10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Large-Eddy Simulation of smooth and rough channel flows using a
one-dimensional stochastic wall model

Livia S. Freire®, Marcelo Chamecki®

@ University of Sao Paulo, Sdo Carlos, Sao Paulo, Brazil
b University of California, Los Angeles, California, USA

Abstract

In this study a stochastic wall model based on the “large-eddy” version of the One-
Dimensional Turbulence (ODT) model was developed for Large-Eddy Simulation (LES) of
smooth and rough channel flows, with the primary goal of providing a refined turbulent flow
field near the wall. This LES-ODT coupling was tested with the dynamic Smagorisky and the
scale-dependent Lagrangian dynamic subgrid-scale models. When compared to the same LES
with a wall model based on a local law-of-the-wall, LES-ODT improved the one-dimensional
energy spectra for all three velocity components close to the wall for both subgrid-scale
models tested. More importantly, improving the LES wall model had a more positive effect
in the near-wall spectra than improving the subgrid-scale model from the traditional dynamic
to the scale-dependent Lagrangian dynamic model. For smooth channels, LES-ODT results
compared well with DNS of Rey, = 590 and 5200; however, the variance modeled by the
ODT presents discrepancies for all three velocity components, an issue inherent to ODT.
Finally, the simulation of a channel flow with additional roughness modeled by a drag force
was compared to data of atmospheric flow through a maize field, providing evidence of the
potential for this approach to directly simulate complex near-wall phenomena. Given its
high computational cost, the main use of the LES-ODT coupling is in studies that require a
refinement of the near-wall region without the need to refine the entire LES domain.

Keywords:
Large-eddy simulation, one-dimensional turbulence, rough channel flow, smooth channel
flow, wall model

1. Introduction

The study of high-Reynolds-number wall-bounded flows, such as boundary layers and
channels, provides a cornerstone for many applied engineering and environmental problems,
including flows in ducts, rivers, and the boundary layer of the atmosphere and ocean. The
Direct Numerical Simulation (DNS) of such flows is limited by computational cost, and to
our knowledge the channel-flow simulation with the highest Reynolds number so far was
performed by Yamamoto and Tsuji [1], providing results for Re, up to 8000 (Re, = u.d/v is
the friction Reynolds number, where u, is the friction velocity, J is half-channel height and v is
kinematic viscosity). For applications in which higher Reynolds numbers are needed, Large-
Eddy Simulation (LES) became the main numerical tool. In LES of wall-bounded flows, at
least two options are available to treat the wall: (i) to adopt a vertically stretched grid so
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that the first grid points are within the viscous sublayer and a no-slip boundary condition
can be enforced at the wall (also known as wall-resolving LES or WRLES) (2, 3, 4, 5]; or
(ii) to have the wall-adjacent LES grid point above the viscous sublayer, which requires the
use a wall model to provide the missing information to the outer flow field (also known as
wall-modelled LES or WMLES) [6, 7, 8]. The issue with option (i) is that its computational
cost can also be too high, since with the increase of the bulk Reynolds number (Re) the
turbulence scales of the inner layer decreases much faster than the scales of the outer layer,
generating a computational cost that scales with Re** (due to the inner layer, compared to
Re®% for the outer layer alone) and limiting this option to moderate Reynolds numbers [9].
Option (ii), on the other hand, is not restricted by Reynolds number [10] and can be applied
to the problem of rough surfaces, parameterized in the wall model. Option (ii) can be further
categorized into two groups: (ii-a) the RANS/LES hybrid formulation, in which the near-
wall layer is resolved by RANS (Reynolds-Averaged Navier-Stokes) equations, and (ii-b) the
wall-stress modeling approach, in which special boundary conditions are deployed to account
for the effects of the unresolved near-wall flow [11, 12]. In the (ii-b) category, the most simple
model relies on the assumption that within the LES time step a constant-stress layer exists
near the wall, implying that some variation of the logarithmic profile can be applied to the
velocity field resolved by the LES (log-law wall model). This approach provides satisfying
results especially in environmental and geophysical applications, where Reynolds number is
extremely high and geometry is typically simple [9]. A more sophisticated approach in (ii-b),
known as two-layer model, is obtained by solving the thin, two-dimensional boundary-layer
equation, in which the time evolution of the wall-parallel velocity field is solved in a wall-
normal refined grid within the first LES grid, providing the shear stress at the wall at each
LES time-step (wall-normal velocity is obtained by imposing continuity). In this thin layer,
the flow behaves like a Stokes flow driven by the LES, and an eddy viscosity model represents
all the near-wall turbulent scales [13, 12]. Therefore, as in the RANS/LES approach, the
wall layer is treated in a Reynolds-averaged sense [14].

One of the main challenges of simulating wall-bounded flows with wall-modeled LES is
the correct representation of turbulence structures close to the wall. As they get smaller
due to wall blockage, a larger fraction of the turbulence needs to be correctly captured by
the SGS model. The constant-coefficient Smagorinsky SGS model, for example, provides
satisfactory results in the simulation of isotropic turbulence, but it is overdissipative close
to the wall. This effect has direct consequences in the variance of the velocity components,
and can be easily observed in the energy spectra [8]. The dynamic model, which uses the
resolved scales of the flow to adjust the Smagorinsky coefficient, is in turn underdissipative
close to the wall [8]. A more sophisticated version of these models, known as scale-dependent
Lagrangian dynamic SGS model, takes into account the scale-dependence of the Smagorinsky
coefficient, in addition to performing averages in time along lagrangian paths instead of
relying on homogeneous directions of the flow. As evaluated by Bou-Zeid et al. [8], for
Smagorinsky-type SGS models with a log-law wall model, this approach provides the best
results close to the wall, with clear k~' and k=°/3 scaling ranges (k is wavenumber) in the
streamwise velocity spectra.

Despite the overall satisfactory results provided by the combination of a log-law wall
model and the scale-dependent Lagrangian dynamic SGS model, when near-wall turbulence
is the main focus of the problem, there is still concern regarding the accuracy of the re-
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sults. Because most wall models either explicitly or implicitly treat the near-wall region in a
Reynolds-averaged sense, near-wall dynamics might not be acceptable for some applications,
such as the transport of matter very close to the wall. Motivated by this issue, Schmidt et al.
[14] proposed a stochastic wall model that simulates the instantaneous velocity field without
averaging assumptions, which can also be seen as a wall-stress model in a two-layer approach
as the thin boundary layer model [15], but in this case near-wall velocity fluctuations are
also present. In this approach, the One-Dimensional Turbulence (ODT) model proposed by
Kerstein et al. [16] is used as a column model embedded within each wall-adjacent LES grid
to refine the flow field information in the vertical direction, providing turbulence information
in scales smaller than the ones resolved by the LES. The ODT is instantaneously forced by
the LES, which in turn uses ODT information as a lower boundary condition. This two-
way coupling provided satisfactory results when compared to smooth-channel DNS results
of Re, = 395 and 590, and presented the correct trend with Re, for mean flow and velocity
variances for Re, up to 10 000. In addition to providing an improved instantaneous boundary
condition, this approach has the advantage of providing refined wall-normal turbulent flow
field that can incorporate a diverse set of phenomena, such as buoyancy, chemical reactions,
drag force and source/sink profiles, in a straightforward manner similar to what is typically
done in LES [16, 17, 18]. Therefore, this approach represents not only a potential improve-
ment in LES near-wall turbulence, but also an alternative to simulate complex phenomena
very close to the wall that are directly impacted turbulence. However, because in this case
the ODT resolved the viscous layer, the computational cost of the overall simulation scaled
with Re??3 which is similar to WRLES.

