
Journal of Parallel and Distributed Computing 158 (2021) 56–66

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

A module-based introduction to heterogeneous computing in core 

courses

Apan Qasema,∗, David P. Bunde b, Philip Schielke c

a Texas State University, San Marcos, TX, United States of America
b Knox College, Galesburg, IL, United States of America
c Concordia University Texas, Austin, TX, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 October 2020
Received in revised form 17 March 2021
Accepted 18 July 2021
Available online 4 August 2021

Keywords:
Heterogeneous computing
Module-based instruction
Pedagogy

Heterogeneous architectures have emerged as a dominant platform, not only in high-performance 
computing but also in mobile processing, cloud computing, and the Internet of Things (IoTs). Because the 
undergraduate computer science curriculum includes so many topics, adding a new course as a required 
part of the curriculum without increasing the number of hours to graduation is difficult. Integration of 
heterogeneous computing requires a module-driven approach in which coverage of the topics is broken 
down into smaller units and dispersed throughout the curriculum. The module-driven approach has been 
successfully implemented in introducing parallel and distributed computing concepts.
In this paper, we present a set of four teaching modules that introduce fundamental concepts in 
heterogeneous computing in lower-division computer science courses. The goal of these modules is not 
to teach students how to program heterogeneous systems but rather to expose them to this emerging 
trend and prepare them for material in future classes. Although concepts are covered at a high level, 
the modules emphasize active learning and include lab assignments that provide students with hands-
on experience. We also present initial evaluation results for two of these modules based on their use 
in undergraduate courses at Texas State University. The results are quite encouraging both in terms of 
learning outcomes and student engagement and interest.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

The need to increase performance per watt coupled with the 
demands of processing diverse workloads has triggered a major in-
dustry shift towards heterogeneous computing systems. Integration 
of high-performance CPUs with energy-efficient GPUs is now com-
mon in all classes of HPC systems. Architectural heterogeneity has 
also permeated other computing domains such as mobile process-
ing, cloud computing, and the Internet of Things (IoTs). Given this 
proliferation of heterogeneous architectures, arming computer sci-
ence graduates with the requisite skills to program these complex 
systems is imperative.

Current undergraduate computer science (CS) curricula have yet 
to catch up with this emerging phenomenon and lack sufficient 
coverage of heterogeneous computing (HC) concepts. Heterogene-
ity is covered only as an upper-level elective and that too primarily 
at R1 institutions. Needless to say, including HC as a required part 

* Corresponding author.
E-mail addresses: apan@txstate.edu (A. Qasem), dbunde@knox.edu (D.P. Bunde), 

Philip.Schielke@concordia.edu (P. Schielke).
https://doi.org/10.1016/j.jpdc.2021.07.011
0743-7315/© 2021 Elsevier Inc. All rights reserved.
of the curriculum can be challenging. Given credit-hour restric-
tions and the typically large number of required courses in current 
CS/CE curricula, adding a new required course is generally not fea-
sible without increasing the time to graduation. Furthermore, HC is 
important in diverse areas such as programming, algorithms, and 
architecture so it is better covered in multiple courses rather than 
a single course.

In this paper, we present four modules for teaching funda-
mentals of heterogeneous computing to computer science majors 
during the first two years of their undergraduate study. Table 1
lists the modules along with courses in which we recommend 
they be introduced. All four modules were developed under the 
NSF-funded ToUCH project for integrating heterogeneous comput-
ing concepts in the undergraduate curriculum [29,26]. The ToUCH 
initiative attempts to integrate HC content using the early-and-
often approach. The strategy is to develop modules that provide 
broad coverage of HC topics and inject them into several courses 
across the curriculum in a way that creates significant coverage of 
HC concepts along every path through the major. The enhanced 
curriculum is complemented with synergistic activities that in-
clude out-of-class training camps, collaborative design with indus-

https://doi.org/10.1016/j.jpdc.2021.07.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.07.011&domain=pdf
mailto:apan@txstate.edu
mailto:dbunde@knox.edu
mailto:Philip.Schielke@concordia.edu
https://doi.org/10.1016/j.jpdc.2021.07.011


A. Qasem, D.P. Bunde and P. Schielke Journal of Parallel and Distributed Computing 158 (2021) 56–66
Table 1
Modules described in this paper. The module indices are derived from the area-
based indexing scheme adopted in the ToUCH project [30]. In the remainder of 
the paper, we use the index and the title alternatively to refer to the modules.

Index Title Recommended 
Course

A1 Heterogeneous Computing: Elementary Notions CS1
A2 Task Mapping on Soft Heterogeneous Systems CS1, CS2
A3 Pollack’s Rule as a Justification for Heteroge-

neous Computing
Computer
Organization

C1 Heterogeneous ISA: ARM vs MIPS Computer
Architecture

Table 2
Bloom’s Classification Levels [1,19] and depth of coverage of topics in the four 
modules.

Level Description Module

Knowledge [K] recognizing or remembering facts, 
terms, basic concepts

A1, A2, C1

Comprehension [C] demonstrating an understanding of 
facts and ideas by organizing and 
summarizing the main ideas

A1, A2, A3, C1

Application [A] solving problems in new situations 
by applying acquired knowledge

A2, A3

try partners, and faculty training. The four modules presented in 
this paper focus specifically on fundamental concepts to be cov-
ered in freshman- and sophomore-level courses.

The goal of these modules is not to teach students how to 
program heterogeneous systems but rather expose them to this 
emerging trend and prepare them for material in future classes. 
Considering the introductory nature of lower-division courses, top-
ics are covered primarily at the Knowledge level in Bloom’s taxon-
omy. At the same time, the modules emphasize hands-on training 
and active learning, with appropriate supporting tools, so that the 
learning outcomes do not become merely an exercise in memoriz-
ing HC terminology. Table 2 lists the Bloom levels and the depth 
of coverage of various topics across the four modules.

The modules can be implemented standalone or as part of a 
broader plan of integrating HC topics into the curriculum such as 
those undertaken previously for parallel and distributed comput-
ing [4,7]. All supporting material for the modules including lecture 
slides, handouts, software and tools for the lab assignments, and 
pedagogical notes are made available on a public Git repository as-
sociated with the ToUCH project [30].

2. Design principles

The design of the modules conforms to the three core principles 
advocated in the early-and-often approach of curricular integra-
tion.

(i) [Abstraction] Modules should introduce concepts at the appro-
priate level of abstraction: Prior research shows that exposing 
students to CS principles at the right level of abstraction 
is critically important. Introducing a concept at an inappro-
priate level or exposing students to multiple levels at once 
can hinder the students’ understanding of the concepts and 
reduce their ability to solve problems using the taught prin-
ciples [14,17]. The modules described in this paper cover HC 
topics that can be introduced at a high level of abstraction 
without revealing the complexities of the underlying hard-
ware. For example, Amdahl’s Law and its implications for 
parallel performance are discussed in the module on Elemen-
tary Notions. The concept of scalability and the significance 
of Amdahl’s Law can be taught without having the students 
57
learn how to code heterogeneous systems (or parallel sys-
tems for that matter).

