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" Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel,
2 Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States

While recent strides have been made in understanding the biological process by which
stony corals calcify, much remains to be revealed, including the ubiquity across taxa of
specific biomolecules involved. Several proteins associated with this process have been
identified through proteomic profiling of the skeletal organic matrix (SOM) extracted
from three scleractinian species. However, the evolutionary history of this putative
“biomineralization toolkit,” including the appearance of these proteins’ throughout
metazoan evolution, remains to be resolved. Here we used a phylogenetic approach to
examine the evolution of the known scleractinians’ SOM proteins across the Metazoa.
Our analysis reveals an evolutionary process dominated by the co-option of genes that
originated before the cnidarian diversification. Each one of the three species appears
to express a unique set of the more ancient genes, representing the independent co-
option of SOM proteins, as well as a substantial proportion of proteins that evolved
independently. In addition, in some instances, the different species expressed multiple
orthologous proteins sharing the same evolutionary history. Furthermore, the non-
random clustering of multiple SOM proteins within scleractinian-specific branches
suggests the conservation of protein function between distinct species for what we
posit is part of the scleractinian “core biomineralization toolkit.” This “core set” contains
proteins that are likely fundamental to the scleractinian biomineralization mechanism.
From this analysis, we infer that the scleractinians’ ability to calcify was achieved
primarily through multiple lineage-specific protein expansions, which resulted in a new
functional role that was not present in the parent gene.

Keywords: skeleton evolution, co-option, SOM proteins, stony corals, phylogenetic analysis

INTRODUCTION

Scleractinian corals (commonly known as stony or hard corals) are foundation species in the
tropical marine ecosystem (Moberg and Folke, 1999). One of their most important roles is
reef formation through their ability to create a rigid aragonite exoskeleton by the process of
biomineralization. These exoskeletons are valuable as they provide the ecological framework that
supports high rates of primary production and permits extensive biological diversity in coral
reef ecosystems (Veron et al., 2009), as well as serving as a large reservoir of biogenic calcium
carbonate in the ocean (Cohen and McConnaughey, 2003). Scleractinians are among the oldest
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biomineralizing Metazoa, likely appearing in the late Ordovician
(~445 Million years ago), and becoming highly diverse (Stolarski
et al,, 2011; Drake et al., 2020). They are represented by different
morphologies and spatial distribution (Veron, 2000), and show
distinct molecular evolution, with the order split into two
major clades, known as the Complexa (complex corals) and
Robusta (robust corals) (Romano and Palumbi, 1996; Kitahara
et al,, 2010; Ying et al., 2018), named for the extent of skeletal
calcification-specific patterns of corallite wall construction. While
the process of biomineralization in scleractinians has long
been studied (reviewed by Drake et al., 2020), its biomolecular
mechanisms have only recently begun to be revealed (reviewed
by Murdock, 2020), coinciding with advances in genomics and
protein identification.

The “biomineralization toolkit” is the collective term for
the many specific lipids, polysaccharides, and proteins both
documented and hypothesized to be involved in the formation
of the biomineral at various stages of an organism’ life
history, some of which may become embedded in its skeleton
(Livingston et al., 2006). Those organic molecules which are
retained in the skeleton (the skeletal organic matrix, SOM)
directly mediate and regulate the process by which many
organisms from across all kingdoms of life form biominerals
(Lowenstam and Weiner, 1989; Mann, 2001; Knoll, 2003), with
the resulting biominerals exhibiting characteristics different from
their abiogenic counterparts (Weiner, 2003; Gal et al., 2015). Out
of all the SOM molecules, the most intensively studied are the
proteins (Evans, 2019; Clark, 2020; Erwin, 2020; Murdock, 2020).
Proteomic studies have shown that different lineages use sets
of proteins with similar functional categories, including matrix
formers, nucleation assisters, signalers, and remodelers to form
their skeletal structure (Marin et al., 2016; Evans, 2019). Although
the SOM proteins from distant organisms share common
properties (Evans, 2019), each taxon-specific suite appears to
have evolved independently through convergent and co-option
evolution, resulting in varying contributions by lineage- and
species-specific novel proteins, which exhibit contrasting rates of
conservation between and within lineages (Drake et al., 2014).

