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Abstract—Recurrent neural networks (RNNs) are well-suited
to the sequential inference tasks often found in embedded sensing
systems. While RNNs have displayed high accuracy on many
tasks, they are poorly equipped for inference under energy
budgets that are unknown at design time. Existing RNNs meet
energy constraints in sensor environments by training models
to subsample input sequences. The tight coupling between the
sampling strategy and the RNN prevents these systems from
generalizing to new energy budgets at runtime. To address this
problem, we present a novel RNN architecture called the Budget
RNN. Budget RNNs use a leveled architecture to decouple the
sampling strategy from the RNN model, allowing a single Budget
RNN to change its subsampling behavior at runtime. We further
propose a runtime feedback controller to optimize the model’s
accuracy for a given energy budget. Across a set of budgets,
the Budget RNN inference system achieves a mean accuracy
of roughly 3 points higher than standard RNNs. Alternatively,
Budget RNNs can achieve comparable accuracy to existing RNNs
while under 20% smaller budgets.

I. INTRODUCTION

Battery-powered sensors face the challenge of a finite life-
time. When the battery is exhausted, devices need maintenance
to continue operation, and this can be costly or impractical for
sensors located in hard-to-reach places [1, 2, 3, 4]. Thus, these
systems are often augmented with recharging capabilities; e.g.,
wirelessly [5] or through energy harvesting [6, 7, 3, 4]. Either
technique induces energy budgets: until recharged, sensors
must perform using only previously-stored energy. As these
recharging systems exhibit variance in both generated power
and recharge availability, the induced energy budgets are
unknown at design time [8].

To meet varying energy budgets, sensors must alter their
runtime energy consumption, which typically goes into three
tasks: collecting, processing, and communicating data. By
collecting data less often—i.e., sampling the data—devices
reduce the energy consumed by both sensing hardware and
subsequent processing [9, 10, 11]. Reducing the data collection
rate, however, comes at a cost in error. By collecting fewer
values, the sensor creates a less-complete view of the target
environment. With this tradeoff, a logical goal of budgeted
computation is to minimize the error (or maximize accuracy)
while altering energy consumption to meet the constraint.
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Understanding how data collection affects error requires
understanding sensor computations. Sensors often perform
local inference for improved reactivity, privacy, and energy-
efficiency [12, 13]. Furthermore, this processing is increas-
ingly focused on deep neural networks (DNNs) [14, 15, 16, 17]
due to their high accuracy for image [18] and audio [19, 20]
tasks. As many sensing tasks operate on data streams, recurrent
neural networks (RNNs) [21, 22] are common DNN models
for in-sensor inference [15, 23, 24].

RNNSs operate on data sequences of arbitrary length, making
them well-suited to sampling techniques, and thus, operating
under energy budgets. The challenge involves determining
how to minimize the RNN’s inference error under an energy
constraint. This challenge leads to the concrete problem of
selecting the sampling technique that both minimizes the RNN
error and conserves enough energy to meet the budget. As we
assume the exact energy constraint is not known at design
time, the system must have sufficient flexibility to provide
high accuracy across a range of energy budgets.

There exist prior RNN solutions—specifically, Phased
RNNs [25] and Skip RNNs [26]—that appear to fit into the
framework of budgeted computation. While they differ in
specifics, these approaches jointly train both an RNN and a
sampling strategy. The joint training means that each RNN
operates on a single energy consumption level. To meet an
energy budget that is only known at runtime, the inference
system must use many RNNs, each trained for a different
budget. The need to produce many separate networks with
different sampling strategies leads to a high training cost.
Furthermore, deploying many neural networks will exhaust
the memory capacity of low-power devices. An additional
downside is the inefficient use of energy budgets. To meet
the budget B ~ [Bin, Bmaz), the system may have to
select an RNN with energy consumption b that is strictly
less than the budget. Thus, the system will have a surplus
of B —b > 0 joules. The goal of this paper is to produce
budgeted inference designs that are low overhead (in training
time and memory footprint) yet use the entire energy budget
to maximize accuracy, rather than waste it as would be done
with prior work.
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Therefore, we propose a new type of RNN called the
Budget RNN. Budget RNNs are designed from the ground-
up for accurate inference under energy budgets only known
at runtime. The model has a leveled architecture in which
each level processes a subsequence of inputs. Budget RNNs
conserve energy by allowing execution to halt after each
subsequence. This design enables a single Budget RNN to
dynamically alter its energy consumption. As Budget RNNs
support non-contiguous subsequences, these features come
without compromising sampling flexibility. We design a run-
time controller that uses trainable halting signals from the
Budget RNN. This controller optimizes the model accuracy
while adhering to an energy budget. The controller generalizes
to new budgets and adapts the system to changes in the runtime
environment. Furthermore, the combination of early-stopping
and dynamic sampling can be realized in a relatively small
number of Budget RNNs, leading to reduced training time
and low memory overhead.

We evaluate the proposed system in both a simulated envi-
ronment and a hardware implementation. We show that, across
seven datasets, the Budget RNN system achieves a mean
accuracy that is 1.5 points higher than that of Skip RNNs [26]
and 3 points higher than that of standard RNNs. Alternatively,
Budget RNNs can be used to reduce energy needs (and the
associated battery and charging capacity). Specifically, for the
same accuracy of baseline approaches, Budget RNNs reduce
energy requirements by 20%. With respect to Skip RNNs,
these accuracy benefits come at no cost in training time.

In summary, this paper makes the following contributions:

o We establish a framework for maximizing inference ac-
curacy under energy budgets. We use this framework
to formalize a goal for inference systems that adapt to
unseen budgets at runtime.

o We present a novel RNN architecture, called the Budget
RNN, for performing inference under energy budgets
that are unknown at design time. Budget RNNs change
their energy consumption by using a leveled architecture
to process subsamples of input sequences. This design
achieves better accuracy under energy budgets when
compared to existing RNN solutions.

e We design an optimization procedure to control the
subsampling behavior of Budget RNNs. This optimizer
accounts for energy constraints and provides results that
generalize to unseen budgets.

o We create a controller for Budget RNNs to ensure the
model meets a given energy constraint. This controller
uses a dynamic setpoint that adapts based on feedback
from the Budget RNN. The control policy further adapts
the system to changes in the runtime environment.

II. BACKGROUND AND GOALS

In this section, we motivate the problem of inference under
runtime energy budgets using examples from rechargeable
sensors (§II-A), provide background information on RNNs
(§II-B), establish a formal framework for budgeted inference
($II-C), and identify limitations in prior work (§1I-D).

A. Examples of Inference under Energy Budgets

Two examples of target systems are wireless rechargeable
sensor networks (WRSNs) [5] and devices with energy har-
vesting units [4]. We describe these applications below.

WRSNSs use a mobile charging unit to wirelessly recharge
sensors [5]. The charging unit uses a protocol, such as on-
demand charging, to determine when to visit devices [27]. In
on-demand charging, sensors notify the mobile charging unit
when they are low on power, and various policies determine
the exact recharge time [27, 28]. This scenario creates an
energy budget: once sensors request a recharge, they have
finite remaining energy to use before the charging unit arrives.
Furthermore, the time until a recharge is dependent on both
the state of the network and the visitation policy. Thus, sensors
only know the energy budget at runtime.

