
Secure IoT Data Analytics in Cloud via Intel SGX

Md Shihabul Islam
Department of Computer Science

The University of Texas at Dallas
Richardson, TX 75080, U.S.A.

md.shihabul.islam@utdallas.edu

Latifur Khan
Department of Computer Science

The University of Texas at Dallas
Richardson, TX 75080, U.S.A.

lkhan@utdallas.edu

Mustafa Safa Ozdayi
Department of Computer Science

The University of Texas at Dallas
Richardson, TX 75080, U.S.A.
mustafa.ozdayi@utdallas.edu

Murat Kantarcioglu
Department of Computer Science

The University of Texas at Dallas
Richardson, TX 75080, U.S.A.

muratk@utdallas.edu

Abstract—The growing adoption of IoT devices in our daily
life is engendering a data deluge, mostly private information
that needs careful maintenance and secure storage system to
ensure data integrity and protection. Also, the prodigious IoT
ecosystem has provided users with opportunities to automate
systems by interconnecting their devices and other services
with rule-based programs. The cloud services that are used to
store and process sensitive IoT data turn out to be vulnerable
to outside threats. Hence, sensitive IoT data and rule-based
programs need to be protected against cyberattacks. To address
this important challenge, in this paper, we propose a framework
to maintain confidentiality and integrity of IoT data and rule-
based program execution. We design the framework to preserve
data privacy utilizing Trusted Execution Environment (TEE)
such as Intel SGX, and end-to-end data encryption mechanism.
We evaluate the framework by executing rule-based programs
in the SGX securely with both simulated and real IoT device
data.

Keywords-IoT; Intel SGX; Data privacy; Rule-based IoT
Platform;

I. INTRODUCTION

The Internet of Things (IoT) has transformed the way we
live and work with their ubiquitousness, inexpensiveness,
and convenience of usage. Increasingly, IoT devices are
found in our day-to-day life, such as in smart homes, indus-
trial automation, agriculture, smart transportation, healthcare
etc. They have become a fundamental part of the modern
society and still offer plenty of opportunities to make our
life more comfortable and constructive. The recent growth
of IoT is astonishing and it is predicted that there will be
64 billion IoT devices by 2025 [1]. Although, IoT systems
have many benefits, there are also plethora of security and
privacy concerns related to IoT. IoT deals with vast amounts
of highly vulnerable and sensitive data, which needs careful
maintenance and secure storage and processing system to
ensure user privacy and data protection. For instance, while
listening for commands, Samsung’s Smart TV captures every

words of its users no matter how private the conversation and
transmits to a third party for conversion of speech to text [2].

Recent development of cloud computing has provided the
opportunity to use cloud-based services to collect, process,
analyze, and mine large amounts of data [3]–[11], which
is both cost effective and less time consuming [12]. A
recent study found that, out of 81 common IoT consumer
devices, 72 send data to third parties, and rest to the original
device manufacturer [13], [14]. Although, the cloud service
providers ensure that data is always protected at rest, they
are vulnerable to many security threats during transmission,
and computation [15]–[18]; e.g., data breaches, especially
in the public cloud services [19]. For instance, CloudPets,
which manufactures smart stuffed toys for children, stored
all the data (i.e., email, password, photos, voice recordings)
in the unsafe cloud, exposing over 820, 000 user accounts
including 2.2 million voice recordings [20]. In addition,
adversaries may physically access the machines or obtain
root privileges of the machines deployed at the service
providers’ premises and thus steal sensitive information with
ease [21].

Moreover, the availability of cheap yet powerful IoT
devices has paved the way for platforms to enable in-
formation passing among IoT devices and online services
to automate different processes. These platforms, such as
Samsung’s SmartThings 1 and IFTTT (If-This-Then-That) 2,
offer users to automate their smart home or industrial
system through customized policy-based rules that control
the interactions between devices. For example, to conserve
energy and reduce cost, a user may program a rule that
automatically turns off the air conditioner and the light
bulbs when the user is away from home. However, this
enlarges potential attack surface and privacy risks, since

1https://www.smartthings.com
2https://ifttt.com



these automation policies and sensitive device information
are shared with untrusted parties over the internet. For
instance, suppose we have a temperature sensor which can
open windows in a room. A temperature-related application
can periodically check the room temperature and if the
temperature is above a predefined threshold, then the sensor
will open the window. Now, if an attacker can get access
to the logic code in the cloud, he/she can change the value
of the threshold, which could trigger the window opening
action and cause a potential problem of break-in. Therefore,
conventional security mechanisms of the cloud services need
to be enhanced to thwart adversaries from stealing sensitive
data and information.

