Journal of Parallel and Distributed Computing 158 (2021) 56-66

Contents lists available at ScienceDirect

PARALLEL AND
DISTRIBUTED
COMPUTING

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

A module-based introduction to heterogeneous computing in core
courses

Check for
updates

Apan Qasem **, David P. Bunde?, Philip Schielke ©

 Texas State University, San Marcos, TX, United States of America
b Knox College, Galesburg, IL, United States of America
¢ Concordia University Texas, Austin, TX, United States of America

ARTICLE INFO ABSTRACT

Article history:

Received 31 October 2020

Received in revised form 17 March 2021
Accepted 18 July 2021

Available online 4 August 2021

Heterogeneous architectures have emerged as a dominant platform, not only in high-performance
computing but also in mobile processing, cloud computing, and the Internet of Things (IoTs). Because the
undergraduate computer science curriculum includes so many topics, adding a new course as a required
part of the curriculum without increasing the number of hours to graduation is difficult. Integration of
heterogeneous computing requires a module-driven approach in which coverage of the topics is broken
down into smaller units and dispersed throughout the curriculum. The module-driven approach has been
successfully implemented in introducing parallel and distributed computing concepts.

In this paper, we present a set of four teaching modules that introduce fundamental concepts in
heterogeneous computing in lower-division computer science courses. The goal of these modules is not
to teach students how to program heterogeneous systems but rather to expose them to this emerging
trend and prepare them for material in future classes. Although concepts are covered at a high level,
the modules emphasize active learning and include lab assignments that provide students with hands-
on experience. We also present initial evaluation results for two of these modules based on their use
in undergraduate courses at Texas State University. The results are quite encouraging both in terms of
learning outcomes and student engagement and interest.

Keywords:
Heterogeneous computing
Module-based instruction
Pedagogy

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The need to increase performance per watt coupled with the
demands of processing diverse workloads has triggered a major in-
dustry shift towards heterogeneous computing systems. Integration
of high-performance CPUs with energy-efficient GPUs is now com-
mon in all classes of HPC systems. Architectural heterogeneity has
also permeated other computing domains such as mobile process-
ing, cloud computing, and the Internet of Things (IoTs). Given this
proliferation of heterogeneous architectures, arming computer sci-
ence graduates with the requisite skills to program these complex
systems is imperative.

Current undergraduate computer science (CS) curricula have yet
to catch up with this emerging phenomenon and lack sufficient
coverage of heterogeneous computing (HC) concepts. Heterogene-
ity is covered only as an upper-level elective and that too primarily
at R1 institutions. Needless to say, including HC as a required part

* Corresponding author.
E-mail addresses: apan@txstate.edu (A. Qasem), dbunde@knox.edu (D.P. Bunde),
Philip.Schielke@concordia.edu (P. Schielke).

https://doi.org/10.1016/j.jpdc.2021.07.011
0743-7315/© 2021 Elsevier Inc. All rights reserved.

of the curriculum can be challenging. Given credit-hour restric-
tions and the typically large number of required courses in current
CS/CE curricula, adding a new required course is generally not fea-
sible without increasing the time to graduation. Furthermore, HC is
important in diverse areas such as programming, algorithms, and
architecture so it is better covered in multiple courses rather than
a single course.

In this paper, we present four modules for teaching funda-
mentals of heterogeneous computing to computer science majors
during the first two years of their undergraduate study. Table 1
lists the modules along with courses in which we recommend
they be introduced. All four modules were developed under the
NSF-funded ToUCH project for integrating heterogeneous comput-
ing concepts in the undergraduate curriculum [29,26]. The ToUCH
initiative attempts to integrate HC content using the early-and-
often approach. The strategy is to develop modules that provide
broad coverage of HC topics and inject them into several courses
across the curriculum in a way that creates significant coverage of
HC concepts along every path through the major. The enhanced
curriculum is complemented with synergistic activities that in-
clude out-of-class training camps, collaborative design with indus-

https://doi.org/10.1016/j.jpdc.2021.07.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.07.011&domain=pdf
mailto:apan@txstate.edu
mailto:dbunde@knox.edu
mailto:Philip.Schielke@concordia.edu
https://doi.org/10.1016/j.jpdc.2021.07.011

A. Qasem, D.P. Bunde and P. Schielke

Table 1

Modules described in this paper. The module indices are derived from the area-
based indexing scheme adopted in the ToUCH project [30]. In the remainder of
the paper, we use the index and the title alternatively to refer to the modules.

Index Title Recommended
Course

Al Heterogeneous Computing: Elementary Notions ~ CS1

A2 Task Mapping on Soft Heterogeneous Systems CS1, €S2

A3 Pollack’s Rule as a Justification for Heteroge- Computer

neous Computing Organization

C1 Heterogeneous ISA: ARM vs MIPS Computer

Architecture
Table 2

Bloom’s Classification Levels [1,19] and depth of coverage of topics in the four
modules.

Level Description Module

Knowledge [K] recognizing or remembering facts, Al, A2, Cl
terms, basic concepts

Comprehension [C] demonstrating an understanding of A1, A2, A3, C1
facts and ideas by organizing and
summarizing the main ideas

Application [A] solving problems in new situations A2, A3

by applying acquired knowledge

try partners, and faculty training. The four modules presented in
this paper focus specifically on fundamental concepts to be cov-
ered in freshman- and sophomore-level courses.

The goal of these modules is not to teach students how to
program heterogeneous systems but rather expose them to this
emerging trend and prepare them for material in future classes.
Considering the introductory nature of lower-division courses, top-
ics are covered primarily at the Knowledge level in Bloom’s taxon-
omy. At the same time, the modules emphasize hands-on training
and active learning, with appropriate supporting tools, so that the
learning outcomes do not become merely an exercise in memoriz-
ing HC terminology. Table 2 lists the Bloom levels and the depth
of coverage of various topics across the four modules.

The modules can be implemented standalone or as part of a
broader plan of integrating HC topics into the curriculum such as
those undertaken previously for parallel and distributed comput-
ing [4,7]. All supporting material for the modules including lecture
slides, handouts, software and tools for the lab assignments, and
pedagogical notes are made available on a public Git repository as-
sociated with the ToUCH project [30].

2. Design principles

The design of the modules conforms to the three core principles
advocated in the early-and-often approach of curricular integra-
tion.

(i) [Abstraction] Modules should introduce concepts at the appro-
priate level of abstraction: Prior research shows that exposing
students to CS principles at the right level of abstraction
is critically important. Introducing a concept at an inappro-
priate level or exposing students to multiple levels at once
can hinder the students’ understanding of the concepts and
reduce their ability to solve problems using the taught prin-
ciples [14,17]. The modules described in this paper cover HC
topics that can be introduced at a high level of abstraction
without revealing the complexities of the underlying hard-
ware. For example, Amdahl’s Law and its implications for
parallel performance are discussed in the module on Elemen-
tary Notions. The concept of scalability and the significance
of Amdahl’s Law can be taught without having the students

57

Journal of Parallel and Distributed Computing 158 (2021) 56-66

learn how to code heterogeneous systems (or parallel sys-
tems for that matter).

[Context] Modules should provide “heterogeneous context” to key
topics in existing curricula: Many theories and concepts cov-
ered throughout CS curricula can enhance a student’s com-
prehension of HC principles. When context is exploited, a
module does not need to introduce completely new ideas but
rather build on topics already being covered in the course.
For instance, when covering process scheduling in an Operat-
ing Systems course, the notion of a processor can be replaced
by a heterogeneous processing element. The module on Ele-
mentary Notions introduces heterogeneous program execution
when explaining the Von Neumann model, which is a topic
commonly covered in most CS1 courses.

