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Abstract—Silicon offers an attractive material platform
for hardware realization of quantum computing. In this
study, a microscopic stochastic simulation method is
developed to model the effect of random interface charge
traps in silicon metal-oxide-semiconductor (MOS) quantum
gates. The statistical results show that by using a fast two-
qubit gate in isotopically purified silicon, the two-qubit
silicon-based quantum gates have the fidelity >98% with a
probability of 75% for the state-of-the-art MOS interface
quality. By using a composite gate pulse, the fidelity can be
further improved to >99.5% with the 75% probability. The
variations between the quantum gate devices, however, are
largely due to the small number of traps per device. The
results highlight the importance of variability consideration
due to random charge traps and potential to improve fidelity
in silicon-based quantum computing.

Index Terms—Variability, Fidelity, Silicon quantum gates,
Random charge trap.

|. INTRODUCTION

Among various hardware realization of quantum computing,
silicon-based quantum computing is particularly attractive for
its potential to achieve high integration density, low cost, and
compatibility with the mainstream IC technologies [1][2][3][4].
One challenge of silicon-based quantum computing is how to
realize entangling quantum gates with high fidelity [5][6][7].
To achieve strong interaction and entanglement between
neighboring qubits, it is necessary to have scaled devices[8], of
which one important issue is device-to-device variability [9].
To integrate physical qubits to a quantum computing system, it
is necessary to understand and control device-to-device
variability for silicon-based quantum gates.

In this letter, the variability and fidelity limits of two-qubit
entangling gates based on a metal-oxide-semiconductor (MOS)
structure are investigated [S][10][11][12]. A microscopic
stochastic device simulation method is developed to treat the
effect of random charge traps in MOS interface and nuclei spin
dephasing. The results indicate that for a well-designed device,
which takes advantage of long spin coherence time in
isotopically purified silicon and fast gate time, high gate fidelity
values can be achieved for the state-of-the-art MOS interface
quality. The variability of the fidelity between devices, however,
is large due to the randomness of the interface charge traps and
the small size of the device. The results indicate the importance
of variability due to random charge traps and potential to
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Fig. 1. (a) Schematic sketch of the modeled silicon MOS two-qubit
entangling quantum gates device. The left and right gates (G. and Gr
respectively) define two spin quantum dots. B, and Bk are the external
magnetic field applied on the left and right quantum dots, respectively.
The random interface charge traps result in charge noise decoherence,
and #Si nuclei spins result in decoherence. (b) Operation of the
controlled phase gates by applying a detuning gate voltage AV,. The
singlet S11 and triplet (T4, To, and T-1) energy levels as a function of AV,
are shown. A main effect of the random charge trap noise is perturbation
of the effective detuning voltage around the bias point, as schematically
shown by the vertical gray bar.

achieve high fidelity in the silicon MOS platform for realizing
quantum computing technology.

Il. APPROACH

The modeled silicon MOS two-qubit entangling quantum
gates device is schematically shown in Fig. 1(a). The two spin
qubits are defined by the applied gate voltages on two gates, G1.
and Gg. The externally applied magnetic fields, B, and Bg,
separate the triplet and singlet states as shown in Fig. 1(b). The
Hamiltonian of the two spin system, H,, can be expressed with
the basis set {|TT), |TL),[IT), [IL), S0, Soz} as [13],