Energy harvesting systems supplement batteries with renew-
able energy. For example, wildlife tracking [1, 4, 6, 8], bridge
monitoring [7], and ecosystem observation [2, 3] sensors use
solar panels. Energy harvesters have varying performance
due to a dependence on their environment; e.g., solar panels
generate up to six times less power in overcast rather than
sunny weather [4]. This variance creates inherent unreliability
in sensor lifetime, which is a problem for operators. For ex-
ample, ZebraNet sensors desire 72 hours of operation on only
battery power [4]. This design requirement leads to energy
budgets; given only the energy stored before losing renewable
power, sensors must meet the desired uptime. In particular,
the residual battery charge before a loss of renewable power
is unknown at design time. Thus, such sensors must handle
energy constraints that are not known until runtime.

B. Recurrent Neural Networks and Sequential Classification

Sensors collect periodic measurements of their surrounding
environment, creating a temporal data stream [29]. As an
example, consider human activity recognition [30]. In this task,
sensors measure acceleration values at regular intervals. The
corresponding inference model uses a sequence of measure-
ments to predict the activity.

Recurrent Neural Networks (RNNs) are a popular model
for inference on sequences. RNNs’ key feature is their main-
tenance of an internal memory state [21, 22, 31]. At each
step, this memory state represents a summary of the inputs
observed thus far. RNNs update the memory state using a
trainable transition function called the RNN cell.

We formally describe RNNs by considering an ordered
sequence X = {xo,x1,...,x7_1}. Each vector ; € R"
represents the input measurement at step ¢ € [T]'; e.g., for hu-
man activity recognition, each x; holds 3D acceleration values.
At step ¢ € [T], the RNN updates the memory state s; € R?
using the transition function (cell) Sy : R™ x R4 — R4,

vt € [T] (1)

There exist many RNN cells, from single-layer networks [31]
to more complex designs for learning long-term relationships
[20, 21, 24, 32, 33].

St = 519(3%7 St—l)

'We use the notation [N] = {0,1,...,N — 1}
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Fig. 1: An RNN on a sequence with three elements. Sy
represents the RNN cell and g, is the readout layer.

RNNs form predictions using a trainable readout function
gy, Which often takes the form of a multi-layer perceptron
[34]. The readout layer uses a summary of the input sequence
to form the prediction. There are many possible ways to
form this summary; in the simplest case, the readout function
uses the final memory state sr_; and the prediction is
Y = gy (s7_1). Figure 1 shows an example of an RNN.

C. Inference under an Energy Budget

We now formalize the goal of designing an RNN-based
inference system that achieves low error under runtime en-
ergy constraints. Let 7 = {fo,, fo,,..., fo,} be a family
of (sequential) inference models. We assume each model
incurs a different average energy cost to process a single
sequence. Let X = {X©O XM XM-D} be a set
of M non-overlapping sequences. Each sequence X (m) —
2™, 2{™ .. 2] contains T elements where consecutive
measurements are sampled At seconds apart.

We define an energy constraint as a tuple (B, M) cap-
turing the goal of performing inference on M sequences
with energy at most B. We assume that M 1is a finite
integer in [Mynin, Minasz] and B ~ U([Bmin, Bmaz]). The
ranges describe the set of feasible constraints. Given these
constraints, we want a policy m which selects a model in
F at each step m € [M]. The selected model, denoted by

™ = w(F, X B M), performs inference on the m'®
sequence X (™). The dependence of 7 on B and M arises
because the system must adapt to new constraints at runtime.

We want to construct a policy 7 and a family of inference
models F to (1) minimize the expected error over all possible
budgets and (2) meet all energy constraints. Thus we have the
following optimization problem (where y,, is the true label
for the m*" sequence):

M-1

1 N
m, F =argmin By g | — Z Error(f7 (X ™), y)| (2)
7?7]:— M m=0
M—1
st. > Energy(fy,X"™)<B VM,B (3)
m=0

It is infeasible to solve this problem exactly. Even if we could,
at design time we do not know the energy budgets.

D. Adaptive Sampling in Recurrent Neural Networks

A family F for budgeted inference must contain inference
models with varying energy costs. Thus, to build a family F
with RNNs, we need a method to control the energy consump-
tion of RNNs during inference. In sensor environments, RNNs

can adjust their energy consumption by varying the number
of inputs. For example, rather than using a full sequence
[0, ..., x7r_1] to form a prediction, an RNN can save energy
by instead using the subsequence [Zq,.,...,Zq, ,] Where
r < n. Skipping inputs saves energy by reducing the frequency
of both processing and collection. These savings are significant
when compared to the energy required to communicate predic-
tions to a centralized server. Between the tasks of collection,
processing, and communication, data processing has the lowest
energy cost. For example, both the TI MSP430 FR5994 [35]
and the Atmel SAM L21 [36] draw under 200 A per MHz. In
contrast, sensing hardware can consume an order of magnitude
more power, and the cost of sensing can even exceed that
of radio modules [37]. As transmission only occurs once per
sequence, the relative cost and frequency of collection allow
subsampling to yield significant energy savings [37]. We can
thus create a budgeted inference system with a family of
models F composed of RNNs that subsample input sequences.

Two state-of-the-art RNN architectures support subsam-
pling: Skip RNNs [26] and Phased RNNs [25]. Skip RNNs use
a trainable binary gate to skip sequence elements. This gate
is jointly trained with the RNN parameters, and it gives the
model fine-grained control over the sampling strategy. Phased
RNNSs use a periodic phase gate to control when the RNN
makes updates to its memory state. By unifying the phase
gate across all state dimensions, Phased RNNs can use this
gate to skip inputs. Thus, both Skip and Phased RNNs can
create a family of inference functions (F) by sub-sampling
the sequence with varying granularity.

Both approaches train their sampling strategy at the same
time they train their RNN parameters. This joint training
reduces the flexibility to adapt to runtime energy availability
and is a bad match for the constraints of low-power sensing
systems. In particular, a Skip or Phased RNN cannot change its
sampling strategy after training. This property means that an
instance of either RNN operates at only one energy consump-
tion level. To meet energy budgets that are unknown at design
time, a system based on either model would need many trained
neural networks. This strategy requires a longer training time,
and memory restrictions cap the number of deployed models.
Furthermore, a reasonable selection policy (7) is to always
choose the best RNN that meets the energy constraint. As
there are a small, discrete number of models (due to memory
constraints on embedded devices), this policy is inefficient; for
a constraint (B, M), the best model may use only b < B joules
to classify M sequences. Our goal is to design a practical
approach that uses the remaining B — b joules to produce
more accurate inference results.

III. BUDGET RNN ARCHITECTURE

Budget RNNs are a family of RNN architectures designed
to (1) deliver high accuracy under energy constraints and (2)
generalize to budgets that are unknown until runtime. There
exists a tension between these two guiding principles. On one
hand, RNN accuracy depends on the sequence subsampling
algorithm. As discussed for Skip and Phased RNNs, however,

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on September 15,2021 at 14:47:21 UTC from IEEE Xplore. Restrictions apply.



creating a more flexible subsampling algorithm through joint
training limits the ability to generalize to new budgets.
Budget RNNs address this tension using four features. First,
Budget RNNs have a leveled architecture where each level
processes a distinct subsequence (§III-A). The Budget RNN
produces a prediction after each subsequence. Second, the
model avoids recomputation by merging RNN memory states
across subsequences (§III-B). The leveled architecture allows
a single Budget RNN to operate at many energy levels. In
particular, controlling the number of executed subsequences
determines the number of input elements the Budget RNN
uses. This control is possible due to the third feature of
Budget RNNs: halting signals (§111-C). For each subsequence,
Budget RNNs produce a signal which indicates whether the
model should halt its execution. By setting thresholds on these
signals, an inference policy (7) can dynamically alter the
Budget RNN’s sampling granularity. These signals decouple
the subsampling strategy from the Budget RNN parameters.
We discuss this control policy in Section IV. Finally, Budget
RNNs are trained with a novel loss function that balances
the predictions and halting signals across all subsequences
(§$III-D). Figure 2 shows two Budget RNN architectures.