In this paper, we present a system that is established
based on our previously proposed framework [22]. More
specifically, in our previous work, we envisioned a system
to securely store and process IoT information in a privacy-
preserving manner by utilizing proper cryptography tech-
niques and the Trusted Execution Environments (TEEs).
In this work, we develop and empirically evaluate the
envisioned framework to ensure the integrity and confiden-
tiality of sensitive IoT data, private user information, and
vulnerable automation policies in the untrusted cloud by
performing rule-based analytics on a popular TEE called
Intel Software Guard Extensions (SGX) [23]. Intel SGX
creates an isolated secure memory container, where the code
and data can be safely stored and executed. No adversaries,
not even higher privileged software such as operating system
(OS) or virtual machine manager (VMM) can access the
contents of SGX. Therefore, our framework stores delicate
IoT data, and user information in encrypted format, and
securely executes rule-based interactions of IoT devices in
the enclave, so that adversaries cannot manipulate or steal
information. Moreover, we ensure data security in transit
from IoT devices to cloud service provider with SGX by
following strong end-to-end encryption mechanism. That
means, in transit data is always kept in encrypted form,
except when it is in the SGX. We evaluate our framework
for the IoT rule-based home automation setting with both
simulated and real device data and study its efficacy in terms
of both performance and security.

To summarize, in this paper, we propose the following
contributions.

• We propose and develop an end-to-end encrypted sys-
tem for securely analyzing IoT data using TEEs, par-
ticularly Intel SGX.

• We perform thorough evaluations to assess the frame-
work with both simulated and real IoT device data.

• We conduct security evaluations for potential vulnera-
bilities of the system.

The rest of the paper is organized as follows. Section II
presents some background on Intel SGX and IoT sys-
tem. Section III explains the problem statement and threat

model. Section IV introduces our framework architecture
and its components. Section V describes the experiments
and evaluation of the framework. Section VI and Section VII
describes future work and related work, respectively. Finally,
Section VIII concludes our work.

II. BACKGROUND

A. Intel SGX

Intel’s Software Guard Extensions (SGX) [23] is one of
the state-of-the-art Trusted Execution Environments (TEE),
that provides hardware-assisted secure area of memory
where trusted part of an application can be executed. This
ensures the integrity and confidentiality of an application’s
security-sensitive computation and data on a computer where
all the privileged software such as operating system is
potentially malicious. With the help of SGX, application
developers can protect their code and data from modification
or disclosure by an adversary by creating a private memory
region called Enclave and deploying those sensitive code and
information within the Enclave. The contents of enclaves
are stored in the Enclave Page Cache (EPC), which is a
piece of cryptographically protected memory with a page
size of 4KB. Enclave is isolated from other processes or
applications running at the same or higher privilege levels.
No code, not even the higher privileged code such as Op-
erating System (OS) or Virtual Machine Manager (VMM),
can alter the contents of the Enclave, which makes it pretty
robust from outside attacks and makes the attack surface of
the SGX as minuscule as possible [24].

In SGX, a remote entity can cryptographically verify the
integrity of an enclave and create a secure channel for shar-
ing secrets with it. In Intel SGX architecture, this process is
called Attestation. Intel SGX guarantees protection of data
when it is maintained within the boundary of the enclave.
When the data needs to be stored outside the enclave, SGX
encrypts the contents before writing to untrusted memory,
so that integrity and confidentiality of data remains intact.
The process of encrypting the data is called Sealing. The
data can be read back in by the enclave at a later date and
then decrypted or unsealed. The encryption keys are derived
internally on demand and are not exposed to the enclave.

