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Abstract—Recurrent neural networks (RNNs) are well-suited
to the sequential inference tasks often found in embedded sensing
systems. While RNNs have displayed high accuracy on many
tasks, they are poorly equipped for inference under energy
budgets that are unknown at design time. Existing RNNs meet
energy constraints in sensor environments by training models
to subsample input sequences. The tight coupling between the
sampling strategy and the RNN prevents these systems from
generalizing to new energy budgets at runtime. To address this
problem, we present a novel RNN architecture called the Budget
RNN. Budget RNNs use a leveled architecture to decouple the
sampling strategy from the RNN model, allowing a single Budget
RNN to change its subsampling behavior at runtime. We further
propose a runtime feedback controller to optimize the model’s
accuracy for a given energy budget. Across a set of budgets,
the Budget RNN inference system achieves a mean accuracy
of roughly 3 points higher than standard RNNs. Alternatively,
Budget RNNs can achieve comparable accuracy to existing RNNs
while under 20% smaller budgets.

I. INTRODUCTION

Battery-powered sensors face the challenge of a finite life-

time. When the battery is exhausted, devices need maintenance

to continue operation, and this can be costly or impractical for

sensors located in hard-to-reach places [1, 2, 3, 4]. Thus, these

systems are often augmented with recharging capabilities; e.g.,

wirelessly [5] or through energy harvesting [6, 7, 3, 4]. Either

technique induces energy budgets: until recharged, sensors

must perform using only previously-stored energy. As these

recharging systems exhibit variance in both generated power

and recharge availability, the induced energy budgets are

unknown at design time [8].

To meet varying energy budgets, sensors must alter their

runtime energy consumption, which typically goes into three

tasks: collecting, processing, and communicating data. By

collecting data less often—i.e., sampling the data—devices

reduce the energy consumed by both sensing hardware and

subsequent processing [9, 10, 11]. Reducing the data collection

rate, however, comes at a cost in error. By collecting fewer

values, the sensor creates a less-complete view of the target

environment. With this tradeoff, a logical goal of budgeted

computation is to minimize the error (or maximize accuracy)

while altering energy consumption to meet the constraint.

Understanding how data collection affects error requires

understanding sensor computations. Sensors often perform

local inference for improved reactivity, privacy, and energy-

efficiency [12, 13]. Furthermore, this processing is increas-

ingly focused on deep neural networks (DNNs) [14, 15, 16, 17]

due to their high accuracy for image [18] and audio [19, 20]

tasks. As many sensing tasks operate on data streams, recurrent

neural networks (RNNs) [21, 22] are common DNN models

for in-sensor inference [15, 23, 24].

RNNs operate on data sequences of arbitrary length, making

them well-suited to sampling techniques, and thus, operating

under energy budgets. The challenge involves determining

how to minimize the RNN’s inference error under an energy

constraint. This challenge leads to the concrete problem of

selecting the sampling technique that both minimizes the RNN

error and conserves enough energy to meet the budget. As we

assume the exact energy constraint is not known at design

time, the system must have sufficient flexibility to provide

high accuracy across a range of energy budgets.

There exist prior RNN solutions—specifically, Phased

RNNs [25] and Skip RNNs [26]—that appear to fit into the

framework of budgeted computation. While they differ in

specifics, these approaches jointly train both an RNN and a

sampling strategy. The joint training means that each RNN

operates on a single energy consumption level. To meet an

energy budget that is only known at runtime, the inference

system must use many RNNs, each trained for a different

budget. The need to produce many separate networks with

different sampling strategies leads to a high training cost.

Furthermore, deploying many neural networks will exhaust

the memory capacity of low-power devices. An additional

downside is the inefficient use of energy budgets. To meet

the budget B ∼ [Bmin, Bmax], the system may have to

select an RNN with energy consumption b that is strictly

less than the budget. Thus, the system will have a surplus

of B − b > 0 joules. The goal of this paper is to produce

budgeted inference designs that are low overhead (in training

time and memory footprint) yet use the entire energy budget

to maximize accuracy, rather than waste it as would be done

with prior work.
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Therefore, we propose a new type of RNN called the

Budget RNN. Budget RNNs are designed from the ground-

up for accurate inference under energy budgets only known

at runtime. The model has a leveled architecture in which

each level processes a subsequence of inputs. Budget RNNs

conserve energy by allowing execution to halt after each

subsequence. This design enables a single Budget RNN to

dynamically alter its energy consumption. As Budget RNNs

support non-contiguous subsequences, these features come

without compromising sampling flexibility. We design a run-

time controller that uses trainable halting signals from the

Budget RNN. This controller optimizes the model accuracy

while adhering to an energy budget. The controller generalizes

to new budgets and adapts the system to changes in the runtime

environment. Furthermore, the combination of early-stopping

and dynamic sampling can be realized in a relatively small

number of Budget RNNs, leading to reduced training time

and low memory overhead.

We evaluate the proposed system in both a simulated envi-

ronment and a hardware implementation. We show that, across

seven datasets, the Budget RNN system achieves a mean

accuracy that is 1.5 points higher than that of Skip RNNs [26]

and 3 points higher than that of standard RNNs. Alternatively,

Budget RNNs can be used to reduce energy needs (and the

associated battery and charging capacity). Specifically, for the

same accuracy of baseline approaches, Budget RNNs reduce

energy requirements by 20%. With respect to Skip RNNs,

these accuracy benefits come at no cost in training time.

In summary, this paper makes the following contributions:

• We establish a framework for maximizing inference ac-

curacy under energy budgets. We use this framework

to formalize a goal for inference systems that adapt to

unseen budgets at runtime.

• We present a novel RNN architecture, called the Budget

RNN, for performing inference under energy budgets

that are unknown at design time. Budget RNNs change

their energy consumption by using a leveled architecture

to process subsamples of input sequences. This design

achieves better accuracy under energy budgets when

compared to existing RNN solutions.

• We design an optimization procedure to control the

subsampling behavior of Budget RNNs. This optimizer

accounts for energy constraints and provides results that

generalize to unseen budgets.

• We create a controller for Budget RNNs to ensure the

model meets a given energy constraint. This controller

uses a dynamic setpoint that adapts based on feedback

from the Budget RNN. The control policy further adapts

the system to changes in the runtime environment.

II. BACKGROUND AND GOALS

In this section, we motivate the problem of inference under

runtime energy budgets using examples from rechargeable

sensors (§II-A), provide background information on RNNs

(§II-B), establish a formal framework for budgeted inference

(§II-C), and identify limitations in prior work (§II-D).

A. Examples of Inference under Energy Budgets

Two examples of target systems are wireless rechargeable

sensor networks (WRSNs) [5] and devices with energy har-

vesting units [4]. We describe these applications below.

WRSNs use a mobile charging unit to wirelessly recharge

sensors [5]. The charging unit uses a protocol, such as on-

demand charging, to determine when to visit devices [27]. In

on-demand charging, sensors notify the mobile charging unit

when they are low on power, and various policies determine

the exact recharge time [27, 28]. This scenario creates an

energy budget: once sensors request a recharge, they have

finite remaining energy to use before the charging unit arrives.

Furthermore, the time until a recharge is dependent on both

the state of the network and the visitation policy. Thus, sensors

only know the energy budget at runtime.

Energy harvesting systems supplement batteries with renew-

able energy. For example, wildlife tracking [1, 4, 6, 8], bridge

monitoring [7], and ecosystem observation [2, 3] sensors use

solar panels. Energy harvesters have varying performance

due to a dependence on their environment; e.g., solar panels

generate up to six times less power in overcast rather than

sunny weather [4]. This variance creates inherent unreliability

in sensor lifetime, which is a problem for operators. For ex-

ample, ZebraNet sensors desire 72 hours of operation on only

battery power [4]. This design requirement leads to energy

budgets; given only the energy stored before losing renewable

power, sensors must meet the desired uptime. In particular,

the residual battery charge before a loss of renewable power

is unknown at design time. Thus, such sensors must handle

energy constraints that are not known until runtime.

