
Towards Differentially Private Truth Discovery for
Crowd Sensing Systems

Yaliang Li1, Houping Xiao2, Zhan Qin3, Chenglin Miao4, Lu Su4, Jing Gao4, Kui Ren3, and Bolin Ding1

1 Alibaba Group, 2 Georgia State University,
3 Zhejiang University, 4 State University of New York at Buffalo

Email: 1 {yaliang.li, bolin.ding}@alibaba-inc.com, 2 hxiao@gsu.edu,
3 {qinzhan, kuiren}@zju.edu.cn, 4 {cmiao, lusu, jing}@buffalo.edu

Abstract—Nowadays, crowd sensing becomes increasingly
more popular due to the ubiquitous usage of mobile devices. How-
ever, the quality of such human-generated sensory data varies
significantly among different users. To better utilize sensory data,
the problem of truth discovery, whose goal is to estimate user
quality and infer reliable aggregated results through quality-
aware data aggregation, has emerged as a hot topic. Although
the existing truth discovery approaches can provide reliable
aggregated results, they fail to protect the private information
of individual users. Moreover, crowd sensing systems typically
involve a large number of participants, making encryption
or secure multi-party computation based solutions difficult to
deploy. To address these challenges, in this paper, we propose
an efficient privacy-preserving truth discovery mechanism with
theoretical guarantees of both utility and privacy. The key idea of
the proposed mechanism is to perturb data from each user inde-
pendently and then conduct weighted aggregation among users’
perturbed data. The proposed approach is able to assign user
weights based on information quality, and thus the aggregated
results will not deviate much from the true results even when
large noise is added. We adapt local differential privacy definition
to this privacy-preserving task and demonstrate the proposed
mechanism can satisfy local differential privacy while preserving
high aggregation accuracy. We formally quantify utility and
privacy trade-off and further verify the claim by experiments
on both synthetic data and a real-world crowd sensing system.

I. INTRODUCTION

Today, we witness the explosion of sensory data which are
continuously generated by countless individuals all over the
world through the increasingly capable and affordable mobile
devices, such as smartphones, smartwatches, and smartglasses.
The information mined from such massive human-generated
sensory data provides critical insights for a wide spectrum
of applications, including healthcare, smart transportation and
many others. While sensory data are potentially huge treasure
troves, it remains a challenging task to extract truthful in-
formation from the noisy, conflicting and heterogeneous data
submitted by the numerous mobile device users.

In such scenarios, it is essential to aggregate the sensory
data about the same set of objects collected from a crowd of
users to get true facts or aggregated results. The key factor in
aggregating noisy sensory data is to capture the difference in
information quality among different users. Some users provide
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correct and useful information while others may submit noisy
or fake information due to hardware quality, environment
noise, or even the intent to deceive and get rewards. Therefore,
the naive approach that regards all the users equally in aggre-
gation may fail to derive reliable aggregated results. Instead,
we hope to capture the probability of a user providing accurate
information in the form of user weight and incorporate it into
the aggregation so that final output is closer to the information
provided by reliable users. The challenge is that user weight
is usually unknown a priori in practice and has to be inferred
from the sensory data.

To address this challenge, a series of truth discovery mecha-
nisms [1]–[3] are proposed to tackle the problem of estimating
user weight and inferring reliable aggregated information from
noisy crowdsourced sensory data, and have been successfully
applied to various domains such as social sensing [4], air
quality monitoring [5], and network quality measurement [6].
In these applications, users can share their sensory data, and
an accurate aggregation can lead to important knowledge for
various applications and systems. As both user weights and
aggregated results are unknown, truth discovery approaches
estimate them simultaneously based on the following two
principles: (1) If the information provided by a particular user
is closer to the aggregated results, this user will be assigned a
higher weight. (2) If a user has a higher weight, his information
will be counted more in the aggregation. Based on these prin-
ciples, truth discovery approaches take crowdsourced sensory
data as input, and then iteratively estimate user weights and
update aggregated results. Different from simple aggregation
such as averaging or voting, truth discovery conducts weighted
aggregation in which user weights are automatically estimated
from the sensory data.

Privacy Concerns. One important component missing in
these truth discovery approaches is the protection of user
privacy. These approaches assume that the sensory data has
been collected from users by a centralized server. However,
during this data collection procedure, users may have con-
cerns in sharing personal or sensitive information [7]–[19].
For example, individuals’ GPS data are important sources
for traffic monitoring and smart transportation, but contain
sensitive information that users might not want to release.
Aggregating health data through wearable devices can lead to
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better discovery of new drugs’ effects, but it may suffer from
the risk of information leaking about each participant. In these
and many more application scenarios, the final aggregation
results can be public and beneficial to the community or
society, but the data from each individual user should be well
protected.

A possible solution to tackle this challenge is to adopt
encryption or secure multi-party computation techniques in
truth discovery [20]–[23]. However, these techniques typically
involve time-consuming computation or expensive communi-
cation among mobile device users. Therefore, although these
techniques can achieve strong protection for users, it is difficult
to deploy them in large-scale truth discovery tasks which
require highly efficient and non-coordinated privacy preserving
strategies.

Proposed Mechanism. In the light of these challenges,
we propose to address such user privacy concerns in truth
discovery by providing an effective and efficient mechanism.
The proposed privacy-preserving truth discovery mechanism
for aggregating continuous data can guarantee both good
utility and strong privacy. The proposed mechanism works as
follows. Each user samples independent noise from a privately
known noise distribution and adds the sampled noise to their
data. After collecting perturbed data from all the users, the
server conducts weighted aggregation by weighing each user’s
information properly to obtain final output. We demonstrate
the ability of the proposed mechanism to tolerate high noise
with negligible loss in aggregation accuracy. This advantage
is brought by the fact that the proposed mechanism can
automatically adjust user weights, and thus can lower a user’s
weight when high noise is added so that the effect of noise
on the final aggregation results can be significantly reduced.

The theoretical analysis of the proposed mechanism is
conducted from the following aspects: (1) We quantify the
loss in aggregation accuracy that is caused by the noise
added to the input data, and show the proposed mechanism’s
advantage that the accuracy does not drop much even with
large noise. (2) Another advantage of the mechanism is that
the noise distribution adopted by each user is unknown to
the public. This scheme is easy to implement and requires
no communication among users. Formally, we adopt local
differential privacy to quantify user privacy protection in truth
discovery scenarios. (3) The trade-off between aggregation
accuracy (utility) and the defined local differential privacy is
analyzed, which shows how both aggregation accuracy and
end user privacy can be guaranteed simultaneously.

