Short Modules for Introducing
Heterogeneous Computing*

Conference Tutorial

David P. Bunde!, Apan Qasem?,
Philip Schielke’
IKnox College
Galesburg, IL 61401

dbunde@knoz. edu
2Department of Computer Science
Tezas State University
San Marcos, TX 78666

apan@tzstate.edu
?Concordia University Tezas
Austin, TX 78726

Philip.Schielke@concordia.edu

Abstract

CS faculty have spent the last several years adding parallel computing to their
curricula since essentially all processors sold today have multiple cores. A typ-
ical target system is a multicore processor with identical cores. This is the
configuration for most current desktop and laptop systems, but the technology
continues to evolve and systems are incorporating heterogeneity. Many phone
processors include cores of different sizes so the phone can vary its power
and performance profile over time. Other processors incorporate low-power
modes or instructions for specialized computations. Meanwhile, high-end sys-
tems make heavy use of accelerators such as graphics cards. We are at a stage
where heterogeneous computing concepts should pervade the curriculum rather
than being limited to upper-level courses.

This tutorial motivates heterogeneous parallel programming and
then presents modules that introduce aspects of it such as ener-

*Copyright is held by the author/owner.

95



gy/performance tradeoffs, SIMD programming, the benefit of mem-
ory locality, processor instruction set design tradeoffs, and CPU
task mapping. Each module uses only a few days of class time and
includes assignments and/or lab exercises which are available on-
line (https://github.com/TeachingUndergradsCHC /modules/). Here
are the modules:

1. The first module shows the challenges and benefits of task mapping on
a heterogeneous system. The module includes a lab to provide students
with hands-on experience running parallel workloads in heterogeneous
environments. It is aimed at CS 2, but also fits in Systems and Parallel
Programming courses.

2. The second module looks at heterogeneity on ARM processors, particu-
larly Thumb mode, a low-power mode with restricted instructions. The
module is based on the Raspberry Pi, a low-cost system aimed at hobby-
ists. It highlights performance/power tradeoffs and is aimed at Computer
Organization.

3. The third module shows how memory locality can improve performance
on a program that uses CUDA to run on a graphics processing unit
(GPU). This module demonstrates heterogeneity resulting from both
CUDA’s SIMD model of computing and the different memory types on
a GPU. It highlights memory locality and is aimed at systems-oriented
courses.

Acknowledgements

This tutorial presents work supported by NSF grants OAC-1829644 & OAC-
1829554.

96