In scleractinians, numerous SOM-related characteristics have
been studied (Tambutté et al.,, 2011), yet only a few proteomic
profiling experiments have been conducted, and then solely
for tropical species. Extensive proteomic studies using species-
specific genomes and transcriptomes include those of Stylophora
pistillata (Drake et al., 2013; Peled et al, 2020), Acropora
millepora (Ramos-Silva et al., 2013), and Acropora digitifera
(Takeuchi et al., 2016), which, when combined, revealed over 100
SOM protein, hence members of the “biomineralization toolkit.”
Similar to previous examinations of various metazoan lineages,
scleractinian SOM proteins appear to share functional roles
in carbohydrate-binding and catalytic activities (Ramos-Silva
and Marin, 2015). Notably, the most extensively studied SOM
proteins in scleractinians are the aspartic acid-rich proteins which
assist in mineral nucleation and modification (Lowenstam and
Weiner, 1989; Marin and Luquet, 2008; Mass et al., 2013; Gavriel
et al,, 2018; Laipnik et al., 2019), and a-carbonic anhydrases that
play a role in both carbon supply and concentration (Bertucci
et al,, 2013; Zoccola et al,, 2016). However, many scleractinian

SOM proteins do not contain known functional domains and
remain to be functionally characterized. Furthermore, out of all
the known scleractinian SOM proteins, only a few were found
to be shared between the three species (Takeuchi et al., 2016;
Peled et al., 2020). The identification and characterization of
the suite of scleractinian SOM proteins to date has led to the
hypothesis that the proteins underlying scleractinian skeleton
formation developed through stepwise evolution, supplementing
proteins that are conserved across Metazoa with scleractinian-
specific and species-specific novel proteins (Ramos-Silva et al.,
2013; Takeuchi et al., 2016).

While useful for initial studies, most of the analyses that
examined SOM protein diversity across taxa were carried out
using heuristic methods of sequence similarity scores (e.g.,
BLAST), which estimates the phylogenetic relationships between
a set of genes by the premise that higher-scoring sequence
pairs are likely to have diverged more recently compared to
their lower-scoring counterparts (Fitch, 1970; Lafond et al,
2018; Emms and Kelly, 2019). As a preliminary examination,
sequence similarity can aid in determining homologous gene
groups and are useful for function-related applications (Doyle
et al., 2010; Paps and Holland, 2018; Richter et al., 2018);
yet, the lack of a phylogenetic analysis based on a species
tree limits our understanding of the proteins’ origin and
evolutionary dynamics, as sequence duplication can result in
a high sequence differentiation and subsequently leads to
overlooking orthologous sequences (Lafond et al., 2018). To date,
Bhattacharya et al. (2016) have published the most intensive
phylogenetic study of the previously known scleractinian
biomineralization proteins. The authors provided the basis for
understanding scleractinian genomic evolutionary information,
revealing mechanisms for scleractinians to adapt to changing
environments while maintaining the ability to calcify. Recent
advances in genome and transcriptome sequencing and the
production of more gene databases are increasing our ability
to provide a higher resolution comparison of SOM proteins
and therefore, a better understanding of their evolutionary
dynamics. This will allow extrapolation of the occurrence
of the scleractinian “core biomineralization toolkit, that is,
the biomineralization-related proteins that are shared across
scleractinian species and, as such, have a fundamental role in the
skeleton formation process across the order. While at first glance,
the most straightforward method may be to sequence more
scleractinian skeletal proteomes, in practice, direct proteomic
analyses are often incomplete and time-consuming (Marin et al.,
2016; Aguilera et al, 2017; Peled et al., 2020); predictions
based on transcriptomic and genomic data, therefore, become
essential. However, on their own, such predictions can result
in redundancies and overestimations, while at the same time
overlooking potential gene candidates due to unresolved and
incomplete genomes and transcriptomes (Eisenhaber, 2013;
Sinha et al., 2018). Therefore, it is essential to combine both
approaches, based on both proteins and DNA/RNA sequencing,
to generate a more holistic picture of SOM protein evolution.