[Adoption] Modules should be self-contained for easy adoption:
The modules are designed to be short (1-1.5 lecture hours)
and self-contained. Instructor resources include lecture notes
(including in-class demos and activities), lab assignments,
sample exam questions and solutions, and pedagogical notes.
When possible, the modules are language agnostic. Although
they provide a textbook treatment of some material, the
modules are not tied to any specific textbook. Each mod-
ule provides a collection of reference materials for instruc-
tors unfamiliar with topics covered. The lab assignments are
designed to provide students with first-hand experience in
investigating performance issues in heterogeneous systems.

(ii)

(iif)

3. Related work

A survey of undergraduate CS curricula at institutions of varied
orientation (e.g., R1, masters, liberal arts) shows a distinct lack of
coverage of heterogeneous computing concepts. The lack of cover-
age is more pronounced in standalone computer science programs
than combined computer science and engineering programs. Many
computer engineering programs include an upper-level elective in
which part of the course relates to heterogeneous architectures and
related concepts. For example, the Introduction to Biophysical Sys-
tems, an upper-level elective in the ECE program at University of
Texas at Austin has a section dedicated to System on Chip (SoC)
design [16]. The graduate program in Computer Science and En-
gineering at Washington University in St. Louis includes a course
(CSE566S [15]) in which architecturally diverse systems are cov-
ered.

Such courses are rare in computer science departments. Surveys
of undergraduate computer science programs at Washington Uni-
versity in St Louis [15], Brown University [3], Rice University [10],
Concordia University Texas [12], and Concordia University Wis-
consin [5], for example, show no dedicated courses in HC. While
Brown has extensive coverage of parallel computing at the un-
dergraduate level, Washington University offers only one optional
course at the sophomore level, and Rice University has one re-
quired junior level class. The aforementioned Concordias have no
dedicated courses in parallel computing.

Coverage of HC is typically limited to an advanced course in
parallel programming. One or two weeks in such a course will be
devoted to GPU computing (e.g. CS4380 at Texas State [23]). Given
the time constraints, these segments of the course serve more as a
tutorial for CUDA programming and do not have the opportunity to
investigate the nuances of task-offloading and load balancing in a
more general CPU-GPU heterogeneous environment. Heterogeneity
of processing cores within a single CPU and its exploitation via
dynamic voltage and frequency scaling (DVES) is covered, in a few
instances, as part of advanced computer architecture and compiler
courses (e.g. [9]).

The CSinParallel collection includes several modules that men-
tion HC topics [11]. These modules are primarily designed to teach

A. Qasem, D.P. Bunde and P. Schielke

students CUDA programming and do not emphasize or expose stu-
dents to the underlying HC concepts. The Center for Parallel and
Distributed Computing Curriculum Development and Educational
Resources (CDER) boasts a large collection of teaching material for
PDC [8]. Nonetheless, only two entries in the database cover the
concepts of heterogeneity. One entry presents a computer organi-
zation course that integrates GPU CUDA programming for advanced
CS students [6]. In the other entry, Gopalkrishnan [13] proposes
that heterogeneous programming models should be included in
advanced parallel computing courses.

4. Heterogeneous computing: elementary notions

Our first module introduces fundamental concepts in heteroge-
neous computing. Notions of concurrency, parallelism, and energy
efficiency are discussed to explain the motivation behind the move
towards heterogeneous processing. Different forms of heterogene-
ity are introduced including soft heterogeneity (i.e., difference in
core compute capabilities within a multicore system), CPU-GPU
heterogeneous execution, and System-on-Chip (SoC) design. The
module also covers heterogeneity in workloads and data with ex-
amples from cloud computing and mobile applications. The mod-
ule concludes with a discussion of available programming tools
and performance challenges in heterogeneous computing.

4.1. Context

This module is primarily intended for CS1/CS2 students. Al-
though the module introduces parallel computing concepts before
moving on to processor heterogeneity, it is ideally suited for a
course with some coverage of parallel computing material such as
a CS1 course that incorporates a PDC module from [11], [8], or
[22]. In the absence of PDC coverage, the length of this module
will need to be increased or it will need to be combined with a
PDC module.

4.2. Topics

The HC topics covered in this module are listed below. Bloom’s
classification for each is shown in brackets. (K = Knowledge and C
= Comprehension)

e Concurrency and Parallelism [K]

Multicore Processors [K]
GPU Acceleration [K]
System-on-Chip [K]
Energy Efficiency [K]
Amdahl’s Law [C]

4.3. Learning outcomes
Having completed this module, students should be able to

1. describe the differences between a homogeneous and a hetero-
geneous computing system

2. describe and distinguish between different forms of heterogene-
ity

3. discuss the motivation behind the shift towards heterogeneous
computing

4, recognize the importance of energy efficiency on current com-
puting systems

4.4. Lecture
The module is designed to cover the concepts in 1 to 1.5 lecture

hours. In this section, we describe the progression of the lecture
with notes on pedagogy.

58

Journal of Parallel and Distributed Computing 158 (2021) 56-66

4.4.1. Review of von Neumann architecture

The lecture begins with a review of the basic von Neumann ar-
chitecture. The main components of a von Neumann model and
their role in computing are illustrated with an example of a desk-
top PC. Although perhaps not acquainted with the term itself, a
typical CS1 student will be familiar with the fundamental orga-
nization of a computing system. A motherboard with a processor
and memory module installed is passed around in the class to sup-
plement this discussion. We then introduce students to different
classes of computing devices such as mobile processors and IoT
devices. The following two points are emphasized

1. We need different types of computers to perform different
tasks.

2. Although there are many different types of computing devices
in use today, the fundamental organization of these devices re-
mains the same.

4.4.2. Parallel computing and its importance today

A set of lecture slides defines parallel computing and discusses
its importance in today’s world. A high-level definition of a parallel
computer is presented. The discussion of the definition of a paral-
lel computer is followed by some history of parallel computing.
The point is made that parallel computing has been around for a
long time, ever since the beginning of computing. Notwithstanding,
it has only become mainstream in the last decade. Brief descrip-
tions of mainframes, vector computers, and clusters are presented.
These descriptions are followed by a discussion of today’s multi-
core computers. The importance of energy efficiency and the role it
has played in the evolution of computer chips and rise of multicore
processors is discussed. The lecture slides emphasize the need for
achieving higher performance at lower power consumption or at
specified power budgets. The ubiquity of parallel computers is also
discussed. Students are asked to guess/comment on the number
of processing cores in their smartphones and tablets. Their guesses
are then compared against actual numbers. A discussion follows on
the need for more parallel processing cores.

4.4.3. Heterogeneous system design

The need for heterogeneous processors is then motivated using
the mobile phone as a running example. Students are polled on the
typical usage of their phones and tablets. This discussion is used
to introduce the notion of a workload and how different programs
within a workload may have different characteristics and differ-
ent demands for resources. A block diagram of a mobile processor
is presented to illustrate how the demands of a diverse workload
are handled on such a system with the deployment of a collection
of heterogeneous processors. High-performance CPUs, low-power
CPUs, and GPUs are illustrated on block diagrams and contrasted
with the block diagram of a homogeneous desktop computer.

