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Noise that exhibits significant temporal and spatial correlations across multiple qubits can be
especially harmful to both fault-tolerant quantum computation and quantum-enhanced metrology.
However, a complete spectral characterization of the noise environment of even a two-qubit system
has not been reported thus far. We propose and experimentally validate a protocol for two-qubit
dephasing noise spectroscopy based on continuous control modulation. By combining ideas from
spin-locking relaxometry with a statistically motivated robust estimation approach, our protocol
allows for the simultaneous reconstruction of all the single-qubit and two-qubit cross-correlation
spectra, including access to their distinctive non-classical features. Only single-qubit control ma-
nipulations and state-tomography measurements are employed, with no need for entangled-state
preparation or readout of two-qubit observables. While our experimental validation uses two su-
perconducting qubits coupled to a shared engineered noise source, our methodology is portable to
a variety of dephasing-dominated qubit architectures. By pushing quantum noise spectroscopy be-
yond the single-qubit setting, our work paves the way to characterizing spatiotemporal correlations
in both engineered and naturally occurring noise environments.

I. INTRODUCTION

Quantum information science is poised to deliver un-
precedented opportunities in terms of both fundamen-
tal physics and device technologies, by pushing existing
boundaries in areas as diverse as quantum computation
and simulation, secure communication, and quantum-
enhanced sensing and metrology. Notably, advances in
quantum control and systems engineering are enabling
access to intermediate-scale quantum processors whose
capabilities are beyond what may be tractable classically
[1], with impressive achievements having recently been
reported [2–5]. Ultimately, however, realizing the full
potential of these technologies will crucially depend on
sustained progress in characterizing and overcoming the
effects of noise that limit qubit performance.

In the context of entanglement-assisted quantum
metrology, spatial and temporal correlations of the noise
dictate the extent by which the standard quantum limit
on precision may be overcome in the estimation of phys-
ical parameters [6, 7], in particular when the quantum-
mechanical nature of the environment must be explicitly
accounted for [8]. Once characterized, spatial noise corre-
lations may be exploited for augmenting the performance
of quantum sensors via tailored quantum encoding [9] or
error correction [10]. Likewise, quantitative knowledge
about noise properties and their correlations may prove
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instrumental in designing optimized quantum-control or
error-mitigation strategies that can be substantially more
efficient than general-purpose schemes [11, 12], as well as
in determining optimal parameter regimes for “spectator
qubits” to be useful in improving control performance of
proximal data qubits [13].

Ultimately, noise correlations will play a key role in
determining the feasibility of large-scale fault-tolerant
quantum computation: establishing that noise correla-
tions decay sufficiently rapidly in space and time is cen-
tral for validating the locality assumptions under which
the existence of an accuracy threshold may be rigor-
ously derived beyond the paradigm of independent errors
[14, 15]. In turn, the structure of the noise, including
the relevance of correlated error processes, is expected to
strongly influence the value of the error threshold itself
and inform ways in which resource-optimized architec-
tures may be designed [16, 17]. As a result, developing
viable methodologies to detect and simultaneously char-
acterize both spatial and temporal correlations present in
realistic multiqubit noise environments is an imperative
next step.

In a single-qubit setting, temporal correlations of de-
phasing noise that may be assumed to be stationary and
Gaussian are characterized in the frequency domain by
a single noise spectrum – namely, the Fourier transform
of the two-point correlation function of the noise oper-
ator with respect to the time lag [18]. Estimation of
the spectrum from experimental data may be achieved
through various “quantum noise spectroscopy” protocols,
which employ either pulsed or continuous control mod-
ulation of the qubit sensor to suitably shape its spec-
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FIG. 1. Concept of two-qubit quantum noise spectroscopy ex-
periment. Two qubits are coupled to a common bath, leading
to spatiotemporally correlated noise. The reduced dynam-
ics of the qubit system is modeled through a master equa-
tion which contains all the noise spectra. Using spin-locking
control sequences, we measure decay curves of different ob-
servables. Comparison between the evolution of these ob-
servables predicted by the master equation against measured
data yields the target spectra as fit parameters. While our
methodology is device-independent, we use superconducting
qubits for experimental validation.

tral response. To date, measurements of the noise spec-
trum have been reported across a wide variety of experi-
mental qubit platforms, including nuclear magnetic reso-
nance [19, 20], superconducting quantum circuits [21–25],
nitrogen-vacancy centers [26, 27], spin donors in semicon-
ductors [28], and trapped ions [29, 30].

In a multi-qubit setting, complete characterization of
Gaussian dephasing noise necessitates estimation of the
full set of spectra {Sjk(ω)}, defined by the Fourier trans-
form of the correlation functions of noise operators acting
on each possible combination of qubits j and k. While
temporal noise correlations that affect qubits individually
are now described in terms of self-spectra Sjj(ω), coex-
isting spatial and temporal correlations are captured by
the two-qubit cross-spectra {Sjk(ω)}, with j 6= k. Spatial
noise correlations have been probed and their strength
upper-bounded in recent experiments using supercon-
ducting fluxonium qubits [31], nitrogen-vacancy centers
in diamond [32] and spin qubits in semiconductors [33].
However, all the protocols implemented thus far lack the
frequency sensitivity needed for full-fledged multi-qubit
spectroscopy of noise that may be in general spatiotem-
porally correlated and non-classical. Despite promising
theoretical proposals [34–37] as well as an experimental
approach using a specific correlation measure [38], mea-
surements of a two-qubit cross-spectrum remain yet to
be reported.

In this paper, we theoretically develop a quantum-
control protocol for two-qubit spectral estimation, and
validate it experimentally in a circuit quantum elec-
trodynamics (cQED) system using engineered photon
shot noise. Building on continuous-control modula-

tion spin-locking techniques previously implemented in
a single-qubit setting [23, 25], we formulate the prob-
lem in the framework of robust estimation theory [39]
and demonstrate the simultaneous reconstruction of all
the two-qubit self-spectra and cross-spectra that char-
acterize our engineered noise source within a Gaus-
sian approximation. In contrast to existing propos-
als employing dynamical-decoupling comb-based noise
spectroscopy [34–36], our approach does not require
the design and application of long sequences of nearly-
instantaneous pulses. As an additional advantage, for
instance with respect to methods exploiting decoherence-
free subspaces [33], no entangled states nor two-qubit
gates are needed. Instead, our protocol relies on continu-
ous driving of the individual qubits followed by simulta-
neous single-qubit readout. We thus anticipate this pro-
tocol to be compatible with any multiqubit architecture
in which these resources are available.

Figure 1 illustrates the methodology underlying our
two-qubit spectroscopy approach. To appreciate the un-
derlying physical principles, it is useful to contrast our
method with single-qubit noise spectroscopy via spin-
locking relaxometry [23, 25]: there, a microwave tone
is applied on the sensor qubit to effectively create a
“dressed qubit,” whose level splitting equals the fre-
quency of the Rabi oscillations induced by the drive.
Since this dressed qubit is predominantly sensitive to
the noise spectrum at its transition frequency, the (self-)
spectrum may then be sampled, point by point, by mea-
suring the decoherence rate the dressed qubit experi-
ences as a function of the applied Rabi frequency. In our
generalized two-qubit spin-locking protocol, we simulta-
neously drive two sensor qubits with amplitudes set to
give an identical Rabi frequency, under ideal conditions.
This effectively produces two dressed qubits, which are
now sensing the same frequency component of the noise
through the self- and cross-spectra that enter the master
equation governing their dynamics. These spectra are
then reconstructed at each Rabi frequency of interest by
fitting the numerical solution of the master equation to
experimentally measured decay curves.

The paper is organized as follows. In Sec. II, we pro-
vide the theoretical foundation of the reconstruction pro-
tocol we qualitatively described above. While Sec. II A
presents the derivation of a master equation (ME) for
the two-qubit reduced dynamics, Sec. II B is devoted to
the robust statistical procedure we employ to extract the
spectra from fits of time-dependent expectation values
computed from the ME to experimental data. In order to
set the stage for the experimental validation of our proto-
col, we devote Sec. III to the demonstration of engineered
correlated photon shot noise in the cQED test-bed we em-
ploy (see Fig. 3), and to the experimental determination
of the parameters entering the shot-noise spectra. We
first perform a parametric analysis of this correlated noise
in our experimental setup (Sec. III A), and then demon-
strate our capability to selectively probe a specific fre-
quency region of the cross-spectra (Sec. III B). After dis-
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cussing in Sec. IV A some technical modifications needed
to adapt our protocol to the non-idealities specific to our
circuit-QED platform, our main results are reported in
Sec. IV B: namely, the non-parametric experimental re-
construction of the two-qubit self- and cross-spectra that
characterize our engineered noise source. Full technical
detail about the derivation of the MEs used to model
the reduced dynamics in both the ideal and experimen-
tally relevant parameter regimes is included in Appendix
A, whereas Appendix B and Appendix C discuss vari-
ous aspects pertinent to the robust statistical estimation
procedure we employ.

