
1 
 

 
Abstract—Silicon offers an attractive material platform 

for hardware realization of quantum computing. In this 
study, a microscopic stochastic simulation method is 
developed to model the effect of random interface charge 
traps in silicon metal-oxide-semiconductor (MOS) quantum 
gates. The statistical results show that by using a fast two-
qubit gate in isotopically purified silicon, the two-qubit 
silicon-based quantum gates have the fidelity >98% with a 
probability of 75% for the state-of-the-art MOS interface 
quality. By using a composite gate pulse, the fidelity can be 
further improved to >99.5% with the 75% probability. The 
variations between the quantum gate devices, however, are 
largely due to the small number of traps per device. The 
results highlight the importance of variability consideration 
due to random charge traps and potential to improve fidelity 
in silicon-based quantum computing. 

Index Terms—Variability, Fidelity, Silicon quantum gates, 
Random charge trap. 

I. INTRODUCTION 

Among various hardware realization of quantum computing, 
silicon-based quantum computing is particularly attractive for 
its potential to achieve high integration density, low cost, and 
compatibility with the mainstream IC technologies [1][2][3][4]. 
One challenge of silicon-based quantum computing is how to 
realize entangling quantum gates with high fidelity [5][6][7]. 
To achieve strong interaction and entanglement between 
neighboring qubits, it is necessary to have scaled devices[8], of 
which one important issue is device-to-device variability [9]. 
To integrate physical qubits to a quantum computing system, it 
is necessary to understand and control device-to-device 
variability for silicon-based quantum gates.  

In this letter, the variability and fidelity limits of two-qubit 
entangling gates based on a metal-oxide-semiconductor (MOS) 
structure are investigated [5][10][11][12]. A microscopic 
stochastic device simulation method is developed to treat the 
effect of random charge traps in MOS interface and nuclei spin 
dephasing. The results indicate that for a well-designed device, 
which takes advantage of long spin coherence time in 
isotopically purified silicon and fast gate time, high gate fidelity 
values can be achieved for the state-of-the-art MOS interface 
quality. The variability of the fidelity between devices, however, 
is large due to the randomness of the interface charge traps and 
the small size of the device. The results indicate the importance 
of variability due to random charge traps and potential to 

achieve high fidelity in the silicon MOS platform for realizing 
quantum computing technology.  

II. APPROACH  

The modeled silicon MOS two-qubit entangling quantum 
gates device is schematically shown in Fig. 1(a). The two spin 
qubits are defined by the applied gate voltages on two gates, GL 
and GR. The externally applied magnetic fields, BL and BR, 
separate the triplet and singlet states as shown in Fig. 1(b). The 
Hamiltonian of the two spin system, 𝐻଴, can be expressed with 
the basis set {|↑↑⟩, |↑↓⟩,|↓↑⟩, |↓↓⟩, Sଶ଴, S଴ଶ} as [13], 
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where the Zeeman splittings are 𝐸௭ ൎ 𝜇஻ሺ𝑔௅𝐵௅ ൅ 𝑔ோ𝐵ோሻ , 
𝐸௭ଵ ൎ 𝜇஻ሺ𝑔௅𝐵௅ െ 𝑔ோ𝐵ோሻ,  in which 𝐵௅ ൌ 0.50 𝑇  and 𝐵ோ ൌ
0.40 𝑇 are the magnetic fields and  𝑔௅ ൌ 2.00 and 𝑔ோ ൌ 2.00 
are g-factors at left and right quantum dots (QDs) respectively, 
𝜇஻ is the Bohr magneton, 𝑡௖ is the tunnel coupling, 𝑈଴ ൌ 𝑈଴