This example serves as a lead-in to the discussion of different
forms of heterogeneity present in today’s computing systems. GPUs
and their role in processing graphics and general-purpose work-
loads are discussed, followed by a description of CPU-GPU hetero-
geneous compute nodes. The notion of soft heterogeneity, process-
ing cores of varying operational frequency, is then introduced.

4.4.4. Sequential, parallel and heterogeneous program execution

A major portion of the module is spent introducing the students
to the fundamental difference between sequential, parallel, and
heterogeneous program execution. A walk-through example is used
for this purpose. Fig. 1 shows a subset of the slides that are used
to explain this topic. The slides are accompanied by a set of ex-
amples written in SimPar [27]. SimPar is a simple macro language
that uses an intuitive pragma-based syntax. Two examples of Sim-
Par programs are shown in Fig. 2. Since students are generally not

A. Qasem, D.P. Bunde and P. Schielke

Program Execution

1001110101

=

Instruction execution follows
program order

Processor executes one
instruction at a time*

(inteD
coRe 17
4l

(a) Sequential program execution

>

o
o)
~Program Execution
)

(c) Heterogeneous program execution

Journal of Parallel and Distributed Computing 158 (2021) 56-66

A
e .
?0‘0\\ Program Execution

compile

———"— time

The two assignment statements
x=17; and y = 13; will execute in parallel

(b) Parallel program execution

5

(oqe“egrogram Execution

XC
\)\e

——— time

Assign heavier computation to
the “bigger” processor

(d) Heterogenous program execution

Fig. 1. Excerpts from lecture slides illustrating the differences in serial, parallel and heterogeneous program execution. Animation is used for the different blocks in the

slideshow.
int add() { int add() {
int x, y, result; int x, y, result;
{ {
x = 17; x = 17;
y = 13; y = 13;
} result = x + y;
result = x + y; }
return result; return result;
b)

(a) Simple parallelization (b) Incorrectly parallelized code

Fig. 2. SimPar code samples.

expected to be familiar with any parallel programming language
in CS1, SimPar is an effective tool to discuss parallelism with real
examples without getting bogged down in syntax minutiae. Sup-
plementary materials for this module include a SimPar parser that
can be used to create other simple examples. The instructor should
be aware that SimPar is not a realistic parallel language and is very
limited in ability. Thus, it should not be used for creating extended
examples beyond CS1.

During the walk-through of the example, students are asked to
list the order in which the statements will execute on the proces-
sor. A parallel directive is then inserted for the two assignment
statements and the meaning is explained to the students. The pro-
gram is then extended to include array assignments instead of just
simple assignments. This program is compiled and executed and
the result examined in class. Students are then asked to comment
on what other statements could be parallelized. The instructor
leads them to an example where the result statement is put in the
PARALLEL block along with the two assignment statements. This
program is run, potentially several times, and the error demon-
strated to the students. The students are then asked to describe
the problem in the code. This is followed by a discussion of data
dependence and the challenges with parallel programming.

59

The code example is then extended to illustrate execution of
a parallel program on a hypothetical heterogeneous system with
a big LITTLE configuration. The simple assignment statement is re-
placed with a more computation heavy statement (e.g., sgrt ()).
The parallel execution of the program on the big.LITTLE system is
simulated with the computation-heavy statement mapped to the
more power-efficient (i.e.,, LITTLE) core. Students are then asked
about the performance implications of such a mapping. The in-
structor then leads them to the correct mapping in the ensuing
in-class discussion.

4.4.5. Programming tools

Students are told that SimPar is not a real language. The syntax
of real languages are more complex and so are the programming
models. Some of the currently available parallel languages and
APIs, including OpenMP, Pthreads, and MPI are presented. CUDA
and OpenCL are singled out as languages/APIs that support pro-
gramming in heterogeneous systems.

4.5. Performance challenges

Time permitting, this module can include a section on the per-
formance challenges in parallel and heterogeneous systems. In par-
ticular, the notion of sequential and parallel speedup and efficiency
can be introduced via examples, followed by a discussion on Am-
dahl's Law and its performance implications on parallel computing
systems. Note, in the author’s opinion, Amdahl’s Law as it pertains
to heterogeneous processors, although important, is too advanced a
topic and is not recommended for inclusion when using this mod-
ule for CS1 students.

5. Task mapping on soft heterogeneous systems

Our second module covers the concepts of task mapping and
scheduling on single-ISA systems that embody soft heterogeneity.
On such systems, differences in core compute capabilities are the
result of differences in operating core frequency. The first part of

A. Qasem, D.P. Bunde and P. Schielke

the module begins with a brief review of the notions of concur-
rency, parallelism, and energy efficiency, which serves as a lead-
in to the discussion on the motivation behind the shift towards
heterogeneous processing. Different forms of heterogeneity are in-
troduced including CPU-GPU heterogeneous execution and hetero-
geneity that arises in single-ISA systems.

The second part of the module begins with a discussion on
workload heterogeneity with examples from mobile computing.
The concepts of task mapping and scheduling on sequential and
parallel systems are then reviewed to set the stage for the task
mapping problem on soft heterogeneous systems. An in-class in-
teractive demo on a real system illustrates the performance and
energy efficiency challenges of task mapping which factors in op-
erating frequency. The module is accompanied by a hands-on lab
that reinforces these ideas.

5.1. Context

This module is primarily intended for CS2 students. Although
the module introduces parallel computing concepts before moving
on to processor heterogeneity, it is ideally suited for a course with
some coverage of parallel computing material such as a course that
incorporates a PDC module from [11], [8], or [22]. In the absence of
PDC coverage, the length of this module will need to be increased
or it will need to be combined with a PDC module.

This module can be combined with [Module A1] Heterogeneous
Computing: Elementary Notions. In this case, the module can po-
tentially be used in a CS1 class such as a CS1 class designed for
Honors students or one which provides a breadth-first introduc-
tion to computer science.

5.2. Topics

The HC topics covered in this module are listed below. Bloom’s
classification is shown in brackets.
e Single-ISA Heterogeneity [K]
System-on-Chip [K]
DVFS and Soft Heterogeneity [K]
Energy Efficiency [K]
Heterogeneous Tasks and Workloads [K]
Task Mapping and Scheduling [C]
Tools for thread affinity and CPU frequency scaling [A]

5.3. Learning outcomes

Having completed this module, students should be able to

e discuss the motivation behind the design of heterogeneous
computing systems

e recognize the importance of energy efficiency in current com-
puting systems

e explain how tasks in a workload have different demands for
compute and memory resources

e describe the notion of task mapping as performed by an op-
erating system

e analyze the performance and energy effects of task mapping
on a heterogeneous system

5.4. Lab

To reinforce student understanding of the concepts covered in
the module, we designed a lab assignment that provides students
with hands-on experience on a real heterogeneous system. In this
lab, students conduct experiments with different classes of work-
loads on a heterogeneous multicore machine and investigate the
power and energy implications of task mapping on such systems.
The multicore system is configured such that each core operates

60

Journal of Parallel and Distributed Computing 158 (2021) 56-66

at a different clock frequency (i.e., soft heterogeneity). The config-
uration is done using commonly available Linux tools, cpufre-
qutils and cpupower. Detailed instructions for the configura-
tion are made available as part of the instructor resources that
accompany this module. The required hardware must be avail-
able at the instructor’s institution. However, all that is needed is
a Linux-based, ssh-enabled multicore server with at least 4 cores.
The pre-programmed workloads are also distributed as part of the
instructor resources. The source code is written in C/C++ and can
be built in a Linux environment with gcc 5.4.0 or above. The lab
requires the students to have some basic familiarity with a Linux
environment. A description of the lab handout is included in Ap-
pendix A.