II. METHODOLOGY FOR TWO-QUBIT NOISE
SPECTROSCOPY

A. Noise model and reduced master equation for
spin-locking dynamics

We summarize here the basic ideas of spin-locking re-
laxometry [23, 25] and generalize them to the two-qubit
setting. To describe the driven evolution of two qubits
under a noisy environment, we consider the Hamiltonian

H(t) = HS(t) +HSB +HB, (1)

where HS(t) is the time-dependent Hamiltonian of the
two-qubit system S, HB the Hamiltonian of the bath B,
and HSB describes system-bath coupling. We assume the
two qubits to be characterized by angular-frequency split-
tings ωqj , and each to be coherently driven at frequency
ωdj with a drive strength Ωj , j ∈ {1, 2}. Setting ~ ≡ 1,
we thus consider the system Hamiltonian

HS(t) =
∑

j∈{1,2}

[ωqj

2
σzj + Ωj cos(ωdjt)σ

x
j

]
, (2)

where σxj and σzj are the Pauli matrices for qubit j.
Throughout this paper, the +1 and −1 eigenstates of σzj
will be denoted by |1〉j and |0〉j , respectively. While we
leave HB unspecified, we specialize to single-axis system-
bath couplings of the form

HSB =
∑
j

Bjσ
z
j , (3)

where Bj is the bath operator that couples to qubit j.
In the absence of coherent drives (Ωj = 0, j = 1, 2),

HSB generates pure-dephasing evolution. However, in
an appropriate rotating frame, the coherent drive “tilts”
the quantization axis of each qubit by a π/2 angle, thus
turning dephasing noise into a source of energy absorp-
tion and emission at rates that probe the two-qubit spec-
tra at frequencies Ωj . To describe this phenomenon and
exploit it for noise-spectroscopy applications, we apply
the unitary tranformation R(t) = exp[−i

∑
j ωdjtσ

z
j /2]

to move to a reference frame that rotates at the drive
frequencies, and in which the Hamiltonian is HR(t) ≡

R†(t)H(t)R(t)−iR(t)†Ṙ(t). By effecting the frame trans-
formation and invoking the rotating-wave approximation
(RWA) to drop counter-rotating terms oscillating at fre-
quency 2ωdj , the rotating-frame Hamiltonian is then

HR ≈ H ′S +HSB +HB, (4)

where H ′S ≡
∑
j(∆qjσ

z
j + Ωjσ

x
j )/2 and ∆qj ≡ ωqj − ωdj

is the detuning of drive j from ωqj .
The time-independent Hamiltonian H ′S can be diag-

onalized by transforming to a rotated spin-locking ba-
sis, spanned by |+x〉j ≡ cos(ϑj/2)|1〉j + sin(ϑj/2)|0〉j
and |−x〉j ≡ − sin(ϑj/2)|1〉j + cos(ϑj/2)|0〉j , where ϑj ≡
arctan(Ωj/∆qj) is the angle by which the qubit quanti-
zation axis is rotated under the drives. In this basis,

H ′S =
∑
j

1

2

√
∆2

qj + Ω2
j τ

z
j , (5)

HSB =
∑
j

Bj
(
cosϑj τ

z
j − sinϑj τ

x
j

)
, (6)

where we have introduced the Pauli matrices τxj ≡
|+x〉〈−x|j+|−x〉〈+x|j and τzj ≡ |+x〉〈+x|j−|−x〉〈−x|j .
Setting ∆qj = 0 ∀ j leads to ϑj = π/2 ∀ j, which further
simplifies the above Hamiltonians to

H ′S =
∑
j

Ωj
2
τzj , HSB = −

∑
j

Bjτ
x
j . (7)

In this spin-locking basis, the coherent drives then define
two effective “dressed” qubits quantized along τzj , with
angular-frequency splittings equal to the Rabi frequencies
Ωj , and subject to purely transverse noise along τxj .

We may describe the evolution of the dressed qubits
in the spin-locking basis by tracing out the bath and
deriving a reduced ME for the density operator ρ(t) ≡
TrB[ρtot(t)]. As detailed in Appendix A 1, to do so we
employ a standard time-convolutionless (TCL) ME ap-
proach [40]. We assume an initially separable initial
state ρtot(0) ≡ ρ(0) ⊗ ρB, where ρ(0) and ρB are the
initial density operator of S and B, respectively. In ad-
dition, we consider stationary noise with zero mean, so
that 〈Bj(t)〉 = 0 and 〈Bj(t)Bk(s)〉 = 〈Bj(t− s)Bk(0)〉 ≡
〈Bj(τ)Bk(0)〉 ∀ t, s, j, k, where Bj(t) ≡ eiHBtBje

−iHBt is
the time-dependent noise operator for qubit j in the in-
teraction picture associated to the free bath Hamiltonian,
the time lag τ ≡ t− s, and 〈·〉 denotes expectation with
respect to the initial bath state ρB. We also assume that
the coupling between the system and the bath is weak
enough to truncate the TCL generator at second order,
and employ a secular approximation to drop terms oscil-
lating with frequency Ω1 +Ω2. Setting Ω1 = Ω2 ≡ Ω, the
two dressed qubits are most sensitive to the noise spectra
in a frequency window of width ∼ 1/t around their split-
ting ±Ω. This enables us to simplify the reduced ME in
the limit of a sufficiently long evolution time. For spectra
Sjk(ω) that vary sufficiently slowly with frequency about
ω = ±Ω, we consider only the contribution of the spectra
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at ω = ±Ω, and finally arrive at

ρ̇(t) =− i[H ′S, ρ(t)] +
∑
jk

Ljkρ(t), (8)

where the superoperators Ljk are defined by

Ljkρ ≡ Sjk(−Ω)

[
τ−k ρτ

+
j −

1

2

{
τ+
j τ
−
k , ρ

}]
+ Sjk(Ω)

[
τ+
k ρτ

−
j −

1

2

{
τ−j τ

+
k , ρ

}]
, (9)

with {A,B} ≡ AB − BA denoting the anticommutator
of A and B. The superoperators introduced in Eq. (9)
describe correlated decay and absorption processes with
strength proportional to the two-qubit spectra evaluated
at ω = ±Ω. These two-qubit spectra are given by

Sjk(ω) ≡
∫ ∞
−∞

dτ e−iωτ 〈Bj(τ)Bk(0)〉. (10)

The reduced ME defined by Eqs. (8)-(9) involves all
the spectra that are needed to characterize stationary
noise that may in general be non-classical (in the sense
that the commutator [Bj(t), Bk(s)] 6= 0, t 6= s), and dis-
play arbitrary temporal and spatial correlations in a two-
qubit system – provided that noise can be assumed to be
Gaussian and acting only along the σzj axes (purely de-
phasing) in the laboratory frame. The Gaussian assump-
tion may be satisfied exactly, for example for bosonic
baths at equilibrium [41], or in an approximate sense
when either a large number of independent bath degrees
of freedom are involved [42] or the coupling is sufficiently
weak for any higher-order cumulants to be negligible. It
is worth noting that, from a rigorous spectral estima-
tion standpoint, the assumptions of single-axis noise and
Gaussianity cannot be expected to be valid a priori, and
should always be verified experimentally through spec-
troscopic means [43–45].

B. Robust estimation of two-qubit spectra

Since Eqs. (8)-(9) contain all the spectra of interest for
the present two-qubit problem, an appropriate choice of
experimental observations can enable us to infer Sjk(Ω)
for arbitrary j, k ∈ {1, 2}. For notational convenience,
for a given Rabi frequency Ω, we collect the two-qubit
spectra that we aim to estimate into a spectrum vector,

S(Ω) ≡ {S11(Ω), S22(Ω),Re[S12(Ω)], Im[S12(Ω)],

S11(−Ω), S22(−Ω),Re[S12(−Ω)], Im[S12(−Ω)]}T .

To devise a protocol for estimation of S, we will adopt an
inverse-problems perspective and infer S by performing a
non-linear regression that fits numerical solutions of the
reduced ME to experimental data.

Figure 2(a) illustrates the control and measurement
cycle employed to gather experimental data from which

3. Measurement1. Initialization 2. Evolution under 
noise spectra

(a)

(b)

...

Guess

Non-linear regression

Estimate

O
bs

er
va
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Next 
Updated initial guess: 

Qubit 1

Qubit 2

FIG. 2. Protocol for spectroscopy of spatiotemporally cor-
related noise. (a) Control and measurement cycle. The
qubit system S is initialized in state ρ(0) ∈ {ρs}, where
s ∈ {1, 2, . . . , Nstates} (step 1). Continuous drives (shown
as orange waves) with equal Rabi frequency Ω1 = Ω2 = Ω
are then applied on the two qubits for time t ∈ {tq}, with
q ∈ {1, 2, . . . , Ntimes}, during which S evolves under the in-
fluence of the noise spectra evaluated at ±Ω, {Sjk(±Ω)} with
j, k ∈ {1, 2} (step 2). After this evolution time, a projec-
tive measurement of a two-qubit observable O ∈ {Or}, with
r ∈ {1, 2, . . . , Nobs} is performed (step 3). For a given combi-
nation α of initial state ρs, evolution time tq, and observable
Or, this cycle is repeated M times, and a sample mean Oα of

all outcomes O
(m)
α is obtained [Eq. (11)], where m labels the

outcome of the projective measurement for each cycle. The
Rabi frequency Ω is swept to gather experimental observa-
tions for all frequencies at which Sjk(±Ω) will be sampled.
(b) Schematic of the reconstruction procedure of the two-
qubit spectra from the data produced in (a). An initial value
of Ω is chosen, for which an initial guess of the spectrum vector
S(Ω) is assumed. This guess is fed into a non-linear regres-
sion algorithm to find the value of S(Ω) that globally mini-
mizes the discrepancy between the measured sample means
Oα (blue dots with error bars; note, in the first plot, the oc-
currence of an “outlier”) and the corresponding expectation
values 〈Oα〉S obtained by numerically solving Eq. (8) for all
chosen combinations α of initial state, evolution time, and
observable. An estimate Ŝ(Ωn) of S(Ωn) at the n-th Rabi
frequency Ωn is obtained following Eq. (13) (solid red lines).
The latter is then used as the initial guess for the reconstruc-
tion at the next frequency Ωn+1. The procedure is repeated
until S(Ω) is reconstructed over all frequencies of interest.
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S(Ω) is reconstructed at a given frequency Ω. At time
t = 0, the system is prepared in ρ(0) = ρs, where s ∈
{1, 2, . . . , Nstates} labels elements of an arbitrary set {ρs}
of two-qubit initial states.