B. Recurrent Neural Networks and Sequential Classification

Sensors collect periodic measurements of their surrounding

environment, creating a temporal data stream [29]. As an

example, consider human activity recognition [30]. In this task,

sensors measure acceleration values at regular intervals. The

corresponding inference model uses a sequence of measure-

ments to predict the activity.

Recurrent Neural Networks (RNNs) are a popular model

for inference on sequences. RNNs’ key feature is their main-

tenance of an internal memory state [21, 22, 31]. At each

step, this memory state represents a summary of the inputs

observed thus far. RNNs update the memory state using a

trainable transition function called the RNN cell.

We formally describe RNNs by considering an ordered

sequence X = {x0,x1, . . . ,xT−1}. Each vector xt ∈ R
n

represents the input measurement at step t ∈ [T ]1; e.g., for hu-

man activity recognition, each xt holds 3D acceleration values.

At step t ∈ [T ], the RNN updates the memory state st ∈ R
d

using the transition function (cell) Sϑ : Rn × R
d → R

d,

st = Sϑ(xt, st−1) ∀t ∈ [T ] (1)

There exist many RNN cells, from single-layer networks [31]

to more complex designs for learning long-term relationships

[20, 21, 24, 32, 33].

1We use the notation [N ] = {0, 1, . . . , N − 1}

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on September 15,2021 at 14:47:21 UTC from IEEE Xplore.  Restrictions apply. 



Sϑ Sϑ Sϑ Sϑ

x0 x1 x2 x3

sinit s3 gψ ŷ
s0 s1 s2

Fig. 1: An RNN on a sequence with three elements. Sϑ

represents the RNN cell and gψ is the readout layer.

RNNs form predictions using a trainable readout function

gψ , which often takes the form of a multi-layer perceptron

[34]. The readout layer uses a summary of the input sequence

to form the prediction. There are many possible ways to

form this summary; in the simplest case, the readout function

uses the final memory state sT−1 and the prediction is

ŷ = gψ(sT−1). Figure 1 shows an example of an RNN.

C. Inference under an Energy Budget

We now formalize the goal of designing an RNN-based

inference system that achieves low error under runtime en-

ergy constraints. Let F = {fθ1
, fθ2

, . . . , fθp
} be a family

of (sequential) inference models. We assume each model

incurs a different average energy cost to process a single

sequence. Let X = {X(0),X(1), . . . ,X(M−1)} be a set

of M non-overlapping sequences. Each sequence X(m) =

[x
(m)
1 ,x

(m)
2 , . . .x

(m)
T ] contains T elements where consecutive

measurements are sampled ∆t seconds apart.

We define an energy constraint as a tuple (B,M) cap-

turing the goal of performing inference on M sequences

with energy at most B. We assume that M is a finite

integer in [Mmin,Mmax] and B ∼ U([Bmin, Bmax]). The

ranges describe the set of feasible constraints. Given these

constraints, we want a policy π which selects a model in

F at each step m ∈ [M ]. The selected model, denoted by

fπ
m = π(F ,X(m), B,M), performs inference on the mth

sequence X(m). The dependence of π on B and M arises

because the system must adapt to new constraints at runtime.

We want to construct a policy π and a family of inference

models F to (1) minimize the expected error over all possible

budgets and (2) meet all energy constraints. Thus we have the

following optimization problem (where ym is the true label

for the mth sequence):

π,F =argmin
π̃,F̃

EM,B

[

1

M

M−1
∑

m=0

Error(f π̃
m(X(m)), ym)

]

(2)

s.t.
M−1
∑

m=0

Energy(f π̃
m,X(m)) ≤ B ∀M,B (3)

It is infeasible to solve this problem exactly. Even if we could,

at design time we do not know the energy budgets.

D. Adaptive Sampling in Recurrent Neural Networks

A family F for budgeted inference must contain inference

models with varying energy costs. Thus, to build a family F
with RNNs, we need a method to control the energy consump-

tion of RNNs during inference. In sensor environments, RNNs

can adjust their energy consumption by varying the number

of inputs. For example, rather than using a full sequence

[x0, . . . ,xT−1] to form a prediction, an RNN can save energy

by instead using the subsequence [xα0
, . . . ,xαr−1

] where

r < n. Skipping inputs saves energy by reducing the frequency

of both processing and collection. These savings are significant

when compared to the energy required to communicate predic-

tions to a centralized server. Between the tasks of collection,

processing, and communication, data processing has the lowest

energy cost. For example, both the TI MSP430 FR5994 [35]

and the Atmel SAM L21 [36] draw under 200μA per MHz. In

contrast, sensing hardware can consume an order of magnitude

more power, and the cost of sensing can even exceed that

of radio modules [37]. As transmission only occurs once per

sequence, the relative cost and frequency of collection allow

subsampling to yield significant energy savings [37]. We can

thus create a budgeted inference system with a family of

models F composed of RNNs that subsample input sequences.

Two state-of-the-art RNN architectures support subsam-

pling: Skip RNNs [26] and Phased RNNs [25]. Skip RNNs use

a trainable binary gate to skip sequence elements. This gate

is jointly trained with the RNN parameters, and it gives the

model fine-grained control over the sampling strategy. Phased

RNNs use a periodic phase gate to control when the RNN

makes updates to its memory state. By unifying the phase

gate across all state dimensions, Phased RNNs can use this

gate to skip inputs. Thus, both Skip and Phased RNNs can

create a family of inference functions (F) by sub-sampling

the sequence with varying granularity.

Both approaches train their sampling strategy at the same

time they train their RNN parameters. This joint training

reduces the flexibility to adapt to runtime energy availability

and is a bad match for the constraints of low-power sensing

systems. In particular, a Skip or Phased RNN cannot change its

sampling strategy after training. This property means that an

instance of either RNN operates at only one energy consump-

tion level. To meet energy budgets that are unknown at design

time, a system based on either model would need many trained

neural networks. This strategy requires a longer training time,

and memory restrictions cap the number of deployed models.

Furthermore, a reasonable selection policy (π) is to always

choose the best RNN that meets the energy constraint. As

there are a small, discrete number of models (due to memory

constraints on embedded devices), this policy is inefficient; for

a constraint (B,M), the best model may use only b < B joules

to classify M sequences. Our goal is to design a practical

approach that uses the remaining B − b joules to produce

more accurate inference results.

III. BUDGET RNN ARCHITECTURE

Budget RNNs are a family of RNN architectures designed

to (1) deliver high accuracy under energy constraints and (2)

generalize to budgets that are unknown until runtime. There

exists a tension between these two guiding principles. On one

hand, RNN accuracy depends on the sequence subsampling

algorithm. As discussed for Skip and Phased RNNs, however,
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creating a more flexible subsampling algorithm through joint

training limits the ability to generalize to new budgets.

Budget RNNs address this tension using four features. First,

Budget RNNs have a leveled architecture where each level

processes a distinct subsequence (§III-A). The Budget RNN

produces a prediction after each subsequence. Second, the

model avoids recomputation by merging RNN memory states

across subsequences (§III-B). The leveled architecture allows

a single Budget RNN to operate at many energy levels. In

particular, controlling the number of executed subsequences

determines the number of input elements the Budget RNN

uses. This control is possible due to the third feature of

Budget RNNs: halting signals (§III-C). For each subsequence,

Budget RNNs produce a signal which indicates whether the

model should halt its execution. By setting thresholds on these

signals, an inference policy (π) can dynamically alter the

Budget RNN’s sampling granularity. These signals decouple

the subsampling strategy from the Budget RNN parameters.