In this study, we develop a new wall model based on the “large-eddy” version of ODT de-
veloped by Freire and Chamecki [18], which is applicable to both rough and smooth channel
flows. For rough channels, this formulation corresponds to a WMLES version whose compu-
tational cost is independent of Re.. The coupling between ODT and LES follows the original
framework proposed by Schmidt et al. [14], and it is used to investigate the effects of ODT
wall model on turbulence structure using different SGS models. We use an LES code that is
typically employed in geophysical studies using the log-law wall model [19, 20, 21, 22], and
comparisons with LES + log-law results are provided throughout the study. Although this
LES-ODT approach is closer to two-layer models such as the thin boundary layer model, the
comparison with the most simple wall-stress approach provides an opportunity to indentify
the turbulence features that are already present in the LES with a simpler wall model, in
contrast to the new features provided by ODT.

Motivated by environmental applications, we also develop an approach in which surface
roughness is modeled via vertically resolved drag force within the ODT, and compare results
to data measured in a maize field. When canopy is present, as in many other environmental
problems (sediment transport, snow drift and deposition, breaking wave, etc), the relevant
phenomena are too close to the surface to be captured by typical LES grid resolution when
the entire boundary layer is simulated. In these cases, the usual approach is to restric the
domain to a fraction of the region of interest [23, 24|, reducing the scope of the study. Thus,
in this context, the LES-ODT tool can also be used as an alternative in the investigation of
near-wall dynamics in a large domain.
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2. Models

2.1. The One-Dimensional Turbulence model

The aspects of the ODT model needed to understand its overall behavior and to reproduce
the code will be presented here, but given its complexity and great amount of details, the
reader is referred to more complete descriptions already present in the literature [14, 16, 25].

The one-dimensional stochastic model used in this study was developed by Kerstein [25]
and successfully used as a stand-alone model to simulate different types of turbulent flows,
including homogeneous turbulence, shear layers, buoyancy-driven flows [25], mixing-layer
and wakes [16], jet diffusion flames [17], the stable atmospheric boundary layer [26], particle
dispersion in homogeneous flows [27], passive scalar transport in channel flows [28] and flow
through plant canopies [18]. The model corresponds to one-dimensional diffusion equations
for all variables of interest (which in this study are the three velocity components, but
temperature, scalar and particle concentration can be included in the same way), i.e.,

8ui o 82ui

ot~ oz
where u; is the velocity vector (index notation is used when necessary), t is time, z is
the vertical direction, F; is the constant mean pressure gradient force that drives the flow
and stochastic eddies correspond to the effect of three-dimensional turbulence in this one-
dimensional field. The simulation is performed by evolving the diffusion equation in time,
and at each time step a stochastic eddy can be selected from a probability distribution of
eddy size and location in the domain. When a stochastic eddy is selected, all variables at
the position z within the eddy are replaced by the value of the same variable at the position
M (z), a mapping function that is a model for advection, mixing the variables and creating
small-scale fluctuations in such a way that mimics the energy cascade of turbulent flows. It
is conservative (i.e., it preserves the total amount of the quantity being transported) and it
does not introduce discontinuities. Mathematically, it is defined as

+ F; + stochastic eddies (1)

3(z — ), if 2, <2z < (2 +1/3),
20 -3(z — =), if (4 +1/3) <2< (% +21/3),
3(z—z) — 21, if (zp+20/3) < z<(z+1),

Z— 2p, otherwise,

M(z) =2z + (2)

where [ and 2z, are the variables representing the size and bottom position of the eddy,
respectively. As described by Kerstein and Wunsch [26], the mapping function “takes a line
segment, shrinks it to a third of its original length, and then places three copies on the
original domain; the middle copy is reversed, which maintains continuity of advected fields
and introduces the rotational folding effect of turbulent eddy motion”.

In addition to this mixing effect, when a stochastic eddy is selected, a second term creates
redistribution of energy among velocity components, mimicking a pressure-induced tendency
towards isotropy on the flow. The final model for the occurrence of stochastic eddies is

wi(z) = u;(M(2)) + ¢;lz — M(2)], (3)
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where ¢; is the amplitude of the energy redistribution. For details in the assumptions used
for its calculation, see Kerstein et al. [16] and Freire and Chamecki [18]. The final equation
for ¢; is

27 1
STy [_UK,z‘ + \/5 (ufey + ufey + i) | 5 (4)

where the quantity inside the square root represents the total amount of energy inside the
eddy available for redistribution, calculated using

1 2+l
Zb
The final piece of information needed for the ODT is the probability distribution of eddy
size and location, A(l, zp; t), which also evolves in time with the flow. It is calculated from the
instantaneous amount of kinetic and potential energy in the flow, adding another physical
aspect to the stochastic model. The details of its derivation is also described in Kerstein
et al. [16] and Freire and Chamecki [18], and its final formulation is given by

2

Mz, ;1) = %\/é (ud ) +uk, +uks) — Z?—; (6)
A proportionality constant C'y is used to regulate the number of eddies for a given amount
of energy, effectively setting the turbulence intensity. Another constant, Z,, adjusts the
damping effect of viscosity, because any eddy with a time scale longer than the viscous time
scale should be prohibited. The values of C'y and Z, are the only tunable parameters, which
can be different for different types of flows, but they are not expected to vary with Re,
(14, 18].

Because ODT is based on the diffusion equation plus eddies with a size proportional to
the grid size, it allows for a large-eddy approach similar to the LES, which was developed
and tested by Kerstein and Wunsch [26] and Freire and Chamecki [18]. In this “large-eddy
mode”, ODT is “wall-modeled” and does not resolve the small scales of the flow, but a
resolved velocity field is simulated instead. This is done by applying a filter with scale Agpr
to Eq. (1), where Agpr is the fixed ODT grid size, separating resolved from subgrid scales
and becoming

(9171 87' I3

-4 F - :
9% s + F; + stochastic eddies, (7)

where ; is the resolved velocity field and 7; is the SGS vertical stress vector. The latter is
modeled following Freire and Chamecki [18], which used a one-dimensional analogy to the
eddy-viscosity model

ou;
Ti = TVsas 5 (8)

where the SGS eddy viscosity vsgg is given by
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which uses the fact that the size of the smallest stochastic eddy is 6Aopt. The Smagorinsky
coefficient C; is calculated with a wall-damping function as

vsas = (Cs 6Aopr)® [

1 1 1
= + , 10
(CS 6AODT)n (Cs,o 6AODT)” [R(Z + ZO)]” ( )
in which the parameters C; o = 0.1 and n = 2 were used [8, 21]. In the lowest ODT grid point,
vertical derivatives of horizontal velocity components are obtained from the law-of-the-wall

for a rough flow, namely

92 wboor (@ + @) " T n(Aopr/70)
for i = 1,2 and Juz/0z = usz/Aopr. We note that, although the Smagorinsky model is
not ideal for near-wall turbulence due to its overdissipative characteristic [8], the use of a
dynamic estimation of C did not provide any improvement. Since the results obtained here
are shown to be mesh-convergent, we chose to maintain the constant Smagorinsky approach
for simplicity.

As discussed by Kerstein and Wunsch [26] and Freire and Chamecki [18], this “large-eddy
mode” has the advantage of reducing computational cost, in addition to better representing
rough surfaces that require a bulk parameterization (as a function of a “equivalent roughness
height” parameter). Furthermore, in this approach the molecular viscosity term is removed
as it is negligible compared to the other terms of the equation, and the viscous damping
effect in the probability of stochastic eddies equation becomes irrelevant (the constant 7 is
effectively set to zero). Therefore, this formulation does not have any viscous effect and it
independent of Re,, representing very-high Reynolds number cases.

