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Abstract6

In this study a stochastic wall model based on the “large-eddy” version of the One-7

Dimensional Turbulence (ODT) model was developed for Large-Eddy Simulation (LES) of8

smooth and rough channel flows, with the primary goal of providing a refined turbulent flow9

field near the wall. This LES-ODT coupling was tested with the dynamic Smagorisky and the10

scale-dependent Lagrangian dynamic subgrid-scale models. When compared to the same LES11

with a wall model based on a local law-of-the-wall, LES-ODT improved the one-dimensional12

energy spectra for all three velocity components close to the wall for both subgrid-scale13

models tested. More importantly, improving the LES wall model had a more positive effect14

in the near-wall spectra than improving the subgrid-scale model from the traditional dynamic15

to the scale-dependent Lagrangian dynamic model. For smooth channels, LES-ODT results16

compared well with DNS of Reλ = 590 and 5200; however, the variance modeled by the17

ODT presents discrepancies for all three velocity components, an issue inherent to ODT.18

Finally, the simulation of a channel flow with additional roughness modeled by a drag force19

was compared to data of atmospheric flow through a maize field, providing evidence of the20

potential for this approach to directly simulate complex near-wall phenomena. Given its21

high computational cost, the main use of the LES-ODT coupling is in studies that require a22

refinement of the near-wall region without the need to refine the entire LES domain.23
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1. Introduction27

The study of high-Reynolds-number wall-bounded flows, such as boundary layers and28

channels, provides a cornerstone for many applied engineering and environmental problems,29

including flows in ducts, rivers, and the boundary layer of the atmosphere and ocean. The30

Direct Numerical Simulation (DNS) of such flows is limited by computational cost, and to31

our knowledge the channel-flow simulation with the highest Reynolds number so far was32

performed by Yamamoto and Tsuji [1], providing results for Reτ up to 8000 (Reτ = u∗δ/ν is33

the friction Reynolds number, where u∗ is the friction velocity, δ is half-channel height and ν is34

kinematic viscosity). For applications in which higher Reynolds numbers are needed, Large-35

Eddy Simulation (LES) became the main numerical tool. In LES of wall-bounded flows, at36

least two options are available to treat the wall: (i) to adopt a vertically stretched grid so37
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that the first grid points are within the viscous sublayer and a no-slip boundary condition38

can be enforced at the wall (also known as wall-resolving LES or WRLES) [2, 3, 4, 5]; or39

(ii) to have the wall-adjacent LES grid point above the viscous sublayer, which requires the40

use a wall model to provide the missing information to the outer flow field (also known as41

wall-modelled LES or WMLES) [6, 7, 8]. The issue with option (i) is that its computational42

cost can also be too high, since with the increase of the bulk Reynolds number (Re) the43

turbulence scales of the inner layer decreases much faster than the scales of the outer layer,44

generating a computational cost that scales with Re2.4 (due to the inner layer, compared to45

Re0.6 for the outer layer alone) and limiting this option to moderate Reynolds numbers [9].46

Option (ii), on the other hand, is not restricted by Reynolds number [10] and can be applied47

to the problem of rough surfaces, parameterized in the wall model. Option (ii) can be further48

categorized into two groups: (ii–a) the RANS/LES hybrid formulation, in which the near-49

wall layer is resolved by RANS (Reynolds-Averaged Navier-Stokes) equations, and (ii–b) the50

wall-stress modeling approach, in which special boundary conditions are deployed to account51

for the effects of the unresolved near-wall flow [11, 12]. In the (ii–b) category, the most simple52

model relies on the assumption that within the LES time step a constant-stress layer exists53

near the wall, implying that some variation of the logarithmic profile can be applied to the54

velocity field resolved by the LES (log-law wall model). This approach provides satisfying55

results especially in environmental and geophysical applications, where Reynolds number is56

extremely high and geometry is typically simple [9]. A more sophisticated approach in (ii–b),57

known as two-layer model, is obtained by solving the thin, two-dimensional boundary-layer58

equation, in which the time evolution of the wall-parallel velocity field is solved in a wall-59

normal refined grid within the first LES grid, providing the shear stress at the wall at each60

LES time-step (wall-normal velocity is obtained by imposing continuity). In this thin layer,61

the flow behaves like a Stokes flow driven by the LES, and an eddy viscosity model represents62

all the near-wall turbulent scales [13, 12]. Therefore, as in the RANS/LES approach, the63

wall layer is treated in a Reynolds-averaged sense [14].64

One of the main challenges of simulating wall-bounded flows with wall-modeled LES is65

the correct representation of turbulence structures close to the wall. As they get smaller66

due to wall blockage, a larger fraction of the turbulence needs to be correctly captured by67

the SGS model. The constant-coefficient Smagorinsky SGS model, for example, provides68

satisfactory results in the simulation of isotropic turbulence, but it is overdissipative close69

to the wall. This effect has direct consequences in the variance of the velocity components,70

and can be easily observed in the energy spectra [8]. The dynamic model, which uses the71

resolved scales of the flow to adjust the Smagorinsky coefficient, is in turn underdissipative72

close to the wall [8]. A more sophisticated version of these models, known as scale-dependent73

Lagrangian dynamic SGS model, takes into account the scale-dependence of the Smagorinsky74

coefficient, in addition to performing averages in time along lagrangian paths instead of75

relying on homogeneous directions of the flow. As evaluated by Bou-Zeid et al. [8], for76

Smagorinsky-type SGS models with a log-law wall model, this approach provides the best77

results close to the wall, with clear k−1 and k−5/3 scaling ranges (k is wavenumber) in the78

streamwise velocity spectra.79

Despite the overall satisfactory results provided by the combination of a log-law wall80

model and the scale-dependent Lagrangian dynamic SGS model, when near-wall turbulence81

is the main focus of the problem, there is still concern regarding the accuracy of the re-82
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sults. Because most wall models either explicitly or implicitly treat the near-wall region in a83

Reynolds-averaged sense, near-wall dynamics might not be acceptable for some applications,84

such as the transport of matter very close to the wall. Motivated by this issue, Schmidt et al.85

[14] proposed a stochastic wall model that simulates the instantaneous velocity field without86

averaging assumptions, which can also be seen as a wall-stress model in a two-layer approach87

as the thin boundary layer model [15], but in this case near-wall velocity fluctuations are88

also present. In this approach, the One-Dimensional Turbulence (ODT) model proposed by89

Kerstein et al. [16] is used as a column model embedded within each wall-adjacent LES grid90

to refine the flow field information in the vertical direction, providing turbulence information91

in scales smaller than the ones resolved by the LES. The ODT is instantaneously forced by92

the LES, which in turn uses ODT information as a lower boundary condition. This two-93

way coupling provided satisfactory results when compared to smooth-channel DNS results94

of Reτ = 395 and 590, and presented the correct trend with Reτ for mean flow and velocity95

variances for Reτ up to 10 000. In addition to providing an improved instantaneous boundary96

condition, this approach has the advantage of providing refined wall-normal turbulent flow97

field that can incorporate a diverse set of phenomena, such as buoyancy, chemical reactions,98

drag force and source/sink profiles, in a straightforward manner similar to what is typically99

done in LES [16, 17, 18]. Therefore, this approach represents not only a potential improve-100

ment in LES near-wall turbulence, but also an alternative to simulate complex phenomena101

very close to the wall that are directly impacted turbulence. However, because in this case102

the ODT resolved the viscous layer, the computational cost of the overall simulation scaled103

with Re2.3
τ , which is similar to WRLES.104

In this study, we develop a new wall model based on the “large-eddy” version of ODT de-105

veloped by Freire and Chamecki [18], which is applicable to both rough and smooth channel106

flows. For rough channels, this formulation corresponds to a WMLES version whose compu-107

tational cost is independent of Reτ . The coupling between ODT and LES follows the original108

framework proposed by Schmidt et al. [14], and it is used to investigate the effects of ODT109

wall model on turbulence structure using different SGS models. We use an LES code that is110

typically employed in geophysical studies using the log-law wall model [19, 20, 21, 22], and111

comparisons with LES + log-law results are provided throughout the study. Although this112