Here, we used a phylogenetic approach of the known
scleractinian SOM proteins to study their evolution across the
metazoan tree of life. As we have used the orthology/paralogy

Frontiers in Genetics | www.frontiersin.org

February 2021 | Volume 12 | Article 618517


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Zaquin et al.

Evolution of SOM Proteins

relationships for each protein in one species at a time, our
results are independent for each lineage, providing a robust
evaluation of their evolution. Our results reveal part of the “core
biomineralization toolkit” across scleractinians, comprised of
multiple proteins sharing an evolutionary history across distinct
species. Since orthologous genes are more likely to share a
biological function (Fang et al., 2010; Gabaldén and Koonin,
2013; Altenhoft et al., 2019), our approach might allow us to
extrapolate the occurrence of proteins that play a fundamental
role in the skeleton formation across scleractinians. However,
the major fraction of each species SOM proteins were found
to be independently co-opted into their own “biomineralization
toolkit” from genes that evolved before the emergence of
scleractinians. These were coupled with scleractinian-specific
gene family expansions resulting in each scleractinian lineage and
species having a unique set of SOM proteins.

MATERIALS AND METHODS

Scleractinian SOM Protein Orthogroup

and Gene Tree Reconciliation

Our phylogenetic analysis was based on 43 annotated genomes
spanning the metazoan kingdom (Supplementary Table 1), with
the addition of seven Fungi species and two choanoflagellate
species as the outgroups. The outgroups were selected in order
to consider the Opisthokonta evolution. More specifically, the
Fungi kingdom was included as scleractinians were found to
share a complete histidine biosynthesis pathway, which is unique
across the Metazoa (Ying et al, 2018), indicating that the
consideration of fungi outgroup may be critical. Furthermore,
the Choanoflagellata class was also included as it is considered
to be the sister group of the Metazoa (King et al, 2008;
Schalchian-Tabrizi et al., 2008). The complete dataset includes
rigid skeleton/shell forming and non-forming taxa, including
representation of major marine calcifying phyla (Mollusca,
Echinodermata, Arthropoda, and Cnidaria) as we sought to
group the known scleractinian SOM proteins (Drake et al,
2013; Ramos-Silva et al,, 2013; Takeuchi et al, 2016; Peled
et al., 2020) into their respective orthogroups. An orthogroup
is defined as a set of genes descended from a single gene in
the last common ancestor of all the species being considered.
We limited our database of known scleractinian SOM proteins
to studies for which the skeletal proteomes were sequenced
against annotated genomes from the same species, limiting us to
representatives of scleractinian SOM proteins from A. digitifera,
A. millepora, and S. pistillata. We decided to use a larger
proportion of species from the cnidarian phylum and more
particularly, within the scleractinian order, as they are the focus of
this study. The annotated genomes in the analysis are comprised
of datasets with a median BUSCO score of 90.05% (Seppey
et al., 2019; Supplementary Table 1). To infer the scleractinian
SOM orthogroups, we clustered all the protein-coding sequences
from our entire database using OrthoFinder 2.2.7 (Emms and
Kelly, 2015, 2019), to give a total of ~16,000 orthogroups.
After identifying all orthogroups from each sequence in our
known SOM protein dataset, we aligned the sequences in

each orthogroup separately using MAFFT (Katoh and Standley,
2013), followed by the removal of sequences and regions
based on inconsistencies in the consensus alignment; sequences
with both fewer than thirty aligned amino acids and less
than 50% of the sequence aligned columns with <2 aligned
sequences were removed. Gene trees were constructed in 1Q-
TREE (Nguyen et al., 2015) using the best-fitted model (LG) and
discrete Gamma distribution of four rates across site categories
(Resulting trees can be found in Supplementary File 1). To
infer pairwise orthology relationships and to reconstruct the
sequences evolutionary histories, the gene trees were further
rooted and reconciled via the Orthofinder2 pipeline, using the
rooted species tree with the topology presented in Figure 1A,
which is based on the current knowledge of animal phylogeny
(Laumer et al., 2019; Fernandez and Gabaldén, 2020). Then
we selected orthogroups that include known SOM proteins
of A. digitifera, A. millepora, and S. pistillata. Lastly, the
known scleractinian SOM protein orthogroups were used for
downstream analyses.