6. Pollack’s rule as a justification for heterogeneous computing

Our third module uses high-level performance modeling to ex-
plain the motivation of multicore systems to include a heteroge-
neous collection of cores, as is common on small systems (e.g. cell
phones) and on very high-end systems (e.g. the Xeon Phi and all
the HPC systems with GPUs). The module was inspired by an ar-
chitecture paper by Morad et al. [21] that advocated for a diversity
of core sizes to maximize performance under a power budget.

The module’s performance modeling relies on two rules. The
first is Pollack’s Rule [25,2], which states that the performance of
a core is proportional to the square root of its area. This is an
empirically-observed relationship similar to Moore’s “Law”. An in-
tuitive justification is that increasing core area allows performance-
improving features such caching or more complicated logic (branch
prediction, deeper pipelines, etc). The natural implication of Pol-
lack’s Rule is that increasing the number of cores improves perfor-
mance; splitting a single core into k smaller cores using 1/k of the
area means that each of them provides only 1/+/k as much perfor-
mance but that the peak performance of the system increases by a
factor of k/~/k = +/k. By this logic, processors should consist of as
many tiny cores as possible.

Pushing back against this conclusion is the well-known Am-
dahl’s Law, which the module uses to calculate the performance of
hypothetical workloads where a fraction of the work is arbitrarily-
parallelizable and the rest must be run serially. These calculations
show that having cores with heterogeneous size (and hence het-
erogeneous performance) allows a processor to capture much of
the benefit of using many tiny cores while also providing a large
core to protect the performance on the workload’s serial compo-
nent.

The module fits into a single lecture, requiring 30-40 minutes
to cover. It has a theoretical feel because the performance model
is fairly abstract, with the only parameters being the core sizes
and the percent of the program that is parallelizable. Followup
homework and exam problems mirror those of lecture, asking stu-
dents to compute the performance for different parameter values.
To help tie the module to students’ own experiences, we recently
added a part where the results of a cell phone profiling tool are
presented. The tool shows that the professor’s phone is multicore,
with different speeds possible on each. (While this is a different
kind of heterogeneity than that modeled in the module, power
management exhibits a similar balancing act to the size issue we
see in the module; single core performance is maximized by a sin-
gle fast core, but total peak performance is maximized by having
as many slow cores as possible.)

6.1. Context
This module was developed as part of an introductory com-

puter systems course at Knox College. The course covers low-level
programming in assembly and C, caching/locality, concurrency and

A. Qasem, D.P. Bunde and P. Schielke

parallelism, and security. The prerequisite course is CS 2, but most
students take the course as sophomores, after 3-4 prior CS courses.
Some of the students are more experienced; a couple each year are
seniors in their second to last term.

The module comes about two thirds of the way through the
course, following coverage of homogeneous parallel programming.
In the homogenenous parallel programming part of the course, stu-
dents use pthreads and OpenMP to parallelize simple programs,
resolving races in the pthreads version with mutexes. Prior lectures
cover classic synchronization problems such as producer-consumer
and readers and writers, as well as deadlock and some of the ways
to avoid or resolve it. The module introduces and motivates het-
erogeneity in order to transition to a brief introduction to CUDA
and the material on the Thumb mode of module C1 (presented in
the next section). Thus, the module appears as part of a fairly ro-
bust discussion of parallelism and concurrency (roughly one third
of the course).

Although we use the module as part of a large unit, we believe
it is also suitable in different contexts. Students need familiar-
ity with the idea of parallel computing and the speedup metric.
As written, the module also assumes prior exposure to Amdahl’s
law, though that could be provided with the module as well. The
module would fit well with any course teaching about multicore
systems, including Computer Organization. It could also be used to
explain the use of heterogeneous elements in mobile or HPC sys-
tems. Because it does not require programming, in principle the
module could be used in CS1 after a module introducing to paral-
lel computing or to expand on the coverage of module Al.

When used at Knox College, this module is taught using Peer
Instruction [24,20], a pedagogy in which lecture is punctuated with
multiple choice questions that students answer individually and
then again after a discussion in small groups before the profes-
sor leads a whole-class discussion. To facilitate use of the module
by a variety of instructors, two versions of slides for the module
are provided, one with embedded questions for Peer Instruction
and one that solves these questions for use in a more traditional
lecture-based delivery.

6.2. Topics

The topics covered in this module are listed below. The Bloom’s
classification for each is shown in brackets. (C=Comprehension, A
= Application)

o Rationale for heterogeneity in parallel systems [C]
Performance modeling for parallel systems [C]

Amdahl’s Law [A]
Pollack’s Rule [A]

6.3. Learning outcomes
After completing this module, students should be able to

e justify the use of heterogeneous cores in multicore systems

e use Pollack’s Rule to estimate the peak performance of a mul-
ticore system relative to another system (serial or multicore) of
the same size

e use Amdahl’s Law to compute the performance of a parallel sys-
tem on jobs with serial sections of different size

6.4. Followup assignments

To create homework and exam questions based on this mod-
ule, we have simply given the students a novel set of core sizes,
had them compute the relative peak performance of this system
to a single core system of the same size, and then compute the
speedup achievable on this system for a job with a given level of

61

Journal of Parallel and Distributed Computing 158 (2021) 56-66

parallelizabilty. These problems are exactly the same kind as solved
in lecture. In our experience, students tend to do well on them and
the problems are fairly easy to grade.

7. Heterogeneous ISA: ARM vs. MIPS

The primary goal of our fourth module is to expose students to
an architecture with which they are unfamiliar. Computer Science
students typically receive minimal exposure to hardware architec-
tures in one or perhaps two classes. This module can be added
to an existing course (which focuses on an architecture other than
ARM) giving students experience with an alternate architecture in
a minimal amount of time.

The second goal of the module is to provide instructors an easy
way to expose students to the intrinsic heterogeneity [18] of the
ARM architecture. Hardware features and co-processors available
on various versions of the ARM architecture require various de-
sign trade-offs to be considered by the developer. For example,
use of ARM’s Thumb mode may reduce code-size and power us-
age while sacrificing performance. ARM’s Neon and VFP subsystem
co-processors provide SIMD features which require increased de-
veloper design time and possibly higher power consumption.

7.1. Context

This module is intended for a Computer Organization course or
a Computer Architecture course after students have become profi-
cient in writing simple programs in assembly language for the ISA
targeted by the course. Typically, such courses would occur in a
student’s sophomore or junior year.

7.2. Topics

The topics covered in this module are listed below. The Bloom’s
classification for each is shown in brackets. (K = Knowledge,
C=Comprehension, A = Application)

e Linux command line [A]

ARM architectural overview [K]
Code-size/performance/power trade-offs [C]
Co-processor architectures [C]

Elementary SIMD concepts [K]

7.3. Learning outcomes

After having completed this module, students should be able
to

e understand simple assembly programs written in the ARM in-
struction set

e describe the differences and similarities between MIPS and
ARM

e (Optional) discuss the trade-offs encountered when writing
code in Thumb mode versus ARM mode

e (Optional) describe the benefits of using ARM’s SIMD engine
Neon

7.4. Lectures

There are three lectures provided. The first lecture provides
a general introduction to the ARM architecture, specifically con-
trasted with MIPS. (Courses not using MIPS can simply ignore
those slides.) It should be used for students who are new to ARM.
The slides cover the ARM instruction set, addressing modes, status
register, predicated execution, and function call implementation in
assembly. It can be completed in one lecture hour.