LES-ODT approach is closer to two-layer models such as the thin boundary layer model, the113

comparison with the most simple wall-stress approach provides an opportunity to indentify114

the turbulence features that are already present in the LES with a simpler wall model, in115

contrast to the new features provided by ODT.116

Motivated by environmental applications, we also develop an approach in which surface117

roughness is modeled via vertically resolved drag force within the ODT, and compare results118

to data measured in a maize field. When canopy is present, as in many other environmental119

problems (sediment transport, snow drift and deposition, breaking wave, etc), the relevant120

phenomena are too close to the surface to be captured by typical LES grid resolution when121

the entire boundary layer is simulated. In these cases, the usual approach is to restric the122

domain to a fraction of the region of interest [23, 24], reducing the scope of the study. Thus,123

in this context, the LES-ODT tool can also be used as an alternative in the investigation of124

near-wall dynamics in a large domain.125
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2. Models126

2.1. The One-Dimensional Turbulence model127

The aspects of the ODT model needed to understand its overall behavior and to reproduce128

the code will be presented here, but given its complexity and great amount of details, the129

reader is referred to more complete descriptions already present in the literature [14, 16, 25].130

The one-dimensional stochastic model used in this study was developed by Kerstein [25]131

and successfully used as a stand-alone model to simulate different types of turbulent flows,132

including homogeneous turbulence, shear layers, buoyancy-driven flows [25], mixing-layer133

and wakes [16], jet diffusion flames [17], the stable atmospheric boundary layer [26], particle134

dispersion in homogeneous flows [27], passive scalar transport in channel flows [28] and flow135

through plant canopies [18]. The model corresponds to one-dimensional diffusion equations136

for all variables of interest (which in this study are the three velocity components, but137

temperature, scalar and particle concentration can be included in the same way), i.e.,138

∂ui
∂t

= ν
∂2ui
∂z2

+ Fi + stochastic eddies (1)

where ui is the velocity vector (index notation is used when necessary), t is time, z is139

the vertical direction, Fi is the constant mean pressure gradient force that drives the flow140

and stochastic eddies correspond to the effect of three-dimensional turbulence in this one-141

dimensional field. The simulation is performed by evolving the diffusion equation in time,142

and at each time step a stochastic eddy can be selected from a probability distribution of143

eddy size and location in the domain. When a stochastic eddy is selected, all variables at144

the position z within the eddy are replaced by the value of the same variable at the position145

M(z), a mapping function that is a model for advection, mixing the variables and creating146

small-scale fluctuations in such a way that mimics the energy cascade of turbulent flows. It147

is conservative (i.e., it preserves the total amount of the quantity being transported) and it148

does not introduce discontinuities. Mathematically, it is defined as149

M(z) = zb +


3(z − zb), if zb ≤ z ≤ (zb + l/3),

2l − 3(z − zb), if (zb + l/3) ≤ z ≤ (zb + 2l/3),

3(z − zb)− 2l, if (zb + 2l/3) ≤ z ≤ (zb + l),

z − zb, otherwise,

(2)

where l and zb are the variables representing the size and bottom position of the eddy,150

respectively. As described by Kerstein and Wunsch [26], the mapping function “takes a line151

segment, shrinks it to a third of its original length, and then places three copies on the152

original domain; the middle copy is reversed, which maintains continuity of advected fields153

and introduces the rotational folding effect of turbulent eddy motion”.154

In addition to this mixing effect, when a stochastic eddy is selected, a second term creates155

redistribution of energy among velocity components, mimicking a pressure-induced tendency156

towards isotropy on the flow. The final model for the occurrence of stochastic eddies is157

ui(z)→ ui(M(z)) + ci[z −M(z)], (3)
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where ci is the amplitude of the energy redistribution. For details in the assumptions used158

for its calculation, see Kerstein et al. [16] and Freire and Chamecki [18]. The final equation159

for ci is160

ci =
27

4l

[
−uK,i ±

√
1

3

(
u2
K,1 + u2

K,2 + u2
K,3

)]
, (4)

where the quantity inside the square root represents the total amount of energy inside the161

eddy available for redistribution, calculated using162

uK,i ≡
1

l2

∫ zb+l

zb

ui(M(z))[z −M(z)]dz. (5)

The final piece of information needed for the ODT is the probability distribution of eddy163

size and location, λ(l, zb; t), which also evolves in time with the flow. It is calculated from the164

instantaneous amount of kinetic and potential energy in the flow, adding another physical165

aspect to the stochastic model. The details of its derivation is also described in Kerstein166

et al. [16] and Freire and Chamecki [18], and its final formulation is given by167

λ(zb, l; t) =
Cλ
l3

√
1

3

(
u2
K,1 + u2

K,2 + u2
K,3

)
− Zλν2

l2
. (6)

A proportionality constant Cλ is used to regulate the number of eddies for a given amount168

of energy, effectively setting the turbulence intensity. Another constant, Zλ, adjusts the169

damping effect of viscosity, because any eddy with a time scale longer than the viscous time170

scale should be prohibited. The values of Cλ and Zλ are the only tunable parameters, which171

can be different for different types of flows, but they are not expected to vary with Reτ172

[14, 18].173

Because ODT is based on the diffusion equation plus eddies with a size proportional to174

the grid size, it allows for a large-eddy approach similar to the LES, which was developed175

and tested by Kerstein and Wunsch [26] and Freire and Chamecki [18]. In this “large-eddy176

mode”, ODT is “wall-modeled” and does not resolve the small scales of the flow, but a177

resolved velocity field is simulated instead. This is done by applying a filter with scale ∆ODT178

to Eq. (1), where ∆ODT is the fixed ODT grid size, separating resolved from subgrid scales179

and becoming180

∂ũi
∂t

=
∂τi
∂z

+ Fi + stochastic eddies, (7)

where ũi is the resolved velocity field and τi is the SGS vertical stress vector. The latter is181

modeled following Freire and Chamecki [18], which used a one-dimensional analogy to the182

eddy-viscosity model183

τi = −νSGS
∂ũi
∂z

, (8)

where the SGS eddy viscosity νSGS is given by184
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νSGS = (Cs 6∆ODT)2

[
∂ũi
∂z

ũi
∂z

]1/2

, (9)

which uses the fact that the size of the smallest stochastic eddy is 6∆ODT. The Smagorinsky185

coefficient Cs is calculated with a wall-damping function as186

1

(Cs 6∆ODT)n
=

1

(Cs,0 6∆ODT)n
+

1

[κ(z + z0)]n
, (10)

in which the parameters Cs,0 = 0.1 and n = 2 were used [8, 21]. In the lowest ODT grid point,187

vertical derivatives of horizontal velocity components are obtained from the law-of-the-wall188

for a rough flow, namely189

∂ũi
∂z

=
u∗

κ∆ODT

ũi
(ũ2

1 + ũ2
2)1/2

, with u∗ =
κ

ln(∆ODT/z0)
(ũ2

1 + ũ2
2)1/2 (11)

for i = 1, 2 and ∂ũ3/∂z = ũ3/∆ODT. We note that, although the Smagorinsky model is190

not ideal for near-wall turbulence due to its overdissipative characteristic [8], the use of a191

dynamic estimation of Cs did not provide any improvement. Since the results obtained here192

are shown to be mesh-convergent, we chose to maintain the constant Smagorinsky approach193

for simplicity.194

As discussed by Kerstein and Wunsch [26] and Freire and Chamecki [18], this “large-eddy195

mode” has the advantage of reducing computational cost, in addition to better representing196

rough surfaces that require a bulk parameterization (as a function of a “equivalent roughness197

height” parameter). Furthermore, in this approach the molecular viscosity term is removed198

as it is negligible compared to the other terms of the equation, and the viscous damping199

effect in the probability of stochastic eddies equation becomes irrelevant (the constant Zλ is200

effectively set to zero). Therefore, this formulation does not have any viscous effect and it201

independent of Reτ , representing very-high Reynolds number cases.202

Finally, the roughness representation through a drag force is implemented by following203

the usual approach in LES, in which a drag force proportional to the square of the local204

velocity is used. Because we will compare this simulation with measurements of a flow205

through a maize field, the drag force here is defined as [24]206

di = −Cda(z)Pijũj(ũkũk)
1/2, (12)

where Cd is the drag coefficient, a(z) is the leaf area density and Pij is the projection matrix.207