Finally, the roughness representation through a drag force is implemented by following
the usual approach in LES, in which a drag force proportional to the square of the local
velocity is used. Because we will compare this simulation with measurements of a flow
through a maize field, the drag force here is defined as [24]

(@i +u3)"? (11)

di = —Cda(z)f)ijﬂj(ﬂkﬂk)l/g, (12)

where Cy is the drag coefficient, a(2) is the leaf area density and P;; is the projection matrix.
This drag force parameterization is added to the RHS of Eq. (7). In addition, the energy
redistribution term (Eq. (4)) needs to include the energy lost to drag, and it is rewritten as
[18]

27 1 64 zp+1
. [_um N \/5 (u%ﬂ g+ g — < (JdP/ a(z)e(z)dz)] : (13)

Zb

where P = P;;/3 and e = (u; +us+13)/2 is the resolved kinetic energy. Different from Freire
and Chamecki [18], the energy lost to drag is applied in both eddy selection (by adding the
drag term into Eq. (6)) and energy redistribution. Note also that other forms of drag force
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could be used to model other types of roughness.

The ODT model is solved explicitly, using forward Euler method for the time discretiza-
tion. The upper limit in Atopt comes from the stochastic eddies implementation, as follows.
In principle, at each time step the eddy rate distribution \(zy, ;) should be updated, and
eddies should be selected from it. In practice, this would result in a high computational
cost because of all possibilities of eddy position z, and eddy size [. For that reason, what
is actually implemented is a statistical approximation (called “rejection method”), in which
at each time step a candidate eddy (that may or may not be implemented) is selected from
two random distributions f(I) and g(2,) (constant in time), having A(z;, 1*;t) estimated only
for the selected pair (z;,1*). These candidate eddies are then accepted it at a rate P, such
that Pz, I*,t, At) = Az, 1% t) Atopr/(f(1*)g(z;)), by sampling random numbers between
zero and one. In the limit of Atopr — 0, this procedure is equivalent to sampling at rate
A(zp, [;t). This approximation generates similar results as long as P < 1 (the majority of the
candidates are rejected), which is achieved by reducing Atopr. The choices of f(I) and g(z)
do not affect the final statistics, and g(z;) following a uniform distribution and f(I) ~ 72
were chosen, in addition to a maximum P of 0.05 [25].

2.2. Large-FEddy Simulation code

The LES code used in this study, also known as LESGO code [29], solves the filtered
Navier-Stokes equation in a vertically staggered grid with fixed size. The numerical dis-
cretization combines a fully dealised pseudo-spectral method in the horizontal directions
and a second-order centered finite-difference in the vertical direction. The fully explicit
second-order Adams-Bashforth scheme is used for time integration. A constant mean pres-
sure gradient force is imposed in the streamwise direction and horizontal boundary conditions
are periodic, while a stress-free boundary condition is applied at the top of the domain. For
the bottom boundary condition, the vertical velocity is defined at z = 0 and is set to zero.
The horizontal velocities are defined at z = Az/2, which should be located in the logarithmic
sublayer of the flow. Their bottom boundary condition is obtained from the local law-of-
the-wall formulation (Neumann boundary condition) using a horizontal spatial filtering in
the scale 2A to compensate for the log-law mismatch of the mean velocity gradient [29].
Two SGS models are tested here: (i) the standard scale invariant dynamic model with pla-
nar averaging (PASI) [30] and (ii) the Lagrangian-averaged scale-dependent dynamic model
(LASD) [8]. More details of the code can be found in Bou-Zeid et al. [8].

In order to couple the LES code with ODT, it is necessary to adjust the representation
of the advection term of the Navier-Stokes equation, which was originally written in the
rotational form, i.e.,

LES A
0% . [ 9% _ LES | T 14
ot U Or; Oz, p Ox; tT T (14)

oU;,  ~ (af]y a@) 1ap
where (71 is the LES resolved velocity field, p is a modified pressure term and TJ}ES is the SGS
stress tensor [8]. Here we write the second term in the LHS of Eq. (14) in the divergence
form, i.e. O(U;U;)/0x;, which does not impact the statistics of the simulation (including
mean, variances and spectra, not shown), as already observed for a fully dealised spectral
code [31].
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Figure 1: Ilustration of the LES-ODT coupling. The ODT model is solved in the ODT region, which
corresponds to the LES grids adjacent to the wall (domain size Az). The ODT overlap region corresponds
to the linear interpolation of the LES velocity field up to z = 3.5Az, where stochastic eddies are allowed to
extend. The coupling has four elements: (i) the ODT is forced by LES through a top boundary condition (at
z = Az + Aopr, from the linear interpolation between ODT and LES velocity fields), (ii) the LES velocity
field in the wall-adjacent grid points is replaced by the ODT values, (iii) the total momentum flux from
ODT within the lowest LES grids is used as a LES bottom boundary condition (additional ODT turbulent
momentum flux within the second and third LES grids also goes into LES) and (iv) there is a horizontal
advection among ODT columns driven by the LES velocity field. The vertically staggered grid configuration
for the velocity components, pressure and shear stress is indicated by the black dots and grey crossings, where
directions 1 (z), 2 (y) and 3 (2) correspond to streamwise, spanwise and vertical direction, respectivelly.

2.3. LES-ODT coupling

When used as a wall model, ODT corresponds to vertical lines embedded within each
wall-adjacent LES grid (Fig.1). Overall, the two-way coupling between the models can be
listed as four steps: (i) ODT is forced by LES through a top boundary condition, (ii) the
LES velocity field in the lowest grid points is replaced by the ODT values, (iii) the shear
stress in the ODT is used as a LES bottom boundary condition and (iv) there is advection
among ODT columns driven by the LES velocity field. The details of these four steps are
described next.

The LES domain corresponds to a box with size X x Y x Z (streamwise, spanwise and
vertical directions, respectively) with N, x N, x N, grid points and grid sizes Az x Ay x Az.
Each ODT domain corresponds to the height of the lowest grid, i.e., Zopt = Az, and
Aopt = Az/Nopr, where Nopr is the number of grid points in each ODT model. This first
(from bottom to top) LES grid that corresponds to the ODT domain will be called ODT
region. There is no specific restriction on the size of Az related to the LES-ODT coupling.
There is, however, a minimum number of ODT grid points Nopr in order to garantee an
appropriate amount of “resolved turbulence” in the ODT (through the stochastic eddies),
as it will be explored in the Results section.