Hy =
E,/2 0 0 0 0 0
0 E,/2 0 0 t, t, ]
0 0 - 21/2 0 —tc —tc (D
0 0 —-E,/2 0 o |
0 t, —t, 0 Uy—€e 0
0 t, —t, 0 0 Ui+e

where the Zeeman splittings are E, = ug(g.B, + grBg) ,
E,1 =~ ug(g.B, — ggBg), in which B, =0.50T and By =
0.40 T are the magnetic fields and g, = 2.00 and gz = 2.00
are g-factors at left and right quantum dots (QDs) respectively,
ug is the Bohr magneton, t, is the tunnel coupling, U, = Uy =
10meV is the Hubbard Coulomb interaction energy by
assuming the same value for two identical QDs, € is the
detuning energy controlled by the applied detuning gate voltage
AV, , which induces the quantum gate operation as
schematically shown in Fig. 1(b) [13]. In practice, the g-factors
of two QDs can be different and tuned. An estimation of the
exchange interaction by using the configuration interaction (CI)
calculations [14][15] indicates an extracted tunnel coupling of



t.~1ueV for two QDs 35nm apart. The tunnel coupling is
dependent on the interdot distance, barrier height, and materials
of the devices, and it is tunable and falls in a wide range of ~0
to ~0.1 meV in practice [16][17]. The value used here is at the
lower side. The device is biased in the regime of Uy — € > t,,
in which the Hamiltonian can be simplified to (1).

Two decoherence mechanisms, the charge noise and isotope
nuclei dephasing, are modeled. Decoherence due to spin-orbit
coupling is weaker and negligible, especially when the external
magnetic field direction is optimized [18]. In a MOS device
structure, the effect of the interface charge traps is a major
limiting factor, and device-to-device variation is an important
consideration for large scale integration. To examine the effect
of random interface charge traps, the placement of charge traps
is determined by a procedure described in Ref. [19], which
randomly distributes traps in a region 10,000 times larger than
the patterning area of Ly X Ly for the two-qubit quantum gate
according to a given interface trap density, N;;. Here, we
assume Ly, = 100 nm and a state-of-the-art interface quality of
N;r = 2 X 10'°cm™2 [20], which has an average of 2 traps per
individual device.

Charges in the traps induce a random stochastic Coulombic
potential, which perturbs the effective detuning potential, as
well as the tunnel coupling, and g-factor of the spin qubits.
While the detuning noise and tunneling noise dominate in
different detuning bias conditions, the detuning noise is
estimated to be most important for the bias condition examined
here [21][22], which is treated in this study. By using the
Thomas-Fermi (TF) approximation, the screened trap potential
can be expressed as [21],

e? 1+qrpd
Verap(,y) = 4megi[(x—XT)2+(y-YT)?]3/2 ( % > @)

where e is the elementary electron charge, & is the silicon
dielectric constant, qrp = 2/(3nm) is the TF screening wave
vector, d = 0 is used for interface traps, (X, Yr) is the in-plane
position of a randomly distributed charge trap. To quantify the
perturbation, the potential difference between two QDs due to
a trap charge is evaluated by computing the expectation value
of the screened Coulombic potential, <L|Vtmp (x,y) |L) -
(R|Virap(x,7)|R), where |L) and |R) are the electron wave
functions of the left and right QDs, respectively [23].

Charge traps are assumed to follow the dynamics of random
telegraph noise with a characteristic time of t~1ms, as two
level fluctuators. The value of 7 is much larger than the
quantum gate time, so the exact value has a small effect on the
results. This is a simplified assumption of the charge trap
dynamics, and it has been shown that an ensemble of fluctuators
with a distribution of time constants can explain experimentally
observed nontrivial noise spectrums [24][25][26]. Charge trap
dynamics creates a random, time-dependent potential
difference between two QDs, which perturbs the detuning
energy € term of the Hamiltonian in Eq. (1).

To model the nuclei dephasing noise, a phenomenological
perturbation Hamiltonian H,,,. is used. The Overhauser field
due to the nuclei spin can be expressed as [27],

nuc|?
Hnuc = p;_BZs=L,R s (ngc(t) + %) 6_\sz =
%Zs:L,R(gsBeff,s) 6_52’
where the sum is over the L and R spins, B}'{¢(t) is the field
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due to nuclei along the spin direction, BT is the perpendicular

component, B¢*¢ is the external field. The combined effect of
the field can be described by an effective field B,ff ¢, which can
be approximated as a stochastic constant within one quantum
gate operation period but varies between different operations. It
has been shown that in isotopically purified 2Si, the spin
decoherence time can be >100us [5]. Here the value of By ¢
is phenomenologically determined by requiring the resulting
nuclei spin dephasing time to be equal to 100us.