This drag force parameterization is added to the RHS of Eq. (7). In addition, the energy208

redistribution term (Eq. (4)) needs to include the energy lost to drag, and it is rewritten as209

[18]210

ci =
27

4l

[
−uK,i ±

√
1

3

(
u2
K,1 + u2

K,2 + u2
K,3 −

64

81
CdP

∫ zb+l

zb

a(z)e(z)dz

)]
, (13)

where P = Pii/3 and e = (ũ1 + ũ2 + ũ3)/2 is the resolved kinetic energy. Different from Freire211

and Chamecki [18], the energy lost to drag is applied in both eddy selection (by adding the212

drag term into Eq. (6)) and energy redistribution. Note also that other forms of drag force213
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could be used to model other types of roughness.214

The ODT model is solved explicitly, using forward Euler method for the time discretiza-215

tion. The upper limit in ∆tODT comes from the stochastic eddies implementation, as follows.216

In principle, at each time step the eddy rate distribution λ(zb, l; t) should be updated, and217

eddies should be selected from it. In practice, this would result in a high computational218

cost because of all possibilities of eddy position zb and eddy size l. For that reason, what219

is actually implemented is a statistical approximation (called “rejection method”), in which220

at each time step a candidate eddy (that may or may not be implemented) is selected from221

two random distributions f(l) and g(zb) (constant in time), having λ(z∗b , l
∗; t) estimated only222

for the selected pair (z∗b , l
∗). These candidate eddies are then accepted it at a rate P , such223

that P (z∗b , l
∗, t,∆t) = λ(z∗b , l

∗; t)∆tODT/(f(l∗)g(z∗b )), by sampling random numbers between224

zero and one. In the limit of ∆tODT → 0, this procedure is equivalent to sampling at rate225

λ(zb, l; t). This approximation generates similar results as long as P � 1 (the majority of the226

candidates are rejected), which is achieved by reducing ∆tODT. The choices of f(l) and g(zb)227

do not affect the final statistics, and g(zb) following a uniform distribution and f(l) ∼ l−2
228

were chosen, in addition to a maximum P of 0.05 [25].229

2.2. Large-Eddy Simulation code230

The LES code used in this study, also known as LESGO code [29], solves the filtered231

Navier-Stokes equation in a vertically staggered grid with fixed size. The numerical dis-232

cretization combines a fully dealised pseudo-spectral method in the horizontal directions233

and a second-order centered finite-difference in the vertical direction. The fully explicit234

second-order Adams-Bashforth scheme is used for time integration. A constant mean pres-235

sure gradient force is imposed in the streamwise direction and horizontal boundary conditions236

are periodic, while a stress-free boundary condition is applied at the top of the domain. For237

the bottom boundary condition, the vertical velocity is defined at z = 0 and is set to zero.238

The horizontal velocities are defined at z = ∆z/2, which should be located in the logarithmic239

sublayer of the flow. Their bottom boundary condition is obtained from the local law-of-240

the-wall formulation (Neumann boundary condition) using a horizontal spatial filtering in241

the scale 2∆ to compensate for the log-law mismatch of the mean velocity gradient [29].242

Two SGS models are tested here: (i) the standard scale invariant dynamic model with pla-243

nar averaging (PASI) [30] and (ii) the Lagrangian-averaged scale-dependent dynamic model244

(LASD) [8]. More details of the code can be found in Bou-Zeid et al. [8].245

In order to couple the LES code with ODT, it is necessary to adjust the representation246

of the advection term of the Navier-Stokes equation, which was originally written in the247

rotational form, i.e.,248

∂Ũi
∂t

+ Ũj

(
∂Ũi
∂xj
− ∂Ũj
∂xi

)
= −1

ρ

∂p

∂xi
+ τLES

ij + F̃i, (14)

where Ũi is the LES resolved velocity field, p is a modified pressure term and τLES
ij is the SGS249

stress tensor [8]. Here we write the second term in the LHS of Eq. (14) in the divergence250

form, i.e. ∂(ŨiŨj)/∂xj, which does not impact the statistics of the simulation (including251

mean, variances and spectra, not shown), as already observed for a fully dealised spectral252

code [31].253
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Figure 1: Illustration of the LES-ODT coupling. The ODT model is solved in the ODT region, which
corresponds to the LES grids adjacent to the wall (domain size ∆z). The ODT overlap region corresponds
to the linear interpolation of the LES velocity field up to z = 3.5∆z, where stochastic eddies are allowed to
extend. The coupling has four elements: (i) the ODT is forced by LES through a top boundary condition (at
z = ∆z + ∆ODT, from the linear interpolation between ODT and LES velocity fields), (ii) the LES velocity
field in the wall-adjacent grid points is replaced by the ODT values, (iii) the total momentum flux from
ODT within the lowest LES grids is used as a LES bottom boundary condition (additional ODT turbulent
momentum flux within the second and third LES grids also goes into LES) and (iv) there is a horizontal
advection among ODT columns driven by the LES velocity field. The vertically staggered grid configuration
for the velocity components, pressure and shear stress is indicated by the black dots and grey crossings, where
directions 1 (x), 2 (y) and 3 (z) correspond to streamwise, spanwise and vertical direction, respectivelly.

2.3. LES-ODT coupling254

When used as a wall model, ODT corresponds to vertical lines embedded within each255

wall-adjacent LES grid (Fig. 1). Overall, the two-way coupling between the models can be256

listed as four steps: (i) ODT is forced by LES through a top boundary condition, (ii) the257

LES velocity field in the lowest grid points is replaced by the ODT values, (iii) the shear258

stress in the ODT is used as a LES bottom boundary condition and (iv) there is advection259

among ODT columns driven by the LES velocity field. The details of these four steps are260

described next.261

The LES domain corresponds to a box with size X × Y × Z (streamwise, spanwise and262

vertical directions, respectively) with Nx×Ny×Nz grid points and grid sizes ∆x×∆y×∆z.263

Each ODT domain corresponds to the height of the lowest grid, i.e., ZODT = ∆z, and264

∆ODT = ∆z/NODT, where NODT is the number of grid points in each ODT model. This first265

(from bottom to top) LES grid that corresponds to the ODT domain will be called ODT266

region. There is no specific restriction on the size of ∆z related to the LES-ODT coupling.267

There is, however, a minimum number of ODT grid points NODT in order to garantee an268

appropriate amount of “resolved turbulence” in the ODT (through the stochastic eddies),269

as it will be explored in the Results section.270

A second ODT domain, called ODT overlap region, corresponds to ∆z ≤ z ≤ 3.5∆z271

(from the top of the first LES grid to the middle of the fourth LES grid, from bottom to272

top, Fig. 1), with the same grid size ∆ODT. In this region, ODT is not advanced in time,273

but it has a velocity field calculated as a linear interpolation between the ODT and the LES274
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values within the region, which is used to allow stochastic eddies to extend beyond ∆z. This275

means that stochastic eddies with bottom inside the ODT region (zb ≤ ∆z) but with size276

that goes beyond the ODT region are allowed to exist. A consistency test for the size of the277

overlap region was performed by Schmidt et al. [14] and it is reproduced here (see Appendix278

A), showing that the size of 3.5∆z provides the appropriate transition between the size of279

the largest stochastic eddies and the small resolved scales in the LES, as evidentiated by its280

effect in the mean velocity gradient.281

In the LES-ODT coupling, three velocity fields are defined: (i) Ũi is the LES resolved282

velocity field, (ii) ũi is the ODT resolved velocity field, and (iii) ṽi is the ODT velocity field283

averaged over the LES time step, used to send the information from ODT to LES in the284

correct scale. For the two horizontal components, ṽi is calculated directly as the average over285

the LES time step ∆t, as they have an advecting quality in them. The vertical component, on286

the other hand, is conceptualized as a “representation of the wall-normal velocity component287

kinetic energy per unit mass (actually the square root of that energy)” [14], since the vertical288

transport is performed by the stochastic eddies. For that reason, ṽ3 is calculated as289

ṽ3(z) = −
∫ z

0

(
∂ṽ1

∂x
+
∂ṽ2

∂y

)
dz (15)

in order to preserve continuity in the wall-adjacent LES grids. The velocity ṽi has two uses290

in the simulation. In the ODT code, it is used to couple all the ODT columns via horizontal291

advection, which is accomplished by adding an advection term to the RHS of Eq. (7), i.e.,292