As data acquired from de novo transcriptomes are highly
fragmented and can lead to misinterpretation of downstream
analysis (Emms and Kelly, 2015), we did not include any
transcriptomic data sets as part of the Orthofinder2 pipeline.
However, the ability to produce a calcium carbonate rigid
skeleton is not unique to the scleractinian order within
Cnidaria, with several taxa, including hydrozoans and octocorals,
demonstrating this ability. Therefore, to further identify common
molecular traits between extant taxa, we searched for the
known scleractinian SOM proteins putative orthologs in the
transcriptome of a representative species, the blue octocoral
Heliopora coerulea (Guzman et al., 2018) using Conditional
Reciprocal Best BLAST 0.6.6 (CRB-BLAST) (Aubry et al,
2014), that performs complementary BLAST alignments between
query and target sequences. Sequences with more than a
single hit across query and target of the same scleractinian
species, were removed.

Scleractinian SOM Protein Orthogroup

Gain and Duplication Patterns

We based our analysis on Dollo’s parsimony (Farris, 1977) and
phylostratigraphic profiling (Domazet-Loso et al., 2007) to infer
the likely phylogenetic origin of each known scleractinian SOM
gene family. Dollo’s parsimony, implemented in COUNT 9.1106
(Cstis, 2010), is modeled on Dollo’s law (Dollo, 1893) that
argues the statistical improbability of an organism to transition
into a different state. It leads to a substantial simplification
of evolutionary scenarios as it assumes that genes, which have
been lost during evolution in a particular lineage, are unlikely
to be regained. This heuristic approach enables us to map the
scleractinian SOM proteins to the species tree based on the most
phylogenetically distant lineage present in their representative
orthogroup and to determine if SOM protein gains are the
product of a lineage-specific evolution rather than the co-option
of pre-existing genes into a skeleton formation role. If an SOM
protein was reported as not having an orthogroup, we assigned it
as a species-specific protein.
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FIGURE 1 | Evolutionary origin of SOM proteins (SOMP) and duplication rates across animal taxa. (A) In the species tree, each internal node represents an ancestral
lineage, where tips represent extant species. Accordingly, blue-filled bars near specific internal nodes represent the percentage of known SOM proteins that were
gained in a specific ancestral lineage, based on our results. Similarly, the gray-filled bar represents the percentage of known SOM proteins that evolved from a
protein whose last duplication occurred at specific ancestral species. Bottom-right bars represent gain at extant species. The mean (x) and standard deviation (s.d.)
values are indicated in each bar graph. Black shapes symbolize the different mineral phases of the species that form a rigid skeleton or shell. (B) The heatmap
describes the occurrences of each known SOM protein from Stylophora pistillata, Acropora digitifera, and A. millepora across the different orthogroups and their
coding sequence homologs among all species in this study. For a comprehensive list of the SOM proteins found in each orthogroup, see Supplementary Table 2.

Gene duplication rates were calculated using the phylogenetic
birth-and-death model implemented in COUNT 9.1106 (Csti6s,
2010). Specifically, the rate model was calculated and optimized
under the gain-loss-duplication model with the Poisson

distribution at the root. The variation rate across families was
set to 4:1:1:4 gamma categories for the edge length, the loss rate,
gain rate, and the duplication rate, respectively. The convergence
criteria applied were set to 100 rounds for the optimization
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FIGURE 2 | Rooted gene tree of polycystin-like proteins (OG0006984) representing the independent co-option of orthologous proteins into the SOM of the
Acroporidae species. Node points represent the phylum (shape) and order (color). Tips that are labeled red indicate the occurrence of scleractinian known SOM
proteins. The highlighted cluster represents a “Scleractinia branch.” Node support values indicate percentage bootstrap values. Only values above 75 are indicated.

TABLE 1 | Known coral SOM proteins in “Scleractinia branches.”