B. IoT System and Security

In an IoT system, a collection of smart devices and users
communicate with each other to achieve a common goal
in the industrial and commercial environments as well as
in our personal life [25]. IoT security refers to securing
those connected devices and networks in the internet of
things ecosystem. With cosmic IoT ecosystem, security
threats are getting amplified and the IoT security must be
designed to protect systems, networks, and data from a broad
spectrum of attacks. Specially, cloud-based services provide
solutions to connect the IoT devices and collect data from the
most sensitive and personal domains of our life to process,



manage, and analyze the data utilizing different data mining
and machine learning techniques [26]–[33]. These solutions
must ensure data anonymity, confidentiality, and integrity as
well as prevent unauthorized access to the system.

There already exist some solutions for the IoT, such as
Amazon AWS IoT 3, IBM Watson IoT Platform 4, Microsoft
Azure IoT 5, Mozilla WebThings 6 and so forth. Even
though, these solutions offer some level of security related
to data [34]–[38], they are highly dependent on users’ trust
towards their platform. The users trust these services with
their private data and an unfortunate event of compromised
cloud could endanger the privacy and confidentiality of user
data [39]. Therefore, we need a more robust strategy and
technique to protect the data in both trusted and untrusted
cloud environments.

C. Automation using IoT

One of the most powerful features of the IoT system is the
ability to automate processes with the help of devices with-
out any human intervention. The most obvious conveniences
of the IoT automation are more operations, more accuracy,
and low cost. Usually, IoT devices consist of embedded
sensors and actuators, which help the devices to interact
with the physical environment. Sensors can collect physical
states, which are known as Events. These events, such as
temperature reading, dust level, or door lock state, are sent
to the cloud or hub for further processing. Afterwards, based
on user-defined protocols and event data, appropriate action
commands are sent to the device actuators. Generally, to
transfer data between devices and cloud/hub, suitable proto-
col is used that supports limitations of the environment such
as low powered devices. There are some IoT programming
platforms such as Samsung’s SmartThings, IFTTT, Apple’s
HomeKit 7, Zapier 8, openHAB 9 etc. that provide app-
specific services of controlling and managing devices, data
collection, and device interactions. They also provide tools
that allow developers to write applications and automations
through various APIs [40].

One of the most widely approved IoT programming
platforms, especially for the home automation, is the rule-
based Trigger-Action platform. This platform allows users to
create custom simple and complex automations on services
through rules that operate on the cloud. More specifically,
the trigger-action rule platform performs some actions when
a certain trigger event takes place. Typically, users define
the rule by connecting a trigger-event in a service and an
action-command in a separate service. When a device event

3https://aws.amazon.com/iot/
4https://www.ibm.com/us-en/marketplace/internet-of-things-cloud
5https://azure.microsoft.com/en-us/overview/iot/
6https://iot.mozilla.org/
7https://www.apple.com/ios/home/
8https://zapier.com
9https://www.openhab.org

matches the trigger-event, the appropriate action-command
will be fired on the relevant service. For example, a user may
define a rule: Turn on the hall lights if motion is detected on
the lawn. Here, the trigger event is the detection of motion
by the motion sensor and the action command is to turn on
the lights using a smart switch. Triggers may contain trigger
properties that determine under what circumstances the
trigger event should occur. Similarly, action commands have
action properties which are the parameters of the action [41].
These rule-based platforms are substantially benefiting smart
home and industry automation systems. For instance, IFTTT
has a community of 11 million users running over 1 billion
rules each month with over 600 partner services [42].

III. PROBLEM STATEMENT & THREAT MODEL

A. Problem Statement

The use of rule-based platforms to control and interact
with IoT devices is a powerful tool, but without proper
and thorough security measures, it could lead to various
unsafe conditions and unrecoverable loses. Generally, IoT
devices expose three categories of information: Stored Data
(i.e., device identifiers, user identifiers, activity logs), Sensor
Data (i.e., information or physical states obtained from
the environment by the sensors of devices), and Activity
Data (i.e., information about how the devices are used via
automation rules or user interaction) [14]. These information
may be shared with two kinds of party: First party and
Third party. First party includes the manufacturer of the IoT
devices that are responsible for the device functionalities. On
the other hand, Third parties are the organizations providing
computing resources such as cloud providers or analytics
companies. IoT devices expose those three types of data
explicitly with these parties, which could pose potential data
privacy issues.