Continuous drives resonant with each qubit are then
applied with Rabi frequency Ω, so that the evolution of
the two-qubit system is approximately given by the solu-
tion to Eq. (8). Multiple evolution times t ∈ {tq}, with
q ∈ {1, 2, . . . , Ntimes}, are considered, after which pro-
jective measurements of a system’s observable O ∈ {Or}
are performed, with r ∈ {1, 2, . . . , Nobs}. Though we
need not specify the initial states and observables at
this stage, in the experiment presented here we will
consider initial product states in the spin-locking basis,
namely, ρs = |ψs〉〈ψs|, with |ψs〉 ∈ {|+x,+x〉, |+x,−x〉,
|−x,+x〉, |−x,−x〉}, and measurements of products of

Pauli operators, for which Or = τ `11 ⊗ τ
`2
2 , with `1, `2 ∈

{0, x, y, z}, and where τ0
j ≡ Ij is the identity operator for

qubit j. These initial states and observables are accessi-
ble through simultaneous preparation and measurement
of each qubit, and thus using purely local resources.

Figure 2(b) illustrates the procedure by which experi-
mental observations resulting from the control and mea-
surement cycle described above are used to reconstruct
the spectrum vector S(Ω). To simplify the notation, we
label all combinations of initial states ρs, evolution times
tq, and observables Or using a single collective index
α ∈ {1, 2, . . . , d}, where d = Nstates × Ntimes × Nobs.
In addition, for each α, we consider sample means Oα
of all outcomes O

(m)
α of projective measurements m ∈

{1, 2, . . . ,M}. These sample means are defined by

Oα ≡
1

M

M∑
m=1

O(m)
α , (11)

where M is the total number of projective measurements,
which we take to be the same for each α for simplicity. It
will also be convenient to collect all such sample means
measured experimentally for a given Rabi frequency into
a single observation vector, O ≡ (O1, O2, . . . , Od)

T .
In the asymptotic limit of a large number of projective

measurements, M →∞, the sample means Oα converge
to their expectation values 〈Oα〉S by the weak law of
large numbers, Oα → 〈Oα〉S. These expectation values
are determined by S through

〈Oα〉S ≡ Tr[Orα ρ(tqα)|S,sα ], (12)

where ρ(tqα)|S,sα is the solution of Eq. (8), for noise spec-

tra S and initial state ρsα at time tqα . Hence, for finite
M , we estimate the spectra by finding the value of S
that minimizes the deviation between the data Oα and
the predictions of the model 〈Oα〉S. Formally, we define
our estimator of S for a particular Rabi frequency Ω as

Ŝ ≡ argmin
S

d∑
α=1

λ(zS,α). (13)

Here, λ(z) is a loss function that penalizes deviations be-
tween the model and the data, which are quantified by
the normalized residuals zS,α ≡ (Oα−〈Oα〉S)/σα, where

σ2
α ≡ var(Oα). Throughout this text, we use hats to

denote estimators. Estimators like Eq. (13), which min-
imize a total cost function, are called M-estimators [39].

The most natural choice of loss function is arguably
the quadratic function λ(z) = z2/2, since Eq. (13) then
reduces to a simple weighted least-squares estimation.
In addition to being well-suited for numerical optimiza-
tion, the weighted least-squares estimate is statistically
well motivated when the probability distribution of O is
Gaussian. Indeed, in this case, weighted least-squares
optimization can be derived from maximum-likelihood
estimation of S, and can be shown to be asymptotically
efficient, that is, the variance of Ŝ achieves the Cramér-
Rao bound on precision [46].

In practice, however, the statistics of sample means O
may not be perfectly described by the expected Gaussian
probability distribution, compromising the asymptotic
efficiency of Ŝ under weighted least-squares estimation.
In particular, experimental data is often contaminated
by outliers : data points that do not follow the proba-
bility distribution of the majority, for example because
of isolated experimental errors. Because of its quadratic
dependence on the residuals, weighted least-squares es-
timation notoriously gives excessive weight to outliers
that are distant from normal observations, namely, for
which zS,α � 1. This can make weighted least-squares
estimators inefficient, causing estimates to wander very
far away from their expected behavior (as will be seen
experimentally in Sec. IV and Appendix C), or, in the
worst case, leading to catastrophic divergent behavior of
the variance of the estimator. Overcoming these limita-
tions motivates the use of robust estimators, whose per-
formance is not significantly impaired by the presence of
outliers [39, 46]. A prevalent way to achieve robust esti-
mation is to employ the Huber loss function, a mixture
of weighted least-squares estimation with mean absolute
error minimization defined by

λ(z) ≡
{

1
2z

2 if |z| ≤ δ0,
δ0(|z| − 1

2δ0) otherwise,
(14)

where δ0 ∈ [0,∞[ is a tuning parameter that controls the
mixing. For |z| ≤ δ0, the Huber loss function provides
the statistical and numerical efficiency of weighted least
squares, while residuals with |z| > δ0 only contribute to
the total cost through their absolute value. This avoids
overweighting outliers in the observations and favors ro-
bustness of the estimator, as desired.

III. CORRELATED NOISE ENGINEERING
AND VALIDATION VIA CIRCUIT QED

In the experiment we will present, we employ the su-
perconducting circuit shown in Fig. 3(a) as a test-bed for
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FIG. 3. Details of experimental cQED device. (a) Optical
micrograph of the sample. The two qubits (blue, red) are
capacitively coupled to a common λ/4-resonator (green) that
we use to create a shared noise source. Each qubit is also
coupled to an individual resonator that we use for readout.
(b) Simplified circuit diagram of our setup.

two-qubit spectroscopy based on the spin-locking tech-
nique described in Sec. II. The two qubits are encoded
by the lowest energy levels of a pair of transmons disper-
sively coupled to a common bath formed by a mode of
a common resonator, which is brought to a steady-state
population under the competing action of a constant ap-
plied microwave drive and photon emission into an exter-
nal environment. When the coupling between the qubits
and this bath is sufficiently weak, and the evolution time
is sufficiently long, the common bath may be traced out
following the derivation presented in Appendix A 2, and
the spin-locking experiment may be described by Eq. (8)
for evolution of the two-qubit system under the photon
shot-noise spectra [18, 25]:

Sjk(ω) = χjχkn
κ

(ω + ∆c)2 + (κ/2)2
, (15)

with j, k ∈ {1, 2}. Here, χj is the strength of the dis-
persive coupling for qubit j, κ quantifies the resonator
damping rate, ∆c ≡ ωc−ωd is the detuning between the
drive frequency ωd and the bare frequency of the com-
mon resonator ωc, and n is the average photon number in
the steady state of the resonator. While the parameters

κ, χ1, and χ2 are set by design during device fabrica-
tion, both the amplitude and asymmetry of the spectra
around zero frequency may be tuned in situ via n and ∆c

by varying the strength and detuning of the drive applied
onto the common resonator, granting us the capability to
produce spatiotemporally correlated noise with an engi-
neered spectrum.

To validate this capability, in this section we demon-
strate the presence of noise correlations consistent with
photon shot noise. We first use a Ramsey interferometry
technique to witness spatial correlations by measuring a
two-qubit correlation function in a free-evolution setting.
Fitting the results to the solution of the quantum-optical
ME describing the joint evolution of the qubits and the
resonator enables us to measure the parameters χ1, χ2,
and κ entering Eq. (15). We then use the spin-locking
technique to measure noise correlations in a frequency-
sensitive fashion and demonstrate experimental control
over the amplitude and asymmetry of the engineered
noise spectra through both n and ∆c.

A. Ramsey interferometry

As mentioned, we create a source of correlated pho-
ton shot noise by applying a coherent signal to the com-
mon resonator. We then perform simultaneous Ram-
sey sequences by applying a pair of π

2 -pulses on each
qubit [Fig. 4(a)]. The qubit drives are detuned from the
qubit frequencies by ∆qj = ωqj − ωdj , with ∆q1/2π =
−1.26 MHz and ∆q2/2π = 0.3 MHz. To observe Ramsey
fringes, we vary the wait time t between the pulses ap-
plied on each qubit, as well as the injected photon num-
ber n in the common resonator, which was calibrated
in advance by varying the power of the noise drive and
observing the frequency shift of the qubit due to the in-
creasing resonator population [47]. After each Ramsey
sequence, we perform simultaneous single-shot dispersive
readout of both qubits in the σzj -eigenbasis through their
individual resonators, and reinitialize the qubits in the
ground state by letting them relax for 500 µs, a time much
longer than the observed qubit relaxation time T1. Dur-
ing the readout we turn off the otherwise continuous noise
drive to improve the single-shot readout fidelity. Taking
the sample means σz1 and σz2 of the resulting readout
outcomes for each qubit [Eq. (11)], we obtain the Ram-
sey fringes shown by the color schemes in Fig. 4(b) and
Fig. 4(c), respectively. To access the correlation induced
by the shared noise source, we then calculate the sample
mean of measurement outcomes of the two-qubit observ-
able Czz ≡ σz1σz2 −σz1 σz2 , where we subtract the product
of the single-qubit sample means to remove any potential
systematic bias in the readout outcomes.