Contributions. In summary, our contributions are:
• We propose a privacy-preserving truth discovery mecha-

nism for crowdsourced sensory data aggregation, which
consists of perturbations on users’ data and weighted
aggregation on perturbed data. The proposed mechanism
tackles this challenging privacy preserving task with
guarantees of both accuracy and privacy.

• We formally define aggregation accuracy and privacy for
the studied task, and theoretically quantify the range of

noise that can be adopted to achieve good utility and
strong privacy.

• Experiments on both synthetic data and a real-crowd
sensing system validate the claim that the proposed mech-
anism can generate accurate aggregation results while
preserving users’ privacy. Results show that even when
the added noise is large, aggregation accuracy only drops
slightly.

In the remaining parts of this paper, we first define the
problem in Section II. Then the proposed privacy-preserving
truth discovery mechanism is presented in Section III. Section
IV theoretically analyzes the utility and privacy trade-off,
which is also demonstrated through a series of experiments in
Section V. We discuss related work in Section VI and conclude
the paper in Section VII.

II. PROBLEM DEFINITION

In this section, we describe the setting of the proposed
privacy preserving task based on crowd sensing system. At the
core, it consists of two parties: server and users. The server
is a data collector and computation platform, which is used
to collect and aggregate sensory data from a crowd of users.
Users represent the participants of the task, who are usually
driven by their interests or financial incentives. They receive
assigned tasks from the server and submit their sensory data
(continuous data) to the server.

We propose to protect users’ privacy in the sense that users’
data are obfuscated before being submitted to the untrusted
server. Providing privacy protection for the users who submit
data to an untrusted server is essential in crowd sensing
system. With an effective privacy protection mechanism, users
are more confident and willing to share data, which greatly
enhances data collection and enables crowd sensing tasks that
would otherwise be infeasible due to privacy concerns.

The security threats in the crowd sensing system mainly
come from the unfaithful behavior of the server as it can
tamper the confidentiality of users’ provided information. The
server might try to deduce extra knowledge about users due to
curiosity or financial incentives. The users’ security concern
is to protect their private sensory data from leaking out, while
enabling the server to execute aggregation over them. The
formal definition is introduced below.

Problem Definition. Suppose there are N objects (i.e.,
micro-tasks) that the server wants to collect information about,
and there are S users to provide information about these
objects. Let xsn represent the information for the n-th object
provided by the s-th user. Instead of submitting their original
data {xsn}

N,S
n,s=1 to the server, each user perturbs his data and

only the perturbed data {x̂sn}
N,S
n,s=1 are submitted. Our goal is

to protect users’ privacy by making the probability of observ-
ing the same perturbed value given different original values
P (x̂1 = x̂2|x1 6= x2) high, while keeping the aggregation on
{x̂sn}

N,S
n,s=1 close enough to the true aggregated values.

Note that there are certainly other security threats coming
from inside or outside of crowd sensing systems. For the other
threats, we can leverage and integrate existing techniques to

1157

Authorized licensed use limited to: Purdue University. Downloaded on September 11,2021 at 04:31:27 UTC from IEEE Xplore.  Restrictions apply. 



make our model more complete and readily being deployed in
real world systems.

III. METHODOLOGY

In this section, we first introduce the concepts of truth
discovery, and then present the proposed privacy-preserving
truth discovery mechanism that can guarantee both good utility
and strong privacy.

A. Truth Discovery

In crowd sensing systems, multiple observations are pro-
vided by different users on the same set of objects. However,
the quality of user-provided information usually varies a lot
across users. Therefore, the naive approach that treats all
the users equally in aggregation may fail to give reliable
aggregated results. Truth discovery [1]–[3] gains increasing
popularity recently as it can infer user weights and conduct
weighted aggregation on multiple noisy data sources. Instead
of regarding all the users equally, truth discovery approaches
estimate users’ information quality from the data and relies
more on the users who contribute high-quality information to
derive aggregated results.

Although existing truth discovery approaches may differ
in the specific ways to compute aggregated results and user
weights, we summarize their common procedure as follows.
As there are S users providing their information, the goal is to
aggregate {xsn}Ss=1 to infer the reliable information about the
n-th object, x∗n. Note that we assume both input and output are
continuous values. The general procedure of truth discovery
is summarized in Algorithm 1. Truth discovery starts with
a uniform initialization of user weights, and then iteratively
conducts aggregation step and weight estimation step until
convergence. The convergence criterion can be a threshold
for the change of the aggregated results in two consecutive
iterations or a predefined iteration number.

Aggregation. In the aggregation step, the user weights are
fixed. Then we infer aggregated results as follows:

x∗n =

∑S
s=1 ws · xsn∑S
s=1 ws

, (1)

where ws is the weight of the s-th user. In this weighted
aggregation framework, the final result x∗n relies on those users
who have high weights.

Weight Estimation. In this step, user weights are inferred
based on the current aggregated results. The basic idea is that
if a user provides information which is close to the aggregated
results, a high weight will be assigned to this user. Typically,
user weights are calculated as follows:

ws = f

(
N∑
n=1

d(xsn, x
∗
n)

)
, (2)

where d(·) is a function that measures the difference between
the user-provided information and the aggregated results, and
f is a monotonically decreasing function. If the difference
is small, then the user gets a high weight. Different truth

Algorithm 1 Truth Discovery

Input: Information from S users {xsn}N,S
n,s=1.

Output: Aggregated results {x∗n}Nn=1.

1: Initialize the user weights {ws}Ss=1;
2: repeat
3: for i ← 1 to N do
4: According to Eq. (1), update aggregated results based on

the current estimation of user weights;
5: end for
6: According to Eq. (2), estimate user weights based on the

current aggregated results;
7: until Convergence criterion is satisfied;
8: return Aggregated results {x∗n}Nn=1.

discovery methods may adopt various functions d(·) and f ,
but the underlying principle is the same.

B. Proposed Mechanism

The proposed privacy-preserving truth discovery mechanism
consists of the following two components:

First, we propose to add i.i.d. Gaussian noise, ξsn, to the
original data provided by the s-th user on the n-th object, xsn.
Let’s denote the perturbed information as x̂sn, then

x̂sn = xsn + ξsn, (3)

where ξsn ∼ N(0, δs
2). δs2 is the variance of the Gaussian

noise chosen by the s-th user. Intuitively, the added noise
is related to the degree of privacy protection. When noise
variance is large, the added noise is more likely to be large and
more privacy protection is expected. To guarantee aggregation
accuracy, we ask each user to sample his own variance
from an exponential distribution with hyper parameter λ2.
Based on this strategy, each user chooses his noise variance
independently and then sample independent noise from his
private noise distribution.