ᇱ ൎ
10𝑚𝑒𝑉  is the Hubbard Coulomb interaction energy by 
assuming the same value for two identical QDs, 𝜖  is the 
detuning energy controlled by the applied detuning gate voltage 
Δ𝑉௚ , which induces the quantum gate operation as 
schematically shown in Fig. 1(b) [13].  In practice, the g-factors 
of two QDs can be different and tuned. An estimation of the 
exchange interaction by using the configuration interaction (CI) 
calculations [14][15] indicates an extracted tunnel coupling of 
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Fig. 1. (a) Schematic sketch of the modeled silicon MOS two-qubit
entangling quantum gates device. The left and right gates (GL and GR

respectively) define two spin quantum dots. BL and BR are the external
magnetic field applied on the left and right quantum dots, respectively.
The random interface charge traps result in charge noise decoherence,
and 29Si nuclei spins result in decoherence. (b) Operation of the
controlled phase gates by applying a detuning gate voltage ∆𝑉௚. The
singlet S11 and triplet (T1, T0, and T-1) energy levels as a function of ∆𝑉௚

are shown. A main effect of the random charge trap noise is perturbation
of the effective detuning voltage around the bias point, as schematically
shown by the vertical gray bar.  
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𝑡௖~1𝜇𝑒𝑉  for two QDs 35nm apart.  The tunnel coupling is 
dependent on the interdot distance, barrier height, and materials 
of the devices, and it is tunable and falls in a wide range of ~0 
to ~0.1 𝑚𝑒𝑉 in practice [16][17]. The value used here is at the 
lower side. The device is biased in the regime of 𝑈଴ െ 𝜖 ≫ 𝑡௖, 
in which the Hamiltonian can be simplified to (1). 

Two decoherence mechanisms, the charge noise and isotope 
nuclei dephasing, are modeled. Decoherence due to spin-orbit 
coupling is weaker and negligible, especially when the external 
magnetic field direction is optimized [18]. In a MOS device 
structure, the effect of the interface charge traps is a major 
limiting factor, and device-to-device variation is an important 
consideration for large scale integration. To examine the effect 
of random interface charge traps, the placement of charge traps 
is determined by a procedure described in Ref. [19], which 
randomly distributes traps in a region 10,000 times larger than 
the patterning area of 𝐿଴ ൈ 𝐿଴ for the two-qubit quantum gate 
according to a given interface trap density, 𝑁ூ் . Here, we 
assume 𝐿଴ ൌ 100 𝑛𝑚 and a state-of-the-art interface quality of 
𝑁ூ் ൌ 2 ൈ 10ଵ଴𝑐𝑚ିଶ [20], which has an average of 2 traps per 
individual device. 

Charges in the traps induce a random stochastic Coulombic 
potential, which perturbs the effective detuning potential, as 
well as the tunnel coupling, and g-factor of the spin qubits. 
While the detuning noise and tunneling noise dominate in 
different detuning bias conditions, the detuning noise is 
estimated to be most important for the bias condition examined 
here [21][22], which is treated in this study. By using the 
Thomas-Fermi (TF) approximation, the screened trap potential 
can be expressed as [21], 

 𝑉௧௥௔௣ሺ𝑥, 𝑦ሻ ൌ
௘మ

ସగఌೞ೔ሾሺ௫ି௑೅ሻమାሺ௬ି௒೅ሻమሿయ/మ ൬
ଵା௤೅ಷௗ

௤೅ಷ
మ ൰, (2) 

where 𝑒  is the elementary electron charge, 𝜀௦௜  is the silicon 
dielectric constant, 𝑞்ி ൎ 2/ሺ3𝑛𝑚ሻ is the TF screening wave 
vector, 𝑑 ൎ 0 is used for interface traps, (𝑋், 𝑌 ) is the in-plane 
position of a randomly distributed charge trap. To quantify the 
perturbation, the potential difference between two QDs due to 
a trap charge is evaluated by computing the expectation value 
of the screened Coulombic potential, ൻ𝐿ห𝑉௧௥௔௣ሺ𝑥, 𝑦ሻห𝐿ൿ െ
ൻ𝑅ห𝑉௧௥௔௣ሺ𝑥, 𝑦ሻห𝑅ൿ , where |𝐿⟩  and |𝑅⟩  are the electron wave 
functions of the left and right QDs, respectively [23].  

Charge traps are assumed to follow the dynamics of random 
telegraph noise with a characteristic time of 𝜏~1𝑚𝑠, as two 
level fluctuators. The value of 𝜏  is much larger than the 
quantum gate time, so the exact value has a small effect on the 
results. This is a simplified assumption of the charge trap 
dynamics, and it has been shown that an ensemble of fluctuators 
with a distribution of time constants can explain experimentally 
observed nontrivial noise spectrums [24][25][26]. Charge trap 
dynamics creates a random, time-dependent potential 
difference between two QDs, which perturbs the detuning 
energy 𝜖 term of the Hamiltonian in Eq. (1). 

