution in the program. We manually checked

30 reported problems and found no false positives. Being con-

servative, our checker does have false negatives. For example,

our manual checking finds that only 8 of the remaining 43

cases have called the asynchronous API in a concurrent way.

For 277 Python applications that use asynchronous AWS

NLP and Speech APIs, our checker automatically reports 110

applications as having this type of performance problem. Our

manual checking finds no false positives out of 30 randomly

sampled problem reports. Note that, our checker may have

more false negatives for AWS applications, as a number of

applications use AWS Lambda auto-scheduler service [56]

when making the asynchronous API call, which our checker

conservatively assumes as having no performance problems.

C. Constant-parameter API call checker

We have implemented a static checker to automatically

identify speech synthesis API calls that use constant inputs,

a type of performance mis-use discussed in Section V-D.

Our checker starts with every call site and tracks backward

along the data dependency graph to see how the parameter

of the API call is generated. Specifically, the checker keeps

a working set that is initialized with the parameter itself p. It

first identifies all the p assignments that can reach the API call

site, and replaces p in the working set with all the non-constant

variables at the right-hand side of those assignments. This back

tracking continues until either (1) the working set becomes

empty, in which case a constant-parameter API call problem is

reported, or (2) our tracking has reached our inter-procedural

checking threshold, configured as 5 levels of function calls,

in which case we consider this API call as having a variable

parameter.

We applied our checker to 686 (943) applications on Gib-

Hub that use Google’s (AWS’s) Python speech synthesis API.

From them, our checker finds 202 (196) applications making

the speech synthesis API calls with constant parameters. We

then manually excluded those cases where the problematic

calls are inside unit tests and, at the end, found 133 (146)

applications having this performance problem inside their main

program. By manually checking 60 reported applications, 30

each from AWS and Google, we found a total of 4 false

positives. In 1 case, memoization is actually implemented;

in the other 3 cases, a library call with constant parame-

ters can actually return non-constant results, which confused

our checker. Overall, as the number shows, this is really a

widespread problem in machine learning applications.

D. API wrappers

We design API wrappers for all three domains of APIs. In

vision tasks, our wrapper down-samples large images to the

suggested size of 640×480 pixels. It tackles the anti-patterns

of missing input validation (Section IV-C) and unnecessarily

high-resolution inputs (Section V-E). In language tasks, the

wrapper focuses on entity detection and syntax analysis, which

allow input chunking with little impact to result accuracy.

Our wrapper API takes in one or multiple text strings. It first

concatenates all input strings together, which avoid the money

wasting problem in Section VI. If the combined string is not

too long, a synchronous API is called; if it is too long, it will

be chunked and get processed through batching API, avoiding

the anti-patterns of forgetting parallel APIs (Section V-C) and

misuse of asynchronous APIs (Section V-B) . The wrapper

for speech tasks is similar, but only takes one audio as input.

The wrapper uses the synchronous API when the input size

allows or streaming API otherwise. All these wrappers conduct

an input validation and, in some cases, also transformation

(Section IV-C).

The source code of all the checkers and wrappers is avail-

able online [50].



VIII. THREATS TO VALIDITY

Internal threats to validity. The inputs used in our perfor-

mance profiling and inference-accuracy measurement may not

represent the exact workload used by real-world users. Our

static checkers, as discussed in Section VII, can have false

positives and false negatives.

External threats to validity. As discussed in Section III,

we only studied ML APIs offered by Google and AWS in

this work, but not those offered by other service providers.

Our study only covers cloud APIs with pre-trained DNNs

designed for general purpose use, and excludes user-defined

DNNs based on their specific needs. We only study open-

source projects on GitHub, with no access to those closed-

source commercial projects. The 360 applications in our

manual study benchmark suite may not represent all real-world

applications. Our static analysis tool currently only covers

python applications.

IX. RELATED WORK

Prior work studies the different phases and different devel-

oper roles in large-scale development and deployment of ML-

based applications [1], [88]–[90]. These applications design

their own DNNs, instead of using existing ML APIs. Some

work studies DNN deployment challenges caused by different

frameworks and platforms and how to address them using

techniques like DNN compression and quantization [91], [92].

Some research studies common mistakes in programs that

design and train neural networks [16]–[19] or other types

of machine learning models (e.g., SVM and decision tree)

[93]. Some works focus on testing [20]–[45] and fixing [46]–

[49] neural networks. All of these studies consider building

machine learning models, instead of using them.

Another line of work focuses on the design and implemen-

tation of machine learning APIs, including machine learning

frameworks like TensorFlow and PyTorch [9]–[15] and REST

APIs for machine learning [94]–[96]. These works do not look

at how ML APIs are used in larger software systems.

Much research has been done for designing and improving

FaaS (Functions as a Service) platforms, in terms of perfor-

mance [97]–[101], and security [102]–[104]. However, these

works focus on the server side, instead of the client side. Some

works [105]–[107] also examine the performance of enterprise

FaaS platforms to help developers select service providers.

Other works [108]–[110] aim to help developers move local

computation to the cloud. These works improve application

performance using general FaaS APIs, but do not address the

unique challenges for ML APIs.

X. CONCLUSION

Cloud based machine learning APIs have become a popular

approach for developers to leverage machine learning infer-

ence in software. This paper conducts a comprehensive study

to understand the challenges in using these machine learning

APIs. By investigating the latest versions of 360 open-source

applications using Google and AWS ML Cloud APIs, we have

found 8 types of common API misuses that cause functionality,

performance, and service cost problems. We also develop static

checkers to automatically detect some of these problems in a

larger set of applications. The wide presence of these problems

motivates future research to further tackle ML API misuses.

DATA AVAILABILITY

We have released our whole benchmark suite, automated

checkers, and detailed study results online [50].
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