(ii) [Context]Modules should provide “heterogeneous context” to key 
topics in existing curricula: Many theories and concepts cov-
ered throughout CS curricula can enhance a student’s com-
prehension of HC principles. When context is exploited, a 
module does not need to introduce completely new ideas but 
rather build on topics already being covered in the course. 
For instance, when covering process scheduling in an Operat-
ing Systems course, the notion of a processor can be replaced 
by a heterogeneous processing element. The module on Ele-
mentary Notions introduces heterogeneous program execution 
when explaining the Von Neumann model, which is a topic 
commonly covered in most CS1 courses.

(iii) [Adoption] Modules should be self-contained for easy adoption:
The modules are designed to be short (1-1.5 lecture hours) 
and self-contained. Instructor resources include lecture notes 
(including in-class demos and activities), lab assignments, 
sample exam questions and solutions, and pedagogical notes. 
When possible, the modules are language agnostic. Although 
they provide a textbook treatment of some material, the 
modules are not tied to any specific textbook. Each mod-
ule provides a collection of reference materials for instruc-
tors unfamiliar with topics covered. The lab assignments are 
designed to provide students with first-hand experience in 
investigating performance issues in heterogeneous systems.

3. Related work

A survey of undergraduate CS curricula at institutions of varied 
orientation (e.g., R1, masters, liberal arts) shows a distinct lack of 
coverage of heterogeneous computing concepts. The lack of cover-
age is more pronounced in standalone computer science programs 
than combined computer science and engineering programs. Many 
computer engineering programs include an upper-level elective in 
which part of the course relates to heterogeneous architectures and 
related concepts. For example, the Introduction to Biophysical Sys-
tems, an upper-level elective in the ECE program at University of 
Texas at Austin has a section dedicated to System on Chip (SoC) 
design [16]. The graduate program in Computer Science and En-
gineering at Washington University in St. Louis includes a course 
(CSE566S [15]) in which architecturally diverse systems are cov-
ered.

Such courses are rare in computer science departments. Surveys 
of undergraduate computer science programs at Washington Uni-
versity in St Louis [15], Brown University [3], Rice University [10], 
Concordia University Texas [12], and Concordia University Wis-
consin [5], for example, show no dedicated courses in HC. While 
Brown has extensive coverage of parallel computing at the un-
dergraduate level, Washington University offers only one optional 
course at the sophomore level, and Rice University has one re-
quired junior level class. The aforementioned Concordias have no 
dedicated courses in parallel computing.

Coverage of HC is typically limited to an advanced course in 
parallel programming. One or two weeks in such a course will be 
devoted to GPU computing (e.g. CS4380 at Texas State [23]). Given 
the time constraints, these segments of the course serve more as a 
tutorial for CUDA programming and do not have the opportunity to 
investigate the nuances of task-offloading and load balancing in a 
more general CPU-GPU heterogeneous environment. Heterogeneity 
of processing cores within a single CPU and its exploitation via 
dynamic voltage and frequency scaling (DVFS) is covered, in a few 
instances, as part of advanced computer architecture and compiler 
courses (e.g. [9]).

The CSinParallel collection includes several modules that men-
tion HC topics [11]. These modules are primarily designed to teach 



A. Qasem, D.P. Bunde and P. Schielke Journal of Parallel and Distributed Computing 158 (2021) 56–66
students CUDA programming and do not emphasize or expose stu-
dents to the underlying HC concepts. The Center for Parallel and 
Distributed Computing Curriculum Development and Educational 
Resources (CDER) boasts a large collection of teaching material for 
PDC [8]. Nonetheless, only two entries in the database cover the 
concepts of heterogeneity. One entry presents a computer organi-
zation course that integrates GPU CUDA programming for advanced 
CS students [6]. In the other entry, Gopalkrishnan [13] proposes 
that heterogeneous programming models should be included in 
advanced parallel computing courses.

4. Heterogeneous computing: elementary notions

Our first module introduces fundamental concepts in heteroge-
neous computing. Notions of concurrency, parallelism, and energy 
efficiency are discussed to explain the motivation behind the move 
towards heterogeneous processing. Different forms of heterogene-
ity are introduced including soft heterogeneity (i.e., difference in 
core compute capabilities within a multicore system), CPU-GPU 
heterogeneous execution, and System-on-Chip (SoC) design. The 
module also covers heterogeneity in workloads and data with ex-
amples from cloud computing and mobile applications. The mod-
ule concludes with a discussion of available programming tools 
and performance challenges in heterogeneous computing.

4.1. Context

This module is primarily intended for CS1/CS2 students. Al-
though the module introduces parallel computing concepts before 
moving on to processor heterogeneity, it is ideally suited for a 
course with some coverage of parallel computing material such as 
a CS1 course that incorporates a PDC module from [11], [8], or 
[22]. In the absence of PDC coverage, the length of this module 
will need to be increased or it will need to be combined with a 
PDC module.

4.2. Topics

The HC topics covered in this module are listed below. Bloom’s 
classification for each is shown in brackets. (K = Knowledge and C 
= Comprehension)

• Concurrency and Parallelism [K]
• Multicore Processors [K]
• GPU Acceleration [K]
• System-on-Chip [K]
• Energy Efficiency [K]
• Amdahl’s Law [C]

4.3. Learning outcomes

Having completed this module, students should be able to

1. describe the differences between a homogeneous and a hetero-
geneous computing system

2. describe and distinguish between different forms of heterogene-
ity

3. discuss the motivation behind the shift towards heterogeneous 
computing

4. recognize the importance of energy efficiency on current com-
puting systems

4.4. Lecture

The module is designed to cover the concepts in 1 to 1.5 lecture 
hours. In this section, we describe the progression of the lecture 
with notes on pedagogy.
58
4.4.1. Review of von Neumann architecture
The lecture begins with a review of the basic von Neumann ar-

chitecture. The main components of a von Neumann model and 
their role in computing are illustrated with an example of a desk-
top PC. Although perhaps not acquainted with the term itself, a 
typical CS1 student will be familiar with the fundamental orga-
nization of a computing system. A motherboard with a processor 
and memory module installed is passed around in the class to sup-
plement this discussion. We then introduce students to different 
classes of computing devices such as mobile processors and IoT 
devices. The following two points are emphasized

1. We need different types of computers to perform different 
tasks.

2. Although there are many different types of computing devices 
in use today, the fundamental organization of these devices re-
mains the same.

4.4.2. Parallel computing and its importance today
A set of lecture slides defines parallel computing and discusses 

its importance in today’s world. A high-level definition of a parallel 
computer is presented. The discussion of the definition of a paral-
lel computer is followed by some history of parallel computing. 
The point is made that parallel computing has been around for a 
long time, ever since the beginning of computing. Notwithstanding, 
it has only become mainstream in the last decade. Brief descrip-
tions of mainframes, vector computers, and clusters are presented. 
These descriptions are followed by a discussion of today’s multi-
core computers. The importance of energy efficiency and the role it 
has played in the evolution of computer chips and rise of multicore 
processors is discussed. The lecture slides emphasize the need for 
achieving higher performance at lower power consumption or at 
specified power budgets. The ubiquity of parallel computers is also 
discussed. Students are asked to guess/comment on the number 
of processing cores in their smartphones and tablets. Their guesses 
are then compared against actual numbers. A discussion follows on 
the need for more parallel processing cores.

4.4.3. Heterogeneous system design
The need for heterogeneous processors is then motivated using 

the mobile phone as a running example. Students are polled on the 
typical usage of their phones and tablets. This discussion is used 
to introduce the notion of a workload and how different programs 
within a workload may have different characteristics and differ-
ent demands for resources. A block diagram of a mobile processor 
is presented to illustrate how the demands of a diverse workload 
are handled on such a system with the deployment of a collection 
of heterogeneous processors. High-performance CPUs, low-power 
CPUs, and GPUs are illustrated on block diagrams and contrasted 
with the block diagram of a homogeneous desktop computer.