A second ODT domain, called ODT overlap region, corresponds to Az < z < 3.5Az
(from the top of the first LES grid to the middle of the fourth LES grid, from bottom to
top, Fig. 1), with the same grid size Aopr. In this region, ODT is not advanced in time,
but it has a velocity field calculated as a linear interpolation between the ODT and the LES
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values within the region, which is used to allow stochastic eddies to extend beyond Az. This
means that stochastic eddies with bottom inside the ODT region (z, < Az) but with size
that goes beyond the ODT region are allowed to exist. A consistency test for the size of the
overlap region was performed by Schmidt et al. [14] and it is reproduced here (see Appendix
A), showing that the size of 3.5Az provides the appropriate transition between the size of
the largest stochastic eddies and the small resolved scales in the LES, as evidentiated by its
effect in the mean velocity gradient. N

In the LES-ODT coupling, three velocity fields are defined: (i) U; is the LES resolved
velocity field, (ii) @; is the ODT resolved velocity field, and (iii) v; is the ODT velocity field
averaged over the LES time step, used to send the information from ODT to LES in the
correct scale. For the two horizontal components, v; is calculated directly as the average over
the LES time step At, as they have an advecting quality in them. The vertical component, on
the other hand, is conceptualized as a “representation of the wall-normal velocity component
kinetic energy per unit mass (actually the square root of that energy)” [14], since the vertical
transport is performed by the stochastic eddies. For that reason, v3 is calculated as

T(z) = — /0 @% + %—%) dz (15)

in order to preserve continuity in the wall-adjacent LES grids. The velocity v; has two uses

in the simulation. In the ODT code, it is used to couple all the ODT columns via horizontal

advection, which is accomplished by adding an advection term to the RHS of Eq. (7), i.e.,
ou; O O(;;)

En = 92 + F; 4 stochastic eddies + d; — oz, ,

which is the final model for ODT in the LES-ODT coupling. Note that the horizontal
advection happens in LES scale due to the coarseness of the X and Y directions, therefore
the appropriate advective time scale is the LES rather than the ODT time scale, making the
velocity field v; the correct one for this task. Although this advection connects each ODT
in a “LES-scale” sense, locally the core of the turbulent transport remains the stochastic
eddies (and therefore one-dimensional), providing a model for local vertical advection and
small-scale turbulence without the need to refine the grid in the horizontal directions.

The second use of v; corresponds to the velocity field sent to the LES lowest grid points,
ie.,

(16)

. Az
Ticra(z = Az/2) = Aiz /0 Bio1a(2)dz (17)
Ui—s(z = Az) =Ti_s(z = A2), (18)

which enforces continuity in the vertically staggered grid configuration. This velocity field
corresponds to one of two ODT results that go to the LES. In this step, there is no double-
counting effect as the LES velocity is directly replaced by the ODT velocity.

The second coupling element provided to the LES is the vertical momentum flux within
the wall-adjacent LES grids, which comes entirely from the ODT (also no double counting
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effect). It includes the momentum flux from the stochastic eddies, viscous diffusion or subgrid
scale diffusion and vertical advection. These fluxes are accumulated (summed) during the
ODT time steps within one LES time step, and they enter the LES code through the SGS
stress tensor 7;3(z < Az). Additionally, the ODT fluxes caused by stochastic eddies that
reach the ODT overlap region are also summed to the SGS stress tensor within the second
and third grids (7;3(Az < z < 3.5Az2)). In this step, some mismatch can be caused by an
excess or lack of additional flux, which is fixed by adjusting the size of the overlap region
(see Appendix A) and the value of the ODT parameter C) (see Results section) in order to
obtain the correct mean velocity gradient in the logarithmic region.

The linear interpolation performed in the OD T-overlap region is used to define a Dirichlet
boundary condition immediately above the top of the ODT domain (at z = Az + Aopr),
passing the velocity field information from LES to ODT and closing the two-way coupling
between the models.

After the evolution of the velocity field in time, a pressure Poisson equation is solved to
impose continuity in the LES velocity field. In order to rematch the pressure-adjusted U,
with v;, a pressure correction is applied to the ODT velocities u; and v;, which is calculated
as

~ ~ Vi=1,2,0ld Ui:1,2
Vi=12new = Vi=1,2,0ld — 2Z—Az + 2z . (19)

Az

After implementing the pressure correction in the horizontal components of v;, Eq. (15) is
used to update v3. Finally, the same procedure is performed to adjust the two horizontal
components of w;. As discussed by Schmidt et al. [14], this correction is not needed for
us, as it behaves only as a kinetic-energy reservoir for the energy transfer among velocity
components, and no pressure effects need to be included in its evolution.

The description above sets the way in which ODT provides the lower boundary conditions
to the LES, and how the LES creates a top boundary condition to the ODT. The ODT model
is solved explicitly using forward Euler method for the time discretization, a second-order
finite difference for the vertical derivatives and a fully-dealised pseudo-spectral method for
the horizontal advection term, in order to be consistent with the LES code. The value
of Atopr is set as At/15 initially (as it solves smaller scales compared to LES), and it is
reduced by a factor of two if the mean value of P (for all ODT’s) during one LES time step
is greater than 0.05. The ODT lower boundary condition is w; = 0 for the smooth-channel
cases, and a wall model based on the law-of-the-wall for the rough-channel cases (Eq. 11), in
which zj is the roughness length scale. The sequence of steps of the LES-ODT simulation
are summarized in Alg. 1.

The final detail that is important to mention is the parallelization of the LES-ODT
coupling. Because the LES code is spectral in both horizontal directions, it was originally
parallelized in the vertical direction, which is solved by the finite-difference method. The
ODT model, on the other hand, cannot be parallelized in the vertical, as it needs its entire
vertical information in each time step in order to select the appropriate stochastic eddy.
Therefore, the parallelization of the ODT calculation is done in the streamwise direction,
where each processor evolves a set of ODT domains. However, at each ODT time step,
the horizontal advection term needs to be calculated using the same spectral method as in

10



Algorithm 1: LES-ODT algorithm in one LES time step

Input: u;(z,y, zopr, t), vi(z,y, zopT, t), Ui(x, 1y, 2, 1)

Output: w;(z,y, zopr, t + At), v;(z,y, zopr, t + At), (72(20, Y, z,t + At)

begin

u; in overlap region (and top B.C.) +— linear interpolation of 171-;

t* =1t

repeat

one stochastic eddy candidate is selected for each ODT;

the accepted stochastic eddies are implemented through the triplet-map;
w;(t*) are advanced to w;(t* + Atopr) using the vertical diffusion equation
(vs(x,y, zopT, t) are used for advection);

t* =t* + Atopr;

until t* =t 4+ At

if horizontal and At average of P > 0.05 then
| Atopr = Atopr/2

end

U12(x,y, zopT, t + At) = average of w; between ¢ and t + At;

v3(z,y, zopr, t + At) «— incompressibility of vy s(x, y, z,t + At) (through Eq. 15);
TEES (2,9, Az, t) = advective + stochastic eddies + SGS fluxes from ODT region;
TEES (2,9, 2,t) = 7555 (2, y, 2,t) + stochastic eddies fluxes from ODT overlap
TegLON;

ﬁi(x, Yy, z,t) are advanced to (72(:(:, Yy, z,t + At) using the filtered Navier-Stokes
equation;

(71,2(27, y, Az/2,t 4+ At) are replaced by the integral of vy 5(, y, zopT, t + At) over
Az (Eq.17);

(73(9(:, y, Az, t + At) are replaced by v3(z,y, Az, t + At) ;

ﬁi(x, y, z,t + At) are updated using the LES pressure Poisson equation;

u;(x,y, zopt, t + At) and v;(x,y, zopT, t + At) are updated using pressure

correction;

end

11
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the LES through Fast Fourier Transform (FFT) in order to keep it in accordance with the
numerics of the LES. This spectral calculation requires the ODT velocity information to be
exchanged between all processors at each ODT time step, when the horizontal advection
terms are calculated and redistributed back between the processors. The FFT calculation is
shared among the processors in the vertical direction, but the need to exchange all informa-
tion adds a significant computational cost to the simulation. This issue is particular to the
numerics of this LES code, and was not present in the original work of Schmidt et al. [14],
which was finite-difference in all three directions and ran in serial. An alternative to reduce
part of this computational cost is to approximate the calculation of the advection term (last
term of Eq. (16)) by updating the ODT velocity u; in the LES time scale instead of the ODT
time scale, i.e., to calculate the advection term only once at each ODT run. This approach
was compared to the complete formulation for all flows tested here, and the error obtained
was negligible for all statistics. Therefore this approximation is incorporated as part of the
LES-ODT formulation in this study.