We discuss this control policy in Section IV. Finally, Budget

RNNs are trained with a novel loss function that balances

the predictions and halting signals across all subsequences

(§III-D). Figure 2 shows two Budget RNN architectures.

A. Leveled Architecture

Each Budget RNN level applies a shared RNN to a distinct

subsequence. Budget RNNs sequentially process these subse-

quences, producing a prediction from each. These predictions

allow Budget RNNs to exit early during inference. Further, the

Budget RNN can skip inputs as the data from unprocessed

subsequences does not need to be collected. Thus, Budget

RNNs can save on both computation and data collection.

We describe this process formally by considering the sub-

sequence X(α) = {xα0
, . . . ,xαr−1

} where r is less than the

original sequence length T . Similar to standard RNN update

(equation 1), Budget RNNs use the state transition model Sϑ

and readout layer gψ to perform on the subsequence X(α):

sαt
= Sϑ(xαt

, sαt−1
) ∀t ∈ [r] (4)

ŷ(α) = gψ(sαr−1
) (5)

The transition model Sϑ can be any RNN cell [21, 32, 33].

Both Sϑ and gψ are shared across all subsequences, a key

feature for reducing memory overhead.

Budget RNNs apply this recurrent process to each subse-

quence. Subsequence formation is based on two parameters:

• Number of Subsequences (L): Each subsequence results

in a prediction, so this parameter also represents the

number of predictions. We also refer to L as the number

of levels—the subsequences form levels in the model.

• Stride Length (K): This parameter determines the gap

between elements in each subsequence. For example, in

a sequence of length T = 6, the subsequences for a stride

length of K = 2 are {x0,x2,x4} and {x1,x3,x5}. The

�th subsequence has the following form:

X(�) =

{

{x(�T/L)+n | n ∈ [TL ]} if K = 1

{x�+nK | n ∈ [ TK ]} if K > 1
(6)

When K > 1, we set L = K to avoid the having a single

element in multiple subsequences.

Both L and K constitute hyperparameters for Budget RNNs.

The stride length in particular has an impact on model accu-

racy, and we discuss how to set this parameter in §IV-D.

B. Merging Memory States Across Subsequences

To maximize accuracy and avoid energy-wasteful redun-

dant computation, Budget RNNs leverage already-processed

sequence elements. When executing on level �, the Budget

RNN merges the new inputs to improve the prediction from

level �−1. A key property of this merging is the avoidance of

backward dependencies. During inference, a sensor supplies

the Budget RNN with measurements collected over time. Fur-

ther, Budget RNNs conserve energy by skipping subsequences.

From these two properties, backward dependencies would

require the system to either execute the current step using

future data or collect and store elements that may be ignored.

The former is impossible, and the latter is energy-inefficient.

When K = 1, the Budget RNN looks like a standard RNN

with L early-exit points [15]. The model combines information

between subsequences using the RNN cell. This combination

occurs by using the final memory state of the �− 1th level as

the initial memory state of the �th level. The left-hand-side of

Figure 2 shows an example of this design.

When K > 1, the merging is more complex due to the

interleaving of subsequences. For example, when T = 4 and

K = 2, the Budget RNN uses subsequences {x0,x2} and

{x1,x3}. In this case, the final element of the first subse-

quence, x2, occurs after elements in the second subsequence.

Thus, using s2 as the initial state of the second subsequence

creates a backward dependency. Budget RNNs solve this

problem by aligning and merging the memory states from each

level. Equations (7) and (8) below show how the merging layer

M interacts with the standard RNN cell in (9). The variables

W (M),U (M) and b(M) are trainable parameters, σ is the

sigmoid function, and � is the element-wise product.

zt = σ(W (M)st−K +U (M)st−1 + b(M)) (7)

s̃t−1 = zt � st−K + (1− zt)� st−1 (8)

st = Sϑ(xt, s̃t−1) (9)

To clarify this design, let step t belong to subsequence �. This

merging layer makes st dependent on all inputs collected thus

far. The state st−K precedes step t in the �th subsequence

and represents a summary of the current subsequence up to

step t. The state st−1 belongs to subsequence � − 1 and

represents a summary of the already-collected elements in

previous subsequences. Using a combination of st−1 and st−K

makes st dependent on all elements collected up to step t. The

right-hand portion of Figure 2 depicts this design.

Within this leveled architecture, the error should always im-

prove as the model observes more data. In practice, however,

this desired behavior does not always hold. We hypothesize

that this issue stems from two factors: (1) weight sharing

across levels and (2) a loss function based on an unweighted
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Sϑ Sϑ Sϑ Sϑ Sϑ Sϑ

x1 x3 x5x0 x2 x4

s5

sinit

s2Halt (q̂0)

Pool

ŷ(1)ŷ(0)

Level 0 Level 1

Time

Sϑ Sϑ Sϑ

M M MSϑ Sϑ Sϑ

x0 x2 x4

x1 x3 x5

s5

s4sinit

sinit Pool ŷ(1)

ŷ(0)

Level 0

Level 1

Time

Halt (q̂0)

Fig. 2: Budget RNNs with sequence length T = 6, L = 2 levels, and stride lengths K = 1 (left) and K = 2 (right).

average of the per-level loss (§III-D). To mitigate this problem,

we use an additional output pooling layer to combine the

predictions across subsequences. The pooling operation allows

Budget RNNs to use predictions from previous levels if doing

so lowers the error. As shown in the equations below, this layer

uses a trainable weighted average to aggregate predictions. The

variable s(�) is the final memory state for level �, wpool,upool

and bpool are trainable, and gψ is the readout function.

rk = w�
pools

(�) + u�
pools

(k) + bpool ∀k ≤ � (10)

βk = Normalize(r0, . . . , r�)k ∀k ≤ � (11)

ŷ(�) =
�

∑

k=0

βkgψ(s
(k)) (12)

In our implementation, we use a SparseMax normalization [38]

instead of a softmax normalization due to better numerical sta-

bility when implemented in fixed-point arithmetic on MCUs.

C. Halting Signals

Budget RNN’s use early-exit points to alter their energy

consumption. For example, to conserve energy, a Budget RNN

can stop at an intermediate level �; the sensor then does not

need to capture inputs belonging to subsequences �′ > �. To

maximize accuracy, the inference policy (π) should control the

number of executed levels in a data-dependent manner [26].

That is, the system should use inputs to determine when to

exit inference. Budget RNNs support the ability to make data-

dependent decisions using trainable halting signals [39, 40,

41]. At each level � ∈ [L], these signals indicate the probability

the current level’s prediction is correct. The policy π controls

the halting behavior using thresholds on these signals (§IV).

We describe these halting signals by considering two cases.

First, when K = 1, the model creates halting signals using

the final memory state of each level. Second, when K > 1,

the Budget RNN creates halting signals from the first element

of each subsequence. This discrepancy is a result of the

interleaving of elements across subsequences. For example,

during inference, the system must decide whether to collect

x1 after processing x0. When K > 1, x0 and x1 belong to

different subsequences. Consider if the Budget RNN created

the halting output after completing level � = 0. The system

would need to collect elements (such as x1) that may be

ignored if the system decides to halt at � = 0. Such extraneous

data collection wastes energy. Thus, to efficiently collect

inputs, the system must use x0 to decide whether it should

halt at level � = 0. Therefore, when K > 1, the Budget RNN

must use the first memory state of the �th subsequence to

construct the halting signal for level �.
Budget RNNs use a shared, trainable layer to create the

halting signals. The equations below show the halting function

hϕ applied to level �. The term sδ(�) is the final state of level

� when K = 1 and the first state of level � when K > 1. The

variables Whalt,1,whalt,2, bhalt,1 and bhalt,2 are trainable, and

φ is the nonlinear activation function.

h� = φ(Whalt,1sδ(�) + bhalt,1) (13)

q̂� = σ(w�
halt,2h� + bhalt,2) (14)

Budget RNNs train the halting signal q̂� to predict whether the

model is correct at level �. For classification tasks, the label is

q� = 1[y = argmax ŷ(�)] where 1[·] is an indicator function.