The non-zero values of Czz shown in Fig. 4(d) clearly
indicate the presence of correlated noise in our two-qubit
system. To demonstrate that this correlated noise indeed
comes from the photons injected in the cavity, we com-
pare experimental results with the numerical solution of
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FIG. 4. Ramsey interferometry experiments. (a) Ramsey sequence applied simultaneously to the two qubits, with π
2

-pulses
around the y-axis (blue boxes). A coherent drive (the “noise” tone, shown in green) is turned on well before the first pair
of π

2
-pulses, to bring the common resonator into a steady state with finite population, thus implementing a stationary source

of engineered correlated noise. We read out both qubits simultaneously through their individual resonators, using drives at
frequencies ωr1 and ωr2 (red box), thus acquiring a series of ±1 outcomes for each qubit. (b)-(c) Sample mean of measured
single-qubit observables σz1,2 for different wait times t and different injected photon numbers n in the common cavity. The
frequency of the observed Ramsey fringes varies with increasing n due to the dispersive shift 2χjn of the qubit frequencies (tilt
of the vertical red and blue lines). For higher n, we see a rapid dephasing of the qubit states due to the added photon shot noise
(blurring of the features in the top right corners). (d) Measurement of the correlation Czz = σz1σ

z
2 −σz1 σz2 . (e) Solution of the

ME describing the qubits coupled to the common resonator [Eq. (16)], in which parameters κ, χj , ∆qj , and γφj (see Table I)
are obtained by nonlinear regression of the simulation outcomes to the experimental data. (f) Comparison of measured (�)
and simulated (—) values using fitted parameters. Linecuts at n ∈ {0, 0.56, 1.18} (marked by black arrows in (b) and (d)).

the quantum-optical ME [48]:

ρ̇QC(t) = −i [HR, ρQC(t)] + κD[a]ρQC(t)

+ LR
x ρQC(t) + LR

z ρQC(t). (16)

Here, ρQC(t) denotes the joint density matrix for the two
qubits plus the resonator mode, which evolves under a
dispersive Hamiltonian of the form [49, 50]

HR =
∑
j

∆qj

2
σzj + ∆ca

†a+ ε(a+ a†) +
∑
j

χja
†aσzj ,

with ε being the amplitude of the drive applied on the
resonator. In Eq. (16), the Lindblad superoperators LR

x

and LR
z are defined by

LR
x ρ ≡

∑
j

Γ1,jD[σ−j ]ρ, LR
z ρ ≡

∑
j

γφj
2
D[σzj ]ρ, (17)

and describe the effect of noise coupling to qubit j
through σxj and σzj , leading to relaxation and dephas-

ing at rates Γ1,j = 1/T
(j)
1 and γφj , respectively. In

Eq. (16), LR
z phenomenologically describes any uncor-

related source of noise that may couple to σzj in addition
to photon shot noise.

Solving Eq. (16) using standard numerical pack-
ages [51], we calculate the time-dependent expectation
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qubit 1 qubit 2 common resonator
ω/2π (GHz) 3.483 4.600 7.471
T1 (µs) 87 54
T echo
2 (µs) 54 68
κ/2π (kHz) 198
χj/2π (kHz) -29.1 -59.5
∆qj/2π (kHz) -1265 299
γφj (×103rad/s) 87.7 31.0

TABLE I. Sample parameters. The qubit and resonator fre-
quencies are measured spectroscopically, and the reported re-
laxation and coherence times are averages of repeated T1-
decay and echo measurements over 24h, with T2 < 2T1 indi-
cating native sources of dephasing noise. The coupling con-
stants κ and χj , the qubit detunings ∆qj and the native de-
phasing rates γφj , are results of the fits to the Ramsey mea-
surements (Fig. 4). These values are found to agree within
error bars with those obtained from independent measure-
ments.

value 〈σz1σz2(t)〉 − 〈σz1(t)〉〈σz2(t)〉 after two instantaneous
Ramsey pulses, and estimate relevant physical parame-
ters by fitting to the measurements of Czz displayed in
Fig. 4(d). Through this procedure, we obtain the values
of κ, χ1, χ2, ∆q1, ∆q2, γφ1, and γφ2 collected in Ta-
ble I. Throughout the simulations, we take ∆c = 0, and
use Γ1,j measured independently from relaxation experi-
ments in the absence of injected photons. The results of
the simulations using the fitted parameters are displayed
in Fig. 4(e). The remarkable quantitative agreement be-
tween simulation and experiment obtained here [see also
the linecuts in Fig. 4(f) for representative n values] pro-
vides strong evidence that the measured correlations arise
from our engineered source of photon shot noise.

Several important features of this Ramsey interferom-
etry experiment may be understood qualitatively. First,
Czz vanishes when the noise drive is off (n = 0). That is,
having (approximately) no photons entering or leaving
the common microwave cavity turns off the interaction
responsible for a non-zero correlation between the two
qubits, as desired. Second, Czz becomes “blurry” in the
top right corner of Fig. 4(d) for high n and t. As we
increase the amplitude of the photon shot noise, we in-
duce correlated dephasing, implying that more photons
enter and leave the common resonator, each one causing
the qubits to simultaneously dephase as it takes with it
information about the phase of the qubits. At a high
enough photon number, the dephasing rate is the dom-
inant source of decoherence, causing the signal to de-
crease significantly within the wait time of 10 µs between
the Ramsey pulses. Furthermore, we observe oscillations
of Czz at frequencies |∆q1 − ∆q2|/2π = 1.56 MHz and
|∆q1 + ∆q2|/2π = 0.96 MHz. These two overlapping sig-
nals cause a beating pattern at their difference frequency
0.6 MHz, which corresponds to the blurry white lines that
appear to enter Figs. 4(d)-(e) from the bottom left (in-
dicated by dashed arrows).

B. Demonstration of frequency selectivity from
measurements of correlated noise in spin-locking

In the previous section, we observed the signature of
a spatially correlated noise source on two qubits. How-
ever, spectral estimation requires the ability to select the
frequency at which the noise spectrum is probed. To
this end, we use the generalized spin-locking technique
we described in Sec. II.

Specifically, our protocol is illustrated in Figs. 5(a)-(b).
Two sets of simultaneous π

2 -pulses are applied along the
y-axis and separated by a time t, during which the qubits
are driven by constant, resonant drives. The first pair of
pulses initializes both qubits in state |−x〉. As explained
in Sec. II A, the drives define dressed qubits whose eigen-
states |±x〉j are split by the Rabi frequencies Ωj . During
the time t, these dressed qubits undergo a non-unitary
evolution due (predominantly) to noise coupling to σzj at
angular frequencies Ωj . The second pair of π

2 -pulses re-
turns the qubits back to the z-axis, where they are imme-
diately measured by dispersive readout. We use this se-
quence to probe correlations in qubit dephasing by sweep-
ing the Rabi frequency Ω1 across the fixed Rabi frequency
Ω2. The peak frequency of our engineered noise being at
−∆c [Eq. (15)], we set Ω2 = |∆c| to maximize the contri-
bution of shot noise in qubit dynamics. We expect to see
a non-zero correlation, Kzz ≡ τz1 τz2 − τz1 τz2 , only if both
dressed qubits are sensing the same frequency component
of a non-vanishing spectrum (Ω1 ≈ Ω2). This insight is
confirmed by the experimental data shown in Fig. 5(c),
in which Kzz is only significant around Ω1 = Ω2 = |∆c|,
in a frequency region that narrows with the duration t
over which the spin-locking drive is applied. This follows
from a key feature of the qubit evolution during the spin-
locking drive: namely, the terms in the ME that contain
the cross-spectra oscillate at ±|Ω1 − Ω2| [see Eq. (A11)]
and average out for times & 1/|Ω1 − Ω2|. Thus, setting
Ω1 = Ω2 lets us isolate the influence of the cross-spectra
in a specific frequency region.