3. Summary of simulations

In this study, we start by evaluating the same rough channel flow simulations of Bou-Zeid
et al. [8], in order to investigate the behavior of ODT wall model with two different SGS
models: the planar-averaged scale-invariant dynamic model (PASI) and the Lagrangian-
averaged scale-dependent dynamic model (LASD). The behavior of these two SGS models
is re-evaluated using the local law-of-the-wall formulation (log-law) as a wall model, as
performed by Bou-Zeid et al. [8]. In here we compare solutions obtained with the standard
log-law wall model with solutions obtained by replacing the log-law with the ODT wall
model in “large-eddy mode”. This analysis allows us to choose the SGS model and the
ODT parameter C'\ for the remaining simulations. Simulation parameters are detailed in
Tab. 1, which are the same for all four simulations: PASI + log-law, PAST + ODT, LASD +
log-law and LASD + ODT. The best value of C'y = 15 was obtained by trial-and-error. Two
additional simulations of LASD + ODT were performed with C'y = 14 and 16 to demonstrate
the sensitivity of the model. Because these rough channel cases are “wall modeled” and
“large-eddy mode” for both LES and ODT, they do not have a Reynolds number defined,
and should be interpreted as “very-high Reynolds number” cases.

The second set of simulations corresponds to smooth channels with Rey = 590 and 5200.
These simulations were performed with ODT in “DNS mode”, in addition to the LASD SGS
model and C) = 15, defined as the best cases from the rough-channel analysis, and they are
compared to DNS results of Lee and Moser [32] and Moser et al. [33]. Similar cases were also
performed in the original LES-ODT model by Schmidt et al. [14], therefore the differences
due to the LES code can be evaluated in this case. Table 2 lists the parameters used in
these simulations. Because the smooth case has the additional adjustable parameter 7, for
viscous cutoff, simulations with Z, = 100, 120 and 140 for Re, = 590 were performed to
demonstrate the sensitivity of the model to this parameter.

The last case evaluated here corresponds to a rough channel with additional roughness
modeled by a drag force. This simulation is compared to data measured within and above
a maize field by Gleicher et al. [34] during a 7-hour period of approximately neutral atmo-
spheric conditions (without significant static stability effects). In this case, the maize field is
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Table 1: Simulation parameters for LES with ODT in the rough channel case (6 = 1 and u, = 1) and
maize field case (§ = 342m, u, = 1 and h = 2.1m). For the rough channel case, the same simulations
were performed for LES with log-law wall model and LASD SGS model, for the following grid points:
N, x N, x N, = 2563,1283, 643, in addition to a simulation of LES with PASI SGS model and 643 grid
points. For the maize field case, a LES with log-law wall model was performed with the same parameters

below and zp = 0.2m.

rough channel maize field
domain size (X XY x Z) 210 X 20 X 0 2mh X 2mh X
number of grid points (N, x N, x N, Nopr) 64 x 64 x 64,8 64 x 64 x 64,32

64 x 64 x 64, 16
64 x 64 x 64, 32
64 x 64 x 64, 64
64 x 64 x 64, 96
128 x 128 x 128, 32

mean pressure gradient force (F; = ((1/p)(dp/dx),0,0)) (u?/6,0,0)
roughness height (z) 1 x 10746
simulation time step (At) 0.0002 § /.
number of simulation time steps (V) 100000
total simulation time (eddy turnover times = 9 /u,) 20
eddy rate distribution parameters (C), Z,) 14,0

15%,0

16,0

(u?/6,0,0)

3x107°§

0.0002 6 /u,
100 000

20

15%,0

*best C' value.

Table 2: Simulation parameters for LES with ODT in the smooth channel cases, in which § = 1 and u, = 1.

Similar simulation of LES with log-law wall model were performed, with zo = v/7.77u,.

Re, =590 Re,. = 5200
domain size (X x Y x Z) 219 X 2m6 X 270 X 21 X 0
number of grid points (N, x N, x N, Nopr) 32 x 32 x 16,32 128 x 128 x 128,32
mean pressure gradient force (F; = ((1/p)(dp/dx),0,0)) (u?/4,0,0) (u2/4,0,0)
simulation time step (At) 0.00025 6/ u. 0.000125 6 /u,
number of simulation time steps (V) 100000 200000
total simulation time (eddy turnover times = ¢ /u.) 25 25
eddy rate distribution parameters (C, Z)) 15,100 15,120*
15, 120"
15, 140

*best Zy value.

simulated by the ODT in “large-eddy mode”, and the first LES grid point is located at 3.8h
(h = 2.1m is the canopy height). This simulation is also compared to LES results obtained
by Pan et al. [24], in which the canopy was directly modeled by the LES with the same
04 drag-force formulation (canopy-resolving LES). See simulation parameters in Tab. 1.

In all cases tested here, the LES code is initialized with a logarithmic profile in the
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streamwise direction and zero velocity in speanwise and vertical directions, plus a uniformily
distributed random fluctuation between zero and one in the three velocity components. All
results presented in next section correspond to the average of the last six eddy turnover times
of the simulations. Note that in the LES-ODT results, we chose to omit the first LES grid
from the figures because it comes directly from the ODT, which represents the true velocity
with small scales fluctuations (LES and ODT results are not equal because the LES value is
an integral of the entire ODT domain, not the value of the ODT at the LES grid point).

4. Results

In this section, we use the rough channel case to evaluate LES results using log-law and
ODT wall models, for different SGS models. After establishing the superiority of the LES-
ODT with the LASD SGS model, we show that this approach is also appropriate for smooth
channel simulations without the need of specific adjustments, except for the ODT viscous
parameter. Finally we use the simulations of the maize field to discuss the possibility of
using the ODT to incorporate complex near-surface physics that cannot be directly resolved
in the LES in a large domain setup. A discussion regarding the computational cost and
potential trade-off when using LES-ODT is provided at the end of the section.

4.1. Rough channel

The first consequence of the use of ODT directly observed at the beginning of the sim-
ulation is the early onset of turbulence. With the log-law wall model, turbulence starts
after several thousands time steps, when local instabilities form close to the wall and spread
through the horizontal domain, and then gradually grow in the vertical direction. With
ODT, small-scale turbulence-like fluctuations start at the very beginning of the simulation,
anticipating the onset of turbulence in the simulation to the initial time steps. This is due
to the stochastic nature of the ODT, i.e., it is a consequence of the random fluctuations
also present in the lower boundary condition in addition to the initial condition. Figure 2
shows a snapshot of rough-channel simulations with log-law and ODT wall models, for the
LASD case. In the LES-ODT coupling, there is an instantaneous match between the two
velocity fields, creating an additional region closer to the wall where turbulent structures
can be resolved.

Figure 3 presents the vertical profiles of mean velocity, variances and total stress for the
simulation with PASI and LASD SGS models, with log-law and ODT wall models. For the
PASI case, using ODT improves the mean streamwise profile, correcting the underestimation
in the logarithmic region (Fig.3a). For all other statistics evaluated, results with log-law
and ODT are similar, except for the variance of spanwise and vertical velocities close to the
wall, which reduces (significantly in the spanwise case) when ODT is used (Fig.3c,d). The
difference in the first two grid points for the SGS and resolved stresses (Fig. 3e,f) is due to
the implementation of the ODT momentum flux, which enters the LES as a SGS stress, but
corresponds to the total stress at these locations. Because of that, the resolved stress at
z = Az should be assumed zero by construction, although numerically it is different from
zero (see discussion in Appendix B).