A. Qasem, D.P. Bunde and P. Schielke

The other two lectures are optional and independent of the
first. The second lecture describes ARM’s Thumb mode, and ex-
poses students to the trade-offs of run-time performance, code-
size, and power which are available with Thumb. Several examples
of the Thumb instruction set are presented. The third lecture in-
troduces students to the concept of co-processors, and specifically
describes ARM’s SIMD engine, Neon. Courses where ARM is the
primary architectural focus can omit the first lecture while still
utilizing either or both of the other two. Both of these lectures are
targeted at a fairly high level of abstraction and can be completed
in one lecture hour total. Several links to a more detailed descrip-
tion of Neon are provided.

7.5. Labs

Three labs are provided with this module. In the first, students
write a few simple programs using ARM assembly language. The
second lab follows the second (Thumb) lecture and gives students
an opportunity to compare the code-size and run-time perfor-
mance of C code when compiled for ARM, Thumb-1, and Thumb-2
targets. The final lab follows the third (NEON) lecture, and gives
students an opportunity to see the speed-ups possible when par-
allelizing a simple sequential program using the NEON SIMD co-
processor. All labs are designed to be run on a Raspberry Pi run-
ning the Raspbian operating system. The GNU tool-chain must be
installed.

7.5.1. Lab1 intro to ARM

In this lab, students will complete a simple ARM assembly lan-
guage program that computes factorial to familiarize them with
ARM assembly and the tools used to build ARM programs. Stu-
dents should be given the code in lab1l.s, a shell assembly program.
This starter code prompts the user to enter a value and reads that
value, n, from stdin by making a library call to C's scanf (). This
value is placed in ARM register RO. The student should then write
a simple loop to compute n! (n factorial), and put the result of that
computation into R2. The provided code will then print that value
to stdout by making a libary call to printf (). Detailed instruc-
tions are provided in labl.md and a solution for the instructor is
provided in lab1_sol.s.

7.5.2. Lab2 comparing ARM and Thumb

The instructions for this lab can be found in the markdown file
lab2.md. Students will download a zipfile with two simple bench-
marks written in C, a matrix multiply function and a function that
finds Prime numbers using the sieve of Eratosthenes. A makefile
is provided that will compile the code by targeting ARM (32-bit
instructions), Thumb-1 (16-bit instruction only), and the version
of Thumb-2 (mixed 16-bit and 32-bit instructions) found on the
particular chip utilized by the Raspberry Pi. (Note that compil-
ing for Thumb-1 is not directly supported since the Raspberry Pi’s
Broadcom chip uses a version of Thumb-2. The makefile forces
a cross-compilation targeting a previous architectural revision to
generate Thumb-1 code and then modifies the generated assembly
to allow the code to link. Note that any Thumb-2 processor is com-
pletely capable of running Thumb-1 code. The difficulty lies solely
in the GNU toolchain.)

Students should be familiar with a Unix (Linux) command line,
and will use a variety of command line tools to measure and in-
spect the generated code. If the class is unfamiliar with command
line usage, an additional tutorial or instruction may be required.

7.5.3. Lab3 ARM NEON

In this lab, students will compare three implementations of
code to add the elements of one array to the elements of an-
other array, storing the result in a third array. Simple element-
by-element implementations of this computation are provided in

62

Journal of Parallel and Distributed Computing 158 (2021) 56-66

C and assembly. Students will take the sequential assembly code
and rewrite it to make use of the ARM SIMD (Neon) instructions.
Students will then compare the run-time performance of the three
implementations. The Neon version of the code can be further im-
proved by making use of the 128 bit registers, which will enable
the code to perform 16 parallel additions of eight-bit values using
one instruction.

8. Evaluation

We now present preliminary evaluation for modules A1l (§ 4)
and A2 (§ 5). The other modules have been used in classes as part
of their development, but the evaluation done was informal and
intended only to guide module development.

Modules A1 and A2 have been used multiple times in under-
graduates courses at Texas State University. The A1 module was
introduced in the CS1 course in Fall 2018 and Fall 2019. The A2
module was first introduced alongside the A1 module in the CS1
course in Fall 2018. Based on student and reviewer feedback, A2
was split from A1 and the second instance was offered indepen-
dently in a section of CS2 in Fall 2019.

The CS1 course at Texas State introduces programming using
C++ and provides some coverage of computer science breadth top-
ics. The particular section of CS1 in which the modules were
taught was designated as an Honors section. The enrollment in the
Honors section is selective and only students with a strong aca-
demic background are allowed to enroll. The class was capped at
20 and 21 in Fall 2018 and Fall 2019, respectively. The class com-
prises of both majors and non-majors. In both Fall 2018 and Fall
2019, only half of the enrolled students were declared CS majors.
Enrollment in the non-Honors sections of CS1 at Texas State can
reach up to 350 and the sections are co-taught by multiple faculty
members. For this reason, we deemed the Honors section of CS1
to be a good venue for a pilot implementation.

The CS2 course at Texas State also uses C++ as the main pro-
gramming language. Average enrollment for a section is around 50.
In Fall 2019, when the A2 module was introduced, 52 students
were registered for the course.

8.1. Methodology

8.1.1. Summative evaluation of learning outcomes

We designed a set of exam questions to assess the four learn-
ing outcomes associated with A1 (§4.3). One question was selected
from this pool for inclusion in the final exam. The question was
mandatory and constituted 5% of the final exam grade. Since het-
erogeneous computing is not a required part of these courses, the
questions did not carry significant weight.

Learning outcomes in A2 (§ 5.3) were evaluated based on stu-
dent performance on the lab assignment. Students worked in pairs
on this lab, as they do for several other programming projects in
CS1 and CS2 classes at Texas State. Rubrics were constructed for
each learning outcome such that student performance in the lab
assignment could be used as a measure of student learning.

8.2. Surveys to evaluate student engagement

We conducted an end-of-the semester survey to gauge student
interest in the topic and assess student perception of the learning
experience. Questions were selected from the Student Assessment
of Learning Gains (SALG) survey [28]. Students were asked to rate
the module in the following categories (note the verbiage is a little
different from the actual survey administered)

(1) Class activities: Were the class activities (i.e., lecture, in-class
activity, live-demo) associated with the module helpful and en-
gaging?

A. Qasem, D.P. Bunde and P. Schielke

100%
80% + [assessment
P O semester
§ 60% +
>
17
5 40% T
X
20% + I
o] -
A B C D F

Fig. 3. Semester grades and assessment question grade distribution for A1 module,
Fall 2018.

100%
80% -+ @ assessment
2 O semester
S 60% 1
K]
@
5 40% +
x
20% 1
o [[n \
A B C D F

Fig. 4. Semester grades and assessment question grade distribution for A1 module,
Fall 2019.

(2) Learning support: Did the instructor provide enough support
(e.g., further reading, tutoring) outside the classroom for learn-
ing the material taught in this module?

(3) Learning experience: Overall, how would you rate your learning
experience in this module compared to the rest of the course;
how would you rate it compared to other courses?

(4) Confidence and interest gains: Has this module increased your
interest in pursuing a CS degree or taking more CS courses?

Students answered each question on a scale of 0-4 (e.g.,
strongly disagree, disagree, neutral, agree and strongly agree).