∂ũi
∂t

=
∂τi
∂z

+ Fi + stochastic eddies + di −
∂(ṽjũi)

∂xj
, (16)

which is the final model for ODT in the LES-ODT coupling. Note that the horizontal293

advection happens in LES scale due to the coarseness of the X and Y directions, therefore294

the appropriate advective time scale is the LES rather than the ODT time scale, making the295

velocity field ṽi the correct one for this task. Although this advection connects each ODT296

in a “LES-scale” sense, locally the core of the turbulent transport remains the stochastic297

eddies (and therefore one-dimensional), providing a model for local vertical advection and298

small-scale turbulence without the need to refine the grid in the horizontal directions.299

The second use of ṽi corresponds to the velocity field sent to the LES lowest grid points,300

i.e.,301

Ũi=1,2(z = ∆z/2) =
1

∆z

∫ ∆z

0

ṽi=1,2(z)dz (17)

Ũi=3(z = ∆z) = ṽi=3(z = ∆z), (18)

which enforces continuity in the vertically staggered grid configuration. This velocity field302

corresponds to one of two ODT results that go to the LES. In this step, there is no double-303

counting effect as the LES velocity is directly replaced by the ODT velocity.304

The second coupling element provided to the LES is the vertical momentum flux within305

the wall-adjacent LES grids, which comes entirely from the ODT (also no double counting306
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effect). It includes the momentum flux from the stochastic eddies, viscous diffusion or subgrid307

scale diffusion and vertical advection. These fluxes are accumulated (summed) during the308

ODT time steps within one LES time step, and they enter the LES code through the SGS309

stress tensor τi3(z ≤ ∆z). Additionally, the ODT fluxes caused by stochastic eddies that310

reach the ODT overlap region are also summed to the SGS stress tensor within the second311

and third grids (τi3(∆z < z ≤ 3.5∆z)). In this step, some mismatch can be caused by an312

excess or lack of additional flux, which is fixed by adjusting the size of the overlap region313

(see Appendix A) and the value of the ODT parameter Cλ (see Results section) in order to314

obtain the correct mean velocity gradient in the logarithmic region.315

The linear interpolation performed in the ODT-overlap region is used to define a Dirichlet316

boundary condition immediately above the top of the ODT domain (at z = ∆z + ∆ODT),317

passing the velocity field information from LES to ODT and closing the two-way coupling318

between the models.319

After the evolution of the velocity field in time, a pressure Poisson equation is solved to320

impose continuity in the LES velocity field. In order to rematch the pressure-adjusted Ũi321

with ṽi, a pressure correction is applied to the ODT velocities ũi and ṽi, which is calculated322

as323

ṽi=1,2,new = ṽi=1,2,old − 2z
ṽi=1,2,old

∆z
+ 2z

Ũi=1,2

∆z
. (19)

After implementing the pressure correction in the horizontal components of ṽi, Eq. (15) is324

used to update ṽ3. Finally, the same procedure is performed to adjust the two horizontal325

components of ũi. As discussed by Schmidt et al. [14], this correction is not needed for326

ũ3, as it behaves only as a kinetic-energy reservoir for the energy transfer among velocity327

components, and no pressure effects need to be included in its evolution.328

The description above sets the way in which ODT provides the lower boundary conditions329

to the LES, and how the LES creates a top boundary condition to the ODT. The ODT model330

is solved explicitly using forward Euler method for the time discretization, a second-order331

finite difference for the vertical derivatives and a fully-dealised pseudo-spectral method for332

the horizontal advection term, in order to be consistent with the LES code. The value333

of ∆tODT is set as ∆t/15 initially (as it solves smaller scales compared to LES), and it is334

reduced by a factor of two if the mean value of P (for all ODT’s) during one LES time step335

is greater than 0.05. The ODT lower boundary condition is ũi = 0 for the smooth-channel336

cases, and a wall model based on the law-of-the-wall for the rough-channel cases (Eq. 11), in337

which z0 is the roughness length scale. The sequence of steps of the LES-ODT simulation338

are summarized in Alg. 1.339

The final detail that is important to mention is the parallelization of the LES-ODT340

coupling. Because the LES code is spectral in both horizontal directions, it was originally341

parallelized in the vertical direction, which is solved by the finite-difference method. The342

ODT model, on the other hand, cannot be parallelized in the vertical, as it needs its entire343

vertical information in each time step in order to select the appropriate stochastic eddy.344

Therefore, the parallelization of the ODT calculation is done in the streamwise direction,345

where each processor evolves a set of ODT domains. However, at each ODT time step,346

the horizontal advection term needs to be calculated using the same spectral method as in347
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Algorithm 1: LES-ODT algorithm in one LES time step

Input: ũi(x, y, zODT, t), ṽi(x, y, zODT, t), Ũi(x, y, z, t)

Output: ũi(x, y, zODT, t+ ∆t), ṽi(x, y, zODT, t+ ∆t), Ũi(x, y, z, t+ ∆t)

begin

ũi in overlap region (and top B.C.) ←− linear interpolation of Ũi;

t∗ = t;

repeat

one stochastic eddy candidate is selected for each ODT;

the accepted stochastic eddies are implemented through the triplet-map;

ũi(t
∗) are advanced to ũi(t

∗ + ∆tODT) using the vertical diffusion equation

(ṽi(x, y, zODT, t) are used for advection);

t∗ = t∗ + ∆tODT;

until t∗ = t+ ∆t;

if horizontal and ∆t average of P > 0.05 then
∆tODT = ∆tODT/2

end

ṽ1,2(x, y, zODT, t+ ∆t) = average of ũi between t and t+ ∆t;

ṽ3(x, y, zODT, t+ ∆t)←− incompressibility of ṽ1,2(x, y, z, t+ ∆t) (through Eq. 15);

τLES
i3 (x, y,∆z, t) = advective + stochastic eddies + SGS fluxes from ODT region;

τLES
i3 (x, y, z, t) = τLES

i3 (x, y, z, t) + stochastic eddies fluxes from ODT overlap

region;

Ũi(x, y, z, t) are advanced to Ũi(x, y, z, t+ ∆t) using the filtered Navier-Stokes

equation;

Ũ1,2(x, y,∆z/2, t+ ∆t) are replaced by the integral of ṽ1,2(x, y, zODT, t+ ∆t) over

∆z (Eq. 17);

Ũ3(x, y,∆z, t+ ∆t) are replaced by ṽ3(x, y,∆z, t+ ∆t) ;

Ũi(x, y, z, t+ ∆t) are updated using the LES pressure Poisson equation;

ũi(x, y, zODT, t+ ∆t) and ṽi(x, y, zODT, t+ ∆t) are updated using pressure

correction;

end
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the LES through Fast Fourier Transform (FFT) in order to keep it in accordance with the348

numerics of the LES. This spectral calculation requires the ODT velocity information to be349

exchanged between all processors at each ODT time step, when the horizontal advection350

terms are calculated and redistributed back between the processors. The FFT calculation is351

shared among the processors in the vertical direction, but the need to exchange all informa-352

tion adds a significant computational cost to the simulation. This issue is particular to the353

numerics of this LES code, and was not present in the original work of Schmidt et al. [14],354

which was finite-difference in all three directions and ran in serial. An alternative to reduce355

part of this computational cost is to approximate the calculation of the advection term (last356

term of Eq. (16)) by updating the ODT velocity ũi in the LES time scale instead of the ODT357

time scale, i.e., to calculate the advection term only once at each ODT run. This approach358

was compared to the complete formulation for all flows tested here, and the error obtained359

was negligible for all statistics. Therefore this approximation is incorporated as part of the360

LES-ODT formulation in this study.361

3. Summary of simulations362

In this study, we start by evaluating the same rough channel flow simulations of Bou-Zeid363

et al. [8], in order to investigate the behavior of ODT wall model with two different SGS364

models: the planar-averaged scale-invariant dynamic model (PASI) and the Lagrangian-365

averaged scale-dependent dynamic model (LASD). The behavior of these two SGS models366

is re-evaluated using the local law-of-the-wall formulation (log-law) as a wall model, as367

performed by Bou-Zeid et al. [8]. In here we compare solutions obtained with the standard368

log-law wall model with solutions obtained by replacing the log-law with the ODT wall369

model in “large-eddy mode”. This analysis allows us to choose the SGS model and the370