After data are perturbed, each user submits his perturbed
data {x̂sn}Nn=1 to the server. The server aggregates the per-
turbed data from all the users {x̂sn}

N,S
n,s=1 by conducting

truth discovery to obtain final output for all objects. When
aggregating perturbed data by truth discovery, the weight of
each user is estimated based on the quality of information
after perturbation. By conducting weighted aggregation, the
effect of noise will be characterized in the user weights and
the final results would not deviate much from the aggregated
results without perturbation. This promises good utility of the
aggregated results. The whole procedure is summarized in
Algorithm 2.

Although the proposed mechanism is simple, it has several
nice properties which make it a great choice for user privacy
protection in truth discovery:
• First, each user chooses his noise variance independently

and randomly, so the noise distribution is unknown to any
other parties including the server.

• Second, truth discovery methods which conduct weighted
aggregation make it possible to achieve high accuracy
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even when the added noise is large. This provides better
accuracy than traditional aggregation methods, such as
mean or median, which do not consider user weights
based on information quality.

• Last but not least, this technique ensures fast processing
as each user only needs to generate random noise and add
it to his data, and there are no communication costs due to
the non-collaborative mechanism. It is easy to implement
and use in real practice.

Algorithm 2 Privacy-preserving Truth Discovery

Input: N objects (i.e., micro-tasks), S users
Output: Aggregated results {x̂∗n}Nn=1

1: Server sends micro-tasks to each user;
2: Users finish the micro-tasks, i.e., the s-th user prepares his

original information {xsn}Nn=1;
3: Each user samples his own parameter δs2 from exponential

distribution based on the server-released hyper parameter λ2;
4: According to Eq. (3), the s-th user perturbs his original

information and get the perturbed data {x̂sn}Nn=1;
5: Users submit their perturbed data to the server;
6: Server conducts truth discovery on perturbed data {x̂sn}N,S

n,s=1 to
calculate aggregated results.

7: return Aggregated results {x̂∗n}Nn=1.

IV. THEORETICAL ANALYSIS

In this section, we analyze the performance of the proposed
privacy-preserving truth discovery mechanism from utility and
privacy perspectives, quantify their trade-off, and demonstrate
that the proposed mechanism can achieve good utility with
strong privacy protection theoretically.

We first introduce the notations that will be used in the
following analysis. As the proposed privacy-preserving truth
discovery mechanism has two components, we denote the
perturbation mechanism and the truth discovery algorithm as
M and A respectively. The original data set is represented as
D = {xsn}

N,S
n,s=1 in which xsn is the original value contributed

by the s-th user on the n-th object. The perturbed data set is
denoted asM(D) = {x̂sn}

N,S
n,s=1 after followingM to perturb

D. The outputs of the truth discovery algorithm on original
data and perturbed data are denoted as {x∗n}Nn=1 = A(D)
and {x̂∗n}Nn=1 = A(M(D)) in which x∗n and x̂∗n denote the
aggregated result for the n-th object on original data and
perturbed data respectively.

We also introduce an important parameter used in the
following analysis. This parameter is related to the prior
knowledge held by the server regarding noise. As discussed
in the previous section, the noise added to the data follows
Gaussian distribution N(0, δs

2) in which δs
2 is drawn from

an exponential distribution with parameter λ2. The server does
not know the actual noise distributions, but knows the hyper-
parameter λ2. In other words, the server knows the distribution
for the variance that captures the noise distributions. Formally,
we define prior knowledge as follows:

Assumption 4.1 (Prior Knowledge): Prior knowledge is the
variance of the noise’s distributions, i.e., the p.d.f of the noise’s
variance is g(z) = λ2e

−λ2z .
Recall that in truth discovery, it is observed that the error

in the original data (difference between user input and true
aggregated results) follows Gaussian distribution N(0, σs

2).
If all the users are unreliable (with big σs

2), it is hard or
even impossible to get useful aggregated results. Thus previous
work on truth discovery assumes that most users should have
relatively good quality [24]. Following this, we assume that the
error variance σs2 is drawn from exponential distribution with
parameter λ1, which guarantees that the chance of observing
an unreliable user is not very large. Note that parameter λ1

is introduced only for theoretical analysis and is not involved
in the proposed mechanism (Algorithm 2). In practice, we do
not need to estimate λ1 for a given application.

Accordingly, the expectation of the error and noise’s vari-
ances are 1/λ1 and 1/λ2 respectively. Let 1/λ2 = c/λ1.
Then, c stands for the ratio between the expectation of noise’s
variance and that of the error’s variance. A large c may lead
to large noise added to users’ data, and thus c can be regarded
as noise level compared with original data. c is an important
parameter. In the following analysis, we link utility and privacy
to c respectively and then discuss utility-privacy trade-off.

A. Utility Analysis

In this section, we present formal definition of utility, and
analyze the utility of the proposed mechanism. First, we define
the utility as follows.

Definition 4.2 ((α, β)-Utility): Let β ∈ [0, 1] and α ≥ 0.
An algorithm A with perturbation mechanism M satisfies
(α, β)-Utility, if the following inequality holds:

Pr{|A(D)−A(M(D))| ≥ α} ≤ β, (4)

where D is an arbitrary data set. This definition quantifies the
probability of the difference in aggregation before and after
perturbation. We hope that the chance of this difference is
greater than α is smaller than probability β. Based on this
definition, under perturbation mechanism M, the smaller α
and β are, the better utility an algorithm A has.

Let A be a truth discovery approach, and M be the
perturbation approach in the proposed mechanism. We now
quantify the utility of the proposed mechanism according to
noise level c and utility parameters α and β. The proof is
derived based on the common property held by truth discovery
approaches, i.e., weighted aggregation and weight estimation.

We derive the main result about utility shown in Theorem
4.3 when c 6= 1. The special case when c = 1 is shown with
similar results in Appendix A. We present the theorem and
proof first and then discuss this result in detail.