For regression tasks, the label is q� = 1
[

‖y − ŷ(�)‖22 < ε
]

for a threshold ε > 0. In either case, the label is a non-

differentiable function of the Budget RNN parameters. We

address this problem by treating the label as a constant. This

treatment is advantageous because it prevents the Budget RNN

from crafting predictions to match the halting signals. In

particular, this feature avoids behavior where the Budget RNN

predicts a sequence wrong on purpose to match a halting signal

close to zero. Such behavior leads to a poor model.

D. Loss Function

All neural networks are trained to minimize a loss function.

This function typically measures the difference between the

predicted output and the true result. The novel architecture

of Budget RNNs requires a new loss function to balance the

optimization of both predictions and halting signals.

At each level � ∈ [L], Budget RNNs produce two outputs:

the prediction y(�) and the halting signal q̂�. We use a loss

function to train the model using the outputs from all levels.

The loss function below expresses this goal. The function L̃
is the per-output loss (e.g. cross-entropy, mean-squared error).

L({ŷ(�)}, {q̂�}, y, {q�}) =

L−1
∑

�=0

(

L̃(ŷ(�)
, y) + γL̃(q̂�, q�)

)

(15)
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Algorithm 1 Adaptive Inference Algorithm for Budget RNNs

1: procedure ADAPTIVEINFERENCE(fθ, z, L,K, T )
2: �max ← L
3: (Sϑ,M, gψ, hϕ) ← fθ
4: for t ∈ [T ] do
5: � ← LevelOf(t,K, L)
6: if � > �max then
7: continue
8: xt ← CollectInput()
9: s̃t−1 ← M(st−1, st−K) � (Eq 8)

10: st ← Sϑ(xt, s̃t−1) � (Eq 9)
11: q̂� ← hϕ(st) � (Eq 14)
12: if isHaltState(t,K, L) and q̂� ≥ z� then
13: �max ← �

14: if IsLast(t,K, L) and � = �max then
15: return Prediction(st, gψ) � (Eq 12)

16: return Prediction(sT−1, gψ) � (Eq 12)

The variable γ determines the relative emphasis on the

halting loss. We slowly increase γ over the first few epochs

until it reaches γ0. In our experiments, we set γ0 = 0.01.

This slow increase improves training because the predictions

frequently change in the first few epochs.

IV. CONTROL POLICY AND SUBSAMPLING ALGORITHM

The Budget RNN output levels compose a family of func-

tions F for budgeted inference. The inference system needs a

selection policy π that minimizes error and adapts to unseen

constraints. The Budget RNN policy meets these goals by

dynamically selecting the output level in a budget-specific

manner. This choice determines the number of collected inputs

and the performed computation, ensuring efficient use of the

available energy.

The Budget RNN policy achieves this dynamic behavior

through four features. First, it performs adaptive inference

(§IV-A) by setting thresholds on the Budget RNN’s halting sig-

nals. Second, an optimizer (§IV-B) tunes these thresholds over

multiple potential constraints. The policy uses an interpolation

method to generalize the thresholds to unseen budgets. Third, a

feedback control system mitigates generalization errors while

adapting to unforeseen changes in the runtime environment

(§IV-C). Finally, the policy improves accuracy by combining

distinct Budget RNNs with different stride lengths (§IV-D).

A. Adaptive Inference Algorithm

The Budget RNN inference policy π uses the halting signals

to control the number of consumed inputs; i.e., π uses infor-

mation from the model to determine the early-exiting behavior.

Thus, the policy adapts the energy consumption based on

the input sequence. These data-dependent decisions allow the

policy to conserve energy on sequences where the model needs

fewer inputs to achieve a low error. The policy spends this

saved energy to reconcile “harder” sequences.

The policy π implements early-exiting using a budget-

specific threshold vector z(B,M) where (B,M) is the energy

constraint. When the halting probability q̂� at level � is greater

Algorithm 2 Optimization Algorithm for Halting Thresholds

1: procedure FITTHRESHOLDS(D, fθ, L, (B,M))
2: z ∼ U([0, 1]L)
3: while not converged do
4: k ∼ {0, . . . , L− 2} Uniformly at Random
5: zk ← argminzk∈[0,1] AdjError(fθ,D, z, B,M)

6: return z

than the threshold z
(B,M)
� , the inference terminates at level

�. Otherwise, it continues to the next level. Algorithm 1

describes this adaptive inference routine. We emphasize an

integral feature of this design: when inference halts at level

�, the system does not collect measurements associated with

levels �′ > �. Thus, when halting at lower levels, the Budget

RNN exhibits significant energy savings by not engaging the

sensing hardware to collect unused measurements.

B. Optimizing Halting Thresholds

The policy π controls energy consumption using thresholds

on the Budget RNN halting signals. We create these thresh-

olds using an additional training step. This process uses a

coordinate descent technique [42] to fit thresholds for a given

constraint. The optimizer creates thresholds to both minimize

error and meet the budget.

Consider a Budget RNN fθ and an energy constraint

(B,M). The optimization problem below formalizes this goal.

The term D = {X(i), y(i)}M−1
i=0 is the training dataset, and the

“Error” function uses predictions from the adaptive inference

routine in algorithm 1. This problem is similar to that of the

original problem statement for budgeted inference (Eq 3).

z∗ = argmin
z∈[0,1]L

M−1
∑

i=0

Error(fθ, z,X
(i), y(i)) (16)

s.t.

M−1
∑

i=0

Energy(fθ, z,X
(i)) ≤ B (17)

This optimization problem is hard to solve for three reasons.

First, the runtime energy consumption is often unknown at

design time. We thus approximate the energy consumption

using profiled values from sensing hardware. Second, the

optimization problem may have a discontinuous objective

function. For example, in classification tasks, the error function

is the negative system accuracy. To address this challenge, we

use a coordinate descent solver. At each step, the optimizer

selects a random threshold index and finds its optimal value

in [0, 1]. Finally, the optimizer must adhere to the energy

constraint. We implement this behavior by forming an adjusted

error function that penalizes budget violations. The equations

below show an adjusted error function based on accuracy. This

function scales the accuracy using the number of sequences

that fit under the budget. The variable b̂ is the average energy

per sequence, and the “Acc” function uses predictions from

the adaptive inference routine in algorithm (1).

â(fθ,D, z, B,M) = −Acc(fθ, z,D) ·
min(M,B/b̂)

M
(18)
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Algorithm 3 Budget RNN Controller Policy

1: procedure CONTROLPOLICY(fθ, (B,M), L,K, T )
2: Y ← [ ]
3: B0 ← B
4: for m ∈ [M ] do
5: z ← InterpolateThresholds(Bm,M)
6: ŷm ← AdaptiveInference(fθ, z) � (Alg 1)
7: bobs ← ObserveEnergy()
8: (bl, bu) ← GetSetpoint(B,M,m) � (Eq 21)
9: e ← PIDControlError(bobs, (bl, bu))

10: Bm+1 ← B + e � e > 0 means bobs is low
11: Y ← Y ∪ [ŷm]

12: return Y

Algorithm 2 describes the optimizer. Below we describe a few

implementation details regarding the halting thresholds.

• Initialization Strategy: We initialize the threshold for level

� using U([q̃�, 1]) where q̃� is the median halting signal.

We further set thresholds to zero for levels that violate

the budget on a per-step basis. This strategy creates

thresholds that approximately meet the budget, avoiding

cases where the optimizer makes suboptimal decisions

just to meet the constraint early in training.