ODT parameter Cλ for the remaining simulations. Simulation parameters are detailed in371

Tab. 1, which are the same for all four simulations: PASI + log-law, PASI + ODT, LASD +372

log-law and LASD + ODT. The best value of Cλ = 15 was obtained by trial-and-error. Two373

additional simulations of LASD + ODT were performed with Cλ = 14 and 16 to demonstrate374

the sensitivity of the model. Because these rough channel cases are “wall modeled” and375

“large-eddy mode” for both LES and ODT, they do not have a Reynolds number defined,376

and should be interpreted as “very-high Reynolds number” cases.377

The second set of simulations corresponds to smooth channels with Reλ = 590 and 5200.378

These simulations were performed with ODT in “DNS mode”, in addition to the LASD SGS379

model and Cλ = 15, defined as the best cases from the rough-channel analysis, and they are380

compared to DNS results of Lee and Moser [32] and Moser et al. [33]. Similar cases were also381

performed in the original LES-ODT model by Schmidt et al. [14], therefore the differences382

due to the LES code can be evaluated in this case. Table 2 lists the parameters used in383

these simulations. Because the smooth case has the additional adjustable parameter Zλ for384

viscous cutoff, simulations with Zλ = 100, 120 and 140 for Reτ = 590 were performed to385

demonstrate the sensitivity of the model to this parameter.386

The last case evaluated here corresponds to a rough channel with additional roughness387

modeled by a drag force. This simulation is compared to data measured within and above388

a maize field by Gleicher et al. [34] during a 7-hour period of approximately neutral atmo-389

spheric conditions (without significant static stability effects). In this case, the maize field is390
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Table 1: Simulation parameters for LES with ODT in the rough channel case (δ = 1 and u∗ = 1) and
maize field case (δ = 342 m, u∗ = 1 and h = 2.1 m). For the rough channel case, the same simulations
were performed for LES with log-law wall model and LASD SGS model, for the following grid points:
Nx × Ny × Nz = 2563, 1283, 643, in addition to a simulation of LES with PASI SGS model and 643 grid
points. For the maize field case, a LES with log-law wall model was performed with the same parameters
below and z0 = 0.2 m.

rough channel maize field

domain size (X × Y × Z) 2πδ × 2πδ × δ 2πδ × 2πδ × δ
number of grid points (Nx ×Ny ×Nz, NODT) 64× 64× 64, 8 64× 64× 64, 32

64× 64× 64, 16
64× 64× 64, 32
64× 64× 64, 64
64× 64× 64, 96

128× 128× 128, 32
mean pressure gradient force (Fi = 〈(1/ρ)(dp/dx), 0, 0〉) 〈u2

∗/δ, 0, 0〉 〈u2
∗/δ, 0, 0〉

roughness height (z0) 1× 10−4 δ 3× 10−5 δ
simulation time step (∆t) 0.0002 δ/u∗ 0.0002 δ/u∗
number of simulation time steps (Nt) 100 000 100 000
total simulation time (eddy turnover times = δ/u∗) 20 20
eddy rate distribution parameters (Cλ, Zλ) 14, 0 15∗, 0

15∗, 0
16, 0

∗best Cλ value.

Table 2: Simulation parameters for LES with ODT in the smooth channel cases, in which δ = 1 and u∗ = 1.
Similar simulation of LES with log-law wall model were performed, with z0 = ν/7.77uτ .

Reτ = 590 Reτ = 5200

domain size (X × Y × Z) 2πδ × 2πδ × δ 2πδ × 2πδ × δ
number of grid points (Nx ×Ny ×Nz, NODT) 32× 32× 16, 32 128× 128× 128, 32
mean pressure gradient force (Fi = 〈(1/ρ)(dp/dx), 0, 0〉) 〈u2

∗/δ, 0, 0〉 〈u2
∗/δ, 0, 0〉

simulation time step (∆t) 0.00025 δ/u∗ 0.000125 δ/u∗
number of simulation time steps (Nt) 100 000 200 000
total simulation time (eddy turnover times = δ/u∗) 25 25
eddy rate distribution parameters (Cλ, Zλ) 15, 100 15, 120∗

15, 120∗

15, 140
∗best Zλ value.

simulated by the ODT in “large-eddy mode”, and the first LES grid point is located at 3.8h391

(h = 2.1 m is the canopy height). This simulation is also compared to LES results obtained392

by Pan et al. [24], in which the canopy was directly modeled by the LES with the same393

drag-force formulation (canopy-resolving LES). See simulation parameters in Tab. 1.394

In all cases tested here, the LES code is initialized with a logarithmic profile in the395
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streamwise direction and zero velocity in speanwise and vertical directions, plus a uniformily396

distributed random fluctuation between zero and one in the three velocity components. All397

results presented in next section correspond to the average of the last six eddy turnover times398

of the simulations. Note that in the LES-ODT results, we chose to omit the first LES grid399

from the figures because it comes directly from the ODT, which represents the true velocity400

with small scales fluctuations (LES and ODT results are not equal because the LES value is401

an integral of the entire ODT domain, not the value of the ODT at the LES grid point).402

4. Results403

In this section, we use the rough channel case to evaluate LES results using log-law and404

ODT wall models, for different SGS models. After establishing the superiority of the LES-405

ODT with the LASD SGS model, we show that this approach is also appropriate for smooth406

channel simulations without the need of specific adjustments, except for the ODT viscous407

parameter. Finally we use the simulations of the maize field to discuss the possibility of408

using the ODT to incorporate complex near-surface physics that cannot be directly resolved409

in the LES in a large domain setup. A discussion regarding the computational cost and410

potential trade-off when using LES-ODT is provided at the end of the section.411

4.1. Rough channel412

The first consequence of the use of ODT directly observed at the beginning of the sim-413

ulation is the early onset of turbulence. With the log-law wall model, turbulence starts414

after several thousands time steps, when local instabilities form close to the wall and spread415

through the horizontal domain, and then gradually grow in the vertical direction. With416

ODT, small-scale turbulence-like fluctuations start at the very beginning of the simulation,417

anticipating the onset of turbulence in the simulation to the initial time steps. This is due418

to the stochastic nature of the ODT, i.e., it is a consequence of the random fluctuations419

also present in the lower boundary condition in addition to the initial condition. Figure 2420

shows a snapshot of rough-channel simulations with log-law and ODT wall models, for the421

LASD case. In the LES-ODT coupling, there is an instantaneous match between the two422

velocity fields, creating an additional region closer to the wall where turbulent structures423

can be resolved.424

Figure 3 presents the vertical profiles of mean velocity, variances and total stress for the425

simulation with PASI and LASD SGS models, with log-law and ODT wall models. For the426

PASI case, using ODT improves the mean streamwise profile, correcting the underestimation427

in the logarithmic region (Fig. 3a). For all other statistics evaluated, results with log-law428

and ODT are similar, except for the variance of spanwise and vertical velocities close to the429

wall, which reduces (significantly in the spanwise case) when ODT is used (Fig. 3c,d). The430

difference in the first two grid points for the SGS and resolved stresses (Fig. 3e,f) is due to431

the implementation of the ODT momentum flux, which enters the LES as a SGS stress, but432

corresponds to the total stress at these locations. Because of that, the resolved stress at433

z = ∆z should be assumed zero by construction, although numerically it is different from434

zero (see discussion in Appendix B).435

Figure 4 shows the sensitivity of the results to the Cλ parameter of the ODT eddy436

probability distribution, for the LASD case. The choice of Cλ = 15 was obtained by trial-and-437
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Figure 2: Snapshots of the streamwise velocity in the streamwise and vertical directions of rough channel
case (LASD, Cλ = 15): LES + log-law with (a) 2563 and (b) 1283 grid points, and (c) LES-ODT with
N = 1283 and NODT = 32.
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Figure 3: Results of LES-ODT (LES as open circles, ODT as filled circles) for the rough channel case and
N = 643, NODT = 32: (a, b) mean streamwise velocity, (c, d) variances of streamwise (black), spanwise (blue)
and vertical (red) velocities, and (e, f) SGS (blue), resolved (red) and total (black) stress. Left column is
PASI and right column is LASD SGS models. Gray lines correspond to LES + log-law and the same SGS
models.
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error, and its variation from 14 to 16 creates a small variation in the results. A reduction in Cλ438

causes a small overestimation of the velocity compared to the log-law, and a small increase in439

the horizontal variances, due to a reduction on the appropriate amount of stochastic eddies .440