8.3. Evaluation of module A1

Fig. 3 shows the student grade distribution on the final exam
question for module A1 in Fall 2018. 90% of the students received
a passing grade with almost half of them receiving full credit. One
student received a failing grade. This student did not show up
the day the module was introduced and opted to not answer the
question in the final. As noted before, the students in the Honors
section in general are high achievers. Thus, the outcome results
should be considered in context. The class grade distribution is
shown in Fig. 3. As we can see, the distribution does not follow
a normal curve and is skewed to the left. However, the cumulative
grades closely match the grades on the module exam question, in-
dicating that the students did not find the material associated with
the module significantly more difficult to understand than the rest
of the material covered in the class.

Results from the second installment of the Al module are
shown in Fig. 4. A different question was used to evaluate student
learning outcome in Fall 2019. The results are very similar to the
results from the prior year. There was one student who did not
write a response to the assessment question and received a fail-
ing grade. For the rest, the semester grades matched closely with
grades received in the assessment question.

63

Journal of Parallel and Distributed Computing 158 (2021) 56-66

Class Activities
Support for
Leamning

Leamning
Experiences

Confidence and
Interest Gains

0.0 1.0 2.0 3.0 4.0

scale mean

Fig. 5. Student learning experience, confidence and interest gains in A1 and A2 mod-
ules in Fall 2018. Survey respondents: 19/20.

Class Activities 3.95
Support for

PP . 3.95
Learning
Learning

. 3.90
Experiences

Confidence and
Interest Gains

2.0

scale mean

Fig. 6. Student learning experience, confidence and interest gains in A1 module, Fall
2019. Survey respondents: 21/21.

The results of the survey conducted in the CS1 class in Fall 2018
are shown in Fig. 5. Note, in Fall 2018 both A1 and A2 were intro-
duced in CS1 and therefore the survey response relates to both
modules. Overall, the students rated the learning experience and
instructional environment very positively. All but one respondent,
rated the class activities as “very helpful” and “very engaging”. In
the comments section of the survey, several students singled-out
the in-class demo as being particularly helpful. All students said
that there was sufficient help outside the classroom. This is a re-
flection of the (i) quality of help provided by the TA (a graduate
student working in the area of HC) and (ii) helpfulness of Linux
tools developed to allow students to complete the lab assignment.
Overall, all but one student rated their learning experience in the
module as very positive. In terms of interest gains in CS, most stu-
dents (12 out of 19) had a positive impression. However, these
responses are not as overwhelmingly positive as the other cate-
gories. This is not unexpected. The data for incoming freshman
at Texas State suggests that most of them choose CS as a major
because they want to pursue a career as a programmer or coder.
Since the HC material is a little removed from programming, the
material failed to create as strong an impression to these budding
computer scientists.

The survey results conducted in the CS1 class in Fall 2019 are
shown in Fig. 6. There is about an 8% improvement in the area of
Confidence and Interest gains while the responses in the rest of
the categories are virtually identical to the previous year. We spec-
ulate that word-of-mouth may have contributed to the improved
score in Confidence and Interest gains. Each year the Honors Col-
lege at Texas State holds an open house for prospective students.
In this event, students who have taken the class previously share
their experiences. In the 2019 event several students discussed the
HC module and how it helped them gain a better perspective of
emerging trends in computer science. This background knowledge

A. Qasem, D.P. Bunde and P. Schielke

100% T
80% -+ lFaII2018
8 O Fall 2019
S 60% +
3
w 40% +
x
20% + H
0% - =
A B c D F

Fig. 7. Distribution of grades of HC lab assignment in A2 module, Fall 2018-2019.

100%
80% W Fall 2018

2 O Fall 2019

§ 60% T+

o}

B

5 40% +

x
20% —+ H
0% . ,_l s |

A B C D F

Fig. 8. Distribution of grades on non-HC lab assignments in A2 module, Fall 2018-
2019.

may have influenced some students’ response in that category, re-
sulting in a higher score.

8.4. Evaluation of module A2

Learning outcomes in A2 were evaluated using student scores
on the lab assignment. Fig. 7 shows the grade distribution in the
assignment for both Fall 2018 and Fall 2019. When the module
was offered the first time in the CS1 Honors class, no one received
less than a B and 25% received an A. In the second installment in
the CS2 course, 96% of the students received a passing score. Two
of the 52 students received a failing grade because of incomplete
submissions.

We believe the grades from Fall 2019 are more representative of
actual student learning outcomes. As mentioned, the Honors sec-
tion in consists of a select group of hard-working students with
higher aptitude. These students will end up with a decent grade,
even if the material itself is not particularly accessible. The grade
distribution in the CS2 class is closer to normal and also reflects
the overall grade distribution in the class. In Fig. 8, we present dis-
tributions of average grades for all non-HC lab assignments in Fall
2018 and Fall 2019. The distributions are slightly better for the CS1
Honors section and slightly worse for CS2. The data indicates that
the students did not find the assignments on heterogeneous com-
puting significantly more challenging. Notwithstanding, we cannot
reach a definitive conclusion because our sample size is small.

Student engagement in the Fall 2018 offering of this module
has already been discussed. Fig. 9 shows survey results from Fall
2019. The results are similar to that of the A1 module with a slight
increase in student interest and confidence gains. We should note
however, that we received survey responses from 43 of the 52
students enrolled in the class (83%). If students failed to respond
when they did not find the module particularly helpful or interest-
ing, a higher response rate could have yielded lower scores.

64

Journal of Parallel and Distributed Computing 158 (2021) 56-66

Class Activities — 3.98

[3.98

e

Support for
Leaming

Learning
Experiences

Confidence and
Interest Gains

0.0 1.0 2.0

scale mean

Fig. 9. Student learning experience, confidence and interest gains in A2 module, Fall
2019. Survey respondents: 43/52.

9. Conclusions and future work

This paper presents a set of four teaching modules for exposing
introductory CS students to heterogeneous computing. The mod-
ules cover fundamental HC topics at a high level of abstraction but
this coverage is complemented with hands-on assignments and in-
class exercises that allow students to reinforce their understanding
by conducting experiments on real hardware. Preliminary evalua-
tion is promising both in terms of student learning outcomes and
engagement.

We plan to continue our evaluation work. In addition to gath-
ering data on them in our own courses, we will be presenting
these modules to other faculty at several conferences and recruit-
ing them to test the modules at their own institutions.

CRediT authorship contribution statement

Apan Qasem: Investigation, Methodology, Writing - original
draft, Writing - review & editing. David P. Bunde: Investigation,
Methodology, Writing - original draft, Writing - review & edit-
ing. Philip Schielke: Investigation, Methodology, Writing - original
draft, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by the National Science Foundation
through awards CNS-1253292, OAC-1829644, and OAC-1829554.
Equipment donations by IBM and NVIDIA helped in developing the
labs associated with the modules. The authors thank the reviewers
for their comments which helped improve this work.

Appendix A. Heterogeneous task mapping lab assignment

Objective

In this assignment, you will investigate performance and energy
issues of a heterogeneous computing system. You will be given
a set of four programs with different characteristics. Your goal is
to determine the best mapping of these programs to the different
processing cores via experimentation and analysis.

Environment
You will be running experiments on megatron, a heteroge-
neous multicore system. megatron has four processing cores and

A. Qasem, D.P. Bunde and P. Schielke

each core has been configured to do a specific type of job. Al-
though each core can do any type of computation it will perform
certain tasks really well.