• Coordinate Descent Step: The key step during each

iteration involves finding the optimal threshold. We find

this value approximately by sweeping over a quantized

subset of [0, 1]. In our implementation, we search over

{0, 1} ∪ {2n−k | n ∈ [k]} for k = 256.

• Convergence Detection: We detect convergence by assess-

ing how thresholds generalize to unseen validation data.

Following standard practice, the optimizer terminates

after Q iterations of non-improved validation error [43].

This early-stopping mitigates the risk of overfitting. We

set Q = 25 in our experiments.

• Population-based Training: To mitigate sensitivity to ini-

tialization, we use a population-based approach [44] to

fit many threshold vectors in parallel. Every R iterations,

underperforming thresholds are set to the best vector.

These copied thresholds are randomly perturbed to ex-

plore promising regions of the solution space. We use

R = 10 in our experiments.

• Generalizing to Unseen Budgets: The inference pol-

icy must adapt to unseen energy budgets. The policy

performs this adaptation by creating new thresholds at

runtime. For an unseen budget, the policy finds the two

nearest known budgets that bound this new constraint.

The policy creates new thresholds by linearly interpolat-

ing the thresholds of the bounding budgets. In general, the

relationship between thresholds and energy consumption

may be nonlinear. We nevertheless find linear interpo-

lation to be a low-overhead heuristic that empirically

performs well. To mitigate interpolation errors, we use a

runtime controller adjust the selected thresholds (§IV-C).

C. Runtime Controller

The inference policy for Budget RNNs uses budget-specific

halting thresholds to minimize error. Alone, the threshold

training process has two qualities that hurt the system’s

ability to generalize. First, the optimizer approximates energy

consumption using profiled values. The thresholds may yield

a suboptimal error if the runtime and profiled environments

differ. Second, the threshold interpolation method only approx-

imately meets unseen budgets. The inference policy remedies

these issues using a PID controller [45]. For each sequence,

the controller compares the observed energy consumption with

the expected energy based on training. The policy uses the

control error to adjust the halting thresholds by changing

the budget used during interpolation. For example, if energy

consumption is lower than expected, the controller will use

thresholds based on a larger budget. This controller thus

maps the runtime environment into the space constructed

during training. Algorithm 3 describes this process. In our

implementation, we update the budget every W = 20 steps.

The main challenge associated with this controller involves

creating the setpoint, which is nontrivial because the adaptive

inference algorithm may not evenly spread the available energy

across all M sequences. To account for system variation,

the controller uses a dynamic setpoint based on a confidence

bound. This bound is based on the expected energy consump-

tion and the corresponding estimator variance.

We derive this setpoint by considering bk to be the average

energy consumed when the Budget RNN predicts the label k ∈
[C]. For each label, the energy consumption may vary due to

the adaptive inference routine (Alg 1). We thus assume that bk
is a normally distributed random variable. Consider when the

system has processed m < M inputs. We define rk to be the

number of sequences with label k and r
(m)
k to be the number

of sequences in class k that occur in the first m sequences. Let

X0:m and Xm:M be random variables representing the energy

consumption in the first m and final M−m steps respectively.

The controller creates a setpoint based on E[X0:m]. Given

the total energy budget B, we want to have B = E[X0:m] +
E[Xm:M ]. This relationship expresses the goal that the system

should use the entire budget. Evaluating E[Xm:M ] yields the

following expression for E[X0:m].

E[X0:m] = B −
C−1
∑

k=0

(rk − r
(m)
k )E[bk] (19)

We estimate the values for rk, r
(m)
k , and E[bk] using both the

training set and the profiled energy values. We update these

distributions with values obtained at runtime. These approxi-

mations result in an estimator Ê[X0:m] for the expectation.

A setpoint based on this expected value alone does not

capture the variance associated with Budget RNN execution.

We instead use a confidence bound [46] which accounts

for the estimator variance. Under the assumption that rk is

deterministic and the bk variables are independent, we obtain

the following equation for the variance of X0:m. In practice,

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on September 15,2021 at 14:47:21 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3: The accuracy for two distinct Budget RNNs on the

task of classifying Whale sounds [49].

we again use an estimator of Var[X0:m] based on estimates of

rk, r
(m)
k and Var[bk] from the training set.

Var[X0:m] =
C−1
∑

k=0

(rk − r
(m)
k )2Var[bk] (20)

From the Fisher information for Gaussian random vari-

ables, the variance of the estimator Ê[X0:m] converges to
1
mVar[X0:m] [47, 48]. With these estimations, we construct

the following setpoint for the PID controller.

Setpoint(m) =

(

Ê[X0:m]±

√

1

m
V̂ar[X0:m]

)

(21)

When the observed energy is within this confidence bound,

the controller error is zero. Otherwise, the control error is set

based on the difference to the nearest side of the bound.

We highlight one important aspect of this design: the

controller does not need the budget at design time. At runtime,

the controller uses Equations (19) and (21) to dynamically

construct a setpoint for a given budget (B,M) . The system

uses this setpoint to adapt the Budget RNN halting thresholds

and meet the energy constraint (Algorithm 3).

D. Budget RNN Selection

The presented inference policy uses thresholds to control a

single Budget RNN. On many datasets, we observe that one

Budget RNN is not enough to deliver high accuracy across

all budgets. This trend occurs due to the impact of the stride

length parameter (K). Importantly, when comparing Budget

RNNs with the stride length K1 and K2, the model with K1

may be better for some budgets and worse for others. Figure

3 shows such an example. To achieve the best performance

across all budgets, the policy should leverage both models.

We use this insight to build the family F with many distinct

Budget RNNs. For a given budget, the policy π first selects

the Budget RNN based on validation accuracy. The policy

proceeds to use the runtime controller and corresponding

thresholds for the chosen Budget RNN. We observe that pro-

viding the policy with a few models yields better performance.

Further, this dynamic selection reduces the need to search over

stride lengths to find the single best model.

Using many distinct RNNs has the downside of increasing

the system’s memory footprint. In our experiments, we use

only two Budget RNNs to achieve high accuracy over a spec-

trum of budgets. This modest number meets any reasonable

memory constraints imposed by low-power devices.

V. EVALUATION

We evaluate the Budget RNN’s ability to support accurate

inference under energy budgets on embedded sensing systems.

We compare to standard RNNs as well as the current state-

of-the-art RNNs that support sub-sampling (Phased [25] and

Skip [26] RNNs). We compare these systems across many

datasets and energy budgets in a simulated environment2. We

supplement these results with an evaluation on an embedded

device. This evaluation shows the following:

1) Under the same budgets, the Budget RNN system

achieves higher accuracy than that of baseline systems.

Across all datasets, the Budget RNN system has a mean

accuracy of 1.5 points greater than Skip RNNs, 2.7

points greater than Phased RNNs, and 3 points greater

than standard RNNs (§V-B). Further, Budget RNNs

can operate with 20% smaller energy budgets and still

achieve accuracy comparable to the baselines (§V-C).

2) The control policy allows the Budget RNN system

to adapt to new runtime environments. This adaptive

behavior enables Budget RNNs to achieve greater im-

provements in such settings (§V-D).

3) The adaptive decisions made by the Budget RNN policy

are key to the system’s performance. Removing the

adaptive policy or making randomized decisions results

in lower accuracy (§V-E).

4) Budget RNNs have lower training costs when compared

to both Skip and Phased RNNs. These baseline systems

take over 2.3× longer to train on average (§V-F). Budget

RNNs display cheaper training while delivering higher

accuracy across all budgets.

5) The higher accuracy of Budget RNNs translates to an

embedded system. Across two budgets, Budget RNNs

maintain their improvement over Skip RNNs (§V-G).