This example serves as a lead-in to the discussion of different 
forms of heterogeneity present in today’s computing systems. GPUs 
and their role in processing graphics and general-purpose work-
loads are discussed, followed by a description of CPU-GPU hetero-
geneous compute nodes. The notion of soft heterogeneity, process-
ing cores of varying operational frequency, is then introduced.

4.4.4. Sequential, parallel and heterogeneous program execution
A major portion of the module is spent introducing the students 

to the fundamental difference between sequential, parallel, and 
heterogeneous program execution. A walk-through example is used 
for this purpose. Fig. 1 shows a subset of the slides that are used 
to explain this topic. The slides are accompanied by a set of ex-
amples written in SimPar [27]. SimPar is a simple macro language 
that uses an intuitive pragma-based syntax. Two examples of Sim-
Par programs are shown in Fig. 2. Since students are generally not 



A. Qasem, D.P. Bunde and P. Schielke Journal of Parallel and Distributed Computing 158 (2021) 56–66

Fig. 1. Excerpts from lecture slides illustrating the differences in serial, parallel and heterogeneous program execution. Animation is used for the different blocks in the 
slideshow.
Fig. 2. SimPar code samples.

expected to be familiar with any parallel programming language 
in CS1, SimPar is an effective tool to discuss parallelism with real 
examples without getting bogged down in syntax minutiae. Sup-
plementary materials for this module include a SimPar parser that 
can be used to create other simple examples. The instructor should 
be aware that SimPar is not a realistic parallel language and is very 
limited in ability. Thus, it should not be used for creating extended 
examples beyond CS1.

During the walk-through of the example, students are asked to 
list the order in which the statements will execute on the proces-
sor. A parallel directive is then inserted for the two assignment 
statements and the meaning is explained to the students. The pro-
gram is then extended to include array assignments instead of just 
simple assignments. This program is compiled and executed and 
the result examined in class. Students are then asked to comment 
on what other statements could be parallelized. The instructor 
leads them to an example where the result statement is put in the
PARALLEL block along with the two assignment statements. This 
program is run, potentially several times, and the error demon-
strated to the students. The students are then asked to describe 
the problem in the code. This is followed by a discussion of data 
dependence and the challenges with parallel programming.
59
The code example is then extended to illustrate execution of 
a parallel program on a hypothetical heterogeneous system with 
a big.LITTLE configuration. The simple assignment statement is re-
placed with a more computation heavy statement (e.g., sqrt()). 
The parallel execution of the program on the big.LITTLE system is 
simulated with the computation-heavy statement mapped to the 
more power-efficient (i.e., LITTLE) core. Students are then asked 
about the performance implications of such a mapping. The in-
structor then leads them to the correct mapping in the ensuing 
in-class discussion.

4.4.5. Programming tools
Students are told that SimPar is not a real language. The syntax 

of real languages are more complex and so are the programming 
models. Some of the currently available parallel languages and 
APIs, including OpenMP, Pthreads, and MPI are presented. CUDA 
and OpenCL are singled out as languages/APIs that support pro-
gramming in heterogeneous systems.

4.5. Performance challenges

Time permitting, this module can include a section on the per-
formance challenges in parallel and heterogeneous systems. In par-
ticular, the notion of sequential and parallel speedup and efficiency 
can be introduced via examples, followed by a discussion on Am-
dahl’s Law and its performance implications on parallel computing 
systems. Note, in the author’s opinion, Amdahl’s Law as it pertains 
to heterogeneous processors, although important, is too advanced a 
topic and is not recommended for inclusion when using this mod-
ule for CS1 students.

5. Task mapping on soft heterogeneous systems

Our second module covers the concepts of task mapping and 
scheduling on single-ISA systems that embody soft heterogeneity. 
On such systems, differences in core compute capabilities are the 
result of differences in operating core frequency. The first part of 



A. Qasem, D.P. Bunde and P. Schielke Journal of Parallel and Distributed Computing 158 (2021) 56–66
the module begins with a brief review of the notions of concur-
rency, parallelism, and energy efficiency, which serves as a lead-
in to the discussion on the motivation behind the shift towards 
heterogeneous processing. Different forms of heterogeneity are in-
troduced including CPU-GPU heterogeneous execution and hetero-
geneity that arises in single-ISA systems.

The second part of the module begins with a discussion on 
workload heterogeneity with examples from mobile computing. 
The concepts of task mapping and scheduling on sequential and 
parallel systems are then reviewed to set the stage for the task 
mapping problem on soft heterogeneous systems. An in-class in-
teractive demo on a real system illustrates the performance and 
energy efficiency challenges of task mapping which factors in op-
erating frequency. The module is accompanied by a hands-on lab 
that reinforces these ideas.

5.1. Context

This module is primarily intended for CS2 students. Although 
the module introduces parallel computing concepts before moving 
on to processor heterogeneity, it is ideally suited for a course with 
some coverage of parallel computing material such as a course that 
incorporates a PDC module from [11], [8], or [22]. In the absence of 
PDC coverage, the length of this module will need to be increased 
or it will need to be combined with a PDC module.

This module can be combined with [Module A1] Heterogeneous 
Computing: Elementary Notions. In this case, the module can po-
tentially be used in a CS1 class such as a CS1 class designed for 
Honors students or one which provides a breadth-first introduc-
tion to computer science.

5.2. Topics

The HC topics covered in this module are listed below. Bloom’s 
classification is shown in brackets.

• Single-ISA Heterogeneity [K]
• System-on-Chip [K]
• DVFS and Soft Heterogeneity [K]
• Energy Efficiency [K]
• Heterogeneous Tasks and Workloads [K]
• Task Mapping and Scheduling [C]
• Tools for thread affinity and CPU frequency scaling [A]

5.3. Learning outcomes

Having completed this module, students should be able to
• discuss the motivation behind the design of heterogeneous 

computing systems
• recognize the importance of energy efficiency in current com-

puting systems
• explain how tasks in a workload have different demands for 

compute and memory resources
• describe the notion of task mapping as performed by an op-

erating system
• analyze the performance and energy effects of task mapping 

on a heterogeneous system

5.4. Lab

To reinforce student understanding of the concepts covered in 
the module, we designed a lab assignment that provides students 
with hands-on experience on a real heterogeneous system. In this 
lab, students conduct experiments with different classes of work-
loads on a heterogeneous multicore machine and investigate the 
power and energy implications of task mapping on such systems. 
The multicore system is configured such that each core operates 
60
at a different clock frequency (i.e., soft heterogeneity). The config-
uration is done using commonly available Linux tools, cpufre-
qutils and cpupower. Detailed instructions for the configura-
tion are made available as part of the instructor resources that 
accompany this module. The required hardware must be avail-
able at the instructor’s institution. However, all that is needed is 
a Linux-based, ssh-enabled multicore server with at least 4 cores. 
The pre-programmed workloads are also distributed as part of the 
instructor resources. The source code is written in C/C++ and can 
be built in a Linux environment with gcc 5.4.0 or above. The lab 
requires the students to have some basic familiarity with a Linux 
environment. A description of the lab handout is included in Ap-
pendix A.