In the IoT ecosystem, as the service providers are trusted
with abundant user information, a major challenge arises
in the form of balancing trust in these service providers
and need for privacy. Although, the cloud service providers
ensure that data is always protected at rest, during trans-
mission, and computation; in reality they are vulnerable to
many security threats, e.g., data breaches, especially the
public cloud services [19]. In addition, severe lack of proper
encryption techniques could expose sensitive information
about the users. As a consequence, significant privacy risks
could emerge as malicious third party services can track
information about users for monetary purposes as well as
learning user activities within homes. For instance, smart
speakers in home can covertly record user conversations
without permission and stream it to other users or par-
ties [43]. Moreover, adversaries may physically access the
machines deployed at the service providers premises or
obtain root privileges of the machines by taking advantage
of weak access control mechanism and thus steal sensitive
information with ease.
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Figure 1: Framework architecture.

B. Threat Model

In this paper, we consider an adversary that seeks to sur-
reptitiously gain insight into sensitive user information in the
IoT system. More specifically, the adversary tries to access
IoT device information and data stored in the cloud. The
adversary tries to deploy a rule-level attack either by com-
promising the existing stored rule, by injecting malicious
rule into the system, or by simply observing the rules to gain
insight. Moreover, adversaries may eavesdrop the network
traffic to retrieve information. The principal objective of
the adversary would be to obtain private information of the
user, specially his/her surrounding environment such as in a
smart home system. We assume that adversaries cannot get
root access to the devices or compromise communication
protocols. Denial-of-Service (DoS) attacks [44] and protocol
flaw attacks [45] are out of our scope.

IV. PROPOSED SYSTEM ARCHITECTURE

Our aim is to develop a secure cloud-based end-to-end
encrypted data analytics platform, especially designed for
IoT setting. Our goal is to alleviate data security and
privacy issues by utilizing proper cryptographic techniques
and trusted execution environments such as Intel SGX.
In this paper, we particularly focus on developing a rule-
based secure IoT platform for smart home automation in
the untrusted cloud.

As discussed in section II, rule-based trigger-action plat-
form is one of the most widely used IoT programming
platforms in the world of IoT automation. Users provide

trigger-action rules to automate their smart homes or smart
industries leveraging the connectivity and ubiquitousness
of IoT devices. These rules are stored and processed in
the untrusted cloud platform or company-owned data silos,
which poses a threat to the security and the privacy of the
users. Moreover, lack of proper encryption techniques when
communicating with untrusted cloud could expose sensitive
information such as the identity of a device, user interactions
with the device or private user information to eavesdroppers.
Therefore, in our framework, we aim to use Intel SGX
to guarantee confidentiality and integrity of sensitive data
coming from IoT devices to untrusted remote platforms.
By utilizing SGX’s enclave features, we securely perform
rule-based programming on delicate IoT data, so that no
unauthorized personnel can unlawfully access data, user
provided rules or any analytical results.

Usually, the required SGX enclave instances will be
initialized by the cloud provider in the untrusted cloud
platform. Once the enclave is initialized, it is expected
to participate in a software attestation process, where it
authenticates itself to a remote application server. Upon
successful authentication, the application server is expected
to disclose some secrets, in this case encryption/decryption
keys, to the enclave on the untrusted platform over a secure
communication channel.

The enclave in the cloud will communicate with the IoT
devices in user homes via IoT gateways or hubs over HTTPS
connection [46]. The communication protocol of HTTPS
is encrypted with Transport Layer Security (TLS) [47], or
formerly known as Secure Sockets Layer (SSL). In addition,
to ensure end-to-end secure system, we use symmetric key
encryption to communicate between the enclave in the
cloud and the IoT hub. We use one of the most popular
and widely adopted symmetric key encryption algorithms
Advanced Encryption Standard (AES) [48] in our framework
for this purpose. Hence, data in transit is always secure and
eavesdropping on it is almost hopeless.

To create an automation, a user first needs to register
a trigger-action rule in the cloud via any web or app
interface. For instance, in Samsung SmartThings, automation
is created via SmartApps, which is essentially an AWS
Lambda function or a WebHook endpoint [49]. SmartThings
follows REST API architecture to control and communicate
with SmartThings devices from the cloud [50]. We follow a
similar architecture in our platform so that our framework is
aligned with the well-established SmartThings system. We
also adopt SmartThings JSON rule structure [51].