To verify compatibility of the observed correlation with
photon shot noise, we derive the quantum-optical ME
for the two qubits and the resonator in the spin-locking
frame. This leads to an expression formally identical to
Eq. (16), but in which we replace HR → HSL, LR

x → LSL
x ,

and LR
z → LSL

z , where, taking ∆qj = −2χjn,

HSL =
∑
j

Ωj
2
τzj + ∆ca

†a+ ε(a+ a†)−
∑
j

χj(a
†a− n)τxj ,

(18)

LSL
x ρ =

1

4

∑
j

Γ1,j

{
D[τzj ] +D[τ+

j ] +D[τ−j ]
}
ρ, (19)

LSL
z ρ =

∑
j

{
γ↓jD[τ−j ] + γ↑jD[τ+

j ]
}
ρ. (20)

Above, LSL
z phenomenologically describes uncorrelated

sources of noise coupling to σzj in addition to photon shot
noise, in the spin-locking frame. In the ME simulations,
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FIG. 5. Spin-locking experiments. (a) Spin-locking sequence applied simultaneously on two qubits with a shared source of
engineered noise. (b) Bloch sphere sketch of the sequence in (a) for qubit 1 and qubit 2. The initial π

2
-pulse rotates the qubits

from the ground state to |−x〉. The spin-locking drive effectively creates a dressed two-qubit system, with each level splitting
being equal to Ωj . Due to dephasing noise (from both the injected photon shot noise and from weaker native sources), the
dressed qubits decay to their steady-state values along the x-axis. The final π

2
-pulse turns the qubits back to the initial (σzj )

quantization axis to be measured. (c) Measured correlation Kzz ≡ τz1 τz2 − τz1 τz2 , where the Pauli matrix τzj is diagonal in the
spin-locking basis {|+x〉j , |−x〉j}. The coherent drive creating photon shot noise is detuned by ∆c/2π = −2.03 MHz away from
the common resonator. The Rabi frequency Ω2 of the spin-locking drive of qubit 2 is held constant at Ω2 = |∆c|, while Ω1 is
swept (y axis). The correlation is significant in the region indicated by the solid black line, with width ∼ 2/t. (d) Numerical
solution of the quantum-optical ME [see Eqs. (18) to (20)]. Inset: Qualitative shape of the cross-spectrum S12 [Eq. (15)]. (e)
Comparison of measured values (�) and numerical simulation (−) using fitted parameters. The subplots show (from left to
right) τz1, τz2, and Kzz for Ω1/2π ∈ {1.83, 2.03}MHz (indicated by black arrows in (c) and (d)). Since Ω2 is unchanged through
the experiment, the decay curves for τz2 are roughly the same for both linecuts. The decay curve for τz1 , however, is steeper for
Ω1 closer to the center of the photon shot noise spectrum (top left plot), demonstrating sensitivity to the noise frequency. The
correlation Kzz roughly equals zero for Ω1 6= Ω2 = |∆c| (bottom right plot) and shows a clear peak for Ω1 = Ω2 = |∆c| (top
right plot). Note the negative steady-state value of the correlation for long spin-locking durations. Here, one of the dressed
qubits acts as an effective decay channel for the other, with the coupling between them mediated by the noise.

we take values of χj and Γ1,j = 1/T
(j)
1 given in Table I.

In addition, we take the bare cavity drive detuning to be

∆c = ∆
(00)
c + χ1 + χ2, where ∆

(00)
c /2π = −1.95 MHz

is the cavity drive detuning obtained from experimental
measurements of the Stark-shifted resonator transmis-
sion peak when both qubits are in their ground state.
This yields ∆c/2π ≈ −2.03 MHz; the remaining param-
eters are then obtained by fitting the solution of the ME
to the experimental data shown in Fig. 5(c), leading to

n ≈ 0.154, γ↑1 ≈ 2 × 103 rad/s, γ↓1 ≈ 7 × 103 rad/s,

γ↑2 ≈ 9 × 103 rad/s, and γ↓2 ≈ 14 × 103 rad/s. The re-
sulting correlation, shown in Fig. 5(d), displays strong
quantitative agreement with experimental observations.

Though the phenomenological decay rates γ↑j and γ↓j are
not entirely negligible, they lead to decay on a timescale
& 100 µs, while the dynamics due to photon shot noise
occur on a shorter timescale, . 50 µs. This confirms that
our engineered noise source predominantly drives the dy-
namics in this experiment, as intended.

We finally discuss an additional intriguing feature in
the results of the experiment. While the correlation
starts out at zero [see Fig. 5(e)] when we initiate the
spin-locking drive, and then quickly rises to a maximum
of about 0.13, Kzz ultimately decays over several tens of
µs to a negative value of about −0.03. Numerical simula-
tions predict that, despite the presence of intrinsic qubit

decay sources (non-zero Γ1,j , γ
↑
j and γ↓j ), the system sub-

sequently reaches a steady state with Kzz ≈ −0.025.
While this negative correlation value may seem puzzling
at first, it may be readily understood from the steady
state obtained numerically, which contains significant co-
herences between |+x,−x〉 and |−x,+x〉: in turn, this is
due to the exchange of dressed qubit excitations medi-
ated by the common source of photon noise.
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IV. VALIDATION OF TWO-QUBIT QUANTUM
NOISE SPECTROSCOPY

In Sec. III, we used fits to experimental data to esti-
mate the parameters entering the two-qubit spectra of
photon shot noise from a coherently-driven common res-
onator mode, Eq. (15). We now use this information to
achieve our key objective: validating the spectroscopy
protocol presented in Sec. II, by adapting it to the non-
idealities specific to our circuit-QED platform and com-
paring the resulting experimental spectrum reconstruc-
tions with ideal spectra.

A. Experimental non-idealities

To produce engineered noise with known spectra, we
use a microwave tone to give n = 0.127. Setting the
Stark-shifted resonator-drive detuning with both qubits

in their ground state to ∆
(00)
c /2π = 2.05 MHz results

in a Lorentzian spectrum peaked at angular frequency

−∆c, with ∆c/2π = ∆
(00)
c + χ1 + χ2 = 2π × 1.961 MHz.

To produce the experimental data needed to reconstruct
these spectra, we apply the two-qubit spin-locking se-
quence illustrated in Fig. 2(a) and Fig. 5(a)-(b), by let-
ting Ω1 ≈ Ω2 ≈ Ω ≡ (Ω1 + Ω2)/2 to have both qubits
sample the spectrum at ω = Ω, thereby maximizing the
sensitivity to the noise spatial correlations. We perform
a total of 26 spin-locking experiments, between which
the Rabi frequency Ω/2π is swept through 26 values uni-
formly distributed to probe the Lorentzian peak from
−2.2 to −1.8 MHz, along with the corresponding positive
frequencies from 1.8 to 2.2 MHz. In the spin-locking ex-
periments, we use the 4 initial states, 11 observables, and
26 evolution times given in Table II. To obtain the sam-
ple means of the observables, we average over M = 104

simultaneous projective measurements of all 9 combina-
tions of Pauli matrices τ `11 and τ `22 , `1, `2 ∈ {x, y, z},
thus performing two-qubit state tomography for each
data point [52]. Separate numerical simulations indicate
that the spectra may be accurately reconstructed with
fewer initial states and observables for sufficiently high-
quality data; nevertheless, we find that full tomography
with the 4 initial states of Table II is more useful in prac-
tice, enabling us to diagnose and fix experimental issues
such as imperfect calibration of the measurements.

After completing all the spin-locking experiments, we
condense the tomography data into sample means of pro-
jective measurements of single-qubit observables τzj , j ∈
{1, 2}, and two-qubit observables of the form K`1`2 ≡
τ `11 τ `22 −τ

`1
1 τ

`2
2 , `1, `2 ∈ {x, y, z}, along with correspond-

ing standard deviations. To accurately reconstruct the
engineered noise spectra, we find that the ME derived in
Sec. II A under pure-dephasing noise (in the lab frame)
and used for non-linear regression in the procedure de-
scribed in Sec. II B must be adapted to two types of non-
idealities in our cQED setting:

Initial states, |ψs〉 |+x,+x〉, |+x,−x〉,
|−x,+x〉, |−x,−x〉.

Observables, Or τz1 , τz2 , {K`1`2}, `1, `2 ∈ {x, y, z}.
Evolution times, tq 1, 3, 5, . . . , 11, 16,
(µs) 21, 26, . . . , 71, 81, . . . , 151.

TABLE II. Spin-locking control and measurement settings for
noise spectroscopy. The two-qubit observables are given by
K`1`2 = τ `11 τ `22 − τ `11 τ `22 , where {τ `j }, ` ∈ {x, y, z}, is the set
of Pauli matrices for the dressed qubit j and the bar indicates
a sample mean over M = 104 projective measurements.

(i) Finite Rabi-frequency difference.– In Sec. II A, we
assumed Ω1 = Ω2 to arrive at the reduced ME, Eq. (8).
Experimentally, however, we observe that the amplitude
of the spin-locking drives can drift over a timescale of
a few hours, most plausibly due to drifts in electronics,
thus making δΩ ≡ Ω1−Ω2 6= 0. As a consequence, in the
interaction picture with respect to H ′S [explicitly given
below Eq. (4)], terms involving cross-spectra in Eq. (8)
oscillate at frequency δΩ, which significantly suppresses
their influence over times & 1/δΩ (see Appendix A 3).
This biases any estimate of the spectra based on Eq. (8).

(ii) Relaxation noise.– Although the engineered de-
phasing mechanism used in this experiment is made dom-
inant by applying a sufficiently strong resonator drive so
that n is large, superconducting qubits always suffer from
significant intrinsic noise coupling to σxj . This leads to
T1 relaxation (e.g., from Purcell decay [53]) in the lab
frame. Such noise has distinct dynamical effects that are
not captured by Eq. (8), and thus biases any estimates
of Sjk(ω) based on Eq. (8) with respect to their true
physical value.