6. Pollack’s rule as a justification for heterogeneous computing

Our third module uses high-level performance modeling to ex-
plain the motivation of multicore systems to include a heteroge-
neous collection of cores, as is common on small systems (e.g. cell 
phones) and on very high-end systems (e.g. the Xeon Phi and all 
the HPC systems with GPUs). The module was inspired by an ar-
chitecture paper by Morad et al. [21] that advocated for a diversity 
of core sizes to maximize performance under a power budget.

The module’s performance modeling relies on two rules. The 
first is Pollack’s Rule [25,2], which states that the performance of 
a core is proportional to the square root of its area. This is an 
empirically-observed relationship similar to Moore’s “Law”. An in-
tuitive justification is that increasing core area allows performance-
improving features such caching or more complicated logic (branch 
prediction, deeper pipelines, etc). The natural implication of Pol-
lack’s Rule is that increasing the number of cores improves perfor-
mance; splitting a single core into k smaller cores using 1/k of the 
area means that each of them provides only 1/

√
k as much perfor-

mance but that the peak performance of the system increases by a 
factor of k/

√
k = √

k. By this logic, processors should consist of as 
many tiny cores as possible.

Pushing back against this conclusion is the well-known Am-
dahl’s Law, which the module uses to calculate the performance of 
hypothetical workloads where a fraction of the work is arbitrarily-
parallelizable and the rest must be run serially. These calculations 
show that having cores with heterogeneous size (and hence het-
erogeneous performance) allows a processor to capture much of 
the benefit of using many tiny cores while also providing a large 
core to protect the performance on the workload’s serial compo-
nent.

The module fits into a single lecture, requiring 30–40 minutes 
to cover. It has a theoretical feel because the performance model 
is fairly abstract, with the only parameters being the core sizes 
and the percent of the program that is parallelizable. Followup 
homework and exam problems mirror those of lecture, asking stu-
dents to compute the performance for different parameter values. 
To help tie the module to students’ own experiences, we recently 
added a part where the results of a cell phone profiling tool are 
presented. The tool shows that the professor’s phone is multicore, 
with different speeds possible on each. (While this is a different 
kind of heterogeneity than that modeled in the module, power 
management exhibits a similar balancing act to the size issue we 
see in the module; single core performance is maximized by a sin-
gle fast core, but total peak performance is maximized by having 
as many slow cores as possible.)

6.1. Context

This module was developed as part of an introductory com-
puter systems course at Knox College. The course covers low-level 
programming in assembly and C, caching/locality, concurrency and 



A. Qasem, D.P. Bunde and P. Schielke Journal of Parallel and Distributed Computing 158 (2021) 56–66
parallelism, and security. The prerequisite course is CS 2, but most 
students take the course as sophomores, after 3–4 prior CS courses. 
Some of the students are more experienced; a couple each year are 
seniors in their second to last term.

The module comes about two thirds of the way through the 
course, following coverage of homogeneous parallel programming. 
In the homogenenous parallel programming part of the course, stu-
dents use pthreads and OpenMP to parallelize simple programs, 
resolving races in the pthreads version with mutexes. Prior lectures 
cover classic synchronization problems such as producer-consumer 
and readers and writers, as well as deadlock and some of the ways 
to avoid or resolve it. The module introduces and motivates het-
erogeneity in order to transition to a brief introduction to CUDA 
and the material on the Thumb mode of module C1 (presented in 
the next section). Thus, the module appears as part of a fairly ro-
bust discussion of parallelism and concurrency (roughly one third 
of the course).

Although we use the module as part of a large unit, we believe 
it is also suitable in different contexts. Students need familiar-
ity with the idea of parallel computing and the speedup metric. 
As written, the module also assumes prior exposure to Amdahl’s 
law, though that could be provided with the module as well. The 
module would fit well with any course teaching about multicore 
systems, including Computer Organization. It could also be used to 
explain the use of heterogeneous elements in mobile or HPC sys-
tems. Because it does not require programming, in principle the 
module could be used in CS1 after a module introducing to paral-
lel computing or to expand on the coverage of module A1.

When used at Knox College, this module is taught using Peer 
Instruction [24,20], a pedagogy in which lecture is punctuated with 
multiple choice questions that students answer individually and 
then again after a discussion in small groups before the profes-
sor leads a whole-class discussion. To facilitate use of the module 
by a variety of instructors, two versions of slides for the module 
are provided, one with embedded questions for Peer Instruction 
and one that solves these questions for use in a more traditional 
lecture-based delivery.

6.2. Topics

The topics covered in this module are listed below. The Bloom’s 
classification for each is shown in brackets. (C=Comprehension, A 
= Application)

• Rationale for heterogeneity in parallel systems [C]
• Performance modeling for parallel systems [C]
• Amdahl’s Law [A]
• Pollack’s Rule [A]

6.3. Learning outcomes

After completing this module, students should be able to

• justify the use of heterogeneous cores in multicore systems
• use Pollack’s Rule to estimate the peak performance of a mul-

ticore system relative to another system (serial or multicore) of 
the same size

• use Amdahl’s Law to compute the performance of a parallel sys-
tem on jobs with serial sections of different size

6.4. Followup assignments

To create homework and exam questions based on this mod-
ule, we have simply given the students a novel set of core sizes, 
had them compute the relative peak performance of this system 
to a single core system of the same size, and then compute the 
speedup achievable on this system for a job with a given level of 
61
parallelizabilty. These problems are exactly the same kind as solved 
in lecture. In our experience, students tend to do well on them and 
the problems are fairly easy to grade.

7. Heterogeneous ISA: ARM vs. MIPS

The primary goal of our fourth module is to expose students to 
an architecture with which they are unfamiliar. Computer Science 
students typically receive minimal exposure to hardware architec-
tures in one or perhaps two classes. This module can be added 
to an existing course (which focuses on an architecture other than 
ARM) giving students experience with an alternate architecture in 
a minimal amount of time.

The second goal of the module is to provide instructors an easy 
way to expose students to the intrinsic heterogeneity [18] of the 
ARM architecture. Hardware features and co-processors available 
on various versions of the ARM architecture require various de-
sign trade-offs to be considered by the developer. For example, 
use of ARM’s Thumb mode may reduce code-size and power us-
age while sacrificing performance. ARM’s Neon and VFP subsystem 
co-processors provide SIMD features which require increased de-
veloper design time and possibly higher power consumption.

7.1. Context

This module is intended for a Computer Organization course or 
a Computer Architecture course after students have become profi-
cient in writing simple programs in assembly language for the ISA 
targeted by the course. Typically, such courses would occur in a 
student’s sophomore or junior year.

7.2. Topics

The topics covered in this module are listed below. The Bloom’s 
classification for each is shown in brackets. (K = Knowledge, 
C=Comprehension, A = Application)

• Linux command line [A]
• ARM architectural overview [K]
• Code-size/performance/power trade-offs [C]
• Co-processor architectures [C]
• Elementary SIMD concepts [K]

7.3. Learning outcomes

After having completed this module, students should be able 
to

• understand simple assembly programs written in the ARM in-
struction set

• describe the differences and similarities between MIPS and 
ARM

• (Optional) discuss the trade-offs encountered when writing 
code in Thumb mode versus ARM mode

• (Optional) describe the benefits of using ARM’s SIMD engine 
Neon

7.4. Lectures

There are three lectures provided. The first lecture provides 
a general introduction to the ARM architecture, specifically con-
trasted with MIPS. (Courses not using MIPS can simply ignore 
those slides.) It should be used for students who are new to ARM. 
The slides cover the ARM instruction set, addressing modes, status 
register, predicated execution, and function call implementation in 
assembly. It can be completed in one lecture hour.