After registering the smart devices, users can define their
rules for the automation of their devices. The rule contains
a list of conditions for trigger and a list of actions for the
desired operation. On one hand, the conditions specify the
device events received from smart devices that triggers the
rule. The device event could be a state of the device (i.e.,
switch on/off, door open/closed etc.) or a sensor reading of



the device (i.e., temperature 90F, dust level 20 PM10, energy
130 kwh etc.). On the other hand, the actions specify what
rules actually do. They are the commands sent to specific
devices to control or actuate them in response of the defined
trigger condition. Listing 1 presents a sample rule in JSON
format. These rules are then sent to the untrusted cloud
enclave after encrypting it. In our framework, rules will
be safely stored in the database in encrypted form at all
times and are only decrypted inside the SGX enclave, thus
preventing the attacker from accessing or manipulating the
rules.

{
"name": "If user is home, set the thermostate mode

to cool and turn on the lights",↪→
"ruleID": "hpGHOiCPPeE9-Nz8CYTO1Cmj5",
"userID": "AI4gwcJ6I6DE-s5QwIgXXtm3q-oUbYddxRmCqe",
"actions": [
{
"if":{
"equals": {
"left": {
"device": {
"devices": ["420CC6DD-5932-9DF4-945D4539"],
"component": "main",
"capability": "PresenceSensor",
"attribute": "presence"
}
},
"right": {
"string": "present"
}
},
"then": [
{
"command": {
"devices": ["61902075-855B-4EF6-FE7AD97B"],
"commands": [
{
"component": "main",
"capability": "ThermostatMode",
"command": "cool",
"arguments": []
}

]
}
},
{
"command": {
"devices": ["39A56C99-9A3A-45D7-D6537244"],
"commands": [
{
"component": "main",
"capability": "Switch",
"command": "on",
"arguments": []
}

]
}
}
],
"else": []

}
}
]

}

Listing 1: Sample Rule in JSON.

The framework architecture is illustrated in Figure 1.
The IoT devices send device states or sensor values to

{
"deviceID": "420CC6DD-5932-9DF4-945D4539",
"deviceEvents": [

{
"component": "main",
"capability": "PresenceSensor",
"attribute": "presence",
"value": {

"string": "present"
},
"unit": "",
"data": []

}
]

}

Listing 2: Sample Device Event in JSON.

the cloud via the hubs or gateways. The data is encrypted
in the hub/gateway before sending to cloud and upon re-
ceiving a stream of such data from devices, SGX loads
and decrypts the associated rules with the device in the
enclave. As the system needs to deal with multiple data
streams from various devices [52], we use MQTT (Mes-
sage Queuing Telemetry Transport) [53], which is designed
as a lightweight publish/subscribe messaging transport, as
our connectivity protocol. Additionally, note that, data is
decrypted only inside the enclave using the secret key, which
ensures data protection in transmission. Now, device event
is compared with the condition of the rule (i.e., trigger) and
generate corresponding response using action-command in
the rule. This action-command is then encrypted and sent
to the appropriate hub/gateway to control or actuate for
the automation. The hub/gateway eventually takes care of
transmitting the decision to the particular IoT device after
decryption. Furthermore, users can define rules such that
when the rule is triggered, user receives a notification instead
of device actuation.

For instance, Listing 2 represents a sample device event
received in the enclave. The event is generated from a
Presence Sensor. It contains the sensor attribute Presence
and current reading value, which is present. After receiving
the device event, the rule-engine in the enclave fetches from
the cache corresponding rules for that device, in this case, the
rule in Listing 1. The rule-engine then proceeds to inspect
the equals condition of the rule. Here, the device attribute
value and the rule condition value are the same, that is
present. Therefore, the rule is satisfied and will trigger the
action commands, which are in the then clause of the rule.
These action commands will be sent to respective devices
and executed there. In this example, a command will be
sent to the thermostat to set its state to cool and another
command to a smart switch to set its state to on.