Orthogroup Orthogroup description SOM protein occurrences in Size of “Scleractinia SOM protein density in
“Scleractinia branch” branch” “Scleractinian branch”
0OG0000020 Trypsin 2 4 0.5
OG0000030 Uncharacterized SOM protein 5 3 40 0.075
OG0000034*  Properdin 3 11 0.273
0OG0000058*  Pikachurin-like 5 33 0.152
OG0000097* MAM and LDL-receptor domain-containing proteins 3 11 0.273
OG0000102*  Protocadherin 2 16 0.125
OG0000105*  ZP domain-containing proteins 3 16 0.186
OG000606* Galaxin-2 5 18 0.278
0OG0001324*  Hephestin 3 18 0.167
OG0001947*  Aspartic acid-rich proteins 6 23 0.261
0OG0006984 Polycystin-like proteins 2 22 0.091
0OG0009365 Uncharacterized SOM protein 8 2 11 0.182

The list represents only “Scleractinia branches” with at least two scleractinian known SOM proteins and their density in the branch. Asterisks symbolize “Scleractinia
branches” that contain SOM proteins from species of both the complex and robust scleractinian clades.

rounds with a likelihood threshold of 0.1. This model is based eukaryotes is genomic duplications, while the possibility of gene
on the assumption that the primary mechanism of gene gain in  gain through horizontal gene transfer (HGT) between different
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values indicate percentage bootstrap values. Only values above 75 are indicated.

nodes of the gene tree is less likely (Cstirés and Miklds, 2006).
However, as our methodological approach centered around
using gene phylogenies to infer pairwise orthology and paralogy
relationships for all genes in the analysis, it is robust to the
effect of HGT, genome completeness and variable genome size
(Huerta-Cepas et al., 2014; Emms and Kelly, 2015, 2019).

SOM-Enriched Branches and

Permutation Test Method
In each rooted gene tree (see above), we first detected
“Scleractinia branches,” namely: groups of proteins that evolved

from a single protein that existed in the last common ancestor
of complex/robust scleractinians. For each scleractinian branch,
we calculated the following values: (1) the total number of
proteins in that branch, PN; (2) the number of SOM proteins
known from previous studies (Drake et al., 2013; Ramos-Silva
et al., 2013; Takeuchi et al., 2016; Peled et al., 2020) in that
branch, pn; and (3) SOM protein density, pn/PN, if at least
one known SOM protein was observed, otherwise density = 0.
Our analysis tested whether known scleractinian SOM proteins
evolved independently as opposed to having evolved from an
SOM-related protein that existed in the most recent common
ancestor of scleractinia. We compared our observed “Scleractinia
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85) representing the independent co-option of a single S. pistillata protein into the

branches” SOM protein density to an expected density obtained
by randomly selecting (nl) S. pistillata, (n2) A. digitifera, and
(n3) A. millepora proteins (where nl, 2, 3 are equal to the
counts of respective observed SOM proteins). The comparison
was conducted using a permutation test (n = 1,000 sums), where a
P-value was defined as the proportion of cases where the observed
sum of density is smaller than the expected sum. We also repeated
this test where density = 1 is assigned if species from both the
complex and robust scleractinian clade are found in a cluster, and
otherwise density = 0.

RESULTS

Scleractinian SOM Protein Evolutionary
History

Using OrthoFinder2, 123 known scleractinian SOM proteins
were clustered in 72 different orthogroups (i.e., all genes
descended from a single gene belonging to the last common
ancestor of the tested species). The identification of known
scleractinian SOM proteins was based on previously published
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scleractinian SOM proteomes (Figure 1B and Supplementary
Table 2). The majority of the orthogroups, 54 out of 72,
were found to include known SOM proteins from a single
species, while twelve orthogroups contain two species and seven
orthogroups are represented by all three species (Figure 1B
and Supplementary Table 1). In fourteen orthogroups, we
have identified the occurrence of scleractinian known SOM
protein paralogs (that is, proteins which separated by a
duplication event), from one or more species (Figure 1B and
Supplementary Table 2). Although most orthogroups included
known SOM proteins from a single species, we identified
orthologs of those proteins across most scleractinian species
with a mean of 67.5 (£1.78) orthogroups per scleractinian
species (Figure 1B).