Theorem 4.3: Consider a truth discovery algorithm A. We
apply perturbation mechanism M stated in Algorithm 2 on a
data set D and then apply truth discovery algorithm A. Based
on Assumption 4.1, for the aggregation output before and after
perturbation {x∗n}Nn=1 = A(D) and {x̂∗n}Nn=1 = A(M(D)),
there exist constants αλ1,c and Cλ1,α,β,S , s.t. ∀α > αλ1,c, β ∈
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[0, 1], and c ≤ Cλ1,α,β,S , A satisfies (α, β)-Utility. Namely,
the following inequality holds:

Pr{ 1

N

N∑
n=1

|x∗n − x̂∗n| ≥ α} ≤ β, (5)

where Cλ1,α,β,S = λ1
√
π(α

2βS2

4
√

2
+ α2√π

8 + α+ 2√
π

)− 2 and

αλ,c = 2
√

2√
λ1(1−c) ( 3

4 −
c(c+

√
c+1)√

2(1+
√
c)

).
Before we give the proof of Theorem 4.3, we first introduce
a lemma that is useful to the proof.

Lemma 4.4: Assume ws = f(ts) for all s ≤ S. Provided f
is a monotonically decreasing function, then we have:∑S

s=1 wsts∑S
s=1 ws

≤
∑S

s=1 ts

S
. (6)

For the detailed proof of this lemma, please refer to Appendix
B. Now we are ready to prove Theorem 4.3.

Proof:

1

N

N∑
n=1

|x∗n − x̂∗n| =
1

N

N∑
n=1

|
∑S
s=1 wsx

s
n∑S

s=1 ws
−
∑S
s=1 ŵsx̂

s
n∑S

s=1 ŵs
|

≤
∑S
s=1

∑S
s′=1 ŵs′ws(

1
N

∑N
n=1 |xsn − x̂s

′

n |)∑S
s=1

∑S
s′=1 ŵs′ws

≤
∑S
s=1

∑S
s′=1( 1

N

∑N
n=1 |xsn − x̂s

′

n |)
S2

(Lemma 4.4). (7)

Note that xsn−xtruthn ∼ N(0, σ2
s), x̂s

′

n −xtruthn ∼ N(0, σ2
s′ +

δ2
s′) where σ2

s is the s-th user’s error variance, σ2
s′ and δ2

s′

are the s′-th user’s error and noise variance, and xtruthn

represents the true value of the n-th object. Then xsn − x̂s
′

n ∼
N(0, σ2

s +σ2
s′+δ2

s′), as xsn− x̂s
′

n = xsn−xtruth+xtruth− x̂s′n .
Denote Σ2

s,s′ = σ2
s + σ2

s′ + δ2
s′ . We have: E(|xsn − x̂s

′

n |) =∫
R |x|

1√
2πΣs,s′

exp{− x2

2Σ2
s,s′
}dx =

√
2
π

√
σ2
s + σ2

s′ + δ2
s′ .

Based on this and strong law of large numbers, we have
an almost sure convergence estimator 1

N

∑N
n=1 |xsn − x̂s

′

n | =√
2
π

√
σ2
s + σ2

s′ + δ2
s′ . By substituting it into Eq. (7), we have:

1

N

N∑
n=1

|x∗n − x̂∗n| ≤
√

2

π

1

S2

S∑
s=1

S∑
s′=1

√
σ2
s + σ2

s′ + δ2
s′ . (8)

Denote Ys,s′ =
√
σ2
s + σ2

s′ + δ2
s′ , and Ys,s′ is i.i.d.

To simplify the notation, we use Y to denote Ys,s′ in
the following. Accordingly, the p.d.f. of Y is h(y) =

2
λ2
1λ2

λ2−λ1
y3e−λ1y

2 − 2
λ2
1λ2

(λ2−λ1)2 (ye−λ1y
2 − ye−λ2y

2

). Thus,

E(Y ) =
√
π( 3λ2

4
√
λ1(λ2−λ1)

+
λ2
1−λ2

√
λ1λ2√

2λ2(λ2−λ1)2
), and E(Y 2) =

2λ2+λ1

λ1λ2
. Based on Eq. (8), we have:

1

N

N∑
n=1

|x∗n − x̂∗n| ≤
√

2

π

1

S2

∑
s,s′≤S

√
σ2
s + σ2

s′ + δ2
s′

≤
√

2

π
| 1

S2

∑
s,s′≤S

√
σ2
s + σ2

s′ + δ2
s′−E(Y )|+

√
2

π
E(Y ).

(9)

Based on Eq. (9), we have:

Pr{ 1

N

N∑
n=1

|x∗n − x̂∗n| ≥ α}

≤Pr{
√

2

π
| 1

S2

∑
s≤S

∑
s′≤S

√
σ2
s + σ2

s′ + δ2
s′ − E(Y )| ≥ α

2
}

+ Pr{
√

2

π
E(Y ) ≥ α

2
} (Chebyshev’s inequality)

≤
√

2

π

Var( 1
S2

∑
s

∑
s′ Ys,s′)

(α/2)2
+ Pr{

√
2

π
E(Y ) ≥ α

2
}

=4

√
2

π

1
S2 Var(Y )

(α/2)2
+ Pr{

√
2

π
E(Y ) ≥ α

2
} ≤ β. (10)

Once the exponential distributions are given, the probability
in Eq. (10) is either 0 or 1. Note that the smaller β, the better
utility we can obtain. We can achieve Pr{

√
2
πE(Y ) ≥ α

2 } =

0 by assuming that α > 2
√

2√
π
E(Y ). Thus, Eq. (10) can be

reduced to Var(Y ) ≤
√
πα2βS2

4
√

2
. Moreover,

E(Y 2) ≤
√
πα2βS2

4
√

2
+ (E(Y ))2 ≤

√
πα2βS

4
√

2
+ (

α
√
π

2
√

2
+
√

2)2.

Since E(Y 2) = 2λ2+λ1

λ1λ2
, we have:

2λ2 + λ1

λ1λ2
≤
√
πα2βS2

4
√

2
+ (

α
√
π

2
√

2
+
√

2)2. (11)

By substituting 1
λ2

= c 1
λ1

, we can obtain an upper bound for
c to obtain (α, β)-utility:

c ≤ λ1

√
π(
α2βS2

4
√

2
+
α2
√
π

8
+ α+

2√
π

)− 2 , Cλ1,α,β,S . (12)

As
√

2
πE(Y ) < α

2 , we can also obtain a lower bound for α,

namely αλ,c = 2
√

2√
λ1(1−c) ( 3

4 −
c(c+

√
c+1)√

2(1+
√
c)

), which completes
the proof of our theorem.