To summarize, our framework ensures the integrity and
confidentiality of IoT data and user rules and perform secure
analytics by leveraging isolated memory containers such as
SGX enclave. Moreover, we ensure data security in transit
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Table I: Experimental setting
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Figure 2: Average execution time of the experiment based
on 10000 device events and ruleset sizes of 100, 400, 1000,
5000, and 10000; performed for three cases: no SGX, SGX
without encryption, and with SGX.

from IoT devices to cloud service provider with SGX by
following robust end-to-end encryption mechanism of the
data. That means, in transit data is always kept in encrypted
form, except when it is in the SGX. Even if adversaries
manage to steal the data in transit, they cannot reveal any
information from it as it will be always encrypted.

V. IMPLEMENTATION & EVALUATION

We evaluate the proposed framework by measuring com-
putational time overhead of the whole process with sim-
ulated IoT data as well as data from real devices. In
addition, we analyze memory access traces of the program to
empirically evaluate the possibility of security threats due to
an adversary that may analyze access patterns to encrypted
data [54].

Computational Evaluation. Our goal of this evaluation is to
measure the computational time overhead of the framework.
More specifically, we want to discover how the integration
of Intel SGX and the cryptographic techniques alter the
time overhead of the process. For this experiment, we use

simulated IoT data and rules in accordance with the Sam-
sung’s SmartThings format (discussed in section IV). The
experimental setting is represented in Table I. We consider
three cases for the experiment: No SGX, that provides no
security guarantee of data; with SGX but without encryption
mechanism, which may provide integrity of data but lacks
confidentiality; and with SGX, that provides total security
guarantee. For SGX cloud, we use a system containing
8-core i7-6700 (Skylake) processor operating at 3.4GHz,
running Ubuntu 18.04 with 64GB RAM, and client programs
written in python (3.6) for simulating IoT devices.

At first, the client generates a set of rules
R = {r1, r2, . . . , rn} for a set of his devices
D = {d1, d2, . . . , dm}. A device may have multiple
rules associated with itself, e.g., r1 and r2 might both
belong to d1. Then, client encrypts the rules using AES
encryption scheme, and sends to the SGX cloud. The
SGX cloud loads the encrypted rules into the enclave
and decrypts them. After parsing the rules, SGX enclave
re-encrypts each rule separately with enclave’s own secure
key kSGX and stores it in a database as a 〈key, value〉
pair, where key is the device ID and value is the encrypted
rules associated with that device. There’s also a caching
system (i.e., LRU, LFU) in the enclave to cache most
frequently/recently used rules. Now, simulated IoT devices
periodically send device states or sensor values to the cloud
in encrypted form. Upon receiving this stream of encrypted
data, the SGX loads the device data into the enclave,
decrypts it, fetches associated rules from the database into
the enclave, and decrypts the rules using kSGX . It then
generates the corresponding response using the triggers and
actions specified in rules and sends the response back to the
device after encrypting it. Upon receiving the response from
SGX, device first verifies the integrity and the authenticity
of the message. If both checks pass, device executes the
message.

Figure 2 represents the average execution time comparison
for the three cases mentioned in Table I for varying number
of rules and 10000 simulated device events. Needless to say,
execution time of the experiment with SGX takes longer than
the operation when we do not include SGX. Fortunately, the
time execution overhead is not that significant.

Moreover, we perform a basic experiment with real IoT
devices to evaluate the soundness of the system. We use
sensor data from Foobot [55] to control Philip Hue Bulb [56]
with some predefined rules in SGX. Foobot is an indoor
air quality monitor sensor, which can measure temperature,
humidity, carbon dioxide level, volatile compounds in the
air, and so on. Philip Hue Bulb is a smart bulb, which
can be controlled with apps to turn on or off. At first, we
store some predefined rules in the SGX enclave, where the
trigger component of the rules involve Foobot sensor values
(i.e, temperature, humidity, and carbon dioxide level) and
action component involve changing the status of the Philip



Set Comparison KL divergence score

S1 vs S2 0.199
S2 vs S3 0.46
S1 vs S3 0.39

Table II: KL divergence score of memory trace distributions.