Based on the system Hamiltonian and description of
dephasing mechanisms, a quantum trajectories method (QTM)
[28] is used to describe the stochastic gate evolution. The
numerical QTM allows incorporate of multiple dephasing
mechanisms in a microscopic way, tracks the random
trajectories of the propagator, describes the non-Markovian
features of the quantum evolution, and removes certain
approximations such as perturbative expansion and Gaussian
averaging used in analytical models [29][30]. The physical
quantities of interest can be derived by statistically averaging
over the quantum trajectories. The propagator fidelity can be
computed as the expectation value over trajectories, F =
<|Tr(UnUi+)|

Tr(U;Uft)
respectively [31].

), where U,, and U; are noisy and ideal propagators,

Ill. RESULTS AND DISCUSSIONS

The distribution of random interface charge traps is
examined first. Fig. 2(a) shows the statistical histogram of the
number of interface charge traps per device. While the mean
value of traps per device is 2, the device-to-device variation is
large. In the 10000 random sampled devices, ~14% have 0
interface traps, while ~6% have =5 interface traps. Furthermore,
not only does the number of interface charge traps per device
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Fig. 2. Random distribution of the interface charge traps. (a) Statistical
histogram of the numbers of interface charge traps per device. The area
of an individual device is 100nm x 100nm, and the interface charge trap
density is Ny = 2 X 10°%cm™2. (b) shows two device samples of the
interface charge trap distributions together with the wave function
probabilities of two spin qubits. The device sample 1 have 2 traps and
device sample 2 have 5 traps, whose locations are indicated by the
white stars and green dots, respectively.
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Fig. 3. (a) A sample of the screened charge trap potential profile, which

corresponds to the device sample 1 in Fig. 2(b). (b) Statistical

distribution of the interdot potential due to charge trapsm which include

10,000 random samples. The modeled device structure is in Fig. 1(a).



vary significantly, the positions of the interface charge traps are
randomly distributed, as shown in Fig. 2(b).

Next, the effect of the interface charge traps on the detuning
potential is examined. Fig. 3a shows a sample of the screened
Coulomb potential profile in the horizontal plane. Because the
positions and the numbers of the charge traps distribute
randomly, the resulting potential difference, V; — Vi, where V;,
and Vj are the expectation values of the charge-trap-induced
potentials on the left and right dots, respectively, has a wide
distribution, as shown in Fig. 3b. For the statistical device
samples that happen to have no interface traps, the potential
difference is 0. In addition, those samples with nearly
symmetric charge trap distributions with regard to two QDs
have small values of V; — V. These two cases together result
in a peak near 0 in the statistical histogram. For other cases,
V, — Vp ranges from several uV to tens of uV. The results
indicate that the perturbation to the detuning potential varies
considerably, depending on the numbers and positions of the
charge traps.

The effect of the random charge traps on a two-qubit
controlled Z (CZ) gate operation realized by the device in Fig.
1(a) is investigated next. The detuning gate operation as shown
in Fig. 1(b) differs from the controlled-phase gate locally by
single-qubit operations. Because the single-qubit operations
have significantly higher fidelity and shorter gate time in silicon
qubit technologies, we assume that the single-qubit operations
are ideal and ignore their impact on fidelity, which is valid even
when the device is in the (1,1) charge stability region if
carefully designed pulses are used [10][32]. Fig. 4(a) shows the
time evolution of a quantum state for different device samples
with random interface traps, in which the left qubit is initialized
at |1) and right qubit is initialized at |+). The probability of the
right qubit at |[+) is shown in Fig. 4(a) as a function of time,
which shows device-to-device variations. The device is biased
at detuning U, — € = 0.14 meV, which results in a CZ gate
time of ~150 ns. Biasing the device closer to the resonant point
with t. < 0.14 meV shortens the gate time, but it does not
improve the fidelity, because the effect of detuning noise also
increases [22]. Fig. 4(b) plots the statistical histogram of the
gate fidelity, which shows a fidelity value of >98% for 75% of
statistical device samples, with an average value of 98.8%. The
variability of the fidelity between devices, however, is large.