A. Leveled Architecture

Each Budget RNN level applies a shared RNN to a distinct
subsequence. Budget RNNs sequentially process these subse-
quences, producing a prediction from each. These predictions
allow Budget RNNSs to exit early during inference. Further, the
Budget RNN can skip inputs as the data from unprocessed
subsequences does not need to be collected. Thus, Budget
RNNs can save on both computation and data collection.

We describe this process formally by considering the sub-
sequence X () = {x,,,..., x4, ,} Where 7 is less than the
original sequence length 7. Similar to standard RNN update
(equation 1), Budget RNNs use the state transition model Sy
and readout layer g, to perform on the subsequence X (@)

Say = S9(®Tay, Say_y) VEE[r] (4)
9 = gy (sa,_,) (5)

The transition model Sy can be any RNN cell [21, 32, 33].
Both Sy and gy are shared across all subsequences, a key
feature for reducing memory overhead.
Budget RNNs apply this recurrent process to each subse-
quence. Subsequence formation is based on two parameters:
o Number of Subsequences (L): Each subsequence results
in a prediction, so this parameter also represents the
number of predictions. We also refer to L as the number
of levels—the subsequences form levels in the model.
o Stride Length (K): This parameter determines the gap
between elements in each subsequence. For example, in
a sequence of length 7" = 6, the subsequences for a stride
length of K = 2 are {xo, T2, x4} and {x1, x5, x5}. The

0" subsequence has the following form:
x _ J{@merjpn | ne L]} if K=1 ©
{ilig+nK | n e [%]} if K>1

146

When K > 1, we set L = K to avoid the having a single
element in multiple subsequences.

Both L and K constitute hyperparameters for Budget RNNs.
The stride length in particular has an impact on model accu-
racy, and we discuss how to set this parameter in §IV-D.

B. Merging Memory States Across Subsequences

To maximize accuracy and avoid energy-wasteful redun-
dant computation, Budget RNNs leverage already-processed
sequence elements. When executing on level ¢, the Budget
RNN merges the new inputs to improve the prediction from
level /—1. A key property of this merging is the avoidance of
backward dependencies. During inference, a sensor supplies
the Budget RNN with measurements collected over time. Fur-
ther, Budget RNN’s conserve energy by skipping subsequences.
From these two properties, backward dependencies would
require the system to either execute the current step using
future data or collect and store elements that may be ignored.
The former is impossible, and the latter is energy-inefficient.

When K = 1, the Budget RNN looks like a standard RNN
with L early-exit points [15]. The model combines information
between subsequences using the RNN cell. This combination
occurs by using the final memory state of the ¢ — 1** level as
the initial memory state of the £*" level. The left-hand-side of
Figure 2 shows an example of this design.

When K > 1, the merging is more complex due to the
interleaving of subsequences. For example, when 7" = 4 and
K = 2, the Budget RNN uses subsequences {xg, 2} and
{x1,23}. In this case, the final element of the first subse-
quence, T2, occurs after elements in the second subsequence.
Thus, using s, as the initial state of the second subsequence
creates a backward dependency. Budget RNNs solve this
problem by aligning and merging the memory states from each
level. Equations (7) and (8) below show how the merging layer
M interacts with the standard RNN cell in (9). The variables
WM UM and bM) are trainable parameters, o is the
sigmoid function, and © is the element-wise product.

2 =0(WMg_ o +UMs,_; + M) (7)
5 1=208 g+ (1—2)O81 (8)
St = Sﬂ(mt» -§t—1) 9

To clarify this design, let step ¢ belong to subsequence ¢. This
merging layer makes s; dependent on all inputs collected thus
far. The state s,_x precedes step ¢ in the ¢*" subsequence
and represents a summary of the current subsequence up to
step ¢. The state s,y belongs to subsequence ¢ — 1 and
represents a summary of the already-collected elements in
previous subsequences. Using a combination of s;_; and s;_ g
makes s; dependent on all elements collected up to step ¢. The
right-hand portion of Figure 2 depicts this design.

Within this leveled architecture, the error should always im-
prove as the model observes more data. In practice, however,
this desired behavior does not always hold. We hypothesize
that this issue stems from two factors: (1) weight sharing
across levels and (2) a loss function based on an unweighted
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Fig. 2: Budget RNNs with sequence length 7' = 6, L = 2 levels, and stride lengths K =1 (left) and K = 2 (right).

average of the per-level loss (§III-D). To mitigate this problem,
we use an additional output pooling layer to combine the
predictions across subsequences. The pooling operation allows
Budget RNNs to use predictions from previous levels if doing
so lowers the error. As shown in the equations below, this layer
uses a trainable weighted average to aggregate predictions. The
variable s is the final memory state for level £, wyoo1, Upoot
and by, are trainable, and g, is the readout function.

Tk = w8 +uls® b VE< L (10)
B :Nowrmlzze(ro,,..,w);C Vk </ (11)
¢
99 =" Brgy(s™) (12)
k=0

In our implementation, we use a SparseMax normalization [38]
instead of a softmax normalization due to better numerical sta-
bility when implemented in fixed-point arithmetic on MCUs.

C. Halting Signals

Budget RNN’s use early-exit points to alter their energy
consumption. For example, to conserve energy, a Budget RNN
can stop at an intermediate level ¢; the sensor then does not
need to capture inputs belonging to subsequences ¢/ > £. To
maximize accuracy, the inference policy (7) should control the
number of executed levels in a data-dependent manner [26].
That is, the system should use inputs to determine when to
exit inference. Budget RNNs support the ability to make data-
dependent decisions using trainable halting signals [39, 40,
41]. Ateach level ¢ € [L], these signals indicate the probability
the current level’s prediction is correct. The policy 7 controls
the halting behavior using thresholds on these signals (§IV).

We describe these halting signals by considering two cases.
First, when K = 1, the model creates halting signals using
the final memory state of each level. Second, when K > 1,
the Budget RNN creates halting signals from the first element
of each subsequence. This discrepancy is a result of the
interleaving of elements across subsequences. For example,
during inference, the system must decide whether to collect
x, after processing xyo. When K > 1, ¢y and x; belong to
different subsequences. Consider if the Budget RNN created
the halting output after completing level ¢ = 0. The system
would need to collect elements (such as x;) that may be

ignored if the system decides to halt at £ = 0. Such extraneous
data collection wastes energy. Thus, to efficiently collect
inputs, the system must use x to decide whether it should
halt at level ¢ = 0. Therefore, when K > 1, the Budget RNN
must use the first memory state of the ¢*" subsequence to
construct the halting signal for level /.