This theorem reveals the relationship between the noise
and the utility for the proposed mechanism. The upper bound
of c specifies the noise level that the proposed mechanism
can afford to achieve (α, β)-utility. From the equation that
defines the upper bound of c, we can observe the following:
(1) When α and β become smaller or larger, the upper bound
of c decreases or increases, which indicates that better utility
requires smaller noise and vice versa. (2) The upper bound
of c increases with the increase in the number of users S.
This means that we can tolerate more noise when more users
contribute their information to the aggregation tasks. (3) As
λ1 captures error distributions in original data, a larger λ1

indicates better information quality and correspondingly the
mechanism can tolerate more noise.

B. Privacy Analysis

In this section, we analyze how noise level c is related
to user privacy. The traditional differential privacy definition
provides the protection of user privacy against information
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leakage through statistical query results, in which a trusted
server is assumed and thus it does not fit the privacy-preserving
truth discovery scenario. Recently, local differential privacy
[25]–[27] is proposed to deal with the scenario where individ-
ual users do not trust the server. Based on local differential
privacy, we adopt the following privacy definition to quantify
the user privacy:

Definition 4.5 ((ε,δ)-Local Differential Privacy): We say a
mechanism M satisfies (ε,δ)-Local Differential Privacy, if
for any subset S ⊆ R and two different records x1 and
x2, the following inequality holds: Pr{M(x1) ∈ S} ≤
eε Pr{M(x2) ∈ S}+ δ.
This definition compares the probability of observing the
perturbed value of two different records x1 and x2 in the
same range. With two distinguishable pieces of information
x1 and x2, an ideal perturbation mechanism should perturb
them to indistinguishable values to preserve user privacy in
crowdsourced data collection. As can be seen, this definition
is stronger than traditional differential privacy which compares
the probability of observing similar query outputs on two
different databases with one record difference.

Next, we define sensitive information for each user and de-
rive its relationship to the hyper-parameter λ1 which controls
the error variance distribution.

Definition 4.6 (Sensitive Information): The sensitive infor-
mation of the s-th user is denoted by ∆s = maxx1

s,x
2
s∈D |x

1
s−

x2
s|, where x1

s and x2
s are two entries claimed by the s-th user

about the same object.
The sensitive information, ∆s, measures the range of informa-
tion claimed by the s-th user. Intuitively, ∆s is related to λ1,
as λ1 controls the variance of users’ error and large variance
(small λ1) leads to large range of values ∆s. The following
lemma formally defines their relationship.

Lemma 4.7: The p.d.f. of the errors’ variance is f(z) =
λ1e
−λ1z . The sensitive information about the s-th user, ∆s,

satisfies that ∆s = |x1
s − x2

s| ≤
γs
λ1

with probability at least

η(1− 2e−b
2/2

b ), where γs = b
√

2 ln 1
1−η , η and b are constants.

Proof: As the s-th user’s error follows N(0, σ2
s), the s-

th user’s information xs ∼ N(xtruth, σ2
s) where xtruth is the

true value and σ2
s is the variance drawn from the exponential

distribution with λ1. Based on the property of light tail of
exponential distribution, given a sufficient large number M ,

Pr{σ ≤M} = 1−e−λ1M
2

= η, which implies M =

√
ln 1

1−η√
λ1

.
As λ1 becomes bigger, M could be smaller; vice versa. Based
on the assumption that most of the users are reliable, λ1 should

be larger than 1. Consequently, M ≤
√

ln 1
1−η

λ1
.

Now, we try to bound ∆s. Let x1
s and x2

s be two pieces of
information claimed by the s-th user about the same object.
Thus x1

s−x2
s ∼ N(0, 2σ2). Based on Gaussian Tail Inequality,

we have Pr{|x1
s − x2

s| > b
√

2σ} ≤ 2e−b
2/2

b , which implies

∆s = |x1
s −x2

s| ≤ b
√

2σ with probability at least 1− 2e−b
2/2

b .

Let γs = b
√

2 ln 1
1−η . Then we have ∆s = |x1 − x2| ≤

b
√

2σ ≤
b
√

2 ln 1
1−η

λ1
= γs

λ1
with probability at least η(1 −

2e−b
2/2

b ).

From this lemma, we can see that the sensitive information
of each user is inversely proportional to λ1, which measures
the quality of users. The bigger λ1 is, the smaller the error’s
variance is and the smaller sensitive information of the user.
In the following discussion, we choose that ∆s = |x1

s−x2
s| =

b
√

2 ln 1
1−η

λ1
.

Next, we prove the main result of privacy analysis which
links noise level to local differential privacy under the pro-
posed mechanism.

Theorem 4.8: Consider a perturbation mechanism M with
parameter λ2, where 1/λ2 = c/λ1. Based on Definition 4.6
, M satisfies (ε,δ)-Local Differential Privacy in terms of the
s-th user, provided c ≥ γ2

s

2λ1ε ln( 1
1−δ )

, where γs = b
√

2 ln 1
1−η .

Proof: Based on the mechanism, the s-th user draws his
noise variance from an exponential distribution with parameter
λ2. Assume that the noise variance is y, we have:

Pr{M(x1) = x} =
1√
2πy

exp(− (x− x1)2

2y
)

≤ 1√
2πy

exp(− (x− x2)2 − (x2 − x1)2

2y
)

= exp(
(x2 − x1)2

2y
)

1√
2πy

exp(− (x− x2)2

2y
)

≤ exp(
∆2
s

2y
) Pr{M(x2) = x} ≤ eε Pr{M(x2) = x}. (13)

Obviously, Pr{M(x1) = x} ≤ eε Pr{M(x2) = x}, if and
only if y ≥ ∆2

s

2ε . Since y follows exponential distribution with
parameter λ2, we constrain that the event {y : y ≥ ∆2

s

2ε }
happens with at least 1 − δ probability. Namely, Pr({y :

y ≥ ∆2
s

2ε }) ≥ 1 − δ, where δ ∈ [0, 1]. Thus, Pr({y : y ≥
∆2
s

2ε }) = exp(−λ2∆2
s

2ε ) ≥ 1− δ. Then, λ2∆2
s

2ε ≤ ln( 1
1−δ ). Since

1
λ2

= c 1
λ1

, we have c ≥ λ1∆2
s

2ε ln( 1
1−δ )

. Based on Lemma 4.7, we

have c ≥ γ2
s

2λ1ε ln( 1
1−δ )

, where γs = b
√

2 ln 1
1−η .