Figure 4 shows the sensitivity of the results to the C) parameter of the ODT eddy
probability distribution, for the LASD case. The choice of C, = 15 was obtained by trial-and-
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Figure 2: Snapshots of the streamwise velocity in the streamwise and vertical directions of rough channel
case (LASD, Cy = 15): LES + log-law with (a) 256> and (b) 128% grid points, and (c¢) LES-ODT with
N = 1283 and Nopr = 32.
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Figure 3: Results of LES-ODT (LES as open circles, ODT as filled circles) for the rough channel case and
N = 643, Nopt = 32: (a, b) mean streamwise velocity, (c, d) variances of streamwise (black), spanwise (blue)
and vertical (red) velocities, and (e, f) SGS (blue), resolved (red) and total (black) stress. Left column is
PASI and right column is LASD SGS models. Gray lines correspond to LES + log-law and the same SGS
models.
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open circles and ODT as filled circles): (a) mean streamwise velocity, (b) variances of streamwise (right),
spanwise (middle) and vertical (left) velocities. Simulations with Cy = 14 (red), 15 (black) and 16 (blue).

error, and its variation from 14 to 16 creates a small variation in the results. A reduction in C
causes a small overestimation of the velocity compared to the log-law, and a small increase in
the horizontal variances, due to a reduction on the appropriate amount of stochastic eddies.
The opposite trend is caused by an increase in C).

The most clear evidence of the impact of ODT in the LES is in the energy spectra.
Figures 5 and 6 compare the one-dimensional spectra of all three velocity components be-
tween log-law and ODT wall models, for PAST and LASD SGS models respectively. For the
streamwise velocity, as discussed by Bou-Zeid et al. [8], PASI + log-law causes underdissi-
pation close to the wall, resulting in a spectra with a slope flatter than the expected k! in
the production range (Fig. 5a), which is significantly improved in the LASD + log-law case
(Fig.6a). For the spanwise and vertical velocities, however, both models yield spectra with
underdissipation in the production range (Figs.5c,e and 6¢,e). The use of the ODT im-
proves the production range behavior in all velocity components for both SGS models. The
significant improvement in the spanwise velocity spectra (Figs. 5d and 6d) indicates that the
reduction in spanwise velocity variance close to the wall (Fig. 3c,d) is likely an improvement
caused by the ODT. The decrease in vertical velocity variance is also clear in the spectra
closer to the wall. If we take the standard combination PASI + log-law as the reference
case, improving the wall model alone (i.e., PASI + ODT) yields better near-wall spectra
than improving the SGS model alone (i.e, LASD + log-law). As expected, the combination
LASD + ODT produces the best results.

Although the LES + log-law results for spanwise variance has been published before (for
example by Bou-Zeid et al. [8] and Stevens et al. [35] for this same code), its overestimation
has not yet been discussed, to the best of our knowledge. One possible cause for this
overestimation is the type of boundary condition used, as indicated by the study of Bae
et al. [36]. In their wall-modeled channel flow simulation, the Neumann boundary condition
provided the highest value for streamwise and spanwise variances in the first above-wall grid,
compared to no-slip and slip boundary conditions. Although not exactly equal to the one
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Figure 5: One-dimensional spectra of (a,b) streamwise, (c,d) spanwise and (e,f) vertical velocity, for z/Z
from 0.008 to 0.5. Left column: PASI 4 log-law, right column: PASI + ODT. Results of PASI + log-law
are equivalent to Bou-Zeid et al. [8]. Dashed lines correspond to the k~! (blue) and k=°/ (red) slope.
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used in their study, the log-law is a type of Neumann boundary condition, and in our case
a similar profile with a peak in the first grid was obtained. Sagaut [15, sec.10.2.3] also
mentions the issue of unphysical overshoots in the turbulence intensities near the wall for
wall-modeled LES, which are caused by large spurious streaky structures that can be caused
by a combination of mesh size and numerical methods. In the wall-resolved case of Bae
et al. [36] using the no-slip boundary condition, a grid refinement allowed the formation,
break-up and meandering of smaller streaks, improving the turbulence intensity statistics.
A similar improvement is likely being provided by the wall-refined LES-ODT simulation
compared to the LES + log-law, which has larger streaky structures (Fig. 7). Furthermore,
in addition to mesh size and boundary condition, the wall blockage effect can cause the
splatting of turbulent eddies coming from the outer part of the boundary layer, which can also
be impacting the streaky structures [15, 36]. Bae et al. [36] observed an improvement when
using the slip boundary condition with transpiration. Sagaut [15] mentions the possibility of
use of random noise to scramble the spurious streamwise vortices, which is likely also being
achieved by the stochastic nature of the ODT.
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Figure 7: Wall-parallel snapshots of streamwise velocity at the second LES grid point in the rough channel
simulations with 1283 grid points.

Figure 8 shows flow statistics for different combinations of grid points in the ODT (from
8 to 96, with LES grid fixed at 64%) and in the LES (64% and 1283, with ODT grid fixed
at 32). The final values of At/Atopr were 15, 15, 30, 60, 120 for Nopt = 8, 16,32, 64,96
respectivelly, indicating that the smaller the Azopr, the smaller the scale of the smallest
stochastic eddy and therefore a smaller Atopr is required, as expected. A convergence in
the mean velocity profile for ODT grid points equal to 32 or more (Fig. 8a,c) indicates the
success of the ODT SGS model (the small variability observed in the streamwise variance is
intrinsic to the LES model). Howerver, for Nopr = 16 and 8, the stochastic eddies in ODT
are likely not well resolved, resulting in an overestimation of the mean streamwise velocity
in the LES domain (Fig.8a) Therefore, a minimum of Nopt = 32 is recommended and will
be used throughout this study. The mean streamwise velocity is unaffected by the change in
LES resolultion (Fig.8b), and the difference observed in velocity variances are also intrinsic
to the LES (Fig.8d, LES + log-law for N = 1283 is also shown for comparison), a feature
that is not impacted by the ODT.
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(d) variances of streamwise (right), spanwise (middle) and vertical (left) velocities. Left panels: LES with
643 grid points and ODT with 8 (yellow), 16 (cyan), 32 (blue), 64 (dark-blue) and 96 (black) grid points.
Right panels: ODT with 32 grid points and LES with 643 (black) and 1283 (red) grid points. In (b) and (d)
grey lines correspond to LES + log-law with 1283 grid points.
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4.2. Smooth channel

Figure 9 shows the statistics of the smooth channel simulations using the LASD SGS
model. In these simulations, the first LES grid is in the transition between the viscous
and the logarithmic layer, which is not captured by the LES+log-law by construction, as it
assumes that the first LES grid point is in the logarithmic region. With the ODT wall model,
on the other hand, there is no restriction on the distance of the LES grid points from the
wall. They are similar to DNS results for both Re, = 590 and 5200, using the same rough-
channel parameter C\ = 15, and selecting the second ODT parameter Z, = 120 (the viscous
cutoff parameter) by trial-and-error. Variances in the ODT part of the simulation begin
correctly in the viscous sublayer but evolve to a wrong shape and values around the peak,
which was also observed in by Schmidt et al. [14]. Overall, variances in ODT stand-alone
model have wrong values but the correct order of magnitude and overall behavior [18], which
is also observed in LES-ODT. Some improvement in ODT variances when forced by LES,
compared to ODT stand-alone, is discussed by Schmidt et al. [14]. Notice that the variances
in LES are not impacted by ODT (they are similar to the LES + log-law results), except
close to the wall especially for the spanwise variance, as observed in the rough-channel case.
The ODT viscous stress is similar to DNS values, and stochastic eddies emulate the Reynolds
stress in the viscous and buffer sublayers. The sum of them gives the correct total stress,
which matches the linear profile in both ODT and LES parts, indicating a well developed,
steady-state simulation.