A. Experimental Setup

1) Baseline Systems: We use three RNN variations to

create baseline systems: standard RNNs, Phased RNNs [25],

and Skip RNNs [26]. The first baseline uses early-exiting in

standard RNNs [15]. This model creates a prediction from

each memory state, and we interpret these outputs as models

in Frnn. We train the RNN to minimize the average loss across

all predictions. The second baseline uses Phased RNNs [25].

Each model in Fphased uses a phase gate with a different

open rate. The final baseline uses Skip RNNs [26]. We train

each Skip RNN in Fskip to meet a different target number of

elements. This target is enforced through an L2 loss term. For

both the Phased and the Skip RNN systems, we create systems

with 10 distinct models3. Using 10 models provides these

baselines with a good tradeoff between energy and accuracy

while maintaining a reasonable memory footprint.

2All code is available at https://github.com/tejaskannan/budget-rnn
3We use 8 models on the pen digits dataset due to shorter sequences.
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Dataset Seq Len Classes # Train # Val # Test

EMG [50] 50 7 10,330 2,887 4,975
FordA [51] 20 2 3,060 541 1,320
Pavement [52] 30 3 33,336 5,815 39,939
Pedestrian [53, 54] 20 10 2,024 364 4,878
Pen Digits [55] 8 10 6,033 1,461 3,498
UCI HAR [56] 50 12 18,229 6,800 10,197
Whale [49, 57] 30 2 9,351 1,583 1,962

Fig. 4: Evaluation dataset characteristics.

For each baseline, we use a fixed selection policy πfixed.

This policy selects the best model whose estimated energy

meets a given budget. The policy estimates energy consump-

tion using both profiled values and the average number of

processed inputs. For all models that meet the budget, πfixed

selects the model with the best validation accuracy.

2) Datasets and Neural Network Training: We evaluate

system performance on the seven datasets in Figure 4. Each

dataset constitutes a sensor-like classification task. For all

RNNs, we use single-layer UGRNN cells [33] with a 20
dimensional state. This design limits the memory footprint of

each model. All models use a readout layer with 32 hidden

units and a Leaky ReLU [58] activation. We fit the RNNs using

stochastic gradient descent [59] with an Adam optimizer [60]

and a learning rate of 10−4. We use the same batch size for

all models. We train the RNNs in Tensorflow [61] for at most

250 epochs with early stopping after 25 epochs.

3) Simulated Environment: We conduct the majority of

this evaluation in a simulated environment that bases energy

consumption on profiled values from a TI MSP430 FR5994

MCU [35]. We measure the energy required to capture and

process inputs using the EnergyTrace tool [62]. We experiment

with two energy profiles. The first uses a DHT-11 temperature

sensor, and the second simulates collection through an HM-

10 Bluetooth module. When sampled at 0.5Hz, the 3.3V MCU

with the DHT-11 consumes about 5.6mJ per input; the HM-10

system uses about 29.6mJ per input. These values represent

varying points on the spectrum of sensor energy consumption.

The simulator also incorporates the energy required for data

processing. This feature accounts for the higher computational

cost of Budget RNNs (§V-H). For simplicity, we assume that

both Phased and Skip RNNs incur the same processing cost

as standard RNNs. This assumption is conservative as Phased

and Skip RNNs perform additional computation.

4) Hardware Environment: We supplement the simulated

environment with an experiment on the actual TI MSP430

FR5994 MCU [35]. We use an HM-10 BLE module to

transmit inputs to the device. We power the MCU using a

supercapacitor and vary the budget by setting the total capac-

itance. The Budget RNN controller obtains energy feedback

by measuring the voltage across the capacitor. We quantize

the neural network weights to 16-bit fixed-point values and

execute the RNNs using the on-board low-energy accelerator.

5) Budget RNN Parameters: In all experiments, we use a

Budget RNN system with two distinct models. These models

Dataset
Bluetooth Energy Profile Temperature Energy Profile

RNN Phased Skip Budget RNN Phased Skip Budget

EMG 0.713 0.716 0.713 0.724 0.702 0.704 0.712 0.721

Ford A 0.881 0.859 0.876 0.886 0.867 0.845 0.860 0.868

Pavement 0.715 0.669 0.670 0.716 0.697 0.642 0.658 0.695

Pedestrian 0.607 0.702 0.714 0.720 0.543 0.665 0.649 0.674

Pen Digits 0.832 0.831 0.869 0.881 0.838 0.842 0.871 0.879

UCI HAR 0.862 0.828 0.859 0.865 0.848 0.820 0.856 0.856

Whale 0.864 0.869 0.871 0.879 0.849 0.859 0.865 0.871

All 0.776 0.778 0.791 0.806 0.753 0.761 0.773 0.788

Fig. 5: Geometric mean accuracy across all budgets. RNN

refers to the standard RNN.

have stride lengths of 1 and 10 respectively4. The policy selects

the Budget RNN at runtime as described in §IV-D. We fit

halting thresholds for 11 budgets on the Bluetooth profile and

12 budgets in the temperature setting. The Budget RNN system

automatically generalizes to unseen budgets.

B. Inference Accuracy

For each dataset, we evaluate the inference accuracy on

a set of energy budgets in the simulated environment. We

set M to the size of each testing set and use energy values

B to standardize the ratios B/M across datasets. We use

22 and 26 budgets on the Bluetooth and the temperature

profiles respectively. We compare the systems by computing

the geometric mean accuracy across all budgets.

On average, the Budget RNN achieves the best accuracy

across all datasets and budgets. Figure 5 shows these results

for both energy profiles. When compared to the standard RNN,

Budget RNNs display a mean accuracy gain of over 3 points.

Further, Budget RNNs outperform Skip RNNs (1.5 points)

and Phased RNNs (2.7 points). These results hold for both

energy profiles. The table further shows how no single baseline

delivers high accuracy across all datasets. In contrast, the

Budget RNN system displays consistency–it almost matches

or outperforms the best baseline system on all datasets. In a

budget-by-budget comparison, the Budget RNN also shows

distinct improvements. Using the Bluetooth energy profile,

Budget RNNs have higher accuracy than standard RNNs on

77.3% (119 / 154) of budgets. The same comparison against

Phased and Skip RNNs shows higher accuracy on 82.5% (127

/ 154) and 83.1% (128 / 154) of budgets respectively. A similar

trend holds on the temperature profile.

To better understand the observed accuracy differences,

we compare the per-budget accuracy on the Pen Digits task.

Figure 6 displays the obtained accuracy values. We observe

how the Budget RNN provides distinct benefits under tight

budgets. These gains become smaller as the budget increases.

In particular, for large budgets, the Budget RNN shows slightly

worse accuracy than the standard and Phased RNNs. Given no

assumptions about the budget, however, we find that Budget

RNNs display the best overall result.

Better budget utilization appears to be a reason for the

Budget RNN’s improved accuracy. On average, Budget RNNs

4We use a stride length of 4 on the Pen Digits task due to shorter sequences.
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Fig. 6: System accuracy on the Pen Digits dataset using the

Bluetooth energy profile.

Fig. 7: Geometric mean of normalized budget to obtain ac-

curacy equal to the Budget RNN. Values above one indicate

better performance by the Budget RNN.

use 99.2% of the budget, while RNNs (94.7%), Phased RNNs

(78.1%), and Skip RNNs (80.4%) display inefficiencies. The

Phased and Skip RNNs have lower utilization because the

models sometimes show lower accuracy when given more

inputs. As this utilization pattern occurs on both the Bluetooth

and temperature profiles, these results further demonstrate how

the Budget RNN’s advantages hold for multiple sensors.

C. Energy Comparison

To place the higher accuracy of Budget RNNs into the

context of energy, we estimate the budget needed by Budget

RNNs to obtain accuracy equivalent to the baseline systems.