Note that the domain of noise variance is R+. Let us divide
R+ as R+ = R1 ∪ R2, where R1 = {ρ2 ∈ R+ : ρ2 ≥ ∆2

s

2ε }
and R2 = {ρ2 ∈ R+ : ρ2 <

∆2
s

2ε }. Denote M(x, ρ2) as the
mechanismM adding noise N(0, ρ2) to the record x. Let S ⊆
R be given. We adopt the idea used in Gaussian mechanism
[26] to build two different subsets of S, i.e., S1 and S2, in the
following way. For a specific output M(x, ρ2) ∈ S, we claim
M(x, ρ2) ∈ S1 if ρ2 ∈ R1 or M(x, ρ2) ∈ S2 if ρ2 ∈ R2.
Therefore, the probability of event M(x, ρ2) belonging to S1

equals to that of event ρ2 belonging to R1. Similar relation
holds between the event M(x, ρ2) ∈ S2 and the event ρ2 ∈
R2.
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Thus, we have

Pr
ρ2∈R+

{M(x1, ρ2) ∈ S} ≤ ( Pr
ρ2∈R1

+ Pr
ρ2∈R2

){M(x1, ρ2) ∈ S2}

≤ Pr
ρ2∈R1

{M(x1, ρ2) ∈ S1}+ δ

≤ eε( Pr
ρ2∈R+

{M(x2, ρ2) ∈ S}) + δ

yielding (ε, δ)-local differential privacy for the proposed per-
turbation mechanism M.

From Theorem 4.8, we can conclude that to achieve stronger
privacy, namely for smaller ε, the noise level c has to be greater
than a certain threshold. This is consistent with intuitions that
more noise leads to stronger privacy protection. The lower
bound of c is related to λ1 and privacy parameters ε and δ.
Smaller ε and δ (stronger privacy protection) ask for a bigger
bound for the noise level. The bigger λ1, the smaller the vari-
ance of users’ error, and thus less noise is required to guarantee
privacy. Since the mechanism of generating perturbed data
is the same across users, Theorem 4.8 is applicable to each
individual user.

C. Utility-Privacy Trade-off

Based on Theorem 4.3 (utility) and Theorem 4.8 (privacy),
we can now analyze the trade-off between utility and privacy
as shown in the following theorem:

Theorem 4.9: (Utility Privacy Trade-off) Consider a truth
discovery algorithmA with perturbation mechanismM and an
input data set D. Based on Assumption 4.1 and Definition 4.6,
∀α > 2

√
2√

λ1(1−c) ( 3
4 −

c(c+
√
c+1)√

2(1+
√
c)

), the algorithm A with pertur-
bation mechanism M satisfies (α, β)-Utility and (ε, δ)-Local
Differential Privacy, provided c ≤ λ1

√
π(α

2βS2

4
√

2
+ α2√π

8 +α+

2√
π

)− 2 and c ≥ γ2
s

2λ1ε ln( 1
1−δ )

, where γs = b
√

2 ln 1
1−η .

Proof: Based on the Theorem 4.3 and 4.8, Theorem 4.9
holds immediately.

Theorem 4.9 provides a guideline on how to choose a proper
c to achieve the trade-off between utility and privacy. To have
a valid c, we must have the upper bound of c derived from
utility analysis to be greater than or equal to the lower bound
of c derived from privacy analysis. Especially, to have at least
one c exist, the two bounds should be the same, and thus we
have:

λ1

√
π(
α2βS2

4
√

2
+
α2
√
π

8
+α+

2√
π

)−2 =
γ2
s

2λ1ε ln( 1
1−δ )

. (14)

It is obvious that stronger privacy (smaller ε and δ) can be
satisfied when sacrificing utility (increase in α and β), and
better utility can be achieved when privacy is comprised. This
trade-off is related to the characteristics of data, i.e., the error
distribution in the original data, which is controlled by hyper-
parameter λ1. A larger λ1 indicates a higher chance that users’
original information is similar enough, and thus strong privacy
and good utility are possible. Similarly, a smaller λ1 leads to
more challenging privacy protection in which less privacy and
utility gain are expected. In the following section, we will
experimentally verify this trade-off.

V. EXPERIMENT

In the previous section, we quantified the trade-off between
the utility of aggregated results and the privacy of users.
Now, we illustrate this result via a set of experiments: (1)
We demonstrate how the proposed mechanism achieves good
privacy and utility on simulated datasets, and evaluate the
performance under different scenarios. (2) The privacy and
utility trade-off is further demonstrated on a real crowd sensing
system. We also demonstrate how good utility is achieved by
the proposed mechanism which can automatically assign user
weights based on information quality. (3) We show that the
proposed method is scalable to large-scale data by conducting
efficiency tests.

A. Experiments on Synthetic Dataset

In this part, we show experimental results on synthetic
datasets. As mentioned in Section III, the error made by
each individual user can be captured by a normal distribution
N(0, σs

2), where the variance indicates the quality of his
information. Therefore, we simulate 150 users with various
qualities by setting different σs2, and generate their provided
information for 30 objects based on both the ground truth
information and the sampled error. We regard this dataset as
the original data contributed by the users.

For each individual user, we follow Algorithm 2 to perturb
his information. Specifically, we choose a hyper-parameter λ2,
and generate each user’s noise parameter δs2 from exponential
function with λ2. Then each user’s data is perturbed by
injecting sampled random noise based on Gaussian distribution
with δs2 as variance. We then conduct the widely adopted truth
discovery method CRH [28] on the perturbed data.

To measure the utility of aggregation, we compare the
aggregated results based on original data and perturbed data,
and quantify their difference. Here, we adopt the commonly
used L1-norm distance, i.e., the mean of absolute distance
(MAE) on all objects. For this measure, lower value indicates
better utility.

Note that the privacy parameter ε is defined in a different
way compared with traditional differential privacy. As shown
in Definition 4.5, the same ε in local differential privacy
indicates stronger privacy protection as the definition is based
on the perturbation of one record. Nonetheless, we can still
observe low ε in the following experiments.