The sensitivity of the simulation to the Z, parameter is small. By changing 7, from
100 to 140 there is a small change in mean streamwise velocity and variances (Fig. 10), and
an almost imperceptible increase in the total stress at z = Az, indicating the beginning
of a deviation from the linear profile due to a Z, value that is too large (not shown). In
comparison to the original LES-ODT coupling by Schmidt et al. [14], the smooth-channel
results presented here are qualitatively similar with small differences likely due to differences
in the LES codes.

4.3. Rough channel with drag force

In this section we analyse the LES-ODT simulation of a rough channel with an additional
roughness modeled by a drag force close to the surface, comparing it with field data measured
in a maize field during approximately neutral stability conditions [34]. This is an interesting
case because there is both LES and ODT stand alone canopy-resolving simulations of the
same case in the literature, by Pan et al. [24] and Freire and Chamecki [18], respectively. The
same drag force model was used in all of these simulations, as proportional to the measured
leaf area density and the square of the local velocity, with a constant drag coefficient. We
note that Pan et al. [24] presents results with both constant and variable drag coefficients, the
latter being closer to the field data, as it models the canopy ability to bend and reconfigurate.
However, because the variable drag coefficient approach did not work in the ODT (it worsen
the results [18]), we chose to reproduce here only the constant drag coefficient results from
the LES canopy-resolving study, in order to obtain a direct comparison with the LES-ODT
approach.

Statistics of the flow within and right above the canopy are similar to the ones obtained by
ODT stand alone [18]. The mean velocity profile displays the correct shape when compared
to field observations, despite overestimation (underestimation) within (above) the canopy
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circles): (a) mean streamwise velocity, (b) variances of streamwise (top), spanwise (middle) and vertical
(bottom) velocities. Simulations with Zy = 120 (red), 98 (black) and 80 (blue). Grey lines correspond to
DNS results by Moser et al. [33].

(Fig. 11a). Also similarly to ODT stand alone, velocity variances are underestimated above
the canopy in the horizontal directions and underestimated both within and above the canopy
in the vertical direction (Fig.11b-d). This correspondence of flow statistics provides an
opportunity to use the ODT stand alone model as a first test to estimate the potential of the
LES-ODT coupling in representing near-wall features that are of interest for a given study.

An interesting result to notice is the skewness of streamwise (Sk,) and vertical (Sk,)
velocities within the canopy, as they are a signature of the mixing-layer type vortices present
in canopy flows [37]. By itself, ODT is able to produce a Sk, profile with the correct sign
and order of magnitude in the upper canopy (similar to Fig. 11), but it cannot produce Sk,
different from zero [18]. This is because in ODT the vertical velocity is simulated as a separate
“scalar field”, only connected to the streamwise velocity by the energy redistribution term
(the only cause of the non-zero variances of spanwise and vertical velocities in ODT channel
flows). The value of Sk,, on the other hand, is a consequence of the inflection point in the
streamwise velocity at canopy top. The non-zero value of Sk, obtained in the LES-ODT
simulation (Fig.11h) is a clear evidence of the improvement in vertical velocity dynamics
in the ODT driven by the LES. We note that the same value of Sk, is obtained even if a
one-way coupling is performed, i.e., in a simulation in which LES + log-law is used to drive
ODT, but no ODT information is passed to LES (not shown). This means that this Sk,
value is a result of the near-wall three-dimensional dynamics of the LES flow, even if the
LES does not “know” about the local inflection point caused by the drag force. We also note
that in the canopy-resolving LES the value of Sk, is smaller than in the field data (Fig. 11h),
indicating that this dynamics of the flow is difficult to be captured even in LES. This result
reinforces the ODT ability in capturing some important flow characteristics when driven by
the LES.

For the remaining of the domain above the canopy, the LES-ODT results are similar to
LES + log-law with an enhanced roughness height parameter (Fig. 12), with the exception of
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the spanwise velocity near the wall as observed in previous cases. Finally, it is important to
point out that any canopy-resolving LES, as performed by Pan et al. [24], has a computational
cost that restricts the domain size significantly (see the size of the domains in Fig. 12 for
comparison). Despite the additional computational cost, the LES-ODT coupling allows a
bigger domain, which can be useful in studies of the entire atmospheric boundary layer with
important near-wall phenomena.

4.4. Computational cost

As discussed in details by Schmidt et al. [14], the computational cost of the ODT is highly
variable. It depends not only on the number of ODT models (N, x N,) and the number
of ODT grid points (Nopt), but it also depends on the intensity and scales of turbulence
being simulated by ODT, which impacs the number of ODT time steps within one LES
time step (At/Atopr). In their study, the computational cost of the smooth channel flow
(which is a “wall-resolved” case) was estimated as scaling with Re?* approximately. Fig. 13
provides the CPU time spent in the rough-channel simulations, which is “wall-modeled” and
does not scale with Re, (the simulation of maize field has a similar computational cost).
To avoid differences across specific runs due to the instability of the cluster, the CPU time
was estimated as the ensamble average of 3 realizations of 100 time steps at the end of each
simulation. The computational cost of the LES-ODT with Nopt = 32 (At/Atopr = 30)
is about one order of magnitude higher than the LES + log-law with the same resolution
(Fig. 13a), showing that the ODT part corresponds to the majority of the computational cost
of the simulation. As a consequence, the cost also increases significantly when increasing
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Nopr to 64 (At/Atopt = 60) and 96 (At/Atopr = 120) (Fig. 13a), which is caused not
only by the increase in Nopr but alse the decrease in Atopr. By increasing N, = N, = N,
from 64 to 128, the increase in LES-ODT computational cost has a slightly lower rate than
LES + log-law. The decrease in cost per processor, on the other hand, has a slightly higher
rate compared to LES + log-law (Fig. 13b), indicating that the parallelization of the ODT
was sucessful. Therefore, LES-ODT provides a good scalability for larger domains.

The LES-ODT cost is significantly high compared to LES alone. However, for a LES
code with fixed-grid, this approach provides a high-resolution flow close to the wall with an
affordable computational cost, representing an alternative for studies in which the flow in
the first LES grid needs high resolution, but not in the remaining LES domain. To provide
a visualization of this potential trade-off, we compare the simulation of LES-ODT with 1283
grid points and Nopt = 32 with LES + log-law of 128% and 2563. Note that the LES-ODT
has a computational cost in between the two LES + log-law’s (Fig. 13a), and that the LES
+ log-law with 256% needs to run with half At and double number of time steps due to
the grid refinement. Figure 2 shows an example of snapshots of these simulations. It is
clear that the LES-ODT reproduces the overall flow scales of the LES + log-law with the
same resolution, but near the wall it also provides addtional representation of small scales
comparable to the LES with higher resolution. Figure 14 compares the one-dimensional
spectra at the same heights, in which the same benefits discussed in Sec. 4.1 are still present,
especially the improvement in spanwise spectra near the wall. While in the LES + log-law
with 256° the lowest available flow fields are at z/Z = 0.002 and 0.006, in the LES-ODT one
would have in this case instantaneous flow from z/Z = 0.00025 to 0.008 at 0.00025 intervals
(see Fig.2). Figure 15a compares a snapshot of the streamwise velocity in the wall-parallel
layer at z/Z = 0.002, showing that LES-ODT captures some important features of the flow,
such as the overall shape and intensity of turbulence structures. Furthermore, away from the
wall the flow is dominated by large-scale structures, and the gain in flow resolution is likely
less relevant (Fig.15b). Therefore, despite its high computational cost for a wall model,
LES-ODT might be seen as an alternative approach for near-wall resolution, which can be
useful for studies in which a instantaneous flow field near the wall is required, such as canopy
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flows and sediment transport.