It has been suggested that the fidelity of the two-qubit CZ
gates can be improved by using a composite gate pulse [33][34],
which suppresses exchange coupling noise regardless of its
tunneling- or detuning-caused origin. Therefore, the variability
and fidelity limits of the composite quantum gate are examined.
The composite gate uses a sequence of two-qubit and single-
qubit operations, as shown by the quantum circuit in Fig. 5(a),
which is protected against the quasi-static and low-frequency
noise for a specific two-qubit noise channel [33][34]. The gates
are defined as S(0) = exp(—i@o,Q0,/4) , R (0) =
exp(—ifo,/2), and the rotational angles are § = — 6*
where 0* = 0.674, © = —msec(0) = 1.28w, and 0, = 21
[33][34]. Fig. 5(b), which plots the histogram of the fidelity of
the composite gate, shows that the fidelity can be improved
t0 >99.5% for 75% of samples, with an average value of 99.4%.
It is noted that the composite gate has more gate stages and
about 4.6 times longer two-qubit gate operation time (~700 ns),
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Fig. 4. Statistical properties of the two-qubit CZ quantum gate. (a)
Transient characteristics of the CZ gates. The probability of the |+) state
of the right qubit is shown, with left qubit at the state ‘“1’. Ten statistical
samples are plotted. (b) Histogram bars (left axis) and cumulative curve
(right axis) of the fidelity of 1000 random quantum gate samples. The
modeled device structure is as shown in Fig. 1(a) with the same
interface trap density as Fig. 2.

—1003¢

%

Cumulative [

1 0090

99.0 99.5
Fidelity [%]

Fig. 5. (a) Composite gate pulse represented by a quantum circuit
diagram. The two-qubit ZZ gates are S(@) and S(©,) with rotation
angles of ® and 0,, respectively. The single-qubit gates R(6) and
R(—6) are rotational gates around x for the right qubit with angles of 6
and —0, respectively. (b) Histogram bars (left axis) and cumulative
curve (right axis) of the fidelity for the composite gate as shown in (a).
The three two-qubit stages have the same parameters as in Fig. 4, and
the single qubit operations are assumed to be ideal.

determined by adding up three two-qubit gate operations with
the rotation angles required by the robust design [33][34]. The
longer time results in larger impact by nuclei dephasing, which
is not protected by the pulse design. Isotopically purified silicon,
therefore, is essential for high fidelity of the composite gate. In
addition, the composite gate pulse is designed to be ideal for the
small noise of the two-qubit ZZ operation channel, based on a
perturbative theory approach. The perturbation to detuning
potential, as indicated by Fig. 3, however, has a wide
distribution. For those device samples with large perturbations
due to charge traps, the fidelity value does not show
improvement. As a result, although the average of the gate
fidelity improves, the variation is still large in the composite
quantum gate scheme.

IV. CONCLUSIONS

A simulation method that treats variability of silicon
quantum gate devices due to random interface charge trap
distributions is developed. The results show that the silicon
MOS quantum gates have the potential to achieve the fidelity
of >98% with 75% probability, with the requirement of the
state-of-the-art MOS interface quality, isotopically purified
silicon, and scaled device size for strong interdot coupling. The
fidelity can be further improved to >99.5% with 75%
probability by using a carefully designed composite gate pulse.
The variability between devices, however, is largely due to the
small device size and stochastic nature of atomistic scale
defects.
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