A. Qasem, D.P. Bunde and P. Schielke Journal of Parallel and Distributed Computing 158 (2021) 56–66
The other two lectures are optional and independent of the 
first. The second lecture describes ARM’s Thumb mode, and ex-
poses students to the trade-offs of run-time performance, code-
size, and power which are available with Thumb. Several examples 
of the Thumb instruction set are presented. The third lecture in-
troduces students to the concept of co-processors, and specifically 
describes ARM’s SIMD engine, Neon. Courses where ARM is the 
primary architectural focus can omit the first lecture while still 
utilizing either or both of the other two. Both of these lectures are 
targeted at a fairly high level of abstraction and can be completed 
in one lecture hour total. Several links to a more detailed descrip-
tion of Neon are provided.

7.5. Labs

Three labs are provided with this module. In the first, students 
write a few simple programs using ARM assembly language. The 
second lab follows the second (Thumb) lecture and gives students 
an opportunity to compare the code-size and run-time perfor-
mance of C code when compiled for ARM, Thumb-1, and Thumb-2 
targets. The final lab follows the third (NEON) lecture, and gives 
students an opportunity to see the speed-ups possible when par-
allelizing a simple sequential program using the NEON SIMD co-
processor. All labs are designed to be run on a Raspberry Pi run-
ning the Raspbian operating system. The GNU tool-chain must be 
installed.

7.5.1. Lab1 intro to ARM
In this lab, students will complete a simple ARM assembly lan-

guage program that computes factorial to familiarize them with 
ARM assembly and the tools used to build ARM programs. Stu-
dents should be given the code in lab1.s, a shell assembly program. 
This starter code prompts the user to enter a value and reads that 
value, n, from stdin by making a library call to C’s scanf(). This 
value is placed in ARM register R0. The student should then write 
a simple loop to compute n! (n factorial), and put the result of that 
computation into R2. The provided code will then print that value 
to stdout by making a libary call to printf(). Detailed instruc-
tions are provided in lab1.md and a solution for the instructor is 
provided in lab1_sol.s.

7.5.2. Lab2 comparing ARM and Thumb
The instructions for this lab can be found in the markdown file 

lab2.md. Students will download a zipfile with two simple bench-
marks written in C, a matrix multiply function and a function that 
finds Prime numbers using the sieve of Eratosthenes. A makefile 
is provided that will compile the code by targeting ARM (32-bit 
instructions), Thumb-1 (16-bit instruction only), and the version 
of Thumb-2 (mixed 16-bit and 32-bit instructions) found on the 
particular chip utilized by the Raspberry Pi. (Note that compil-
ing for Thumb-1 is not directly supported since the Raspberry Pi’s 
Broadcom chip uses a version of Thumb-2. The makefile forces 
a cross-compilation targeting a previous architectural revision to 
generate Thumb-1 code and then modifies the generated assembly 
to allow the code to link. Note that any Thumb-2 processor is com-
pletely capable of running Thumb-1 code. The difficulty lies solely 
in the GNU toolchain.)

Students should be familiar with a Unix (Linux) command line, 
and will use a variety of command line tools to measure and in-
spect the generated code. If the class is unfamiliar with command 
line usage, an additional tutorial or instruction may be required.

7.5.3. Lab3 ARM NEON
In this lab, students will compare three implementations of 

code to add the elements of one array to the elements of an-
other array, storing the result in a third array. Simple element-
by-element implementations of this computation are provided in 
62
C and assembly. Students will take the sequential assembly code 
and rewrite it to make use of the ARM SIMD (Neon) instructions. 
Students will then compare the run-time performance of the three 
implementations. The Neon version of the code can be further im-
proved by making use of the 128 bit registers, which will enable 
the code to perform 16 parallel additions of eight-bit values using 
one instruction.

8. Evaluation

We now present preliminary evaluation for modules A1 (§ 4) 
and A2 (§ 5). The other modules have been used in classes as part 
of their development, but the evaluation done was informal and 
intended only to guide module development.

Modules A1 and A2 have been used multiple times in under-
graduates courses at Texas State University. The A1 module was 
introduced in the CS1 course in Fall 2018 and Fall 2019. The A2 
module was first introduced alongside the A1 module in the CS1 
course in Fall 2018. Based on student and reviewer feedback, A2 
was split from A1 and the second instance was offered indepen-
dently in a section of CS2 in Fall 2019.

The CS1 course at Texas State introduces programming using 
C++ and provides some coverage of computer science breadth top-
ics. The particular section of CS1 in which the modules were 
taught was designated as an Honors section. The enrollment in the 
Honors section is selective and only students with a strong aca-
demic background are allowed to enroll. The class was capped at 
20 and 21 in Fall 2018 and Fall 2019, respectively. The class com-
prises of both majors and non-majors. In both Fall 2018 and Fall 
2019, only half of the enrolled students were declared CS majors. 
Enrollment in the non-Honors sections of CS1 at Texas State can 
reach up to 350 and the sections are co-taught by multiple faculty 
members. For this reason, we deemed the Honors section of CS1 
to be a good venue for a pilot implementation.

The CS2 course at Texas State also uses C++ as the main pro-
gramming language. Average enrollment for a section is around 50. 
In Fall 2019, when the A2 module was introduced, 52 students 
were registered for the course.

8.1. Methodology

8.1.1. Summative evaluation of learning outcomes
We designed a set of exam questions to assess the four learn-

ing outcomes associated with A1 (§4.3). One question was selected 
from this pool for inclusion in the final exam. The question was 
mandatory and constituted 5% of the final exam grade. Since het-
erogeneous computing is not a required part of these courses, the 
questions did not carry significant weight.

Learning outcomes in A2 (§ 5.3) were evaluated based on stu-
dent performance on the lab assignment. Students worked in pairs 
on this lab, as they do for several other programming projects in 
CS1 and CS2 classes at Texas State. Rubrics were constructed for 
each learning outcome such that student performance in the lab 
assignment could be used as a measure of student learning.

8.2. Surveys to evaluate student engagement

We conducted an end-of-the semester survey to gauge student 
interest in the topic and assess student perception of the learning 
experience. Questions were selected from the Student Assessment 
of Learning Gains (SALG) survey [28]. Students were asked to rate 
the module in the following categories (note the verbiage is a little 
different from the actual survey administered)

(1) Class activities: Were the class activities (i.e., lecture, in-class 
activity, live-demo) associated with the module helpful and en-
gaging?



A. Qasem, D.P. Bunde and P. Schielke Journal of Parallel and Distributed Computing 158 (2021) 56–66
Fig. 3. Semester grades and assessment question grade distribution for A1 module, 
Fall 2018.

Fig. 4. Semester grades and assessment question grade distribution for A1 module, 
Fall 2019.

(2) Learning support: Did the instructor provide enough support 
(e.g., further reading, tutoring) outside the classroom for learn-
ing the material taught in this module?

(3) Learning experience: Overall, how would you rate your learning 
experience in this module compared to the rest of the course; 
how would you rate it compared to other courses?