Gene gain can involve the co-option of pre-existing molecular
traits to serve a new functional role as well as the evolution
of lineage-specific genes, through a multiple “birth” model
(True and Carroll, 2002; Choi and Kim, 2006; McLennan,
2008; Mello et al., 2018). As such, we evaluated these two
categories using a phylostratigraphic approach. We observed an
unbalanced gene distribution, where 76% of the SOM proteins
are descendants of genes that were gained before the cnidarian
diversification (Figure 1A and Supplementary Table 3). In
our analysis, we found only a single scleractinian-specific
orthogroup (OG0012228), representing species from both the
robust and complex scleractinian clades. This orthogroup
contains the S. pistillata SOM protein “Coral Acid-Rich Protein
2” (Supplementary Figure 1), which was observed to have an
essential role in the early life stages of scleractinians (Mass
et al., 2016; Akiva et al., 2018). However, ~60% of the SOM
proteins, found in the different orthogroups, emerged during the
scleractinian evolution due to gene family expansion (Figure 1A
and Supplementary Table 3). Simultaneously, 10.53 and 7.41%
of the known SOM proteins from S. pistillata and A. millepora,
respectively, were not found in any a specific orthogroup
(Supplementary Table 2), suggesting a species-specific evolution.

Calculation of duplication rates across the tested orthogroups
(Supplementary Table 3) shows high rates at the Opisthokonta
and Choanimalia branches, followed by low rates at the
subsequent branches leading to the known SOM proteins’ species
(Supplementary Figure 2).

Using CRB-BLAST, 21 distinct transcripts from the
massive aragonite skeleton forming octocoral, H. coerulea,
were identified to be putative orthologs of 27 scleractinian
known biomineralization proteins, spanning 20 orthogroups
(Supplementary Table 4). All identified H. coerulea transcripts
were present in orthogroups with the phylogenetic origin at the
metazoan branch or earlier (Figure 1B). Furthermore, in all of
the respective orthogroups, at least two other non-rigid skeleton
forming octocoral species were identified (Figure 1B). In five
instances, the H. coerulea transcripts were identified as putative
orthologs of more than a single species in the same orthogroup.
Those orthogroups include putative enzymes, transporters,
and acidic proteins, suggesting functional conservation across
lineages. However, due to limitations of the transcriptomic
dataset, the evolutionary relationship between sequences was
not resolved. Our understanding of the evolutionary dynamics

that guide the biomineralization gene repertoire evolution will
increase through the growth in annotated genomic datasets.

Identification of Species-Specific vs.
Scleractinian-Conserved SOM Protein

Evolution

In the 72 gene trees tested, we detected multiple “Scleractinia
branches,” namely: groups of scleractinian genes that evolved
from a single gene copy of the most recent common ancestor
of scleractinians. Subsequently, we identified known SOM
proteins in S. pistillata (Drake et al, 2013; Peled et al,
2020), A. digitifera (Takeuchi et al., 2016), and A. millepora
(Ramos-Silva et al., 2013) within each “Scleractinia branch.”
Accordingly, in 12 “Scleractinia branches,” we observed the
cross-species conservation of more than a single known SOM
protein (Figure 2 and Table 1). Moreover, in eight “Scleractinia
branches,” known SOM proteins from both the complex and
robust scleractinian clades were identified (Figures 3, 4 and Table
1). A permutation test revealed that this clustering pattern is non-
random (p < 0.001), with a significantly higher SOM protein
density per cluster than expected (Table 1 and Supplementary
Figure 2). Overall, these results indicate that the evolution of
SOM-related functions emerged in the last common ancestor
of scleractinians.

DISCUSSION

The mineralized skeleton is a paramount innovation, appearing
simultaneously across phyla during the Cambrian Explosion
(Murdock and Donoghue, 2011; Erwin, 2020; Murdock, 2020).
Currently, there is growing evidence that many animal taxa
inherited sets of ancestral genes that were then independently
co-opted to guide skeleton formation (Murdock, 2020). Here,
we sought to examine the evolutionary history of scleractinian
biomineralization proteins across the metazoan tree of life to
determine how modern stony corals evolved to form one of the
most significant biostructures on Earth (Veron et al., 2009).