Tools
Familiarize yourself with the following tools. They are all in-
stalled in standard locations on megatron
e mapper: task mapping
perf: performance evaluation via HW counters
likwid: energy and power estimation
cpufrequtils: CPU frequency scaling

Instructions

(1) Log in to megatron
megatron is a server behind the firewall. From within the
school network, you can ssh into megatron as follows

ssh netidemegatron.cs.school.edu

From an off-campus network, you will first need to ssh into
a gateway server (e.g., gateway.cs.school .edu) and then log
in to megatron.
(2) Download code samples

Once you have logged into megatron, clone the following git
repository into your home directory

git clone https://git.school.edu

Create a directory for the codes to reside and unzip the codes
into that directory. You should see four executables and a README.
The four executables are designed to perform the following tasks

e pO0: numeric computation (e.g., excel)
pl: graphics (e.g., game)
p2: play music (e.g., music app)
p3: communicate with the internet (e.g., web browser)

The README has more information about each application and
their characteristics.

(3) Conduct Performance Experiments

Launch the four programs, at the same time, with different
thread mapping configurations. You can do this in one step us-
ing the mapper tool (installed in /usr/local/bin/mapper).
For example,

mapperpOplp2p33102

The above command will launch the four programs at the same
time and map po, pl, p2, p3 to processing cores 3, 1, 0 and 2
respectively. The program arguments must be the fully qualified
name of the executable and the processor arguments must be in
the range 0-3. Type the following to see more options

mapper —help

For each configuration, record the performance of each individ-
ual core and the overall workload. You can use the perf tool for
this purpose.

perf stat mapperpOplp2p33102

perf will report a bunch of performance metrics. The ones
that you want to pay particular attention to are CPUs Utilized and
instructions per cycle. Instructions per cycle (IPC) is a throughput
metric that normalizes performance across different workloads.
Repeat the experiments and measure the energy consumption.
You can use /usr/local/bin/likwid to do this
likwid

-¢ 0-3 -g ENERGY mapper <args>

65

Journal of Parallel and Distributed Computing 158 (2021) 56-66

(4) Analyze the data

Create charts showing performance (as measured using the
metrics described above), power and energy for different config-
urations. Analyze the data and create a report answering the fol-
lowing questions

o Which processor is good at numeric computation?
Which processor is good at graphics?
Which processor is good at playing music?
Which processor is good when there is a need to communi-
cate over the network?
Do the answers hold for power as well?
What is the configuration that provides the best performance?
What is the configuration that consumes least power?
What is the configurations that is most energy efficient?

References

[1] B.S. Bloom, Taxonomy of Educational Objectives: The Classification of Edu-
cational Goals: By a Committee of College and University Examiners, David
McKay, 1971.

[2] S. Borkar, Getting gigascale chips: challenges and opportunities in continuing
Moore’s law, ACM Queue 1 (7) (2003) 26-33.

[3] Brown cs:courses, https://cs.brown.edu/courses/. (Accessed 7 February 2018).

[4] R.A. Brown, E. Shoop, Modules in community: injecting more parallelism into
computer science curricula, in: Proceedings of the 42nd ACM Technical Sym-
posium on Computer Science Education (SIGCSE), 2011, pp. 447-452.

[5] Bs in computer science - cuw cs, http://www.cs.cuw.edu/cs-major/. (Accessed 7
February 2018).

[6] D. Bunde, K.L. Karavanic,]J. Mache, C.T. Mitchell, Adding GPU computing to
computer organization courses, in: Proc. 3rd NSF/TCPP Workshop on Parallel
and Distributed Computing Education (EduPar), 2013.

[7] M. Burtscher, W. Peng, A. Qasem, H. Shi, D. Tamir, H. Thiry, A module-based
approach to adopting the 2013 ACM curricular recommendations on parallel
computing, in: Proceedings of the 36th SIGCSE Technical Symposium on Com-
puter Science Education (SIGCSE), 2015.

[8] Center for parallel and distributed computing curriculum development and ed-
ucational resources (CDER), http://www.cs.gsu.edu/~tcpp.

[9] Code generation and optimization, NEEDCITATION. (Accessed 5 February 2018).

[10] Course catalog 2017-18, https://courses.rice.edu/admweb/!SWKSCAT.cat?p_
action=CATALIST&p_acyr_code=2018&p_subj=COMP. (Accessed 10 February
2018).

[11] CSinParallel Project, http://csinparallel.org/.

[12] Degree requirements - computer science, http://www.concordia.edu/
academics/school-of-natural-and-applied-sciences/computer-science/degree-
requirements.html. (Accessed 7 February 2018).

[13] G. Gopalakrishnan, Formal methods for surviving the jungle of heterogeneous
parallelism, in: 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW), IEEE, 2012, pp. 1321-1324.

[14] O. Hazzan, Reducing abstraction level when learning computability theory con-
cepts, in: Proceedings of the 7th Annual Conference on Innovation and Tech-
nology in Computer Science Education (ITiCSE), 2002, pp. 156-160.

[15] High performance computer systems, http://bulletin.wustl.edu/undergrad/
engineering/computerscience/#courses. (Accessed 7 February 2018).

[16] Introduction to cyberphysical systems, https://www.cs.utexas.edu/courses/378-
introduction-cyberphysical-systems. (Accessed 5 February 2018).

[17] J. Kramer, Is abstraction the key to computing?, Commun. ACM 50 (4) (2007)
36-42.

[18] W. Lee, D. Sunwoo, C.D. Emmons, A. Gerstlauer, LK. John, Exploring opportuni-
ties for heterogeneous-isa core architectures in high-performance mobile socs,
Technical Report UT-CERC-17-01, The Computer Engineering Research Center,
University of Texas at Austin, Mar. 2017.

[19] RJ. Marzano,].S. Kendall, The New Taxonomy of Educational Objectives, Corwin
Press, 2006.

[20] E. Mazur, Peer Instruction: A User’s Manual, Prentice Hall, Upper Saddle River,
New Jersey, 1997.

[21] T. Morad, U. Weiser, A. Kolodny, M. Valero, E. Ayguadé, Performance, power effi-
ciency and scalability of asymmetric cluster chip multiprocessors, IEEE Comput.
Archit. Lett. 4 (1) (2005) 14-17.

[22] Parallel Computing in the Undergraduate Curriculum: the Early-and-Often Ap-
proach, http://tues.cs.txstate.edu/.

[23] Parallel programming, https://cs.txstate.edu/academics/course_detail/CS/4380/.
(Accessed 5 February 2018).

[24] Peer instruction for computer science, http://peerinstruction4cs.org/, October
2020.