Budget RNNs use a shared, trainable layer to create the
halting signals. The equations below show the halting function
h¢ applied to level £. The term s;(y) is the final state of level
¢ when K =1 and the first state of level £ when K > 1. The
variables Whqi1,1, Whait,2, Ohaie,1 and bpqyy 2 are trainable, and
¢ is the nonlinear activation function.

he = ¢(Whait,185(0) + bhraie,1) (13)
Ge = o (Whqys 2Pe + bhate,2) (14)

Budget RNNSs train the halting signal g, to predict whether the
model is correct at level ¢. For classification tasks, the label is
qe = 1[y = argmaxg§¥)] where 1[-] is an indicator function.
For regression tasks, the label is ¢o = 1[|ly — 9“3 < €]
for a threshold ¢ > 0. In either case, the label is a non-
differentiable function of the Budget RNN parameters. We
address this problem by treating the label as a constant. This
treatment is advantageous because it prevents the Budget RNN
from crafting predictions to match the halting signals. In
particular, this feature avoids behavior where the Budget RNN
predicts a sequence wrong on purpose to match a halting signal
close to zero. Such behavior leads to a poor model.

D. Loss Function

All neural networks are trained to minimize a loss function.
This function typically measures the difference between the
predicted output and the true result. The novel architecture
of Budget RNNS requires a new loss function to balance the
optimization of both predictions and halting signals.

At each level ¢ € [L], Budget RNNs produce two outputs:
the prediction y®) and the halting signal §,. We use a loss
function to train the model using the outputs from all levels.
The loss function below expresses this goal. The function £
is the per-output loss (e.g. cross-entropy, mean-squared error).

Z (C(yu’)

L} {ach v faed) = )+ vLlda)  (9)
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Algorithm 1 Adaptive Inference Algorithm for Budget RNNs

Algorithm 2 Optimization Algorithm for Halting Thresholds

1: procedure ADAPTIVEINFERENCE(fe, 2z, L, K,T)

2 Umaz < L

3 (S, M, gy, he) < fo
4 for ¢t € [T] do

5: { < LevelOf(t, K, L)

6: if £ > lina. then

7 continue

8: ¢ + CollectInput()

9: 811 +— M(St_l, St—K) > (Eq 8)
10: St < 519(2131, §t,1) > (Eq 9)
11: Ge < he(st) > (Eq 14)
12: if isHaltState(t, K, L) and g, > z, then
13: lmaz < L
14: if IsLast(¢, K, L) and £ = {4, then
15: return Prediction(s:, gy) > (Eq 12)
16: return Prediction(sr—1,gy) > (Eq 12)

The variable ~ determines the relative emphasis on the
halting loss. We slowly increase  over the first few epochs
until it reaches 7p. In our experiments, we set 7o = 0.01.
This slow increase improves training because the predictions
frequently change in the first few epochs.

IV. CONTROL POLICY AND SUBSAMPLING ALGORITHM

The Budget RNN output levels compose a family of func-
tions F for budgeted inference. The inference system needs a
selection policy 7 that minimizes error and adapts to unseen
constraints. The Budget RNN policy meets these goals by
dynamically selecting the output level in a budget-specific
manner. This choice determines the number of collected inputs
and the performed computation, ensuring efficient use of the
available energy.

The Budget RNN policy achieves this dynamic behavior
through four features. First, it performs adaptive inference
(§IV-A) by setting thresholds on the Budget RNN’s halting sig-
nals. Second, an optimizer (§IV-B) tunes these thresholds over
multiple potential constraints. The policy uses an interpolation
method to generalize the thresholds to unseen budgets. Third, a
feedback control system mitigates generalization errors while
adapting to unforeseen changes in the runtime environment
(§IV-C). Finally, the policy improves accuracy by combining
distinct Budget RNNs with different stride lengths (§1V-D).

A. Adaptive Inference Algorithm

The Budget RNN inference policy 7 uses the halting signals
to control the number of consumed inputs; i.e., 7 uses infor-
mation from the model to determine the early-exiting behavior.
Thus, the policy adapts the energy consumption based on
the input sequence. These data-dependent decisions allow the
policy to conserve energy on sequences where the model needs
fewer inputs to achieve a low error. The policy spends this
saved energy to reconcile “harder” sequences.

The policy 7w implements early-exiting using a budget-
specific threshold vector z(%-*) where (B, M) is the energy
constraint. When the halting probability g, at level /¢ is greater

1: procedure FITTHRESHOLDS(D, fo, L, (B, M))

2 2~ U(0,1Y)

3 while not converged do

4: k ~{0,...,L — 2} Uniformly at Random
5.

6

z < argmin, .o 1) AdjError(fe, D, z, B, M)

return z

than the threshold zlEB’M), the inference terminates at level
{. Otherwise, it continues to the next level. Algorithm 1
describes this adaptive inference routine. We emphasize an
integral feature of this design: when inference halts at level
¢, the system does not collect measurements associated with
levels ¢’ > £. Thus, when halting at lower levels, the Budget
RNN exhibits significant energy savings by not engaging the
sensing hardware to collect unused measurements.

B. Optimizing Halting Thresholds

The policy 7 controls energy consumption using thresholds
on the Budget RNN halting signals. We create these thresh-
olds using an additional training step. This process uses a
coordinate descent technique [42] to fit thresholds for a given
constraint. The optimizer creates thresholds to both minimize
error and meet the budget.

Consider a Budget RNN fg and an energy constraint
(B, M). The optimization problem below formalizes this goal.
The term D = { X,y }M 1 is the training dataset, and the
“Error” function uses predictions from the adaptive inference
routine in algorithm 1. This problem is similar to that of the
original problem statement for budgeted inference (Eq 3).

M—1
z" = argmin Z Error(fe,z, X, y®) (16)
ze[0,1]F ;5o
M—1 ‘
s.t. Z Energy(fg,z,X(‘)) <B 17)
i=0

This optimization problem is hard to solve for three reasons.
First, the runtime energy consumption is often unknown at
design time. We thus approximate the energy consumption
using profiled values from sensing hardware. Second, the
optimization problem may have a discontinuous objective
function. For example, in classification tasks, the error function
is the negative system accuracy. To address this challenge, we
use a coordinate descent solver. At each step, the optimizer
selects a random threshold index and finds its optimal value
in [0,1]. Finally, the optimizer must adhere to the energy
constraint. We implement this behavior by forming an adjusted
error function that penalizes budget violations. The equations
below show an adjusted error function based on accuracy. This
function scales the accuracy using the number of sequences
that fit under the budget. The variable b is the average energy
per sequence, and the “Acc” function uses predictions from
the adaptive inference routine in algorithm (1).

min(M, B/b)

a(fe,D,z,B, M) = —Acc(fg,2,D) - %

18)
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Algorithm 3 Budget RNN Controller Policy

1: procedure CONTROLPOLICY(fg, (B, M), L, K,T)
2 Y+ []

3 Bo ~— B

4 for m € [M] do

5: z < InterpolateThresholds(B,, M)
6 Um < AdaptiveInference(fq, 2) > (Alg 1)
7 bobs < ObserveEnergy|()

8: (b, bu) < GetSetpoint(B, M, m) > (Eq 21)
9: e < PIDControlError(boss, (b, bu))
10: Bmy1 < B+e > e > 0 means byps is low
11: Y <Y U [gm]

12: return Y

Algorithm 2 describes the optimizer. Below we describe a few
implementation details regarding the halting thresholds.

o Initialization Strategy: We initialize the threshold for level
¢ using U([qr, 1]) where g, is the median halting signal.
We further set thresholds to zero for levels that violate
the budget on a per-step basis. This strategy creates
thresholds that approximately meet the budget, avoiding
cases where the optimizer makes suboptimal decisions
just to meet the constraint early in training.