Utility-Privacy Trade-off. Figure 1 plots the utility and
privacy trade-off on the synthetic dataset. Figure 1a shows
the trade-off in terms of privacy parameters ε and MAE. To
provide some intuition about how much noise the approach
can tolerate, we show the average noise level corresponding to
different ε in Figure 1b. We can see that in order to guarantee
stronger privacy (smaller ε), larger noise is needed. However,
the added large noise only incurs small loss in utility. From
Figure 1a, we can observe that the utility changes very slowly
and the magnitude is quite small compared with the added
noise. To facilitate comparison, we use the same x-axis and
make the scale of y-axis the same for these plots. As can
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be seen, when the average of added noise reaches closer to
1, the average loss in utility is less than 0.1 (only 1/10 of
the noise). This clearly demonstrates the advantage of the
proposed mechanism in maintaining good utility even when
high noise is added. The good performance is achieved by
estimating user weights and conducting weighted aggregation.
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Fig. 1: Utility-Privacy Trade-off on Synthetic Dataset

Effect of λ1. In Theorem 4.9, we show that λ1 is related to
both utility and privacy and here we demonstrate its effect
empirically. λ1 captures the information quality distribution
of original data. As shown in Figure 2b, when λ1 is big, the
variance of the distribution used to sample noise variance is
small, so the quality of all users are relatively good. Then
users tend to contribute similar information for the same
object, so small noise can hide users’ information. On the
other hand, when λ1 is small, user-provided information may
be quite different due to the low quality controlled by the
error distribution, and thus only large noise can preserve their
privacy. Figure 2a demonstrates utility variation under different
λ1. With small λ1, large noise has to be added so the utility
will be affected more. The message we can get is that it is
easier to maintain both privacy and utility if the original data
has high quality and it is more challenging when the original
data is noisy.
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Fig. 2: Effect of λ1 (Parameter of Error Distribution in Original
Data)

Effect of S. Next, we study the effect of S, i.e., the number
of users that are involved in the aggregation task. In the
proposed mechanism, all users act independently to add noise
and they do not rely on each other. Hence the average noise
will not be affected by the number of users. This phenomenon
is demonstrated in Figure 3b in which the average of added
noise keeps the same as S increases. On the other hand,

Figure 3a shows that having more users can help utility. The
reason is that truth discovery approaches can estimate user
weights better when more information is collected, and thus
obtain better aggregation results. This is consistent with our
theoretical analysis on utility in Theorem 4.3: To achieve the
same level of utility, we can tolerate larger noise if more users
are involved in the task.
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Fig. 3: Effect of S (Number of Users)

Truth Discovery Methods. The proposed mechanism con-
ducts weighted aggregation and achieves good performance
because of truth discovery’s weight estimation principle. As
discussed in Algorithm 2, this mechanism can work with any
specific method that satisfies the general principle of truth
discovery. In the experiments shown so far, we adopt the
recent CRH [28] method. Here we present results on a different
truth discovery method to illustrate the mechanism’s ability to
generalize to other approaches. We apply another start-of-the-
art truth discovery approach that can be applied to continuous
data, GTM [29], and show the results in Figure 4. The patterns
of utility privacy trade-off are similar compared to those based
on CRH.
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Fig. 4: Utility-Privacy Trade-off on Synthetic Dataset (GTM)

B. Experiments on Crowd Sensing Application

In this section, we show experimental results on a real world
crowd sensing application to illustrate the effectiveness of
the proposed mechanism. The application is indoor floorplan
construction [30], [31], which has gained growing interest
as many location-based services are built upon this task.
The goal is to automatically construct indoor floorplan from
sensor data collected from smartphone users by aggregating
users’ daily movement traces. Here we focus on one task of
indoor floorplan construction: Estimate the distance between
two location points along a straight hallway by aggregating

1163

Authorized licensed use limited to: Purdue University. Downloaded on September 11,2021 at 04:31:27 UTC from IEEE Xplore.  Restrictions apply. 



user data. Specifically, we select 129 hallway segments as
the objects and collect data from 247 smartphone users via a
developed Android app. We then obtain the distance each user
has traveled on each hallway segment by multiplying user step
size by step count. Due to different walking patterns and in-
phone sensor quality, the distances obtained by different users
on the same segment can be quite different. The goal is to
derive the true length of hallways by aggregating user-provided
distance information. We let each user add noise to their
original information following the procedure in Algorithm 2.
The truth discovery method adopted here is still CRH.

Utility-Privacy Trade-off. We still adopt MAE to measure
aggregation utility. Figure 5 shows the utility and privacy
trade-off. Compared with Figure 1, we observe the same
pattern that is shown on synthetic data. This confirms that
even when the added noise is quite large (strong privacy),
good utility can be achieved under the proposed mechanism.
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Fig. 5: Utility-Privacy Trade-off on Indoor Floorplan Dataset

Weight Comparison. As discussed, the advantage of the
proposed privacy-preserving truth discovery mechanism in
preserving good utility can be attributed to the weight esti-
mation scheme. We illustrate this fact on the indoor floorplan
dataset by comparing weights estimated from original and
perturbed data. Figure 6 shows the estimated weights for 7
randomly selected users by the proposed method on original
data and perturbed data using blue dotted lines. We obtain
the groundtruth distance by measuring the hallway segments
manually. This enables us to derive the true weight of each
user for both cases, which are shown as black solid curves.
By comparing true and estimated weights, we can observe the
following phenomena: (1) The weights estimated by the pro-
posed method are mostly consistent with the true weights, and
thus weighted aggregation can outperform naive aggregation
solutions such as mean or median in finding true information.
(2) Compared with information quality on original data (Figure
6a), we find that the 5-th user adds large noise to protect his
information, and thus on perturbed data, his weight is adjusted
to a smaller value. This shows how the proposed mechanism
can assign user weights based on user information quality, as
explained in Section III. Correspondingly, the effect of added
noise can be reduced during weighted aggregation, and thus
aggregated result does not deviate much from the result before
perturbation.
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Fig. 6: Weight Comparison

C. Efficiency

The last experiment shows the efficiency of the proposed
mechanism. According to Algorithm 2, the running time
mainly comes from the execution of two parts, data pertur-
bation and truth discovery procedure. Compared with time
complexity of truth discovery, the time to add random noise
is negligible, so we focus on analyzing the running time of
truth discovery when different noise level is adopted.

Truth discovery is an iterative procedure whose running
time is controlled by the number of iterations needed to
achieve convergence. Existing literature has demonstrated that
the running time of truth discovery increases linearly with
respect to the number of objects [28] when the number of
iterations is fixed, which is highly efficient. Therefore, in
this experiment, we test the effect of noise level on running
time, i.e., we check if the number of iterations is affected
by noise level which leads to changes in running time. In
practice, we set the convergence criterion for truth discovery
in the following way: If the change in aggregated results
is smaller than a threshold, the algorithm is terminated. We
set the same threshold, vary the added noise, and record the
running time of truth discovery on original and perturbed data.
Figure 7 reports the results in which the solid red line shows
the running time of truth discovery on original data, and blue
dots represent the running time on data with certain added
noise. We can observe that running time after perturbation
is slightly bigger than that on original data, but the running
time does not change much when noise level varies. This
shows that perturbation on user data does not change the
running time of truth discovery approach, which guarantees
practical deployment of the proposed mechanism on large-
scale crowdsourcing applications.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Average of Added Noise

R
un

ni
ng

 T
im

e 
(s

)

Fig. 7: Efficiency Study
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VI. RELATED WORK

Truth discovery has emerged as a hot topic for conflict
resolution in data integration, and been applied in many other
domains [4]–[6]. By estimating source (user) quality from
the data, the aggregated results are more reliable compared
with naive solutions such as voting or averaging. Existing
approaches include TruthFinder [1], AccuSim [2], CRH [28],
etc. However, all these truth discovery approaches do not
address the privacy concern in data collection. There are some
recent work [20]–[22], [32] which deal with this privacy con-
cern based on encryption or secure multi-party computation
techniques. Compared to them, the proposed mechanism in
this paper provides a much more efficient perturbation based
solution to privacy-preserving truth discovery.