In order to simultaneously account for both types
of non-idealities, we derive a modified ME for the re-
duced two-qubit dynamics. Under the approximations
described in Appendix A 3, we arrive at

ρ̇(t) = − i
2

[(Ω + δΩ/2)τz1 + (Ω− δΩ/2)τz2 , ρ(t)]

+
∑
jk

Ljkρ(t) +
1

4

∑
j

Γ1,j

(
D[τzj ] +D[τ+

j ] +D[τ−j ]
)
ρ(t),

(21)

where Ω is now defined as the average Rabi frequency,
Ω ≡ (Ω1 + Ω2)/2. In addition, in Eq. (21), {Ljk} is
the usual set of Lindblad superoperators for correlated

dephasing noise given by Eq. (9), and Γ1,j ≡ 1/T
(j)
1 , with

T
(j)
1 the longitudinal relaxation time of qubit j in the lab

frame (without spin-locking drives). We then apply the
spectral reconstruction procedure described in Sec. II B,
with the exception that Eq. (21) is used in lieu of Eq. (8)
in the calculation of expectation values involved in the
non-linear regression procedure, Eq. (12).

In comparison with Eq. (8), the modified ME in

Eq. (21) involves three additional parameters: T
(1)
1 , T

(2)
1 ,

and δΩ. While the longitudinal relaxation times are
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known from prior characterization of the qubits in the
lab frame (Table I), the Rabi frequency differences are
due to slow random drifts, and cannot be known in ad-
vance. However, δΩ can be accounted for as an additional
unknown parameter in the estimation scheme; formally,
we simply replace S → θ ≡ [S, δΩ] in Eq. (13) and si-
multaneously estimate S and δΩ. In this approach, we
thus assume that δΩ is a constant parameter for a given
reconstruction at target Rabi frequency Ω, but allow δΩ
to vary between spin-locking experiments aiming to re-
construct spectra about distinct target Rabi frequencies,
thus modelling slow, quasi-static Rabi-frequency drifts.

B. Spectral estimation results

Figure 6 summarizes the results of the spectral re-
construction procedure described above, using a spec-
trum vector that is uniform across its components, S` =
1 kHz ∀`, and δΩ = 0, respectively, as initial guesses
for the non-linear regression technique we employ. In
Fig. 6(a)-(c), we show examples of experimentally mea-
sured decay curves with the dressed qubits initialized in
state |+x,+x〉 for Ω/2π = 2.184 MHz (blue dots) and
Ω/2π = 1.976 MHz (yellow dots) for three of the eleven
observables given in Table II. The fitted decay curves are
shown by solid lines of corresponding color, and display
reasonable agreement with data. The spectra that fol-
low from this robust estimation procedure are shown in
Fig. 6(d), in which the gray error bars indicate the 95%
confidence intervals derived from the asymptotic statis-
tics of M-estimators (Appendix B). These reconstruc-
tions are compared with shaded orange areas represent-
ing 95% confidence intervals for the theoretical shot-noise
spectra [Eq. (15)], using estimates for χ1, χ2, n, and κ
obtained as explained in Sec. III. The four experimen-
tal reconstructions clearly capture the asymmetry of the
two-qubit spectra arising from the non-commuting na-
ture of the noise operator, and qualitatively reproduce
the Lorentzian shape associated with photon shot noise.
Remarkably, this includes a reconstruction of the cross-
spectrum S12(ω) that characterizes spatial correlations
of the noise.

To produce the reconstructions shown in Fig. 6, we
considered all initial states, evolution times and observ-
ables given in Table II in a global fit defined by the M-
estimator given by Eq. (13) with S replaced by θ. To
minimize the total cost function in Eq. (13) numerically,
we employed the least-squares optimization routine of the
SciPy package, which implements a trust-region reflec-
tive algorithm that allows the use of arbitrary loss func-
tions [54]. While the quadratic loss function is the most
standard in nonlinear regression, we find that due to the
significant presence of outliers in the experimental data,
quadratic loss leads to fitted decay curves that can devi-
ate from the large majority of experimental observations.
To mitigate this adverse behavior, we thus perform ro-
bust estimation using the Huber loss function, Eq. (14),

in which we set the tuning parameter δ0 = 1, lead-
ing to less noisy reconstructions and significantly better
agreement between fitted decay curves and experimental
data (see Appendix C for further discussion). This re-
sult showcases the advantage of robust estimation strate-
gies over traditional weighted-least squares estimates in a
quantum noise spectroscopy context. Indeed, for each of
the 26 Rabi frequencies considered here, the current ap-
proach involves, as mentioned, 4 initial states, 11 observ-
ables, and 26 evolution times, for a total of 29, 744 data
points. For such a large dataset, systematically identify-
ing, explaining, and eliminating outliers in an experimen-
tal setting would represent, at best, an extremely tedious
and impractical task.

Though the reconstructed and predicted spectra agree
within error bars for several frequency values, statisti-
cally significant deviations are also observed. In partic-
ular, the reconstructed spectra are larger than predicted
by an amount . 10 kHz for wide ranges of frequencies.
To investigate the physical origin of this discrepancy, we
first simulate the spectroscopy procedure by exactly solv-
ing the coupled evolution of the two qubits and the driven
resonator mode using the full quantum-optical ME de-

fined by Eqs. (18)–(20), setting γ↑j = γ↓j = 0 ∀ j and
Ω1 = Ω2 = Ω. We then employ the resulting density
matrix to calculate the probabilities of all relevant mea-
surement outcomes, and use these probabilities to pro-
duce 10, 000 simulated projective measurements for each
data point measured experimentally. The resulting de-
cay curves are then fitted using the approach presented in
Sec. II, producing the spectrum estimates illustrated by
the blue dots in Fig. 6. A small discrepancy with the ideal
spectra for the same shot-noise parameters then arises be-
cause the assumptions used to arrive at the reduced ME
for two-qubit evolution are only valid in an approximate
sense. In particular, noise may not be sufficiently weak,
and the filters for finite evolution time may not be suffi-
ciently narrow for Eq. (21) to hold exactly. Nevertheless,
this discrepancy remains too small to explain the excess
noise measured experimentally.

To attempt to explain the observed discrepancies, we
invoke non-idealities that, taken together, may help to
better understand our experimental results. First, na-
tive dephasing noise sources (in addition to engineered
shot noise) may couple to the qubits via σzj . We expect
the spectrum of this excess noise to add up with engi-
neered noise in the spectra Sjk(ω) appearing in Eq. (9);
such noise would thus also be measured by our protocol.
The presence of intrinsic noise would be consistent with
the numerical fits performed in Sec. III B, which yielded
decay rates between 2 × 103 rad/s and 14 × 103 rad/s,
phenomenologically accounting for spatially uncorrelated
noise along σzj . In addition, characterization of the qubits
without engineered noise led to T2 values significantly
shorter than 2T1 (see Table I). Native dephasing noise
may arise from a combination of residual thermal photons
in the readout resonators [25] with sources of noise intrin-
sic to transmon qubits, such as two-level fluctuators. In
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FIG. 6. Two-qubit quantum noise spectroscopy. (a)-(c) Representative decay curves from experimental data (dots) and
corresponding solution of the reduced ME (solid lines), Eq. (21), with estimates for the spectra Sjk(±Ω), j, k ∈ {1, 2}, and
Rabi-frequency difference δΩ = Ω1 − Ω2 obtained by non-linear regression. The sample means are obtained with the two
dressed qubits initially prepared in state |+x,+x〉, and driven at average Rabi frequency Ω = (Ω1 + Ω2)/2 = 2π × 2.184 MHz
(blue dots) or 1.976 MHz (yellow dots). Using the Huber loss function [Eq. (14)] makes the fitting procedure robust to outliers
visible in the data [e.g., the seventh yellow data point in (a)]. (d) Reconstructed two-qubit spectra. Error bars: 95% confidence
intervals for the experimental reconstructions. Shaded orange areas: 95% confidence intervals associated with the ideal spectra
for engineered photon shot noise obtained from Eq. (15), with parameters taken from fits described in Sec. III: κ/2π = 198 kHz,
χ1/2π = −29.1 kHz, χ2/2π = −59.5 kHz, ∆c/2π = 1.961 MHz, n = 0.127. Blue dots: numerical simulation of the spectroscopy
protocol using the quantum-optical ME in Eqs. (18)–(20). Inset of the bottom-right panel: Rabi-frequency difference δΩ.

particular, the EJ/EC ratios in our sample, which deter-
mine the sensitivity of the transmon frequency to charge
noise, were 28 for qubit 1 and 45 for qubit 2. These
are well below the value of 50 normally associated with
transmon devices [55, 56].

We also observe that Rabi frequencies significantly
drift during the 24 hours needed to complete all the spin-
locking experiments. Indeed, the inset of the bottom-
right panel of Fig. 6 shows that a Rabi frequency differ-
ence δΩ/2π ∼ 50 kHz builds up as the target value of
Ω/2π is swept from 1.8 MHz to 2.2 MHz, most plausibly
due to drifts in electronics. It is thus very likely that
the average Rabi frequency Ω/2π ≡ (Ω1 + Ω2)/2 defin-
ing the frequency at which the spectrum is reconstructed
drifts by a similar quantity. In addition, both T1 and T2

are known to fluctuate significantly under noise processes
that naturally occur in superconducting qubits [57, 58].

These combined effects may thus explain the apparent
shift of some reconstructed spectrum values away from
the predicted Lorentzians.