Determining the age of the SOM proteins by phylostratigraphy
(Figure 1A) indicates that each scleractinian species’
“biomineralization toolkit” has a similar age profile, characterized
by progressively descending gene gain toward the tip of the tree.
The most substantial proportion of genes for which orthogroups
were found, appear to have evolved over 700 million years
ago, before the cnidarian diversification, through extensive
expansions of gene families. Of these ancestral genes, 96% of
orthogroups contain at least one species that does not form a
rigid skeleton (Figure 1B). The evidence that the scleractinian
SOM proteins have an ancient origin and are shared between
rigid skeleton forming and non-forming taxa further supports
the hypothesis that the “biomineralization toolkit” evolved by the
differential independent co-option of genes that had unrelated
skeleton forming functions (Erwin, 2020).

The independent co-option of ancient genes is not only
restricted to between-lineage relationships, but is also evident in
the same lineage, with taxa utilizing a unique set of proteins with
similar functional patterns (Evans, 2019). For example, mollusks
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have been found to express in their mantle a species-specific
unique set of genes that evolved before their evolutionary origins
(Aguilera et al., 2017). This tendency for different species to use
a separate set of ancient genes that converge toward the same
results is also found in stony corals. Orthogroup OG0006984
(Figure 2), was found to include polycystin-like sequences,
having calcium binding sites (Rastogi and Liberles, 2005). This
gene family has an evolutionary origin going back at least to the
Parahoxozoa lineage. Although the SOM proteins were found to
be orthologous to sequences from all three scleractinian species
with a published SOM proteome, only the Acroporidae family
proteins has been identified in the skeleton. In addition, solely
an S. pistillata known SOM protein was identified in the CAP-
Gly orthogroup (OG0004585, Figure 5) which contain genes that
are involved in the transport of vesicles along the cytoskeletal
network (Riehemann and Sorg, 1993). Similarly to the polycystin
orthogroup, the known SOM protein shares a 1:1 orthology
to sequences from the scleractinian species with a published
SOM proteome yet, was only identified in the S. pistillata’s
skeleton. It is noteworthy that this example can be a result of
the identification of different protein sets by the use of diverse
protein extraction methods, which can lead not only to different
yield but also different content of proteins as the various methods
are biased toward their own properties (Marin et al., 2016;
Klont et al., 2018; Peled et al., 2020). For example, mechanical
filtration is biased toward hydrophobic proteins, while acetone
precipitation increase the identification of hydrophilic proteins
(Thongboonkerd et al., 2002). As such, the use of multiple
extraction methods to retrieve SOM proteins makes it difficult to
fully compare across species, likely leading to underestimation of
the SOM protein repertoire.

Species-specific novel proteins are those with no orthologous
relationship outside the species of interest. This class of proteins
was also found to contribute to the scleractinian SOM protein
assemblage, although to a lesser extent than the co-option of
pre-existing molecular traits (Figure 1A and Supplementary
Table 2). While the variability in their detection is high between
our species of interest, as discussed above, it could also be
caused by underestimation due to different extraction methods.
In mollusks, species-specific proteins have been suggested to play
a considerable role in physiological adaptations to environmental
changes (Arivalagan et al, 2016) and in the formation of the
numerous shell morphologies and properties (Kocot et al., 2016).
However, to date, our knowledge of the functional roles of most
SOM proteins in scleractinians is still lacking. Therefore, the
clarification of novel biomineralization proteins from different
species, combined with experimental functional validation, is still
required to elucidate their significance.