The opposite trend is caused by an increase in Cλ.441

The most clear evidence of the impact of ODT in the LES is in the energy spectra.442

Figures 5 and 6 compare the one-dimensional spectra of all three velocity components be-443

tween log-law and ODT wall models, for PASI and LASD SGS models respectively. For the444

streamwise velocity, as discussed by Bou-Zeid et al. [8], PASI + log-law causes underdissi-445

pation close to the wall, resulting in a spectra with a slope flatter than the expected k−1 in446

the production range (Fig. 5a), which is significantly improved in the LASD + log-law case447

(Fig. 6a). For the spanwise and vertical velocities, however, both models yield spectra with448

underdissipation in the production range (Figs. 5c,e and 6c,e). The use of the ODT im-449

proves the production range behavior in all velocity components for both SGS models. The450

significant improvement in the spanwise velocity spectra (Figs. 5d and 6d) indicates that the451

reduction in spanwise velocity variance close to the wall (Fig. 3c,d) is likely an improvement452

caused by the ODT. The decrease in vertical velocity variance is also clear in the spectra453

closer to the wall. If we take the standard combination PASI + log-law as the reference454

case, improving the wall model alone (i.e., PASI + ODT) yields better near-wall spectra455

than improving the SGS model alone (i.e, LASD + log-law). As expected, the combination456

LASD + ODT produces the best results.457

Although the LES + log-law results for spanwise variance has been published before (for458

example by Bou-Zeid et al. [8] and Stevens et al. [35] for this same code), its overestimation459

has not yet been discussed, to the best of our knowledge. One possible cause for this460

overestimation is the type of boundary condition used, as indicated by the study of Bae461

et al. [36]. In their wall-modeled channel flow simulation, the Neumann boundary condition462

provided the highest value for streamwise and spanwise variances in the first above-wall grid,463

compared to no-slip and slip boundary conditions. Although not exactly equal to the one464
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Figure 5: One-dimensional spectra of (a,b) streamwise, (c,d) spanwise and (e,f) vertical velocity, for z/Z
from 0.008 to 0.5. Left column: PASI + log-law, right column: PASI + ODT. Results of PASI + log-law
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Figure 6: Same as Fig. 5 for LASD SGS model.
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used in their study, the log-law is a type of Neumann boundary condition, and in our case465

a similar profile with a peak in the first grid was obtained. Sagaut [15, sec. 10.2.3] also466

mentions the issue of unphysical overshoots in the turbulence intensities near the wall for467

wall-modeled LES, which are caused by large spurious streaky structures that can be caused468

by a combination of mesh size and numerical methods. In the wall-resolved case of Bae469

et al. [36] using the no-slip boundary condition, a grid refinement allowed the formation,470

break-up and meandering of smaller streaks, improving the turbulence intensity statistics.471

A similar improvement is likely being provided by the wall-refined LES-ODT simulation472

compared to the LES + log-law, which has larger streaky structures (Fig. 7). Furthermore,473

in addition to mesh size and boundary condition, the wall blockage effect can cause the474

splatting of turbulent eddies coming from the outer part of the boundary layer, which can also475

be impacting the streaky structures [15, 36]. Bae et al. [36] observed an improvement when476

using the slip boundary condition with transpiration. Sagaut [15] mentions the possibility of477

use of random noise to scramble the spurious streamwise vortices, which is likely also being478

achieved by the stochastic nature of the ODT.479
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Figure 7: Wall-parallel snapshots of streamwise velocity at the second LES grid point in the rough channel
simulations with 1283 grid points.

Figure 8 shows flow statistics for different combinations of grid points in the ODT (from480

8 to 96, with LES grid fixed at 643) and in the LES (643 and 1283, with ODT grid fixed481

at 32). The final values of ∆t/∆tODT were 15, 15, 30, 60, 120 for NODT = 8, 16, 32, 64, 96482

respectivelly, indicating that the smaller the ∆zODT, the smaller the scale of the smallest483

stochastic eddy and therefore a smaller ∆tODT is required, as expected. A convergence in484

the mean velocity profile for ODT grid points equal to 32 or more (Fig. 8a,c) indicates the485

success of the ODT SGS model (the small variability observed in the streamwise variance is486

intrinsic to the LES model). Howerver, for NODT = 16 and 8, the stochastic eddies in ODT487

are likely not well resolved, resulting in an overestimation of the mean streamwise velocity488

in the LES domain (Fig. 8a) Therefore, a minimum of NODT = 32 is recommended and will489

be used throughout this study. The mean streamwise velocity is unaffected by the change in490

LES resolultion (Fig. 8b), and the difference observed in velocity variances are also intrinsic491

to the LES (Fig. 8d, LES + log-law for N = 1283 is also shown for comparison), a feature492

that is not impacted by the ODT.493
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4.2. Smooth channel494

Figure 9 shows the statistics of the smooth channel simulations using the LASD SGS495

model. In these simulations, the first LES grid is in the transition between the viscous496

and the logarithmic layer, which is not captured by the LES+log-law by construction, as it497

assumes that the first LES grid point is in the logarithmic region. With the ODT wall model,498

on the other hand, there is no restriction on the distance of the LES grid points from the499

wall. They are similar to DNS results for both Reτ = 590 and 5200, using the same rough-500

channel parameter Cλ = 15, and selecting the second ODT parameter Zλ = 120 (the viscous501

cutoff parameter) by trial-and-error. Variances in the ODT part of the simulation begin502

correctly in the viscous sublayer but evolve to a wrong shape and values around the peak,503

which was also observed in by Schmidt et al. [14]. Overall, variances in ODT stand-alone504

model have wrong values but the correct order of magnitude and overall behavior [18], which505

is also observed in LES-ODT. Some improvement in ODT variances when forced by LES,506

compared to ODT stand-alone, is discussed by Schmidt et al. [14]. Notice that the variances507

in LES are not impacted by ODT (they are similar to the LES + log-law results), except508

close to the wall especially for the spanwise variance, as observed in the rough-channel case.509

The ODT viscous stress is similar to DNS values, and stochastic eddies emulate the Reynolds510

stress in the viscous and buffer sublayers. The sum of them gives the correct total stress,511

which matches the linear profile in both ODT and LES parts, indicating a well developed,512

steady-state simulation.513

The sensitivity of the simulation to the Zλ parameter is small. By changing Zλ from514

100 to 140 there is a small change in mean streamwise velocity and variances (Fig. 10), and515

an almost imperceptible increase in the total stress at z = ∆z, indicating the beginning516

of a deviation from the linear profile due to a Zλ value that is too large (not shown). In517

comparison to the original LES-ODT coupling by Schmidt et al. [14], the smooth-channel518

results presented here are qualitatively similar with small differences likely due to differences519

in the LES codes.520

4.3. Rough channel with drag force521

In this section we analyse the LES-ODT simulation of a rough channel with an additional522

roughness modeled by a drag force close to the surface, comparing it with field data measured523

in a maize field during approximately neutral stability conditions [34]. This is an interesting524

case because there is both LES and ODT stand alone canopy-resolving simulations of the525

same case in the literature, by Pan et al. [24] and Freire and Chamecki [18], respectively. The526

same drag force model was used in all of these simulations, as proportional to the measured527

leaf area density and the square of the local velocity, with a constant drag coefficient. We528

note that Pan et al. [24] presents results with both constant and variable drag coefficients, the529

latter being closer to the field data, as it models the canopy ability to bend and reconfigurate.530

However, because the variable drag coefficient approach did not work in the ODT (it worsen531

the results [18]), we chose to reproduce here only the constant drag coefficient results from532

the LES canopy-resolving study, in order to obtain a direct comparison with the LES-ODT533

approach.534

Statistics of the flow within and right above the canopy are similar to the ones obtained by535

ODT stand alone [18]. The mean velocity profile displays the correct shape when compared536

to field observations, despite overestimation (underestimation) within (above) the canopy537
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Figure 9: Results of LES-ODT (LES as open symbols and ODT as filled symbols) for the smooth channel
case (LASD SGS model): (a, b) mean streamwise velocity, (c, d) variances of streamwise (black), spanwise
(blue) and vertical (red) velocities, and (e, f) SGS (blue), resolved (red) and total (black) stress. Left and
right panels correspond to Reτ = 590 and 5200, respectively. Gray lines correspond to LES + log-law. Black
lines correspond to DNS results by Moser et al. [33] (left panels) and Lee and Moser [32] (right panels), and
in (e, f) it corresponds to the viscous stress (dotted lines), Reynolds stress (thin lines) and total stress (thick
lines).