o Coordinate Descent Step: The key step during each
iteration involves finding the optimal threshold. We find
this value approximately by sweeping over a quantized
subset of [0, 1]. In our implementation, we search over
{0,1}u{2" % | n € [k]} for k = 256.

o Convergence Detection: We detect convergence by assess-
ing how thresholds generalize to unseen validation data.
Following standard practice, the optimizer terminates
after () iterations of non-improved validation error [43].
This early-stopping mitigates the risk of overfitting. We
set (Q = 25 in our experiments.

o Population-based Training: To mitigate sensitivity to ini-
tialization, we use a population-based approach [44] to
fit many threshold vectors in parallel. Every R iterations,
underperforming thresholds are set to the best vector.
These copied thresholds are randomly perturbed to ex-
plore promising regions of the solution space. We use
R =10 in our experiments.

o Generalizing to Unseen Budgets: The inference pol-
icy must adapt to unseen energy budgets. The policy
performs this adaptation by creating new thresholds at
runtime. For an unseen budget, the policy finds the two
nearest known budgets that bound this new constraint.
The policy creates new thresholds by linearly interpolat-
ing the thresholds of the bounding budgets. In general, the
relationship between thresholds and energy consumption
may be nonlinear. We nevertheless find linear interpo-
lation to be a low-overhead heuristic that empirically
performs well. To mitigate interpolation errors, we use a
runtime controller adjust the selected thresholds (§1V-C).
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C. Runtime Controller

The inference policy for Budget RNNs uses budget-specific
halting thresholds to minimize error. Alone, the threshold
training process has two qualities that hurt the system’s
ability to generalize. First, the optimizer approximates energy
consumption using profiled values. The thresholds may yield
a suboptimal error if the runtime and profiled environments
differ. Second, the threshold interpolation method only approx-
imately meets unseen budgets. The inference policy remedies
these issues using a PID controller [45]. For each sequence,
the controller compares the observed energy consumption with
the expected energy based on training. The policy uses the
control error to adjust the halting thresholds by changing
the budget used during interpolation. For example, if energy
consumption is lower than expected, the controller will use
thresholds based on a larger budget. This controller thus
maps the runtime environment into the space constructed
during training. Algorithm 3 describes this process. In our
implementation, we update the budget every W = 20 steps.

The main challenge associated with this controller involves
creating the setpoint, which is nontrivial because the adaptive
inference algorithm may not evenly spread the available energy
across all M sequences. To account for system variation,
the controller uses a dynamic setpoint based on a confidence
bound. This bound is based on the expected energy consump-
tion and the corresponding estimator variance.

We derive this setpoint by considering by, to be the average
energy consumed when the Budget RNN predicts the label k£ €
[C]. For each label, the energy consumption may vary due to
the adaptive inference routine (Alg 1). We thus assume that by
is a normally distributed random variable. Consider when the
system has processed m < M inputs. We define 7y, to be the
number of sequences with label k£ and r,(cm) to be the number
of sequences in class k that occur in the first m sequences. Let
Xo.m and X,,.ps be random variables representing the energy
consumption in the first m and final M —m steps respectively.
The controller creates a setpoint based on FE[Xg.,]. Given
the total energy budget B, we want to have B = E[Xo.,] +
E[X,.as]- This relationship expresses the goal that the system
should use the entire budget. Evaluating E[X,,,.)/] yields the
following expression for E[Xg.,].

C—-1
E[Xom] =B =Y (re — ™) Elby] (19)
k=0

We estimate the values for 7y, r,im), and E[by] using both the
training set and the profiled energy values. We update these
distributions with values obtained at runtime. These approxi-
mations result in an estimator E[Xo;m} for the expectation.
A setpoint based on this expected value alone does not
capture the variance associated with Budget RNN execution.
We instead use a confidence bound [46] which accounts
for the estimator variance. Under the assumption that rj is
deterministic and the by variables are independent, we obtain
the following equation for the variance of Xj.,,. In practice,
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System Accuracy on the Whale Dataset

—e— Budget RNN(1)
—=— Budget RNN(10)
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Budget (mJ)

Fig. 3: The accuracy for two distinct Budget RNNs on the
task of classifying Whale sounds [49].

we again use an estimator of Var[Xj.,,,] based on estimates of
(m)

Tk, 7 and Var[by] from the training set.
c-1
Var[Xo.m] = Y (ri — ™) *Var[by] (20)
k=0

From the Fisher information for Gaussian random vari-
ables, the variance of the estimator E[Xg;m} converges to
%Var[XOzm] [47, 48]. With these estimations, we construct
the following setpoint for the PID controller.

Setpoint(m) = (E[XO;WL] + ;VAar[Xo;m]> (21)

When the observed energy is within this confidence bound,
the controller error is zero. Otherwise, the control error is set
based on the difference to the nearest side of the bound.

We highlight one important aspect of this design: the
controller does not need the budget at design time. At runtime,
the controller uses Equations (19) and (21) to dynamically
construct a setpoint for a given budget (B, M) . The system
uses this setpoint to adapt the Budget RNN halting thresholds
and meet the energy constraint (Algorithm 3).

D. Budget RNN Selection

The presented inference policy uses thresholds to control a
single Budget RNN. On many datasets, we observe that one
Budget RNN is not enough to deliver high accuracy across
all budgets. This trend occurs due to the impact of the stride
length parameter (K). Importantly, when comparing Budget
RNNs with the stride length K3 and K5, the model with K3
may be better for some budgets and worse for others. Figure
3 shows such an example. To achieve the best performance
across all budgets, the policy should leverage both models.

We use this insight to build the family / with many distinct
Budget RNNs. For a given budget, the policy 7 first selects
the Budget RNN based on validation accuracy. The policy
proceeds to use the runtime controller and corresponding
thresholds for the chosen Budget RNN. We observe that pro-
viding the policy with a few models yields better performance.
Further, this dynamic selection reduces the need to search over
stride lengths to find the single best model.

Using many distinct RNNs has the downside of increasing
the system’s memory footprint. In our experiments, we use
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only two Budget RNNs to achieve high accuracy over a spec-
trum of budgets. This modest number meets any reasonable
memory constraints imposed by low-power devices.

V. EVALUATION

We evaluate the Budget RNN’s ability to support accurate
inference under energy budgets on embedded sensing systems.
We compare to standard RNNs as well as the current state-
of-the-art RNNs that support sub-sampling (Phased [25] and
Skip [26] RNNs). We compare these systems across many
datasets and energy budgets in a simulated environment®>. We
supplement these results with an evaluation on an embedded
device. This evaluation shows the following:

1) Under the same budgets, the Budget RNN system
achieves higher accuracy than that of baseline systems.
Across all datasets, the Budget RNN system has a mean
accuracy of 1.5 points greater than Skip RNNs, 2.7
points greater than Phased RNNs, and 3 points greater
than standard RNNs (§V-B). Further, Budget RNNs
can operate with 20% smaller energy budgets and still
achieve accuracy comparable to the baselines (§V-C).
The control policy allows the Budget RNN system
to adapt to new runtime environments. This adaptive
behavior enables Budget RNNs to achieve greater im-
provements in such settings (§V-D).

The adaptive decisions made by the Budget RNN policy
are key to the system’s performance. Removing the
adaptive policy or making randomized decisions results
in lower accuracy (§V-E).