For each baseline on budget B, we find the smallest budget B′

such that the Budget RNN displays the same accuracy on B′

as that of the baseline on B. We use the ratio B/B′ to compare

the budgets needed to obtain the same accuracy. Figure 7

shows this comparison on the Bluetooth energy profile. On

average, the Budget RNN system can use over 20% smaller

budgets and still deliver comparable accuracy to the baseline

systems. This value describes how the accuracy improvement

(Figure 5) manifests itself in terms of energy.

Bias
Bluetooth Energy Profile Temperature Energy Profile

RNN Phased Skip Budget RNN Phased Skip Budget

+20% 0.664 0.724 0.731 0.762 0.603 0.674 0.670 0.702
+10% 0.729 0.764 0.778 0.786 0.681 0.733 0.738 0.750
-10% 0.776 0.778 0.791 0.813 0.753 0.764 0.774 0.797
-20% 0.776 0.778 0.791 0.818 0.753 0.765 0.774 0.802

All 0.735 0.761 0.772 0.794 0.695 0.733 0.738 0.762

Fig. 8: Geometric mean accuracy across all datasets and

budgets in settings with a nonzero energy bias.

Dataset
Bluetooth Energy Profile Temperature Energy Profile

Fixed Random Adaptive Fixed Random Adaptive

EMG 0.722 0.718 0.724 0.720 0.718 0.721

Ford A 0.874 0.856 0.886 0.857 0.844 0.868

Pavement 0.706 0.689 0.716 0.684 0.673 0.695

Pedestrian 0.692 0.624 0.720 0.642 0.596 0.674

Pen Digits 0.843 0.827 0.881 0.843 0.836 0.879

UCI HAR 0.860 0.841 0.865 0.853 0.841 0.856

Whale 0.875 0.852 0.879 0.867 0.849 0.871

All 0.792 0.767 0.806 0.774 0.757 0.788

Fig. 9: Geometric mean accuracy of Budget RNN variants. The

adaptive results correspond to the full Budget RNN system.

D. Accuracy on Unseen Energy Profiles

The Budget RNN system constructs halting thresholds using

profiled energy values. The policy (π) decouples the system

from the profiled values using a runtime controller. We evalu-

ate this decoupling by measuring how the system performs in

an environment with biased noise. Specifically, in this setting,

we model the energy consumption to collect and process r
samples as e(r) = ωr + ε where ωr is the profiled energy

value and ε ∼ N (μ, σ2). The bias μ 
= 0 is unknown to the

systems, and each policy starts under the assumption of an

unbiased environment. Positive biases mean that, at each step,

the system consumes more energy than expected. Negative

biases work in the opposite fashion.

We evaluate the systems over four biases that represent

about ±10% and ±20% of the profiled energy consumption.

Figure 8 shows the geometric mean accuracy across all budgets

and datasets. In this setting, Budget RNNs show even higher

accuracy relative to the baselines. Across all biases, Budget

RNNs show a mean accuracy that is almost 6 points higher

than standard RNNs. This improvement is roughly double

what we observe in the unbiased setting. The same comparison

against Phased RNNs (2.9 points) and Skip RNNs (2.2 points)

also yields a larger improvement for Budget RNNs in the

biased environment. These benefits are a direct result of adap-

tivity. The baseline systems use a fixed policy that does not

account for differences in the runtime environment. In contrast,

the Budget RNN uses an adaptive controller that automatically

handles these differences using runtime feedback.

E. Evaluation of Budget RNN System Design

The Budget RNN system uses a novel RNN with a runtime

controller. We evaluate how these components contribute to the

overall accuracy by considering two variants. The first, called

the fixed system, uses a fixed model selection policy (§V-A)
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Dataset
Wall-to-Wall Time (minutes) Iterations (thousands)

RNN Phased Skip Budget RNN Phased Skip Budget

EMG 40.3 557.1 464.9 176.9 81.4 803.6 724.8 288.9

FordA 9.4 90.7 92.5 35.5 45.6 293.4 320.9 137.7

Pavement 114.6 553.9 297.4 357.1 260.5 1139.9 664.8 552.6

Pedestrian 13.3 136.5 89.5 52.3 63.3 461.2 311.4 176.5

Pen Digits 24.0 233.1 109.6 92.0 188.8 1355.2 699.1 445.3

UCI HAR 124.0 1143.3 1039.0 346.1 251.7 1591.9 1559.8 512.1

Whale 40.0 393.0 500.1 119.1 112.1 734.0 988.3 272.2

Fig. 10: Wall-to-wall time and training iterations required

to fit the neural networks on each dataset. The Phased and

Skip RNN results account for training ten distinct RNNs. The

Budget RNN values include the halting threshold optimization.

in place of the adaptive controller. The second variant uses a

randomized selection policy. This policy creates weights based

on how often the Budget RNN should stop at each level to

fully utilize the budget. At runtime, the policy uses the weights

to randomly select the number of levels. In this experiment,

we call the full system the “adaptive” Budget RNN.

We evaluate these variants across the same datasets and

budgets used in §V-B. Figure 9 shows the geometric mean

accuracy for each dataset. The adaptive system outperforms

the fixed and random variants on all datasets by a mean of

1.4 points and 3.1 points, respectively. These results yield

two takeaways. First, data-dependent decisions are an integral

part of the adaptive system’s performance. The randomized

variant’s lower accuracy shows how fully utilizing the energy

budget is insufficient; selecting when to conserve and when

to exploit is key to obtaining accurate results. Second, the

fixed variant alone displays an improvement over the standard

RNN (compare ”Fixed” in Figure 9 to ”RNN” in Figure 5).

This improvement shows the benefits of performing inference

on non-contiguous subsequences. Adaptive behavior further

exploits this feature to increase accuracy.

F. Training Time

One downside to the Phased and Skip RNN systems is their

reliance on many distinct RNNs. We evaluate how this reliance

impacts the training time of each system. We measure the

training cost in two ways. The first is the wall-to-wall time

required to train all models for each system. We obtain these

times on a 24 core Intel Xeon Silver 4116 CPU. The second

metric is the number of training iterations. This value is the

number of gradient descent steps during training. The Budget

RNN values also include the halting threshold optimization. As

a conservative estimate, we count each threshold optimization

step as equivalent to 10 gradient descent steps.

We measure the training cost on all seven datasets. Figure

10 displays the results. Compared to Skip RNNs, the Budget

RNN system takes roughly 2.3× less time and fewer iterations

to train. A comparison with the Phased RNN systems yields

even greater savings. While these costs could be lowered by

reducing the number of models per system, such savings lead

to lower accuracy. Only the standard RNN achieves a lower

training cost than the Budget RNN. This property follows from

the need to train only one neural network. As shown, the

Energy Budget Skip RNN Budget RNN

5.6J 0.722 (±0.040) 0.833 (±0.038)
7.2J 0.895 (±0.038) 0.915 (±0.022)

Fig. 11: Skip and Budget RNN results on the embedded device

using the Pen Digits dataset.

extra training cost of Budget RNNs leads to better accuracy

values. We note that the Skip RNN system trains faster than

the Budget RNN system on the pavement dataset. This result

occurs due to early stopping during neural network training

and a larger training set used to fit the halting thresholds. On

this dataset, the benefits of the lower training time of Skip

RNNs are offset by the system’s lower accuracy.

G. Performance in the Hardware Environment

We supplement the results from the profiled environment

with an evaluation in the embedded setting described in §V-A.

We compare the accuracy of the Budget RNNs and Skip RNNs

over two energy budgets on the Pen Digits dataset. We select

Skip RNNs because they form the best-performing baseline on

this task. As the device fetches inputs over a Bluetooth link, we

use a Budget RNN system optimized on the Bluetooth energy

profile. Each experiment uses the inference system to classify

M = 50 sequences. We compare the resulting accuracy across

four independent trials.