(4) Confidence and interest gains: Has this module increased your 
interest in pursuing a CS degree or taking more CS courses?

Students answered each question on a scale of 0-4 (e.g., 
strongly disagree, disagree, neutral, agree and strongly agree).

8.3. Evaluation of module A1

Fig. 3 shows the student grade distribution on the final exam 
question for module A1 in Fall 2018. 90% of the students received 
a passing grade with almost half of them receiving full credit. One 
student received a failing grade. This student did not show up 
the day the module was introduced and opted to not answer the 
question in the final. As noted before, the students in the Honors 
section in general are high achievers. Thus, the outcome results 
should be considered in context. The class grade distribution is 
shown in Fig. 3. As we can see, the distribution does not follow 
a normal curve and is skewed to the left. However, the cumulative 
grades closely match the grades on the module exam question, in-
dicating that the students did not find the material associated with 
the module significantly more difficult to understand than the rest 
of the material covered in the class.

Results from the second installment of the A1 module are 
shown in Fig. 4. A different question was used to evaluate student 
learning outcome in Fall 2019. The results are very similar to the 
results from the prior year. There was one student who did not 
write a response to the assessment question and received a fail-
ing grade. For the rest, the semester grades matched closely with 
grades received in the assessment question.
63
Fig. 5. Student learning experience, confidence and interest gains in A1 and A2 mod-
ules in Fall 2018. Survey respondents: 19/20.

Fig. 6. Student learning experience, confidence and interest gains in A1 module, Fall 
2019. Survey respondents: 21/21.

The results of the survey conducted in the CS1 class in Fall 2018 
are shown in Fig. 5. Note, in Fall 2018 both A1 and A2 were intro-
duced in CS1 and therefore the survey response relates to both 
modules. Overall, the students rated the learning experience and 
instructional environment very positively. All but one respondent, 
rated the class activities as “very helpful” and “very engaging”. In 
the comments section of the survey, several students singled-out 
the in-class demo as being particularly helpful. All students said 
that there was sufficient help outside the classroom. This is a re-
flection of the (i) quality of help provided by the TA (a graduate 
student working in the area of HC) and (ii) helpfulness of Linux 
tools developed to allow students to complete the lab assignment. 
Overall, all but one student rated their learning experience in the 
module as very positive. In terms of interest gains in CS, most stu-
dents (12 out of 19) had a positive impression. However, these 
responses are not as overwhelmingly positive as the other cate-
gories. This is not unexpected. The data for incoming freshman 
at Texas State suggests that most of them choose CS as a major 
because they want to pursue a career as a programmer or coder. 
Since the HC material is a little removed from programming, the 
material failed to create as strong an impression to these budding 
computer scientists.

The survey results conducted in the CS1 class in Fall 2019 are 
shown in Fig. 6. There is about an 8% improvement in the area of 
Confidence and Interest gains while the responses in the rest of 
the categories are virtually identical to the previous year. We spec-
ulate that word-of-mouth may have contributed to the improved 
score in Confidence and Interest gains. Each year the Honors Col-
lege at Texas State holds an open house for prospective students. 
In this event, students who have taken the class previously share 
their experiences. In the 2019 event several students discussed the 
HC module and how it helped them gain a better perspective of 
emerging trends in computer science. This background knowledge 



A. Qasem, D.P. Bunde and P. Schielke Journal of Parallel and Distributed Computing 158 (2021) 56–66
Fig. 7. Distribution of grades of HC lab assignment in A2 module, Fall 2018-2019.

Fig. 8. Distribution of grades on non-HC lab assignments in A2 module, Fall 2018-
2019.

may have influenced some students’ response in that category, re-
sulting in a higher score.

8.4. Evaluation of module A2

Learning outcomes in A2 were evaluated using student scores 
on the lab assignment. Fig. 7 shows the grade distribution in the 
assignment for both Fall 2018 and Fall 2019. When the module 
was offered the first time in the CS1 Honors class, no one received 
less than a B and 25% received an A. In the second installment in 
the CS2 course, 96% of the students received a passing score. Two 
of the 52 students received a failing grade because of incomplete 
submissions.

We believe the grades from Fall 2019 are more representative of 
actual student learning outcomes. As mentioned, the Honors sec-
tion in consists of a select group of hard-working students with 
higher aptitude. These students will end up with a decent grade, 
even if the material itself is not particularly accessible. The grade 
distribution in the CS2 class is closer to normal and also reflects 
the overall grade distribution in the class. In Fig. 8, we present dis-
tributions of average grades for all non-HC lab assignments in Fall 
2018 and Fall 2019. The distributions are slightly better for the CS1 
Honors section and slightly worse for CS2. The data indicates that 
the students did not find the assignments on heterogeneous com-
puting significantly more challenging. Notwithstanding, we cannot 
reach a definitive conclusion because our sample size is small.

Student engagement in the Fall 2018 offering of this module 
has already been discussed. Fig. 9 shows survey results from Fall 
2019. The results are similar to that of the A1 module with a slight 
increase in student interest and confidence gains. We should note 
however, that we received survey responses from 43 of the 52 
students enrolled in the class (83%). If students failed to respond 
when they did not find the module particularly helpful or interest-
ing, a higher response rate could have yielded lower scores.
64
Fig. 9. Student learning experience, confidence and interest gains in A2 module, Fall 
2019. Survey respondents: 43/52.

9. Conclusions and future work

This paper presents a set of four teaching modules for exposing 
introductory CS students to heterogeneous computing. The mod-
ules cover fundamental HC topics at a high level of abstraction but 
this coverage is complemented with hands-on assignments and in-
class exercises that allow students to reinforce their understanding 
by conducting experiments on real hardware. Preliminary evalua-
tion is promising both in terms of student learning outcomes and 
engagement.

We plan to continue our evaluation work. In addition to gath-
ering data on them in our own courses, we will be presenting 
these modules to other faculty at several conferences and recruit-
ing them to test the modules at their own institutions.

CRediT authorship contribution statement

Apan Qasem: Investigation, Methodology, Writing – original 
draft, Writing – review & editing. David P. Bunde: Investigation, 
Methodology, Writing – original draft, Writing – review & edit-
ing. Philip Schielke: Investigation, Methodology, Writing – original 
draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgments

This work was supported by the National Science Foundation 
through awards CNS-1253292, OAC-1829644, and OAC-1829554. 
Equipment donations by IBM and NVIDIA helped in developing the 
labs associated with the modules. The authors thank the reviewers 
for their comments which helped improve this work.

Appendix A. Heterogeneous task mapping lab assignment

Objective
In this assignment, you will investigate performance and energy 

issues of a heterogeneous computing system. You will be given 
a set of four programs with different characteristics. Your goal is 
to determine the best mapping of these programs to the different 
processing cores via experimentation and analysis.

Environment
You will be running experiments on megatron, a heteroge-

neous multicore system. megatron has four processing cores and 



A. Qasem, D.P. Bunde and P. Schielke Journal of Parallel and Distributed Computing 158 (2021) 56–66
each core has been configured to do a specific type of job. Al-
though each core can do any type of computation it will perform 
certain tasks really well.