23



4

8

12

16

20

24

28

100 101 102 103
0

2

4

6

8

10

100 101 102 103

u
/
u
∗

zu∗/ν

Zλ = 140
120
100

DNS

(a)

σ
2 w
/
u
2 ∗

σ
2 v
/
u
2 ∗

σ
2 u
/u

2 ∗

zu∗/ν

(b)

Figure 10: Sensitivity of simulation to Zλ for the smooth channel case, LES (open circles) and ODT (filled
circles): (a) mean streamwise velocity, (b) variances of streamwise (top), spanwise (middle) and vertical
(bottom) velocities. Simulations with Zλ = 120 (red), 98 (black) and 80 (blue). Grey lines correspond to
DNS results by Moser et al. [33].

(Fig. 11a). Also similarly to ODT stand alone, velocity variances are underestimated above538

the canopy in the horizontal directions and underestimated both within and above the canopy539

in the vertical direction (Fig. 11b–d). This correspondence of flow statistics provides an540

opportunity to use the ODT stand alone model as a first test to estimate the potential of the541

LES-ODT coupling in representing near-wall features that are of interest for a given study.542

An interesting result to notice is the skewness of streamwise (Sku) and vertical (Skw)543

velocities within the canopy, as they are a signature of the mixing-layer type vortices present544

in canopy flows [37]. By itself, ODT is able to produce a Sku profile with the correct sign545

and order of magnitude in the upper canopy (similar to Fig. 11), but it cannot produce Skw546

different from zero [18]. This is because in ODT the vertical velocity is simulated as a separate547

“scalar field”, only connected to the streamwise velocity by the energy redistribution term548

(the only cause of the non-zero variances of spanwise and vertical velocities in ODT channel549

flows). The value of Sku, on the other hand, is a consequence of the inflection point in the550

streamwise velocity at canopy top. The non-zero value of Skw obtained in the LES-ODT551

simulation (Fig. 11h) is a clear evidence of the improvement in vertical velocity dynamics552

in the ODT driven by the LES. We note that the same value of Skw is obtained even if a553

one-way coupling is performed, i.e., in a simulation in which LES + log-law is used to drive554

ODT, but no ODT information is passed to LES (not shown). This means that this Skw555

value is a result of the near-wall three-dimensional dynamics of the LES flow, even if the556

LES does not “know” about the local inflection point caused by the drag force. We also note557

that in the canopy-resolving LES the value of Skw is smaller than in the field data (Fig. 11h),558

indicating that this dynamics of the flow is difficult to be captured even in LES. This result559

reinforces the ODT ability in capturing some important flow characteristics when driven by560

the LES.561

For the remaining of the domain above the canopy, the LES-ODT results are similar to562

LES + log-law with an enhanced roughness height parameter (Fig. 12), with the exception of563

24



0

1

2

3

4

5

0 3 6 9

(a)

0 1 2 3

(b)

0 1 2 3

(c)

0 0.5 1 1.5

(d)

0

1

2

3

4

5

0 0.4 0.8 1.2

(e)

0 1 2 3 4

(f)

−1 0 1

(g)

−2 −1 0

(h)

z/
h

u/u∗ σu/u∗ σv/u∗ σw/u∗

z/
h

τ /(ρu2∗) Sku Skv Skw

ODT
LES

Pan et al.
data

Figure 11: Results of LES-ODT (LES as open circles and ODT as filled circles) for the channel with maize field
looking close to the canopy region (h = 2.1 m is the canopy height): (a) mean streamwise velocity, variances
of (b) streamwise, (c) spanwise and (d) vertical velocities, (e) total stress and skewness of (f) streamwise,
(g) spanwise and (h) vertical velocities. Orange lines correspond to LES canopy-resolving simulation by Pan
et al. [24] and crosses correspond to field data from Gleicher et al. [34].

25



0

40

80

120

160

0 5 10 15

(a)

0 1 2 3

(b)

0 1 2 3

(c)

0 0.5 1 1.5

(d)

0

40

80

120

160

0 0.4 0.8 1.2

(e)

0 1 2 3

(f)

−1 0 1

(g)

−1 0 1

(h)

0 1 2
z/
h

u/u∗

LES + ODT
LES + log-law

Pan et al.
data

σu/u∗ σv/u∗ σw/u∗

z/
h

τ /(ρu2∗) Sku Skv Skw

Figure 12: Same as Fig. 11 for the entire vertical domain.

the spanwise velocity near the wall as observed in previous cases. Finally, it is important to564

point out that any canopy-resolving LES, as performed by Pan et al. [24], has a computational565

cost that restricts the domain size significantly (see the size of the domains in Fig. 12 for566

comparison). Despite the additional computational cost, the LES-ODT coupling allows a567

bigger domain, which can be useful in studies of the entire atmospheric boundary layer with568

important near-wall phenomena.569

4.4. Computational cost570

As discussed in details by Schmidt et al. [14], the computational cost of the ODT is highly571

variable. It depends not only on the number of ODT models (Nx × Ny) and the number572

of ODT grid points (NODT), but it also depends on the intensity and scales of turbulence573

being simulated by ODT, which impacs the number of ODT time steps within one LES574

time step (∆t/∆tODT). In their study, the computational cost of the smooth channel flow575

(which is a “wall-resolved” case) was estimated as scaling with Re2.3
τ approximately. Fig. 13576

provides the CPU time spent in the rough-channel simulations, which is “wall-modeled” and577

does not scale with Reτ (the simulation of maize field has a similar computational cost).578

To avoid differences across specific runs due to the instability of the cluster, the CPU time579

was estimated as the ensamble average of 3 realizations of 100 time steps at the end of each580

simulation. The computational cost of the LES-ODT with NODT = 32 (∆t/∆tODT = 30)581

is about one order of magnitude higher than the LES + log-law with the same resolution582

(Fig. 13a), showing that the ODT part corresponds to the majority of the computational cost583

of the simulation. As a consequence, the cost also increases significantly when increasing584
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NODT to 64 (∆t/∆tODT = 60) and 96 (∆t/∆tODT = 120) (Fig. 13a), which is caused not585

only by the increase in NODT but alse the decrease in ∆tODT. By increasing Nx = Ny = Nz586

from 64 to 128, the increase in LES-ODT computational cost has a slightly lower rate than587

LES + log-law. The decrease in cost per processor, on the other hand, has a slightly higher588

rate compared to LES + log-law (Fig. 13b), indicating that the parallelization of the ODT589

was sucessful. Therefore, LES-ODT provides a good scalability for larger domains.590

The LES-ODT cost is significantly high compared to LES alone. However, for a LES591

code with fixed-grid, this approach provides a high-resolution flow close to the wall with an592

affordable computational cost, representing an alternative for studies in which the flow in593

the first LES grid needs high resolution, but not in the remaining LES domain. To provide594

a visualization of this potential trade-off, we compare the simulation of LES-ODT with 1283
595

grid points and NODT = 32 with LES + log-law of 1283 and 2563. Note that the LES-ODT596

has a computational cost in between the two LES + log-law’s (Fig. 13a), and that the LES597

+ log-law with 2563 needs to run with half ∆t and double number of time steps due to598

the grid refinement. Figure 2 shows an example of snapshots of these simulations. It is599

clear that the LES-ODT reproduces the overall flow scales of the LES + log-law with the600

same resolution, but near the wall it also provides addtional representation of small scales601

comparable to the LES with higher resolution. Figure 14 compares the one-dimensional602

spectra at the same heights, in which the same benefits discussed in Sec. 4.1 are still present,603

especially the improvement in spanwise spectra near the wall. While in the LES + log-law604

with 2563 the lowest available flow fields are at z/Z = 0.002 and 0.006, in the LES-ODT one605

would have in this case instantaneous flow from z/Z = 0.00025 to 0.008 at 0.00025 intervals606