To model the nuclei dephasing noise, a phenomenological 
perturbation Hamiltonian 𝐻௡௨௖  is used. The Overhauser field 
due to the nuclei spin can be expressed as [27],  
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where the sum is over the L and R spins, 𝐵௭,௦
௡௨௖ሺ𝑡ሻ is the field 

due to nuclei along the spin direction, 𝐵ୄ,௦
௡௨௖ is the perpendicular 

component, 𝐵௘௫௧ is the external field. The combined effect of 
the field can be described by an effective field 𝐵௘௙௙,௦, which can 
be approximated as a stochastic constant within one quantum 
gate operation period but varies between different operations. It 
has been shown that in isotopically purified 28Si, the spin 
decoherence time can be >100𝜇𝑠 [5]. Here the value of 𝐵௘௙௙,௦ 
is phenomenologically determined by requiring the resulting 
nuclei spin dephasing time to be equal to 100𝜇𝑠. 

Based on the system Hamiltonian and description of 
dephasing mechanisms, a quantum trajectories method (QTM) 
[28] is used to describe the stochastic gate evolution. The 
numerical QTM allows incorporate of multiple dephasing 
mechanisms in a microscopic way, tracks the random 
trajectories of the propagator, describes the non-Markovian 
features of the quantum evolution, and removes certain 
approximations such as perturbative expansion and Gaussian 
averaging used in analytical models [29][30]. The physical 
quantities of interest can be derived by statistically averaging 
over the quantum trajectories. The propagator fidelity can be 
computed as the expectation value over trajectories, ℱ ൌ

〈|்௥൫௎೙௎೔
శ൯|

்௥൫௎೔௎೔
శ൯

〉, where 𝑈௡ and 𝑈௜ are noisy and ideal propagators, 

respectively [31]. 

III. RESULTS AND DISCUSSIONS 

The distribution of random interface charge traps is 
examined first. Fig. 2(a) shows the statistical histogram of the 
number of interface charge traps per device. While the mean 
value of traps per device is 2, the device-to-device variation is 
large. In the 10000 random sampled devices, ~14% have 0 
interface traps, while ~6% have ൒5 interface traps. Furthermore, 
not only does the number of interface charge traps per device 

Fig. 3. (a) A sample of the screened charge trap potential profile, which
corresponds to the device sample 1 in Fig. 2(b). (b) Statistical 
distribution of the interdot potential due to charge trapsm which include 
10,000 random samples. The modeled device structure is in Fig. 1(a). 

Fig. 2. Random distribution of the interface charge traps. (a) Statistical 
histogram of the numbers of interface charge traps per device. The area
of an individual device is 100𝑛𝑚 ൈ 100𝑛𝑚, and the interface charge trap 
density is 𝑁ூ் ൌ 2 ൈ 10ଵ଴𝑐𝑚ିଶ . (b) shows two device samples of the 
interface charge trap distributions together with the wave function
probabilities of two spin qubits. The device sample 1 have 2 traps and
device sample 2 have 5 traps, whose locations are indicated by the
white stars and green dots, respectively.  
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vary significantly, the positions of the interface charge traps are 
randomly distributed, as shown in Fig. 2(b).  

Next, the effect of the interface charge traps on the detuning 
potential is examined. Fig. 3a shows a sample of the screened 
Coulomb potential profile in the horizontal plane. Because the 
positions and the numbers of the charge traps distribute 
randomly, the resulting potential difference, 𝑉௅ െ 𝑉ோ, where 𝑉௅ 
and 𝑉ோ  are the expectation values of the charge-trap-induced 
potentials on the left and right dots, respectively, has a wide 
distribution, as shown in Fig. 3b. For the statistical device 
samples that happen to have no interface traps, the potential 
difference is 0. In addition, those samples with nearly 
symmetric charge trap distributions with regard to two QDs 
have small values of 𝑉௅ െ 𝑉ோ. These two cases together result 
in a peak near 0 in the statistical histogram. For other cases, 
𝑉௅ െ 𝑉ோ  ranges from several 𝜇𝑉  to tens of 𝜇𝑉 . The results 
indicate that the perturbation to the detuning potential varies 
considerably, depending on the numbers and positions of the 
charge traps. 