Budget RNNs have lower training costs when compared
to both Skip and Phased RNNs. These baseline systems
take over 2.3 longer to train on average (§V-F). Budget
RNNs display cheaper training while delivering higher
accuracy across all budgets.

The higher accuracy of Budget RNNs translates to an
embedded system. Across two budgets, Budget RNNs
maintain their improvement over Skip RNNs (§V-G).

2)

3)

4)

5)

A. Experimental Setup

1) Baseline Systems: We use three RNN variations to
create baseline systems: standard RNNs, Phased RNNs [25],
and Skip RNNs [26]. The first baseline uses early-exiting in
standard RNNs [15]. This model creates a prediction from
each memory state, and we interpret these outputs as models
in Fppp. We train the RNN to minimize the average loss across
all predictions. The second baseline uses Phased RNNs [25].
Each model in Fjpnqesed uses a phase gate with a different
open rate. The final baseline uses Skip RNNs [26]. We train
each Skip RNN in Fgy;, to meet a different target number of
elements. This target is enforced through an L2 loss term. For
both the Phased and the Skip RNN systems, we create systems
with 10 distinct models®. Using 10 models provides these
baselines with a good tradeoff between energy and accuracy
while maintaining a reasonable memory footprint.

2All code is available at https:/github.com/tejaskannan/budget-rnn
3We use 8 models on the pen digits dataset due to shorter sequences.
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Dataset Seq Len Classes # Train # Val # Test
EMG [50] 50 7 10,330 2,887 4,975
FordA [51] 20 2 3,060 541 1,320
Pavement [52] 30 3 33,336 5,815 39,939
Pedestrian [53, 54] 20 10 2,024 364 4,878
Pen Digits [55] 8 10 6,033 1,461 3,498
UCI HAR [56] 50 12 18,229 6,800 10,197
Whale [49, 57] 30 2 9,351 1,583 1,962

Fig. 4: Evaluation dataset characteristics.

For each baseline, we use a fixed selection policy 7 fizeq-
This policy selects the best model whose estimated energy
meets a given budget. The policy estimates energy consump-
tion using both profiled values and the average number of
processed inputs. For all models that meet the budget, 7f;zeq
selects the model with the best validation accuracy.

2) Datasets and Neural Network Training: We evaluate
system performance on the seven datasets in Figure 4. Each
dataset constitutes a sensor-like classification task. For all
RNNs, we use single-layer UGRNN cells [33] with a 20
dimensional state. This design limits the memory footprint of
each model. All models use a readout layer with 32 hidden
units and a Leaky ReLU [58] activation. We fit the RNNs using
stochastic gradient descent [59] with an Adam optimizer [60]
and a learning rate of 10~%. We use the same batch size for
all models. We train the RNNs in Tensorflow [61] for at most
250 epochs with early stopping after 25 epochs.

3) Simulated Environment: We conduct the majority of
this evaluation in a simulated environment that bases energy
consumption on profiled values from a TI MSP430 FR5994
MCU [35]. We measure the energy required to capture and
process inputs using the EnergyTrace tool [62]. We experiment
with two energy profiles. The first uses a DHT-11 temperature
sensor, and the second simulates collection through an HM-
10 Bluetooth module. When sampled at 0.5Hz, the 3.3V MCU
with the DHT-11 consumes about 5.6mJ per input; the HM-10
system uses about 29.6mJ per input. These values represent
varying points on the spectrum of sensor energy consumption.
The simulator also incorporates the energy required for data
processing. This feature accounts for the higher computational
cost of Budget RNNs (§V-H). For simplicity, we assume that
both Phased and Skip RNNSs incur the same processing cost
as standard RNNs. This assumption is conservative as Phased
and Skip RNNs perform additional computation.

4) Hardware Environment: We supplement the simulated
environment with an experiment on the actual TI MSP430
FR5994 MCU [35]. We use an HM-10 BLE module to
transmit inputs to the device. We power the MCU using a
supercapacitor and vary the budget by setting the total capac-
itance. The Budget RNN controller obtains energy feedback
by measuring the voltage across the capacitor. We quantize
the neural network weights to 16-bit fixed-point values and
execute the RNNs using the on-board low-energy accelerator.

5) Budget RNN Parameters: In all experiments, we use a
Budget RNN system with two distinct models. These models

Bluetooth Energy Profile Temperature Energy Profile

Dataset

RNN  Phased Skip Budget RNN  Phased Skip Budget
EMG 0.713 0.716 0.713 0.724 0.702  0.704 0.712 0.721
Ford A 0.881 0.859 0.876 0.886 0.867 0.845 0.860 0.868

Pavement 0.715 0.669 0.670 0.716 0.697 0.642 0.658 0.695
Pedestrian 0.607 0.702 0.714 0.720 0.543  0.665 0.649 0.674
Pen Digits ~ 0.832 0.831 0.869 0.881 0.838 0.842 0.871 0.879
UCI HAR 0.862 0.828 0.859 0.865 0.848 0.820 0.856 0.856
Whale 0.864 0.869 0.871 0.879 0.849 0.859 0.865 0.871

All 0776 0778 0791 0.806 0753 0.761 0.773 0.788
Fig. 5: Geometric mean accuracy across all budgets. RNN
refers to the standard RNN.

have stride lengths of 1 and 10 respectively*. The policy selects
the Budget RNN at runtime as described in §IV-D. We fit
halting thresholds for 11 budgets on the Bluetooth profile and
12 budgets in the temperature setting. The Budget RNN system
automatically generalizes to unseen budgets.

B. Inference Accuracy

For each dataset, we evaluate the inference accuracy on
a set of energy budgets in the simulated environment. We
set M to the size of each testing set and use energy values
B to standardize the ratios B/M across datasets. We use
22 and 26 budgets on the Bluetooth and the temperature
profiles respectively. We compare the systems by computing
the geometric mean accuracy across all budgets.

On average, the Budget RNN achieves the best accuracy
across all datasets and budgets. Figure 5 shows these results
for both energy profiles. When compared to the standard RNN,
Budget RNNs display a mean accuracy gain of over 3 points.
Further, Budget RNNs outperform Skip RNNs (1.5 points)
and Phased RNNs (2.7 points). These results hold for both
energy profiles. The table further shows how no single baseline
delivers high accuracy across all datasets. In contrast, the
Budget RNN system displays consistency—it almost matches
or outperforms the best baseline system on all datasets. In a
budget-by-budget comparison, the Budget RNN also shows
distinct improvements. Using the Bluetooth energy profile,
Budget RNNs have higher accuracy than standard RNNs on
77.3% (119 / 154) of budgets. The same comparison against
Phased and Skip RNNs shows higher accuracy on 82.5% (127
/ 154) and 83.1% (128 / 154) of budgets respectively. A similar
trend holds on the temperature profile.

To better understand the observed accuracy differences,
we compare the per-budget accuracy on the Pen Digits task.
Figure 6 displays the obtained accuracy values. We observe
how the Budget RNN provides distinct benefits under tight
budgets. These gains become smaller as the budget increases.
In particular, for large budgets, the Budget RNN shows slightly
worse accuracy than the standard and Phased RNNs. Given no
assumptions about the budget, however, we find that Budget
RNNs display the best overall result.