Gene duplication events play a crucial role in the emergence
of novel genes (Singh and Bansal, 2019), and are thought
to have contributed to the evolution of morphological and
physiological diversity (True and Carroll, 2002; Kondrashov,
2012; Lallemand et al., 2020). The high rates of duplications that
occurred before the metazoan diversification (Supplementary
Figure 2) suggest that both ancient duplications and the
retention of duplicated genes have contributed to the expansion
of the gene families. This allowed the emergence of novel

functions and possibly promoting the specific evolution of
scleractinian SOM proteins. The mechanisms that may lead
to gene duplications in scleractinian lineages include tandem
duplications, transposable elements, retrotransposition and
transduplication, and segmental duplications (Lallemand et al.,
2020). Duplicated genes can acquire novel functions, namely,
undergoing neofunctionalization and subfunctionalization,
where paralogs may carry complementary functions
(Thongboonkerd et al., 2002). As we further explain here,
it seems that the scleractinian SOM protein evolution is
characterized by the gain of SOM-specific genes, supporting a
neofunctionalization model.

Despite the many scleractinian SOM protein gene
families that appear to be orthologous to diverse phyla, the
evolution of scleractinian-specific SOM lineages and their
neofunctionalization seem to be the primary force (Figure 1A).
For example, the aspartic acid-rich gene family (Figure 3) is
represented by several known SOM proteins from all three
scleractinian species with sequenced skeletal proteomes. While
known coral SOM proteins in this orthogroup have several
orthologous sequences across the cnidarian, molluscan and
brachiopod phyla, the orthogroup expansion resulted in the
speciation of two distinct scleractinian-specific clusters, each
with its own unique last common ancestor (i.e., being spread
across the robust and complex clades). A similar example can be
found for the metal transport gene tree family (Figure 4), where
the various scleractinian SOM proteins share diverse orthologous
relationships across many phyla, nonetheless converging into
a scleractinian-specific branch. Although the scleractinian
“biomineralization toolkit” bound in the skeleton seems to differ
between species, the presence of multiple orthologs to known
SOM proteins seems to indicate that SOM-related functionality
emerged in the last common ancestor of scleractinia (Table 1).
As such, these known SOM orthologs retained a fundamental
role in biomineralization and are therefore conserved across
scleractinian species.

Going further, we propose that for distinct scleractinian
species whose skeletal proteomes have not yet been sequenced,
the likelihood of orthologous genes to known SOM proteins
found under specific “Scleractinia branches,” will be further
identified upon proteomic profiling. Subsequently, the ability to
have SOM-related gene markers will increase our capability to
predict corals’ response to changing environments, without the
need to perform proteomic analysis on a large number of coral
species. However, we acknowledge that our predictions should
be taken with certain caveats. While proteomic data representing
both the complex and robust scleractinian clades are available,
our resolution may be limited, as very few scleractinian species
possess a published SOM proteome profile relative to the ~1,600
known scleractinian species (WoRMS, 2020). Consequently, we
are likely missing groups of SOM proteins conserved across
species and affiliated with specific growth forms, life strategies
and habitats. As such, we suggest that the type of analysis used
here will become more robust with the addition of a diverse
representation of scleractinian SOM proteomes that will further
help identify the “core biomineralization toolkit” across, and
between, the scleractinian order.
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Altogether, our results clarify the differing evolutionary
dynamics of the scleractinian corals “biomineralization
toolkit” as illustrated in Supplementary Figure 4. First,
we provide further evidence that the evolution of a subset
of biomineralization proteins in scleractinians is through a
stepwise process (Ramos-Silva et al, 2013; Takeuchi et al,
2016; Murdock, 2020). This is evident by the presence of pre-
existing genes shared by an assortment of skeleton forming
and non-forming taxa. It suggests that gene co-option played
an integral role in the initial development of an extracellular
organic matrix in the last common ancestor of the scleractinian
order. Second, the differential independent co-option, through
gene duplications, followed by sub and neofunctionalization
to form lineage-specific proteins and construct species-specific
organic matrix frameworks, can have a significant role in
distinct skeleton morphology between species. Third, this
would supplement the contribution of novel species-specific
proteins, crucially allowing organismal plasticity and adaptation
to environmental change. While the presence of such lineage-
and species-specific key innovations appears to have crucial
roles, our results emphasize the importance of the evolutionary
dynamics through gene duplications, although the mechanism
remains to be revealed.
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