The effect of the random charge traps on a two-qubit 
controlled Z (CZ) gate operation realized by the device in Fig. 
1(a) is investigated next. The detuning gate operation as shown 
in Fig. 1(b) differs from the controlled-phase gate locally by 
single-qubit operations. Because the single-qubit operations 
have significantly higher fidelity and shorter gate time in silicon 
qubit technologies, we assume that the single-qubit operations 
are ideal and ignore their impact on fidelity, which is valid even 
when the device is in the (1,1) charge stability region if 
carefully designed pulses are used [10][32]. Fig. 4(a) shows the 
time evolution of a quantum state for different device samples 
with random interface traps, in which the left qubit is initialized 
at |1⟩ and right qubit is initialized at |൅⟩. The probability of the 
right qubit at |൅⟩ is shown in Fig. 4(a) as a function of time, 
which shows device-to-device variations. The device is biased 
at detuning 𝑈଴ െ 𝜖 ൌ 0.14 𝑚𝑒𝑉 , which results in a CZ gate 
time of ~150 ns. Biasing the device closer to the resonant point 
with tୡ ≪ 0.14 𝑚𝑒𝑉  shortens the gate time, but it does not 
improve the fidelity, because the effect of detuning noise also 
increases [22]. Fig. 4(b) plots the statistical histogram of the 
gate fidelity, which shows a fidelity value of >98% for 75% of 
statistical device samples, with an average value of 98.8%. The 
variability of the fidelity between devices, however, is large.  

It has been suggested that the fidelity of the two-qubit CZ 
gates can be improved by using a composite gate pulse [33][34], 
which suppresses exchange coupling noise regardless of its 
tunneling- or detuning-caused origin. Therefore, the variability 
and fidelity limits of the composite quantum gate are examined. 
The composite gate uses a sequence of two-qubit and single-
qubit operations, as shown by the quantum circuit in Fig. 5(a), 
which is protected against the quasi-static and low-frequency 
noise for a specific two-qubit noise channel [33][34]. The gates 
are defined as 𝑆ሺΘሻ ൌ 𝑒𝑥𝑝ሺെ𝑖Θ𝜎௭⨂𝜎௭/4ሻ , R ሺ𝜃ሻ ൌ
𝑒𝑥𝑝ሺെ𝑖𝜃𝜎௫/2ሻ , and the rotational angles are 𝜃 ൌ 𝜋 െ  𝜃∗ 
where  𝜃∗ ൎ 0.674 , 𝛩 ൌ െ𝜋𝑠𝑒𝑐ሺ𝜃ሻ ൎ 1.28𝜋 , and 𝛩ଶ ൌ 2𝜋 
[33][34]. Fig. 5(b), which plots the histogram of the fidelity of 
the composite gate, shows that the fidelity can be improved 
to >99.5% for 75% of samples, with an average value of 99.4%. 
It is noted that the composite gate has more gate stages and 
about 4.6 times longer two-qubit gate operation time (~700 ns), 

determined by adding up three two-qubit gate operations with 
the rotation angles required by the robust design [33][34]. The 
longer time results in larger impact by nuclei dephasing, which 
is not protected by the pulse design. Isotopically purified silicon, 
therefore, is essential for high fidelity of the composite gate. In 
addition, the composite gate pulse is designed to be ideal for the 
small noise of the two-qubit ZZ operation channel, based on a 
perturbative theory approach. The perturbation to detuning 
potential, as indicated by Fig. 3, however, has a wide 
distribution. For those device samples with large perturbations 
due to charge traps, the fidelity value does not show 
improvement. As a result, although the average of the gate 
fidelity improves, the variation is still large in the composite 
quantum gate scheme. 

IV. CONCLUSIONS 

A simulation method that treats variability of silicon 
quantum gate devices due to random interface charge trap 
distributions is developed. The results show that the silicon 
MOS quantum gates have the potential to achieve the fidelity 
of >98% with 75% probability, with the requirement of the 
state-of-the-art MOS interface quality, isotopically purified 
silicon, and scaled device size for strong interdot coupling. The 
fidelity can be further improved to >99.5% with 75% 
probability by using a carefully designed composite gate pulse. 
The variability between devices, however, is largely due to the 
small device size and stochastic nature of atomistic scale 
defects.  
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