Better budget utilization appears to be a reason for the
Budget RNN’s improved accuracy. On average, Budget RNNs

4We use a stride length of 4 on the Pen Digits task due to shorter sequences.
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System Accuracy on the Pen Digits Dataset
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Fig. 6: System accuracy on the Pen Digits dataset using the
Bluetooth energy profile.
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Fig. 7: Geometric mean of normalized budget to obtain ac-
curacy equal to the Budget RNN. Values above one indicate
better performance by the Budget RNN.

use 99.2% of the budget, while RNNs (94.7%), Phased RNNs
(78.1%), and Skip RNNs (80.4%) display inefficiencies. The
Phased and Skip RNNs have lower utilization because the
models sometimes show lower accuracy when given more
inputs. As this utilization pattern occurs on both the Bluetooth
and temperature profiles, these results further demonstrate how
the Budget RNN’s advantages hold for multiple sensors.

C. Energy Comparison

To place the higher accuracy of Budget RNNs into the
context of energy, we estimate the budget needed by Budget
RNNs to obtain accuracy equivalent to the baseline systems.
For each baseline on budget B, we find the smallest budget B’
such that the Budget RNN displays the same accuracy on B’
as that of the baseline on B. We use the ratio B/ B’ to compare
the budgets needed to obtain the same accuracy. Figure 7
shows this comparison on the Bluetooth energy profile. On
average, the Budget RNN system can use over 20% smaller
budgets and still deliver comparable accuracy to the baseline
systems. This value describes how the accuracy improvement
(Figure 5) manifests itself in terms of energy.

Bluetooth Energy Profile
RNN Phased Skip Budget  RNN Phased Skip Budget

+20%  0.664 0.724 0.731 0.762 0.603 0.674 0.670 0.702
+10% 0.729 0.764 0.778 0.786 0.681 0.733 0.738 0.750
-10%  0.776 0.778 0.791 0.813 0.753 0.764 0.774 0.797
-20%  0.776 0.778 0.791 0.818 0.753 0.765 0.774 0.802
All 0.735 0.761 0.772 0.794 0.695 0.733 0.738 0.762
Fig. 8: Geometric mean accuracy across all datasets and

budgets in settings with a nonzero energy bias.

Bias Temperature Energy Profile

Bluetooth Energy Profile Temperature Energy Profile

Dataset
Fixed ~ Random  Adaptive Fixed ~ Random  Adaptive

EMG 0.722 0.718 0.724 0.720 0.718 0.721
Ford A 0.874 0.856 0.886 0.857 0.844 0.868
Pavement 0.706 0.689 0.716 0.684 0.673 0.695
Pedestrian 0.692 0.624 0.720 0.642 0.596 0.674
Pen Digits  0.843 0.827 0.881 0.843 0.836 0.879
UCI HAR 0.860 0.841 0.865 0.853 0.841 0.856
Whale 0.875 0.852 0.879 0.867 0.849 0.871
All 0.792 0.767 0.806 0.774 0.757 0.788

Fig. 9: Geometric mean accuracy of Budget RNN variants. The
adaptive results correspond to the full Budget RNN system.

D. Accuracy on Unseen Energy Profiles

The Budget RNN system constructs halting thresholds using
profiled energy values. The policy (7) decouples the system
from the profiled values using a runtime controller. We evalu-
ate this decoupling by measuring how the system performs in
an environment with biased noise. Specifically, in this setting,
we model the energy consumption to collect and process r
samples as e(r) = w, + € where w, is the profiled energy
value and ¢ ~ A (i, ?). The bias u # 0 is unknown to the
systems, and each policy starts under the assumption of an
unbiased environment. Positive biases mean that, at each step,
the system consumes more energy than expected. Negative
biases work in the opposite fashion.

We evaluate the systems over four biases that represent
about +10% and +20% of the profiled energy consumption.
Figure 8 shows the geometric mean accuracy across all budgets
and datasets. In this setting, Budget RNNs show even higher
accuracy relative to the baselines. Across all biases, Budget
RNNs show a mean accuracy that is almost 6 points higher
than standard RNNs. This improvement is roughly double
what we observe in the unbiased setting. The same comparison
against Phased RNNs (2.9 points) and Skip RNNs (2.2 points)
also yields a larger improvement for Budget RNNs in the
biased environment. These benefits are a direct result of adap-
tivity. The baseline systems use a fixed policy that does not
account for differences in the runtime environment. In contrast,
the Budget RNN uses an adaptive controller that automatically
handles these differences using runtime feedback.

E. Evaluation of Budget RNN System Design

The Budget RNN system uses a novel RNN with a runtime
controller. We evaluate how these components contribute to the
overall accuracy by considering two variants. The first, called
the fixed system, uses a fixed model selection policy (§V-A)
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Wall-to-Wall Time (minutes) Iterations (thousands)

Dataset

RNN  Phased  Skip  Budget RNN  Phased  Skip  Budget
EMG 403 557.1 4649 1769 814 803.6 7248 2889
FordA 9.4 90.7 92.5 355 456 2934 3209 1377
Pavement 114.6 5539 2974 357.1 260.5 1139.9 6648 552.6
Pedestrian 133 1365 89.5 523 633 4612 3114 1765
Pen Digits 240 2331 1096 92.0 188.8 13552 699.1 4453
UCI HAR 124.0 1143.3 1039.0 346.1 251.7 15919 1559.8 512.1
Whale 40.0 393.0 500.1 119.1 112.1 734.0 9883 2722

Fig. 10: Wall-to-wall time and training iterations required
to fit the neural networks on each dataset. The Phased and
Skip RNN results account for training ten distinct RNNs. The
Budget RNN values include the halting threshold optimization.

in place of the adaptive controller. The second variant uses a
randomized selection policy. This policy creates weights based
on how often the Budget RNN should stop at each level to
fully utilize the budget. At runtime, the policy uses the weights
to randomly select the number of levels. In this experiment,
we call the full system the “adaptive” Budget RNN.

We evaluate these variants across the same datasets and
budgets used in §V-B. Figure 9 shows the geometric mean
accuracy for each dataset. The adaptive system outperforms
the fixed and random variants on all datasets by a mean of
1.4 points and 3.1 points, respectively. These results yield
two takeaways. First, data-dependent decisions are an integral
part of the adaptive system’s performance. The randomized
variant’s lower accuracy shows how fully utilizing the energy
budget is insufficient; selecting when to conserve and when
to exploit is key to obtaining accurate results. Second, the
fixed variant alone displays an improvement over the standard
RNN (compare “Fixed” in Figure 9 to "RNN” in Figure 5).
This improvement shows the benefits of performing inference
on non-contiguous subsequences. Adaptive behavior further
exploits this feature to increase accuracy.

E. Training Time

One downside to the Phased and Skip RNN systems is their
reliance on many distinct RNNs. We evaluate how this reliance
impacts the training time of each system. We measure the
training cost in two ways. The first is the wall-to-wall time
required to train all models for each system. We obtain these
times on a 24 core Intel Xeon Silver 4116 CPU. The second
metric is the number of training iterations. This value is the
number of gradient descent steps during training. The Budget
RNN values also include the halting threshold optimization. As
a conservative estimate, we count each threshold optimization
step as equivalent to 10 gradient descent steps.