Differential privacy [33], [34] is a quantified privacy def-
inition for protecting sensitive information that needs to be
released, and it balances the trade-off between privacy protec-
tion and utility loss. Among the related work of differential
privacy, distributed differential privacy [35], [36] shares some
similarity with our work, and it enables individual information
sources to add noise separately. However, in distributed dif-
ferential privacy, the server is still assumed to be trusted and
the protection is against information leakage to third parties
via statistical queries. Hence their setting is different from the
one in this paper. Another relevant topic is local differential
privacy [25]–[27] which deals with the scenario that users do
not trust the server. In privacy analysis, we quantify the user
privacy based on local differential privacy.

Among the related work on privacy-preserving data aggre-
gation, some provide users with secure protocols that allow
users to submit their sensitive information to a collector [9],
[20]–[23], [32], [37]. However, these methods are mainly
based on encryption or secure multi-party computation, which
requires expensive computation or communication. Therefore,
none of them is an ideal solution to privacy-preserving truth
discovery which usually involves a large number of users and
thus requires efficient strategies.

On the other hand, some related work on privacy-preserving
data aggregation are perturbation-based. These methods are
designed for the computation of some statistics [8], [10].
They are not designed for truth discovery that automatically
infers user weights from the data and conducts weighted
aggregation. Thus these methods cannot be easily applied to
privacy-preserving truth discovery.

Note that the aforementioned privacy-preserving data ag-
gregation approaches deal with tasks that are different from
truth discovery. Truth discovery automatically estimates user
weights from the data and incorporates such weights in the
truth computation. The iterative procedure of weight estima-
tion and weighted aggregation steps in truth discovery make
it quite different from other aggregation methods. Therefore,
the proposed privacy-preserving truth discovery mechanism
and analysis, which capture the unique characteristics of truth
discovery task, differ from those in related work. The most
relevant existing methods are [38], [39], in which privacy-

preserving mechanisms are proposed for truth discovery with
categorical data, while in this paper, the proposed mechanism
is for truth discovery with continuous data, and the unique
characteristics of continuous data are taken into consideration
when we design the proposed privacy-preserving mechanism.

VII. CONCLUSIONS

In this paper, we propose a perturbation-based privacy-
preserving truth discovery mechanism for crowd sensing
systems. This mechanism is efficient and does not require
any communication or coordination among mobile device
users. As user weights can capture the information quality,
the aggregated results on perturbed data do not differ much
from the original aggregated values even when big noise is
added. We further analyze the performance of the proposed
mechanism theoretically. We formally define (α, β)-utility
and (ε, δ)-privacy, and connect these concepts to the noise
level c. The derived theorems show that larger noise leads to
stronger privacy protection with less utility and vice versa.
We conduct experiments on not only synthetic datasets but
also a crowdsourced indoor floorplan construction system.
Results show that the proposed privacy-preserving truth dis-
covery mechanism can tolerate big noise while the aggregation
accuracy only drops slightly, which implies the guarantee of
both good utility and strong privacy.
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APPENDIX A
SPECIAL CASE

For the special case where c = 1, we have the following
result in term of utility.

Theorem A.1: Let c = 1, ∀α > 15
√

2λ1

8 ,

lim
S→∞

Pr{ 1

N

N∑
n=1

|x∗n − x̂∗n| ≥ α} = 0. (15)

Proof: When c = 1, the distribution of noise variance is
the same as the distribution of the error variance. Therefore,
Y 2
s,s′ = σ2

s + σ2
s′ + δ2

s′ follows Gamma(3, 1/λ1), with p.d.f.
h(y) = 1

2λ
3
1y

2e−λ1y . It is easy to derive the p.d.f of Ys,s′ ,
which is h′(y) = λ3

1y
5e−λ1y

2

. Moreover, E(Y ) = 15
16

√
λ1π

and E(Y 2) = 3
λ1

.
Similar to the proof for Theorem 4.3, we have

Pr{ 1

N

N∑
n=1

|x∗n − x̂∗n| ≥ α} ≤ 4

√
2

π

1
S2 Var(Y )

(α/2)2

= 4

√
2

π

1
S2 (E(Y 2)− E2(Y ))

(α/2)2

=

√
2

π

48− 12λ2
1π

S2α2λ1
. (16)
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As S goes to infinity, the right hand side tends to 0. Therefore,
∀α > 15

√
2λ1

8 , we have limS→∞ Pr{ 1
N

∑N
n=1 |x∗n − x̂∗n| ≥

α} = 0. Thus Theorem A.1 holds.

APPENDIX B
PROOF OF LEMMA 4.4

Proof: To prove Eq. (6) is equivalent to prove∑S
s=1 wsts ≤

∑S
s=1 ts

∑S
s′=1 ws′ .

Moreover, we have:

S

S∑
s=1

wsts −
S∑
s=1

ts

S∑
s′=1

ws′

= S

S∑
s=1

wsts −
S∑
s=1

S∑
s′=1

tsws′

= (S − 1)

S∑
s=1

wsts −
S∑
s=1

S∑
s′ 6=s

tsws′

=

dS−1
2 e∑
s=1

∑
s′≤s

(f(ts)− f(ts′))(ts − ts′). (17)

According to the condition that f is a monotonically decreas-
ing function , we can obtain:

f(ts)− f(ts′) =

{
≥ 0 if ts − ts′ ≤ 0
≤ 0 if ts − ts′ ≥ 0

It is obvious to see that for all s and s′, if s 6= s′, the following
inequality holds:

(f(ts)− f(ts′))(ts − ts′) ≤ 0. (18)

Based on this observation,
∑dS−1

2 e
s=1

∑
s′≤s(f(ts)−f(ts′))(ts−

ts′) ≤ 0, which proves Eq. (6). Therefore, Lemma 4.4 holds.
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