Hue light bulb. Then, we periodically gather temperature,
humidity and carbon dioxide level values from Foobot and
send to SGX cloud after encryption. Just like the above
experiment, SGX enclave generates a response command
according to the rule, which is then encrypted and sent to
a python written program simulating the behavior of a hub.
The response command is then decrypted and sent via https
connection to the smart bulb to change the state.

We observe the overall average execution and network
delay time for the previously mentioned three cases with 10
predefined rules and 1000 device events (sensor values). We
notice a similar result as before; SGX incurring a slight time
overhead with average overall time of 1.1× 105 µs, where
no SGX and SGX without encryption achieved 9.3× 104 µs
and 1.0× 105 µs, respectively.

Security Evaluation. As an adversary may obtain memory
access traces of the program execution, s/he can infer sen-
sitive information by analyzing access patterns from these
traces, if the program displays distinguishing characteristics
[54]. Therefore, our goal of this evaluation is to discover if
the memory access traces of the program are indistinguish-
able or not. For this purpose, we use a randomly selected
ruleset of size 10 and 3 set of device events (i.e., S1, S2,
S3) with each set containing 10 instances. Among these
3 sets, S1 and S2 are almost identical. We use Intel Pin
tool [57] to capture memory access traces (i.e., sequence
of read and write operations) of the program executing in
SGX simulation mode. We create probability distributions
from these traces and use Kullback–Leibler divergence (KL
divergence) to differentiate between each traces. Table II
represents the comparison among the traces in terms of KL
divergence score. From the table, we can observe that KL
divergence score of near identical set S1 and S2 are lower
than other two non-identical set comparison. As low KL
divergence score means two distributions are more similar,
we can deduce that almost indistinguishable data events
create same memory access patterns in the experiment. As
a result, this could be vulnerable to side channel attacks as
adversaries can resend similar data continuously to the SGX
cloud and observe memory access sequences to infer secrets
from the enclave.

VI. LIMITATIONS & FUTURE WORK

Although Intel SGX is secure in design, it still suffers
from pattern leakage attacks such as side channel attack
as in [23]. These attacks, both memory level (shown in

Section V) and network level, leak information and endanger
data security. We plan to thwart such attacks by hiding
the memory access patterns by introducing inconsistency in
the side channel information [58] with injection of dummy
data or by incorporating oblivious random access memory
technique. Also, to make the security more robust, we
plan to incorporate efficient access control mechanism that
features decentralized authorization, protected permissions,
and transitive permission delegation. Furthermore, Intel SGX
only supports a limited memory space (up to 128MB EPC)
for data and code inside the enclave. This memory limitation
calls for a distributed SGX system that will handle stream-
ing data from IoT devices without any memory issues or
sluggishness of the system. In the future, we aim to make
our SGX system distributed, so that the framework do not
face any unwanted memory issue or system slowdown.

VII. RELATED WORK

There has been some significant research on secure IoT
data management over the past couple of years. Talos
stores IoT data securely in the cloud using cryptographic
techniques and allows query processing over encrypted
data [59]. Even though the system is proved to be secure,
the proof mainly depends on the robustness of the encryption
algorithm as well as the application logic. In [60], authors
present a secure IoT data management system that uses a
blockchain [61]. They develop a decentralised framework
that uses Ethereum smart contracts [62] to control access
permission of data, store audit trail of data access in the
blockchain, and store raw data in encrypted form using Intel
SGX. Although the framework is integrated with Intel Sgx
and blockchain to ensure the security of the data, it does not
handle any processing of the data securely. In addition, [63]
utilizes Intel SGX to create enclaves that run virtual clones
of physical IoT devices in the cloud to store, process, and
share device generated data.

VIII. CONCLUSION

As the usage of IoT devices increase, it is imperative
that we protect sensitive user information and automation
policy rules from malicious attacks. This paper proposes
a framework that provides secure data analytics system by
leveraging Intel SGX and strong cryptographic techniques.
We execute basic trigger-action rule-based program for au-
tomation in the SGX enclave to ensure user privacy, data
integrity and confidentiality. Moreover, strong encryption
mechanism guarantees data privacy in transit and storage,
making the system end-to-end encrypted. We evaluate the
proposed framework by using data from simulated and
real IoT devices, by performing rule-based decision making
inside SGX enclave securely, and show that the overhead due
to encryption and SGX based processing is not significant.
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