5. Summary and conclusions

In this study, we develop a new stochastic wall-model based on the “large-eddy” version
of ODT, testing it for rough and smooth channel flows. An extensive discussion regarding
the ability of ODT in representing turbulent flows is provided in the original study of LES-
ODT coupling [14] and in several others ODT stand-alone studies [16, 17, 18], and it can be
summarized as follows. In general, ODT provides a useful representation of a non-equilibrium
turbulent flow in one dimension, with one adjustable parameter (or two if a viscous sublayer
is resolved) that has a value in the order of 10 (viscous parameter in the order of 100), but
that can be tuned for a specific benchmark result before extrapolating to blind test scenarios,
including different Reynolds number, domain size and model resolution. This parameter is
tuned to adjust the mean flow, providing variances that are not strictly correct, but that
typically has the correct overall shape and order of magnitude. In the example of channel
flow, the parameter is adjusted to match the log-law behavior, and it is valid for smooth and
rough channels, in addition to the atmospheric boundary layer under different conditions
(such as different atmospheric stabilities [18]). When coupled to LES, ODT behaves as a
wall model that not only improves the LES flow field close to the wall, but also provides a
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near-wall vertically-refined instantaneous flow field that can be useful in many applications.
Due to its formulation based on the diffusion equation, other variables can be incorporated
to the ODT and coupled to the LES in a similar way to what is typically done in LES alone
(including temperature and scalar concentration, buoyancy effects, sources and sinks, and
S0 on).

From the results presented here, two important conclusions can be drawn: (i) replacing
the wall model from the log-law to ODT improves the energy spectrum for both SGS models
tested here (PASI and LASD). Near the wall, the improvement is in the entire range of
resolved scales (not only in the smaller scales), producing a much clearer k! scaling in the
production range. For the PASI case, the improvement also fixes the mean velocity gradient
mismatch present when the log-law boundary condition is used. Therefore, coupling ODT
makes the flow field of LES in the first grid points more realistic than using the log-law.
(ii) If we take the traditional dynamic model (PASI) as a reference, using ODT as a wall
model is more advantageous than improving the SGS model to LASD. Nevertheless, the use
of LASD and ODT can be useful for the study of heterogeneous problems, since it does not
rely on planar averages as the original PASI method.

Overall, the decision of using the LES-ODT approach should focus on the balance between
the advantages of ODT and its computational cost. Currently, most of the LES-ODT cost
comes from the ODT alone. Because this study did not focus on numerical performance,
this is an aspect that has room for future improvement. Note that the spectral method is
not required for the LES-ODT approach per se, it is specific for the LES code used in this
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study. Future studies could test this approach using different codes, including other versions
of the ODT model such as with an adaptative mesh and cylindrical /spherical formulations
[38]. Regarding its advantages, the LES-ODT coupling may provide an useful alternative
for studies that rely significantly on the turbulence near the wall, and that cannot afford to
perform the grid refinement necessary in LES alone. It is particularly encouraging given the
improvement in spanwise and vertical velocity dynamics of the ODT driven by the LES, as
evidenced by the presence of vertical velocity skewness within the canopy simulated by the
ODT, which cannot be achieved by the ODT stand-alone model. Furthermore, ODT stand
alone can be used beforehand to assess the ODT ability in represent the phenomenon of
interest. Note that the overall behavior of the ODT is not expected to be LES-dependent, it
is similar to its stand-alone results, with some improvement related to the large-scale forcing
(see the ODT versus LES-ODT comparison in Schmidt et al. [14]). For a comparison to
other types of wall models, the reader is also referred to a detailed discussion present in
Schmidt et al. [14].

Examples of studies that can benefit from the LES-ODT coupling are environmental
and geophysical flows with relevant near-wall dynamics, such as the atmospheric boundary
layer in the presence of canopy, sediment transport in the atmosphere and rivers, snow drift,
and many others. Because each ODT behaves as an independent model, whose domain is
a horizontally-homogeneous sub-domain (affected by large-scale advection), each ODT can
also be used to represent horizontal heterogeneity at the surface, such as the presence of
different obstacles, surface roughness, and so on. The model might be particularly relevant
for studies with convective turbulence, as they typically require large domains needed to
simulate the large-scale turbulence structures. Therefore, the next step will be to implement
and test buoyancy effects in the LES-ODT coupling, in addition to an effort in reducing its
computational cost.
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Appendix A.

The size of the overlap region is one of the parameters that impact the result of the
LES-ODT coupling. Ideally, it should provide the appropriate transition between the sizes
of the largest stochastic eddies in ODT and smallest resolved eddies in LES. In the original
study, Schmidt et al. [14] tested the effect of this parameter and found that .. = 3.5Az
was an appropriate size for the largest stochastic eddies. We reproduced this result in our
code to ensure that their finding is consistent, which is presented in Fig. A.16. As in the
original study, the changes in the mean velocity when varying /., from 2.5 to 3.5 are larger
than when changing [, from 3.5 to 4.5 Az, indicating that for 3.5Az provides some sort
of saturation level and is therefore the appropriate value.
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590).

Appendix B.

An important detail of the LES-ODT coupling regarding the LES resolved and SGS
momentum fluxes deserves clarification. By construction, the LES stresses at the wall and
at z = Az (top of the lowest grid) come from ODT only. Because they enter as SGS stresses,
the resolved stress at those points should be zero (as shown in Fig. 3c,f). However, because
LES velocities at the lowest LES grid comes from ODT through the averaged ODT velocities
v;, the covariance v;—1 2v3 is actually different from zero at z = Az. This is a consequence
of the estimation of v3 from v;—1 2 to enforce continuity (Eq.15). In order to ensure that
the ODT stress is the total stress, this non-zero resolved stress in the LES is not used in
the calculation of the resolved advection term (as if it was zero). This causes the simulation
equilibrium to be achieved with a stress that has a local peak at z = Az (see Fig.B.17).
But the real equilibrium stress “known” to the LES is the linear one presented in Fig. 3,
which is obtained by assuming v;—1 203 at z = Az equal to zero in the plot. If this non-zero
value is taken into account by the LES advection calculation, the equilibrium simulation is
different from the log-law due to a mismatch between the velocity and stress imposed in the
LES from the ODT.

Another consequence of this non-zero v, 203 at z = Az is that the value of the resolved
stress (or Leonard stress) L;; of the dynamic model is non-zero at z = Az when it should
be zero. For the PASI SGS model this is not an issue because this value would only impact
the velocity field in the first grid (due to the planar averaging approach), but this velocity
is replaced by the ODT value. For the LASD SGS model, on the other hand, this value can
influence the velocity field in other heights due to the Lagrangian averaging, therefore it has
to be set to zero in order to generate the correct SGS modeling.
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