Finally, the two reconstructed values of S22(ω) at fre-
quencies nearest to ω/2π = −1.8 MHz deviate signifi-
cantly from predictions. For these Rabi frequencies, we
find that the nonlinear regression fails to produce a good
fit to the experimental decay curves. We attribute this
effect to the weakness of the engineered noise source at
these frequencies, leading to a poor signal-to-noise ra-
tio in the measured dynamics that prevents convergence
of the nonlinear regression to the correct spectrum val-
ues. By artificially down-weighting the residuals asso-
ciated with two-qubit observables in the loss function,
we were able to achieve a more accurate reconstruction
of the self-spectra for these frequencies; however, this
came at the expense of an inaccurate reconstruction of
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the cross-spectrum. To achieve simultaneously accurate
reconstructions of all spectra far from the peak frequency,
it is possible in principle to perform more projective mea-
surements to increase signal-to-noise and thus ease the
convergence of the non-linear regression procedure into a
physically meaningful global minimum.

V. DISCUSSION AND OUTLOOK

We have proposed a protocol for two-qubit noise spec-
troscopy and validated it with an engineered source of
photon shot noise in a superconducting-qubit architec-
ture. Despite the complexity of the two-qubit dynamics
and the resulting estimation problem in the presence of
both non-classical self- and cross-correlation spectra, we
were able to successfully extend the spin-locking tech-
nique previously used on a single qubit to the two-qubit
setting. This enabled us to demonstrate what consti-
tutes, to the best of our knowledge, the first experimental
reconstruction of a two-qubit noise cross-spectrum.

Our approach offers several advantages over avail-
able proposals for two-qubit spectroscopy. Indeed, our
continuous-wave protocol avoids the experimental issues
arising from long tailored sequences of nearly instanta-
neous pulses that are typically required in comb-based
dynamical-decoupling spectroscopy [34]; it does not re-
quire two-qubit gates or entangled initial qubit states;
and it allows one to probe noise in a MHz frequency
scale that is difficult to access with pulsed techniques.
In addition, the numerical approach taken here, in which
the numerical solution of a ME containing the spectra
of interest is fitted to experimental data, offers substan-
tial flexibility in the choice of theoretical model. This
enabled us to quantitatively account for non-idealities of
our experimental platform in a straightforward manner,
by simply modifying the ME to include T1 effects and
Rabi-frequency drifts. We expect the simplicity and flex-
ibility of our approach to be instrumental in its applica-
tion to study correlated noise sources in other state-of-
the-art quantum devices – including nuclear-spin, phonon
or charge noise affecting spin qubits in semiconductors or
NV centers [33, 59, 60].

Our work also paves the way to further advances of
quantum noise spectroscopy protocols and to the charac-
terization of more general sources of noise. Indeed, apply-
ing the same non-linear regression techniques to a differ-
ent master equation should enable spectral estimation to
be extended to multi-axis noise, in a simpler continuous-
wave approach than in existing pulsed schemes [45] – with
further extensions possible to a multi-qubit scenario. In
addition, as photon shot noise is genuinely non-Gaussian,
increasing the strength of the engineered noise studied
here should enable one to use non-Gaussian noise spec-
troscopy methods [43, 44] to investigate a quantum non-
Gaussian environment with non-commuting degrees of
freedom. As noise spectroscopy methods will continue to
grow in complexity and generality, more elaborate mea-

surements and larger experimental data sets will also be
more likely to contain outliers. We thus envision that ro-
bust estimation strategies based on M-estimators, as we
demonstrated here, will become increasingly needed and
prove useful for quantum sensing applications.
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Appendix A: Derivation of the reduced master
equations

In this Appendix, we derive the reduced MEs presented
in the main text, Eq. (8) and (21), using a standard time-
convolutionles s (TCL) approach [40]. We first derive the
ME in the ideal setting in which noise only couples to σzj ,
j ∈ {1, 2}. We then evaluate the relevant spectra for the
cQED system considered in the main text. Finally, we
derive a modified ME which accounts for non-idealities
that are particularly relevant to our experimental setting.

1. Master equation for noise along σzj only

The TCL formalism enables the systematic derivation
of a ME for a system of interest S coupled to a bath
B by tracing out the bath degrees of freedom. Though
the method presented here is more general, to apply the
TCL formalism to the cQED sytem studied experimen-
tally in Sec. III and Sec. IV, we will assume that the
bath B may be separated into two components: a central
bath labeled by C, corresponding to a mode of the mi-
crowave resonator shared by the two qubits in the main
text, and a larger external bath labeled by E, correspond-
ing to the environment of the resonator mode in the main
text. While the central bath couples to the system, the
external bath only couples to the central bath; its ef-
fect is to allow non-unitary evolution of the central bath
even in the absence of coupling to the system. In our
cQED context, this allows us to describe damping of the
microwave resonator. Beyond the current setting, such
“structured environments” can naturally arise, for in-
stance, for qubits coupled to two-level charge fluctuators
undergoing incoherent transitions due to an electronic or
phononic reservoir [42, 61].
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More formally, let the system-bath Hamiltonian be

H = HS +HSB +HC +HCE +HE︸ ︷︷ ︸
≡HB

, (A1)

where HSB ≡ HSC ≡
∑
j BjQj describes coupling be-

tween qubit j and C through the qubit operator Qj and
the central-bath operator Bj . Moving to the interaction
picture with respect to HS +HB, we have

H̃SB(t) =
∑
j

B̃j(t)Q̃j(t), (A2)

where the transformed operators B̃j(t) ≡ eiHBtBje
−iHBt

and Q̃j(t) ≡ eiHStQje
−iHSt. To derive a TCL ME

describing the reduced evolution of the qubit system
only, we introduce the projection superoperator P that
projects any density matrix ρ onto the relevant (system)
part of the Hilbert space: that is, Pρ ≡ TrB[ρ] ⊗ ρB,
where the trace is taken over both central and exter-
nal baths and ρB is the joint initial state of C and E.
A complementary projection superoperator Q on the ir-
relevant part of the density matrix is then also defined
by Q ≡ I − P , where I is the identity superoperator,
Iρ ≡ ρ. As customary, we assume that the density ma-
trix ρtot(0) describing the joint initial state of the system
and the bath is of the form ρtot(0) = ρ(0) ⊗ ρB , where
ρ(0) is the initial density matrix of S. Further assuming
that coupling between the system and the central bath
is sufficiently weak, the TCL ME may be truncated at
second order, leading to

∂

∂t
P ρ̃tot(t) = K(t)P ρ̃tot(t). (A3)

Here, ρ̃tot(t) denotes the joint interaction-picture density
matrix of the system, central and external baths at time
t, and K(t) is the second-order TCL generator given by

K(t) =

∫ t

0

dsPL(t)QL(s)P , (A4)

with L(t)ρ ≡ −i[H̃SB(t), ρ] defining the Liouvillian super-

operator associated with H̃SB(t). Importantly, Eqs. (A3)
and (A4) are valid when PL(t)P = 0 ∀t, a property that

is satisfied when TrB[B̃j(t)ρB] = 0, i.e., for noise with
vanishing mean in state ρB .

Under the above assumption, substituting Eq. (A2)
into Eq. (A4) and tracing over both central and external
baths produces the integro-differential equation

˙̃ρ(t)=
∑
jk

∫ t

0

ds
[
Cjk(t, s)

(
Q̃k(s)ρ̃(t)Q̃j(t)−Q̃j(t)Q̃k(s)ρ̃(t)

)
+ Ckj(s, t)

(
Q̃j(t)ρ̃(t)Q̃k(s)−ρ̃(t)Q̃k(s)Q̃j(t)

)]
, (A5)

which describes evolution of the reduced density matrix
of S, ρ̃(t) ≡ TrBρ̃tot(t), in terms of the two-point corre-
lation functions

Cjk(t, s) ≡ 〈B̃j(t)B̃k(s)〉B ≡ TrB[B̃j(t)B̃k(s)ρB] (A6)

= TrB[B̃j(t− s)B̃k(0)ρB] ≡ Cjk(t− s). (A7)

Equality between Eq. (A6) and Eq. (A7) is only re-
spected when noise arising from the central and exter-
nal baths is stationary, so that correlation functions are
invariant under time translations. Noting that B̃j(t) =
eiHBtBje

−iHBt is formally equivalent to the Heisenberg-
picture evolution of Bj under the Hamiltonian HB of the
bath only, Cjk(t, s) is independent of the evolution of the
system. Stationarity then arises in the following two sit-
uations, the second one being the most relevant to this
paper: (i) The initial density matrix of the bath com-
mutes with HB, [HB, ρB] = 0. (ii) Evolution of the re-
duced density matrix of the central bath in the absence
of the system, namely,

ρC(t) ≡ TrE[ρB(t)] ≡ TrE[e−iHBtρBeiHBt],

is accurately described by a ME of the form ρ̇C(t) =
LCρC(t), where LC is a Markovian (Lindblad) superop-
erator acting on C only. This is the case, for example,
when the central and external baths are initially in a
product state, ρB = ρC(0) ⊗ ρE(0), and C is sufficiently
weakly coupled to an external bath containing enough
degrees of freedom for the Born-Markov approximation
to hold. The desired correlation function Cjk(t, s) is then
given by the following expression of multitime averages
for evolution under a Markovian ME [62]

Cjk(t, s) =

{
TrC

[
Bje

LC(t−s)BkeLCsρC(0)
]
, t ≥ s,

TrC

[
BkeLC(s−t) (eLCtρC(0)

)
Bj
]
, t < s.