Tools
Familiarize yourself with the following tools. They are all in-

stalled in standard locations on megatron
• mapper: task mapping
• perf: performance evaluation via HW counters
• likwid: energy and power estimation
• cpufrequtils: CPU frequency scaling

Instructions

(1) Log in to megatron
megatron is a server behind the firewall. From within the 

school network, you can ssh into megatron as follows

ssh netid@megatron.cs.school.edu

From an off-campus network, you will first need to ssh into 
a gateway server (e.g., gateway .cs .school .edu) and then log 
in to megatron.
(2) Download code samples

Once you have logged into megatron, clone the following git 
repository into your home directory

git clone https://git.school.edu

Create a directory for the codes to reside and unzip the codes 
into that directory. You should see four executables and a README. 
The four executables are designed to perform the following tasks

• p0: numeric computation (e.g., excel)
• p1: graphics (e.g., game)
• p2: play music (e.g., music app)
• p3: communicate with the internet (e.g., web browser)
The README has more information about each application and 

their characteristics.
(3) Conduct Performance Experiments

Launch the four programs, at the same time, with different 
thread mapping configurations. You can do this in one step us-
ing the mapper tool (installed in /usr/local/bin/mapper). 
For example,

mapper p0 p1 p2 p3 3 1 0 2

The above command will launch the four programs at the same 
time and map p0, p1, p2, p3 to processing cores 3, 1, 0 and 2
respectively. The program arguments must be the fully qualified 
name of the executable and the processor arguments must be in 
the range 0-3. Type the following to see more options

mapper− help

For each configuration, record the performance of each individ-
ual core and the overall workload. You can use the perf tool for 
this purpose.

perf stat mapper p0 p1 p2 p3 3 1 0 2

perf will report a bunch of performance metrics. The ones 
that you want to pay particular attention to are CPUs Utilized and 
instructions per cycle. Instructions per cycle (IPC) is a throughput 
metric that normalizes performance across different workloads.

Repeat the experiments and measure the energy consumption. 
You can use /usr/local/bin/likwid to do this

likwid -c 0-3 -g ENERGY mapper <args>
65
(4) Analyze the data
Create charts showing performance (as measured using the 

metrics described above), power and energy for different config-
urations. Analyze the data and create a report answering the fol-
lowing questions

• Which processor is good at numeric computation?
• Which processor is good at graphics?
• Which processor is good at playing music?
• Which processor is good when there is a need to communi-

cate over the network?
• Do the answers hold for power as well?
• What is the configuration that provides the best performance?
• What is the configuration that consumes least power?
• What is the configurations that is most energy efficient?

References

[1] B.S. Bloom, Taxonomy of Educational Objectives: The Classification of Edu-
cational Goals: By a Committee of College and University Examiners, David 
McKay, 1971.

[2] S. Borkar, Getting gigascale chips: challenges and opportunities in continuing 
Moore’s law, ACM Queue 1 (7) (2003) 26–33.

[3] Brown cs:courses, https://cs .brown .edu /courses/. (Accessed 7 February 2018).
[4] R.A. Brown, E. Shoop, Modules in community: injecting more parallelism into 

computer science curricula, in: Proceedings of the 42nd ACM Technical Sym-
posium on Computer Science Education (SIGCSE), 2011, pp. 447–452.

[5] Bs in computer science - cuw cs, http://www.cs .cuw.edu /cs -major/. (Accessed 7 
February 2018).

[6] D. Bunde, K.L. Karavanic, J. Mache, C.T. Mitchell, Adding GPU computing to 
computer organization courses, in: Proc. 3rd NSF/TCPP Workshop on Parallel 
and Distributed Computing Education (EduPar), 2013.

[7] M. Burtscher, W. Peng, A. Qasem, H. Shi, D. Tamir, H. Thiry, A module-based 
approach to adopting the 2013 ACM curricular recommendations on parallel 
computing, in: Proceedings of the 36th SIGCSE Technical Symposium on Com-
puter Science Education (SIGCSE), 2015.

[8] Center for parallel and distributed computing curriculum development and ed-
ucational resources (CDER), http://www.cs .gsu .edu /~tcpp.

[9] Code generation and optimization, NEEDCITATION. (Accessed 5 February 2018).
[10] Course catalog 2017-18, https://courses .rice .edu /admweb /!SWKSCAT.cat ?p _

action =CATALIST &p _acyr _code =2018 &p _subj =COMP. (Accessed 10 February 
2018).

[11] CSinParallel Project, http://csinparallel .org/.
[12] Degree requirements - computer science, http://www.concordia .edu /

academics /school -of -natural -and -applied -sciences /computer-science /degree -
requirements .html. (Accessed 7 February 2018).

[13] G. Gopalakrishnan, Formal methods for surviving the jungle of heterogeneous 
parallelism, in: 2012 IEEE 26th International Parallel and Distributed Processing 
Symposium Workshops & PhD Forum (IPDPSW), IEEE, 2012, pp. 1321–1324.

[14] O. Hazzan, Reducing abstraction level when learning computability theory con-
cepts, in: Proceedings of the 7th Annual Conference on Innovation and Tech-
nology in Computer Science Education (ITiCSE), 2002, pp. 156–160.

[15] High performance computer systems, http://bulletin .wustl .edu /undergrad /
engineering /computerscience /#courses. (Accessed 7 February 2018).

[16] Introduction to cyberphysical systems, https://www.cs .utexas .edu /courses /378 -
introduction -cyberphysical -systems. (Accessed 5 February 2018).

[17] J. Kramer, Is abstraction the key to computing?, Commun. ACM 50 (4) (2007) 
36–42.

[18] W. Lee, D. Sunwoo, C.D. Emmons, A. Gerstlauer, L.K. John, Exploring opportuni-
ties for heterogeneous-isa core architectures in high-performance mobile socs, 
Technical Report UT-CERC-17-01, The Computer Engineering Research Center, 
University of Texas at Austin, Mar. 2017.

[19] R.J. Marzano, J.S. Kendall, The New Taxonomy of Educational Objectives, Corwin 
Press, 2006.

[20] E. Mazur, Peer Instruction: A User’s Manual, Prentice Hall, Upper Saddle River, 
New Jersey, 1997.

[21] T. Morad, U. Weiser, A. Kolodny, M. Valero, E. Ayguadé, Performance, power effi-
ciency and scalability of asymmetric cluster chip multiprocessors, IEEE Comput. 
Archit. Lett. 4 (1) (2005) 14–17.

[22] Parallel Computing in the Undergraduate Curriculum: the Early-and-Often Ap-
proach, http://tues .cs .txstate .edu/.

[23] Parallel programming, https://cs .txstate .edu /academics /course _detail /CS /4380/. 
(Accessed 5 February 2018).

[24] Peer instruction for computer science, http://peerinstruction4cs .org/, October 
2020.