[25] F. Pollack, New microarchitecture challenges in the coming generations of
CMOS process technologies, keynote address at IEEE Intern. Symp. Microarchi-
tecture (MICRO), http://hpc.ac.upc.edu/Talks/dir07/T000065/slides.pdf, 1999.

http://gateway.cs.school.edu
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibAE08A276C1F89CD7F01142E127327F44s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibAE08A276C1F89CD7F01142E127327F44s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibAE08A276C1F89CD7F01142E127327F44s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibCCCE854CF4F1CFDC37763537A7133D60s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibCCCE854CF4F1CFDC37763537A7133D60s1
https://cs.brown.edu/courses/
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibA1308C6160EF78A4E25EC82FE947B6E3s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibA1308C6160EF78A4E25EC82FE947B6E3s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibA1308C6160EF78A4E25EC82FE947B6E3s1
http://www.cs.cuw.edu/cs-major/
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibF4D261BED1E44FBF406BC8E1A7F0781As1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibF4D261BED1E44FBF406BC8E1A7F0781As1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibF4D261BED1E44FBF406BC8E1A7F0781As1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib56FBE855BC3DFADA4DAE8BF3379385CFs1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib56FBE855BC3DFADA4DAE8BF3379385CFs1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib56FBE855BC3DFADA4DAE8BF3379385CFs1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib56FBE855BC3DFADA4DAE8BF3379385CFs1
http://www.cs.gsu.edu/~tcpp
http://NEEDCITATION
https://courses.rice.edu/admweb/!SWKSCAT.cat?p_action=CATALIST&p_acyr_code=2018&p_subj=COMP
https://courses.rice.edu/admweb/!SWKSCAT.cat?p_action=CATALIST&p_acyr_code=2018&p_subj=COMP
http://csinparallel.org/
http://www.concordia.edu/academics/school-of-natural-and-applied-sciences/computer-science/degree-requirements.html
http://www.concordia.edu/academics/school-of-natural-and-applied-sciences/computer-science/degree-requirements.html
http://www.concordia.edu/academics/school-of-natural-and-applied-sciences/computer-science/degree-requirements.html
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib34BBC3D29D2216EBCA83FE0D69C920F6s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib34BBC3D29D2216EBCA83FE0D69C920F6s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib34BBC3D29D2216EBCA83FE0D69C920F6s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibF04E6BABAE603FBFB1892CDDDF3BB63Ds1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibF04E6BABAE603FBFB1892CDDDF3BB63Ds1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibF04E6BABAE603FBFB1892CDDDF3BB63Ds1
http://bulletin.wustl.edu/undergrad/engineering/computerscience/#courses
http://bulletin.wustl.edu/undergrad/engineering/computerscience/#courses
https://www.cs.utexas.edu/courses/378-introduction-cyberphysical-systems
https://www.cs.utexas.edu/courses/378-introduction-cyberphysical-systems
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib57FFAF027427BBE87F305FC55ACE111Bs1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib57FFAF027427BBE87F305FC55ACE111Bs1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib7A114C7640E1A7EAED00D879B6E5FF97s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib7A114C7640E1A7EAED00D879B6E5FF97s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib7A114C7640E1A7EAED00D879B6E5FF97s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib7A114C7640E1A7EAED00D879B6E5FF97s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibF3C2D1271622B6C2B0708470F8E7E2CBs1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibF3C2D1271622B6C2B0708470F8E7E2CBs1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib1AFB8B54EE0A32373BAE2CF15366D685s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bib1AFB8B54EE0A32373BAE2CF15366D685s1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibE8AC9BC1A5C80FA15301C42A010E84EEs1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibE8AC9BC1A5C80FA15301C42A010E84EEs1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibE8AC9BC1A5C80FA15301C42A010E84EEs1
http://tues.cs.txstate.edu/
https://cs.txstate.edu/academics/course_detail/CS/4380/
http://peerinstruction4cs.org/
http://hpc.ac.upc.edu/Talks/dir07/T000065/slides.pdf

A. Qasem, D.P. Bunde and P. Schielke

[26] A. Qasam, D. Bunde, P. Schielke, Touch: teaching undergrads collaborative
and heterogeneous computing, in: Consortium for Computing Sciences in
College: South Central Region 2019 Conference, University of Texas at Dal-
las, Richardson, TX, 2019, https://github.com/TeachingUndergradsCHC/CCSC19/
blob/master/poster_48x36.pdf.

[27] A. Qasem, SimPar: a macro language for introducing parallel concepts to CS 1
students, https://github.com/TeachingUndergradsCHC/SimPar.git. (Accessed 11
March 2021).

[28] E. Seymour, D. Wiese, A. Hunter, S.M. Daffinrud, Creating a better mousetrap:
on-line student assessment of their learning gains, in: National Meeting of the
American Chemical Society, 2000.

[29] ToUCH: teaching undergrads collaborative and heterogeneous computing,
https://touch.cs.txstate.edu.

[30] Touch: Teaching undergraduates collaborative and heterogeneous computing,
https://github.com/TeachingUndergradsCHC/modules. (Accessed 23 September
2019).

Apan Qasem is an Associate Professor and the Associate Chair of the
Department of Computer Science at Texas State University, where he con-

66

Journal of Parallel and Distributed Computing 158 (2021) 56-66

ducts research in high-performance computing with an emphasis on code
optimization for heterogeneous environments. From 2012-15, he led an
NSF-funded project to integrate parallel computing concepts into the un-
dergraduate curriculum.

David Bunde is the William & Marilyn Ingersoll Professor of Computer
Science at Knox College, where he conducts research in high-performance
computing. He currently leads the effort to promote Peachy Parallel As-
signments, parallel computing assignments that are tested, easy for others
to adopt, and motivational for students.

Philip Schielke is an Associate Professor of Computer Science at Con-
cordia University Texas. He is active in curriculum development at all
levels of Concordia’s Computer Science programs. Schielke has revamped
the University’s Bachelor of Science in Computer Science, added a Bache-
lor of Arts in Computer Science, and rewritten about 75% of the CS course
documents for the University.

https://github.com/TeachingUndergradsCHC/CCSC19/blob/master/poster_48x36.pdf
https://github.com/TeachingUndergradsCHC/CCSC19/blob/master/poster_48x36.pdf
https://github.com/TeachingUndergradsCHC/SimPar.git
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibDFD37025C8FFB9EEDC480CA1918242FAs1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibDFD37025C8FFB9EEDC480CA1918242FAs1
http://refhub.elsevier.com/S0743-7315(21)00157-X/bibDFD37025C8FFB9EEDC480CA1918242FAs1
https://touch.cs.txstate.edu
https://github.com/TeachingUndergradsCHC/modules

	A module-based introduction to heterogeneous computing in core courses
	1 Introduction
	2 Design principles
	3 Related work
	4 Heterogeneous computing: elementary notions
	4.1 Context
	4.2 Topics
	4.3 Learning outcomes
	4.4 Lecture
	4.4.1 Review of von Neumann architecture
	4.4.2 Parallel computing and its importance today
	4.4.3 Heterogeneous system design
	4.4.4 Sequential, parallel and heterogeneous program execution
	4.4.5 Programming tools

	4.5 Performance challenges

	5 Task mapping on soft heterogeneous systems
	5.1 Context
	5.2 Topics
	5.3 Learning outcomes
	5.4 Lab

	6 Pollack’s rule as a justification for heterogeneous computing
	6.1 Context
	6.2 Topics
	6.3 Learning outcomes
	6.4 Followup assignments

	7 Heterogeneous ISA: ARM vs. MIPS
	7.1 Context
	7.2 Topics
	7.3 Learning outcomes
	7.4 Lectures
	7.5 Labs
	7.5.1 Lab1 intro to ARM
	7.5.2 Lab2 comparing ARM and Thumb
	7.5.3 Lab3 ARM NEON

	8 Evaluation
	8.1 Methodology
	8.1.1 Summative evaluation of learning outcomes

	8.2 Surveys to evaluate student engagement
	8.3 Evaluation of module A1
	8.4 Evaluation of module A2

	9 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Heterogeneous task mapping lab assignment
	References