(see Fig. 2). Figure 15a compares a snapshot of the streamwise velocity in the wall-parallel607

layer at z/Z = 0.002, showing that LES-ODT captures some important features of the flow,608

such as the overall shape and intensity of turbulence structures. Furthermore, away from the609

wall the flow is dominated by large-scale structures, and the gain in flow resolution is likely610

less relevant (Fig. 15b). Therefore, despite its high computational cost for a wall model,611

LES-ODT might be seen as an alternative approach for near-wall resolution, which can be612

useful for studies in which a instantaneous flow field near the wall is required, such as canopy613
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flows and sediment transport.614

5. Summary and conclusions615

In this study, we develop a new stochastic wall-model based on the “large-eddy” version616

of ODT, testing it for rough and smooth channel flows. An extensive discussion regarding617

the ability of ODT in representing turbulent flows is provided in the original study of LES-618

ODT coupling [14] and in several others ODT stand-alone studies [16, 17, 18], and it can be619

summarized as follows. In general, ODT provides a useful representation of a non-equilibrium620

turbulent flow in one dimension, with one adjustable parameter (or two if a viscous sublayer621

is resolved) that has a value in the order of 10 (viscous parameter in the order of 100), but622

that can be tuned for a specific benchmark result before extrapolating to blind test scenarios,623

including different Reynolds number, domain size and model resolution. This parameter is624

tuned to adjust the mean flow, providing variances that are not strictly correct, but that625

typically has the correct overall shape and order of magnitude. In the example of channel626

flow, the parameter is adjusted to match the log-law behavior, and it is valid for smooth and627

rough channels, in addition to the atmospheric boundary layer under different conditions628

(such as different atmospheric stabilities [18]). When coupled to LES, ODT behaves as a629

wall model that not only improves the LES flow field close to the wall, but also provides a630
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Figure 15: Snapshots of the streamwise velocity in the horizontal plane at z/Z = 0.002, for (a,c) LES +
log-law with N = 2563 and (b,d) LES-ODT with N = 1283, NODT = 32.

near-wall vertically-refined instantaneous flow field that can be useful in many applications.631

Due to its formulation based on the diffusion equation, other variables can be incorporated632

to the ODT and coupled to the LES in a similar way to what is typically done in LES alone633

(including temperature and scalar concentration, buoyancy effects, sources and sinks, and634

so on).635

From the results presented here, two important conclusions can be drawn: (i) replacing636

the wall model from the log-law to ODT improves the energy spectrum for both SGS models637

tested here (PASI and LASD). Near the wall, the improvement is in the entire range of638

resolved scales (not only in the smaller scales), producing a much clearer k−1 scaling in the639

production range. For the PASI case, the improvement also fixes the mean velocity gradient640

mismatch present when the log-law boundary condition is used. Therefore, coupling ODT641

makes the flow field of LES in the first grid points more realistic than using the log-law.642

(ii) If we take the traditional dynamic model (PASI) as a reference, using ODT as a wall643

model is more advantageous than improving the SGS model to LASD. Nevertheless, the use644

of LASD and ODT can be useful for the study of heterogeneous problems, since it does not645

rely on planar averages as the original PASI method.646

Overall, the decision of using the LES-ODT approach should focus on the balance between647

the advantages of ODT and its computational cost. Currently, most of the LES-ODT cost648

comes from the ODT alone. Because this study did not focus on numerical performance,649

this is an aspect that has room for future improvement. Note that the spectral method is650

not required for the LES-ODT approach per se, it is specific for the LES code used in this651
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study. Future studies could test this approach using different codes, including other versions652

of the ODT model such as with an adaptative mesh and cylindrical/spherical formulations653

[38]. Regarding its advantages, the LES-ODT coupling may provide an useful alternative654

for studies that rely significantly on the turbulence near the wall, and that cannot afford to655

perform the grid refinement necessary in LES alone. It is particularly encouraging given the656

improvement in spanwise and vertical velocity dynamics of the ODT driven by the LES, as657

evidenced by the presence of vertical velocity skewness within the canopy simulated by the658

ODT, which cannot be achieved by the ODT stand-alone model. Furthermore, ODT stand659

alone can be used beforehand to assess the ODT ability in represent the phenomenon of660

interest. Note that the overall behavior of the ODT is not expected to be LES-dependent, it661

is similar to its stand-alone results, with some improvement related to the large-scale forcing662

(see the ODT versus LES-ODT comparison in Schmidt et al. [14]). For a comparison to663

other types of wall models, the reader is also referred to a detailed discussion present in664

Schmidt et al. [14].665

Examples of studies that can benefit from the LES-ODT coupling are environmental666

and geophysical flows with relevant near-wall dynamics, such as the atmospheric boundary667

layer in the presence of canopy, sediment transport in the atmosphere and rivers, snow drift,668

and many others. Because each ODT behaves as an independent model, whose domain is669

a horizontally-homogeneous sub-domain (affected by large-scale advection), each ODT can670

also be used to represent horizontal heterogeneity at the surface, such as the presence of671

different obstacles, surface roughness, and so on. The model might be particularly relevant672

for studies with convective turbulence, as they typically require large domains needed to673

simulate the large-scale turbulence structures. Therefore, the next step will be to implement674

and test buoyancy effects in the LES-ODT coupling, in addition to an effort in reducing its675

computational cost.676
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Appendix A.684

The size of the overlap region is one of the parameters that impact the result of the685

LES-ODT coupling. Ideally, it should provide the appropriate transition between the sizes686

of the largest stochastic eddies in ODT and smallest resolved eddies in LES. In the original687

study, Schmidt et al. [14] tested the effect of this parameter and found that lmax = 3.5∆z688

was an appropriate size for the largest stochastic eddies. We reproduced this result in our689

code to ensure that their finding is consistent, which is presented in Fig. A.16. As in the690

original study, the changes in the mean velocity when varying lmax from 2.5 to 3.5 are larger691

than when changing lmax from 3.5 to 4.5 ∆z, indicating that for 3.5∆z provides some sort692

of saturation level and is therefore the appropriate value.693
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Appendix B.694

An important detail of the LES-ODT coupling regarding the LES resolved and SGS695

momentum fluxes deserves clarification. By construction, the LES stresses at the wall and696

at z = ∆z (top of the lowest grid) come from ODT only. Because they enter as SGS stresses,697

the resolved stress at those points should be zero (as shown in Fig. 3c,f). However, because698

LES velocities at the lowest LES grid comes from ODT through the averaged ODT velocities699

ṽi, the covariance ṽi=1,2ṽ3 is actually different from zero at z = ∆z. This is a consequence700

of the estimation of ṽ3 from ṽi=1,2 to enforce continuity (Eq. 15). In order to ensure that701

the ODT stress is the total stress, this non-zero resolved stress in the LES is not used in702

the calculation of the resolved advection term (as if it was zero). This causes the simulation703

equilibrium to be achieved with a stress that has a local peak at z = ∆z (see Fig. B.17).704

But the real equilibrium stress “known” to the LES is the linear one presented in Fig. 3,705

which is obtained by assuming ṽi=1,2ṽ3 at z = ∆z equal to zero in the plot. If this non-zero706

value is taken into account by the LES advection calculation, the equilibrium simulation is707

different from the log-law due to a mismatch between the velocity and stress imposed in the708

LES from the ODT.709

Another consequence of this non-zero ṽi=1,2ṽ3 at z = ∆z is that the value of the resolved710

stress (or Leonard stress) Lij of the dynamic model is non-zero at z = ∆z when it should711

be zero. For the PASI SGS model this is not an issue because this value would only impact712

the velocity field in the first grid (due to the planar averaging approach), but this velocity713

is replaced by the ODT value. For the LASD SGS model, on the other hand, this value can714

influence the velocity field in other heights due to the Lagrangian averaging, therefore it has715

to be set to zero in order to generate the correct SGS modeling.716
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