We measure the training cost on all seven datasets. Figure
10 displays the results. Compared to Skip RNNs, the Budget
RNN system takes roughly 2.3x less time and fewer iterations
to train. A comparison with the Phased RNN systems yields
even greater savings. While these costs could be lowered by
reducing the number of models per system, such savings lead
to lower accuracy. Only the standard RNN achieves a lower
training cost than the Budget RNN. This property follows from
the need to train only one neural network. As shown, the
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5.6 0.722 (+0.040)  0.833 (£0.038)
7.2] 0.895 (£0.038)  0.915 (£0.022)

Fig. 11: Skip and Budget RNN results on the embedded device
using the Pen Digits dataset.

extra training cost of Budget RNNs leads to better accuracy
values. We note that the Skip RNN system trains faster than
the Budget RNN system on the pavement dataset. This result
occurs due to early stopping during neural network training
and a larger training set used to fit the halting thresholds. On
this dataset, the benefits of the lower training time of Skip
RNNs are offset by the system’s lower accuracy.

G. Performance in the Hardware Environment

We supplement the results from the profiled environment
with an evaluation in the embedded setting described in §V-A.
We compare the accuracy of the Budget RNNs and Skip RNNs
over two energy budgets on the Pen Digits dataset. We select
Skip RNNs because they form the best-performing baseline on
this task. As the device fetches inputs over a Bluetooth link, we
use a Budget RNN system optimized on the Bluetooth energy
profile. Each experiment uses the inference system to classify
M = 50 sequences. We compare the resulting accuracy across
four independent trials.

As shown in Figure 11, the Budget RNN displays better
accuracy than the Skip RNNs. In the simulated environment,
the Budget RNN system achieves an accuracy of 79.1% and
90.3% on the full dataset for the two respective budgets. On
these same budgets, the Skip RNN system obtains an accuracy
of 75.6% and 89.4%. Thus, in the embedded environment,
the gap between Budget RNNs and Skip RNNs is slightly
larger than what is observed in simulation. This discrepancy
is likely a result of the limited sample size used in the
hardware evaluation. Despite this difference, the results from
the hardware device confirm the relative accuracy trends we
observe in the profiled environment.

H. Overhead Analysis

Budget RNNs are designed for embedded applications
where sensing composes a significant portion of energy con-
sumption. In these settings, the computational overhead of
Budget RNNs is not prohibitive. To understand this point
further, we use a TI MSP430 FR5994 MCU [35] and the
EnergyTrace Tool [62] to profile the energy consumption of
collecting and processing a single measurement. We compare
the energy consumption of standard and Budget RNNs in
Figure 12. To handle a single element, Budget RNNs consume
0.5% (Bluetooth) and 2.7% (temperature) more energy than
standard RNNs. This overhead is small enough to overcome
and still deliver high accuracy; under the same constraints,
Budget RNNs show better accuracy than the baseline RNNs
(§V-B). Budget RNNs use more computation to determine
a much better sampling strategy. The relatively high cost of
sensing makes this additional computation worthwhile.
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Sensor Alone +RNN +Budget RNN
Bluetooth 29.63  29.97 30.13
Temperature  5.65 5.99 6.15

Fig. 12: Energy (mlJ) required to handle a single sensor
measurement. The standard and Budget RNN costs include
the energy required for processing.

The computational overhead of Budget RNNs comes from
two areas. First, Budget RNNs use merging, halting, and
pooling layers to control execution and combine intermediate
states. Second, the Budget RNN system uses a runtime con-
troller to adapt to energy constraints. On average, profiling
shows that standard RNNs consume 0.342mlJ to process a
single element. Budget RNNs use an average of 0.503mlJ.
A majority of this overhead comes from the added neural
network layers. The runtime controller accounts for less than
3.5% of the CPU cycles associated with Budget RNN execu-
tion. As the controller performs all operations in RAM, we
expect it to consume a smaller fraction of the overall energy.

VI. RELATED WORK
A. Adapting Neural Network Inference

Many systems apply adaptation to improve neural network
inference. Systems such as BranchyNet [63] and ALERT
[64, 65] use early-exit points to control the inference cost
through variable computation. Numerous systems use variable
computation [66, 67, 68] and per-layer adaptivity [69, 70]
to execute neural networks under explicit constraints. Neural
network systems for multi-tenant inference also use adaptive
behavior to improve efficiency [71, 72, 73, 74]. Other work
adapts accuracy for energy or latency savings [75, 76, 77].

Other RNN designs adapt model execution. Adaptive Com-
putation Time [19], Clockwork RNNs [20], and Variable
Computation Time [78] alter the amount of computation at
each RNN timestep. Shallow RNNs [23], Dilated RNNs [79],
and Sliced RNNs [80] provide increased parallelism.

Budget RNNs are most similar to prior systems that use
variable computation. Budget RNNs vary inference energy
costs by changing both computation and data collection. In
contrast with the above prior work that only reduces computa-
tion, Budget RNNs lower energy costs in sensor environments
where acquiring data is expensive.

B. Adaptive Sampling in RNNs

Multiple RNNs leverage adaptive sampling. Phased LSTMs
use a periodic gate to perform state updates [25]. LSTM-Jump
uses a policy gradient to train an RNN to skip inputs [81]. Skip
RNNSs skip inputs using a binary gate [26]. These models
jointly optimize sampling behavior and RNN parameters.
Unlike these designs, Budget RNNs are multi-capacity models
that can change their target sampling level at runtime.

EMI-RNNSs classify time-series inputs where the true signal
makes up a small part of the sequence [15]. This model per-
forms early classification using thresholds on output probabili-
ties. This design resembles a Budget RNN with a stride length
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of 1. These models, however, differ in their early-stopping
criterion. Furthermore, EMI-RNNSs use sliding windows during
inference, so they still pay data acquisition costs.

C. Adaptive Sampling in Sensor Networks

Adaptive sampling is a common approach to conserve
energy in sensor networks. Multiple systems use statistical
models to control the sampling rate of individual sensors
[9, 11, 82, 83, 84, 85]. Backcasting [10], ASAP [86], and BBQ
[87] selectively activate a subset of nodes based on sensor
correlations. Similar to these systems, Budget RNNs also use
adaptive sampling to reduce energy while maximizing sensor
performance. Unlike this prior work, our system focuses on
meeting explicit energy budgets when executing RNNs.

D. Early Time Series Classification

Systems for early time series classification perform infer-
ence on subsequences. ECTS uses a nearest neighbor algo-
rithm on sequence prefixes and halts classification when the
prediction becomes reliable [88]. Mori et al. use stopping rules
to balance accuracy and earliness [89]. Similar to Budget
RNNs, these systems control inference costs by processing
subsequences. Budget RNNs, however, perform inference un-
der energy budgets and do not optimize for earliness.

RuBwurm et al. perform early classification on RNNs by
randomly sampling trainable halting probabilities [41]. Budget
RNNS s also use halting signals to control model execution. Un-
like this previous work, Budget RNNs use optimized halting
thresholds to meet energy budgets without random behavior.

VII. CONCLUSION

This paper develops a novel RNN architecture—the Budget
RNN—for in-sensor inference under energy budgets. The
Budget RNN uses a leveled design in which each level
processes an input subsequence. By controlling the number
of executed levels, the Budget RNN can alter its energy
consumption. This control is made possible through trainable
halting signals. We design a runtime controller that uses these
signals to perform inference under an energy constraint by
dynamically adjusting the model’s subsampling behavior. This
design maintains sampling flexibility while also decoupling
the sampling strategy from the RNN parameters. This loose-
coupling allows the system to generalize to unseen budgets
better than existing RNN solutions [25, 26], achieving a mean
accuracy that is 3 points higher than that of standard RNNs.
This improvement allows Budget RNNs to obtain an accuracy
that is equivalent to existing RNNs even when operating under
20% smaller budgets.
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