As shown in Figure 11, the Budget RNN displays better

accuracy than the Skip RNNs. In the simulated environment,

the Budget RNN system achieves an accuracy of 79.1% and

90.3% on the full dataset for the two respective budgets. On

these same budgets, the Skip RNN system obtains an accuracy

of 75.6% and 89.4%. Thus, in the embedded environment,

the gap between Budget RNNs and Skip RNNs is slightly

larger than what is observed in simulation. This discrepancy

is likely a result of the limited sample size used in the

hardware evaluation. Despite this difference, the results from

the hardware device confirm the relative accuracy trends we

observe in the profiled environment.

H. Overhead Analysis

Budget RNNs are designed for embedded applications

where sensing composes a significant portion of energy con-

sumption. In these settings, the computational overhead of

Budget RNNs is not prohibitive. To understand this point

further, we use a TI MSP430 FR5994 MCU [35] and the

EnergyTrace Tool [62] to profile the energy consumption of

collecting and processing a single measurement. We compare

the energy consumption of standard and Budget RNNs in

Figure 12. To handle a single element, Budget RNNs consume

0.5% (Bluetooth) and 2.7% (temperature) more energy than

standard RNNs. This overhead is small enough to overcome

and still deliver high accuracy; under the same constraints,

Budget RNNs show better accuracy than the baseline RNNs

(§V-B). Budget RNNs use more computation to determine

a much better sampling strategy. The relatively high cost of

sensing makes this additional computation worthwhile.
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Sensor Alone +RNN +Budget RNN

Bluetooth 29.63 29.97 30.13
Temperature 5.65 5.99 6.15

Fig. 12: Energy (mJ) required to handle a single sensor

measurement. The standard and Budget RNN costs include

the energy required for processing.

The computational overhead of Budget RNNs comes from

two areas. First, Budget RNNs use merging, halting, and

pooling layers to control execution and combine intermediate

states. Second, the Budget RNN system uses a runtime con-

troller to adapt to energy constraints. On average, profiling

shows that standard RNNs consume 0.342mJ to process a

single element. Budget RNNs use an average of 0.503mJ.

A majority of this overhead comes from the added neural

network layers. The runtime controller accounts for less than

3.5% of the CPU cycles associated with Budget RNN execu-

tion. As the controller performs all operations in RAM, we

expect it to consume a smaller fraction of the overall energy.

VI. RELATED WORK

A. Adapting Neural Network Inference

Many systems apply adaptation to improve neural network

inference. Systems such as BranchyNet [63] and ALERT

[64, 65] use early-exit points to control the inference cost

through variable computation. Numerous systems use variable

computation [66, 67, 68] and per-layer adaptivity [69, 70]

to execute neural networks under explicit constraints. Neural

network systems for multi-tenant inference also use adaptive

behavior to improve efficiency [71, 72, 73, 74]. Other work

adapts accuracy for energy or latency savings [75, 76, 77].

Other RNN designs adapt model execution. Adaptive Com-

putation Time [19], Clockwork RNNs [20], and Variable

Computation Time [78] alter the amount of computation at

each RNN timestep. Shallow RNNs [23], Dilated RNNs [79],

and Sliced RNNs [80] provide increased parallelism.

Budget RNNs are most similar to prior systems that use

variable computation. Budget RNNs vary inference energy

costs by changing both computation and data collection. In

contrast with the above prior work that only reduces computa-

tion, Budget RNNs lower energy costs in sensor environments

where acquiring data is expensive.

B. Adaptive Sampling in RNNs

Multiple RNNs leverage adaptive sampling. Phased LSTMs

use a periodic gate to perform state updates [25]. LSTM-Jump

uses a policy gradient to train an RNN to skip inputs [81]. Skip

RNNs skip inputs using a binary gate [26]. These models

jointly optimize sampling behavior and RNN parameters.

Unlike these designs, Budget RNNs are multi-capacity models

that can change their target sampling level at runtime.

EMI-RNNs classify time-series inputs where the true signal

makes up a small part of the sequence [15]. This model per-

forms early classification using thresholds on output probabili-

ties. This design resembles a Budget RNN with a stride length

of 1. These models, however, differ in their early-stopping

criterion. Furthermore, EMI-RNNs use sliding windows during

inference, so they still pay data acquisition costs.

C. Adaptive Sampling in Sensor Networks

Adaptive sampling is a common approach to conserve

energy in sensor networks. Multiple systems use statistical

models to control the sampling rate of individual sensors

[9, 11, 82, 83, 84, 85]. Backcasting [10], ASAP [86], and BBQ

[87] selectively activate a subset of nodes based on sensor

correlations. Similar to these systems, Budget RNNs also use

adaptive sampling to reduce energy while maximizing sensor

performance. Unlike this prior work, our system focuses on

meeting explicit energy budgets when executing RNNs.

D. Early Time Series Classification

Systems for early time series classification perform infer-

ence on subsequences. ECTS uses a nearest neighbor algo-

rithm on sequence prefixes and halts classification when the

prediction becomes reliable [88]. Mori et al. use stopping rules

to balance accuracy and earliness [89]. Similar to Budget

RNNs, these systems control inference costs by processing

subsequences. Budget RNNs, however, perform inference un-

der energy budgets and do not optimize for earliness.

Rußwurm et al. perform early classification on RNNs by

randomly sampling trainable halting probabilities [41]. Budget

RNNs also use halting signals to control model execution. Un-

like this previous work, Budget RNNs use optimized halting

thresholds to meet energy budgets without random behavior.

VII. CONCLUSION

This paper develops a novel RNN architecture—the Budget

RNN—for in-sensor inference under energy budgets. The

Budget RNN uses a leveled design in which each level

processes an input subsequence. By controlling the number

of executed levels, the Budget RNN can alter its energy

consumption. This control is made possible through trainable

halting signals. We design a runtime controller that uses these

signals to perform inference under an energy constraint by

dynamically adjusting the model’s subsampling behavior. This

design maintains sampling flexibility while also decoupling

the sampling strategy from the RNN parameters. This loose-

coupling allows the system to generalize to unseen budgets

better than existing RNN solutions [25, 26], achieving a mean

accuracy that is 3 points higher than that of standard RNNs.

This improvement allows Budget RNNs to obtain an accuracy

that is equivalent to existing RNNs even when operating under

20% smaller budgets.
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[26] V. Campos, B. Jou, X. Giró-i Nieto, J. Torres, and S.-F. Chang, “Skip

RNN: Learning to skip state updates in recurrent neural networks,” arXiv

preprint arXiv:1708.06834, 2017.
[27] L. He, L. Kong, Y. Gu, J. Pan, and T. Zhu, “Evaluating the on-demand

mobile charging in wireless sensor networks,” IEEE Transactions on

Mobile Computing, vol. 14, no. 9, pp. 1861–1875, 2014.
[28] C. Lin, Y. Zhou, H. Dai, J. Deng, and G. Wu, “MPF: Prolonging

network lifetime of wireless rechargeable sensor networks by mixing
partial charge and full charge,” in 2018 15th Annual IEEE International

Conference on Sensing, Communication, and Networking (SECON).
IEEE, 2018, pp. 1–9.

[29] S. Madden and M. J. Franklin, “Fjording the stream: An architecture for
queries over streaming sensor data,” in Proceedings 18th International

Conference on Data Engineering. IEEE, 2002, pp. 555–566.
[30] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition us-

ing cell phone accelerometers,” ACM SigKDD Explorations Newsletter,
vol. 12, no. 2, pp. 74–82, 2011.

[31] F. J. Pineda, “Generalization of back-propagation to recurrent neural
networks,” Physical review letters, vol. 59, no. 19, p. 2229, 1987.
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