[25] F. Pollack, New microarchitecture challenges in the coming generations of 
CMOS process technologies, keynote address at IEEE Intern. Symp. Microarchi-
tecture (MICRO), http://hpc .ac .upc .edu /Talks /dir07 /T000065 /slides .pdf, 1999.

http://gateway.cs.school.edu
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibAE08A276C1F89CD7F01142E127327F44s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibAE08A276C1F89CD7F01142E127327F44s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibAE08A276C1F89CD7F01142E127327F44s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibCCCE854CF4F1CFDC37763537A7133D60s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibCCCE854CF4F1CFDC37763537A7133D60s1
https://cs.brown.edu/courses/
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibA1308C6160EF78A4E25EC82FE947B6E3s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibA1308C6160EF78A4E25EC82FE947B6E3s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibA1308C6160EF78A4E25EC82FE947B6E3s1
http://www.cs.cuw.edu/cs-major/
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibF4D261BED1E44FBF406BC8E1A7F0781As1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibF4D261BED1E44FBF406BC8E1A7F0781As1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibF4D261BED1E44FBF406BC8E1A7F0781As1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib56FBE855BC3DFADA4DAE8BF3379385CFs1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib56FBE855BC3DFADA4DAE8BF3379385CFs1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib56FBE855BC3DFADA4DAE8BF3379385CFs1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib56FBE855BC3DFADA4DAE8BF3379385CFs1
http://www.cs.gsu.edu/~tcpp
http://NEEDCITATION
https://courses.rice.edu/admweb/!SWKSCAT.cat?p_action=CATALIST&p_acyr_code=2018&p_subj=COMP
https://courses.rice.edu/admweb/!SWKSCAT.cat?p_action=CATALIST&p_acyr_code=2018&p_subj=COMP
http://csinparallel.org/
http://www.concordia.edu/academics/school-of-natural-and-applied-sciences/computer-science/degree-requirements.html
http://www.concordia.edu/academics/school-of-natural-and-applied-sciences/computer-science/degree-requirements.html
http://www.concordia.edu/academics/school-of-natural-and-applied-sciences/computer-science/degree-requirements.html
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib34BBC3D29D2216EBCA83FE0D69C920F6s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib34BBC3D29D2216EBCA83FE0D69C920F6s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib34BBC3D29D2216EBCA83FE0D69C920F6s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibF04E6BABAE603FBFB1892CDDDF3BB63Ds1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibF04E6BABAE603FBFB1892CDDDF3BB63Ds1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibF04E6BABAE603FBFB1892CDDDF3BB63Ds1
http://bulletin.wustl.edu/undergrad/engineering/computerscience/#courses
http://bulletin.wustl.edu/undergrad/engineering/computerscience/#courses
https://www.cs.utexas.edu/courses/378-introduction-cyberphysical-systems
https://www.cs.utexas.edu/courses/378-introduction-cyberphysical-systems
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib57FFAF027427BBE87F305FC55ACE111Bs1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib57FFAF027427BBE87F305FC55ACE111Bs1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib7A114C7640E1A7EAED00D879B6E5FF97s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib7A114C7640E1A7EAED00D879B6E5FF97s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib7A114C7640E1A7EAED00D879B6E5FF97s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib7A114C7640E1A7EAED00D879B6E5FF97s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibF3C2D1271622B6C2B0708470F8E7E2CBs1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibF3C2D1271622B6C2B0708470F8E7E2CBs1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib1AFB8B54EE0A32373BAE2CF15366D685s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib1AFB8B54EE0A32373BAE2CF15366D685s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibE8AC9BC1A5C80FA15301C42A010E84EEs1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibE8AC9BC1A5C80FA15301C42A010E84EEs1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibE8AC9BC1A5C80FA15301C42A010E84EEs1
http://tues.cs.txstate.edu/
https://cs.txstate.edu/academics/course_detail/CS/4380/
http://peerinstruction4cs.org/
http://hpc.ac.upc.edu/Talks/dir07/T000065/slides.pdf


A. Qasem, D.P. Bunde and P. Schielke Journal of Parallel and Distributed Computing 158 (2021) 56–66
[26] A. Qasam, D. Bunde, P. Schielke, Touch: teaching undergrads collaborative 
and heterogeneous computing, in: Consortium for Computing Sciences in 
College: South Central Region 2019 Conference, University of Texas at Dal-
las, Richardson, TX, 2019, https://github .com /TeachingUndergradsCHC /CCSC19 /
blob /master /poster _48x36 .pdf.

[27] A. Qasem, SimPar: a macro language for introducing parallel concepts to CS 1 
students, https://github .com /TeachingUndergradsCHC /SimPar.git. (Accessed 11 
March 2021).

[28] E. Seymour, D. Wiese, A. Hunter, S.M. Daffinrud, Creating a better mousetrap: 
on-line student assessment of their learning gains, in: National Meeting of the 
American Chemical Society, 2000.

[29] ToUCH: teaching undergrads collaborative and heterogeneous computing, 
https://touch .cs .txstate .edu.

[30] Touch: Teaching undergraduates collaborative and heterogeneous computing, 
https://github .com /TeachingUndergradsCHC /modules. (Accessed 23 September 
2019).

Apan Qasem is an Associate Professor and the Associate Chair of the 
Department of Computer Science at Texas State University, where he con-

ducts research in high-performance computing with an emphasis on code 
optimization for heterogeneous environments. From 2012-15, he led an 
NSF-funded project to integrate parallel computing concepts into the un-
dergraduate curriculum.

David Bunde is the William & Marilyn Ingersoll Professor of Computer 
Science at Knox College, where he conducts research in high-performance 
computing. He currently leads the effort to promote Peachy Parallel As-
signments, parallel computing assignments that are tested, easy for others 
to adopt, and motivational for students.

Philip Schielke is an Associate Professor of Computer Science at Con-
cordia University Texas. He is active in curriculum development at all 
levels of Concordia’s Computer Science programs. Schielke has revamped 
the University’s Bachelor of Science in Computer Science, added a Bache-
lor of Arts in Computer Science, and rewritten about 75% of the CS course 
documents for the University.
66

https://github.com/TeachingUndergradsCHC/CCSC19/blob/master/poster_48x36.pdf
https://github.com/TeachingUndergradsCHC/CCSC19/blob/master/poster_48x36.pdf
https://github.com/TeachingUndergradsCHC/SimPar.git
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibDFD37025C8FFB9EEDC480CA1918242FAs1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibDFD37025C8FFB9EEDC480CA1918242FAs1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibDFD37025C8FFB9EEDC480CA1918242FAs1
https://touch.cs.txstate.edu
https://github.com/TeachingUndergradsCHC/modules

	A module-based introduction to heterogeneous computing in core courses
	1 Introduction
	2 Design principles
	3 Related work
	4 Heterogeneous computing: elementary notions
	4.1 Context
	4.2 Topics
	4.3 Learning outcomes
	4.4 Lecture
	4.4.1 Review of von Neumann architecture
	4.4.2 Parallel computing and its importance today
	4.4.3 Heterogeneous system design
	4.4.4 Sequential, parallel and heterogeneous program execution
	4.4.5 Programming tools

	4.5 Performance challenges

	5 Task mapping on soft heterogeneous systems
	5.1 Context
	5.2 Topics
	5.3 Learning outcomes
	5.4 Lab

	6 Pollack’s rule as a justification for heterogeneous computing
	6.1 Context
	6.2 Topics
	6.3 Learning outcomes
	6.4 Followup assignments

	7 Heterogeneous ISA: ARM vs. MIPS
	7.1 Context
	7.2 Topics
	7.3 Learning outcomes
	7.4 Lectures
	7.5 Labs
	7.5.1 Lab1 intro to ARM
	7.5.2 Lab2 comparing ARM and Thumb
	7.5.3 Lab3 ARM NEON


	8 Evaluation
	8.1 Methodology
	8.1.1 Summative evaluation of learning outcomes

	8.2 Surveys to evaluate student engagement
	8.3 Evaluation of module A1
	8.4 Evaluation of module A2

	9 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Heterogeneous task mapping lab assignment
	References