(A8)

Further assuming that the initial state of the central bath
is a steady state of the ME, LCρC(0) = 0, then directly
leads to a correlation function respecting Eq. (A7), and
thus to stationary noise.

For stationary noise, Eq. (A5) can be rewritten in the
frequency domain as

˙̃ρ(t) =
1

2π

∑
jk

∫ ∞
−∞

dω Υ̃jk(ω, t)ρ̃(t), (A9)

where the integration kernel Υ̃jk(ω, t) is given by
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Υ̃jk(ω, t)ρ ≡
∫ t

0

dτeiωτ
{
Sjk(ω)

[
Q̃k(t− τ)ρQ̃j(t)− Q̃j(t)Q̃k(t− τ)ρ

]
+ Skj(−ω)

[
Q̃j(t)ρQ̃k(t− τ)− ρQ̃k(t− τ)Q̃j(t)

]}
.

(A10)

To describe spin-locking, we replace HS → H ′S and Qj → −τxj in Q̃j(t) = eiHStQje
−iHSt, with H ′S given by Eq. (7),

leading to Q̃j(t) = −(eiΩjtτ+
j + H.c.). Substituting this into Eq. (A10) above, we obtain terms oscillating at angular

frequencies |Ωj − Ωk| and Ωj + Ωk. Assuming that (Ωj + Ωk)tD � 1, ∀j, k, where tD is the typical timescale over
which qubit observables decay, we neglect terms oscillating with Ωj + Ωk by invoking a secular approximation [40].
This leads to the simplified expression

Υ̃jk(ω, t)ρ ≈ (A11)

ei∆jkt
{

[Sjk(ω)F (ω+Ωk)+Sjk(−ω)F (ω−Ωj)] τ
−
k ρτ

+
j −Sjk(ω)F (ω+Ωk)τ+

j τ
−
k ρ− Sjk(−ω)F (ω−Ωj)ρτ

+
j τ
−
k

}
+ e−i∆jkt

{
[Sjk(ω)F (ω−Ωk) + Sjk(−ω)F (ω+Ωj)] τ

+
k ρτ

−
j − Sjk(ω)F (ω−Ωk)τ−j τ

+
k ρ− Sjk(−ω)F (ω+Ωj)ρτ

−
j τ

+
k

}
,

where ∆jk ≡ Ωj − Ωk and F (ω) ≡
∫ t

0
ds eiωs is the first-

order fundamental filter function for free-induction de-
cay [63]. Crucially, for finite time, F (ω ± Ωj) is peaked
around ω = ∓Ωj with a width ∼ 1/t and thus acts
as a bandpass filter for the noise spectra in the inte-
gral over frequencies, Eq. (A9). Assuming that all spec-
tra vary negligibly over this passband, we replace F (ω)
by its infinite-time limit in the sense of distributions,
limt→∞ F (ω) = πδ(ω), which gives

˙̃ρ(t) ≈
∑
jk

(
ei∆jktL−jk + e−i∆jktL+

jk

)
ρ̃(t), (A12)

L±jkρ ≡
1

2

{
[Sjk(±Ωk) + Sjk(±Ωj)] τ

±
k ρτ

∓
j

−Sjk(±Ωk)τ∓j τ
±
k ρ− Sjk(±Ωj)ρτ

∓
j τ
±
k

}
. (A13)

Moving back to the spin-locking reference frame, which
rotates at the qubit drive frequencies [see the discussion
above Eq. (4)], and taking Ω1 = Ω2 then results in Eq. (8)
in the main text, which provides the theoretical basis of
the spectroscopy method we presented.

2. Photon shot noise spectra

We now apply the theory described in Appendix A 1
to the cQED experimental setting considered in the main
text (see Fig. 3). In this setting, S comprises a pair of
qubits encoded by the two lowest energy levels of trans-
mons. The two qubits are coupled to a central bath
consisting of a microwave resonator mode, which is it-
self subject to damping due to an external environment.
We manipulate the qubits and the central bath by ir-
radiating the input port of the common resonator with
microwave drives. A continuous microwave drive with
strength ε is first applied at frequency ωd near the fun-
damental resonator mode frequency ωc, in order to bring
the mode into a coherent steady state. An additional
pair of drives is then employed to initialize the qubits

and measure their final state using the dispersive read-
out. Most importantly for this work, between initializa-
tion and readout, continuous spin-locking drives are also
applied on each qubit j with constant strength Ωj at fre-
quency ωdj near the bare qubit frequency ω0

qj .
To describe the above experiment theoretically, we con-

sider the sample parameters given in Table I, enabling us
to make several simplifying assumptions. First, we as-
sume that the qubit-resonator detunings ∆j ≡ ω0

qj − ωc

are large compared with: (i) ε and Ωj , enabling us to
neglect any cross-talk effect of the resonator drive on the
qubits and of the qubit drives on the resonator; and (ii)
the qubit-resonator coupling strengths gj , such that the
two-qubit dispersive Hamiltonian can be employed [49].
Second, we also assume that the qubit-qubit detuning
ωq1 − ωq2 is much larger than the strength of any inter-
action between the qubits, for example mediated by vir-
tual transitions with the resonator [64]. We then model
the two qubits, the resonator mode, and its environment
with the Hamiltonian

HQCE(t) =
∑
j=1,2

[ωqj

2
σzj + Ωj cos(ωdjt)σ

x
j + χja

†aσzj

]
+ ωca

†a+ 2ε cos(ωdt)(a+ a†) +HCE +HE,
(A14)

where χj ≡ g2
j /∆j is the dispersive coupling strength be-

tween qubit j and the resonator mode with annihilation
and creation operators a and a†, and ωqj = ω0

qj + χj is
the Lamb-shifted qubit frequency. In Eq. (A14), HCE is
the Hamiltonian that describes coupling of the resonator
mode with an external environment with free Hamilto-
nian HE. Typically, this environment is modeled by an
ensemble of harmonic oscillators corresponding to the
modes of the free electromagnetic field or phonons by

taking HE =
∑
k ωkb

†
kbk and HCE =

∑
k vka

†bk + H.c.,
where ωk and vk are the frequency and coupling strength
of the environmental mode k, whose excitations are an-
nihilated by the bosonic operator bk [48].
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We next move to the frame that rotates at the drive
frequencies using the unitary tranformation

Rd(t) = exp
[
− iωdt a

†a− i
∑
j

ωdjt

2
σzj

]
. (A15)

This transformation produces terms oscillating at fre-
quencies 2ωd and 2ωdj , which we neglect under the RWA,
assuming that ε � ωd and Ωj � ωdj . In the rotating
frame, the total Hamiltonian for the qubits, resonator,
and environment is then given by Eq. (A1), in which

HS → H ′S =
1

2

∑
j

(
∆′qjσ

z
j + Ωjσ

x
j

)
, (A16)

HSB → H ′SB =
∑
j

Bjσ
z
j , (A17)

HB → H ′B(t) = ∆ca
†a+ ε(a+ a†) +H ′CE(t) +HE,

(A18)

and where we have taken

∆′qj ≡ ∆qj + 2χjn, Bj ≡ χj(a†a− n). (A19)

In Eq. (A18), ∆qj ≡ ωqj −ωdj and ∆c ≡ ωc−ωd are the
detunings of the qubit and resonator drives, respectively,

and H ′CE(t) ≡ R†d(t)HCERd(t) =
∑
k vka

†bkeiωdt + H.c.
is the interaction-picture coupling between the resonator
and its external environment. In addition, to arrive at a
noise operator Bj that has zero mean in the initial state,
we have added and subtracted the term

∑
j χjnσ

z
j in H ′S

and H ′SB, respectively, where n ≡ 〈a†a(0)〉 is the aver-
age photon number in the initial state of the resonator.
In this approach, the mean of the noise is captured by
the Stark shift 2χjn of each qubit j in Eq. (A19) for
∆′qj . Assuming that this shift is measured with sufficient
accuracy, we set ∆qj = −2χjn, leading to ∆′qj = 0 ∀ j
in Eq. (A16). In the spin-locking basis, Eqs. (A16) and
(A17) then take the form of Eq. (7) we have taken in the
derivations of Appendix A 1.

We now follow the steps laid down in Appendix A 1 to
obtain the reduced ME for the qubits. In Eq. (A2), we

consider the interaction-picture bath operator B̃j(t) =

R†B(t)BjRB(t), where RB(t) = T exp[−i
∫ t

0
dsH ′B(s)] is

the evolution operator under H ′B(t) given in Eq. (A18),
with T denoting time ordering. For weak coupling be-
tween the resonator mode and an environment consist-
ing of a large number of degrees of freedom, the Born-
Markov approximation may be invoked, following which
reduced evolution of any central bath (resonator) opera-
tor under RB(t) is approximated by solving the Lindblad
ME [48, 65],

ρ̇C(t) = LCρC(t) (A20)

LCρ ≡ −i[∆ca
†a+ ε(a+ a†), ρ] + κD[a]ρ. (A21)

Assuming that the resonator couples to a continuum of
environmental modes, the resonator damping rate ap-
pearing in Eq. (A21) is given by κ = 2πD(ωc)|v(ωc)|2,

where D(ω) and v(ω) are the frequency-dependent den-
sity of modes and coupling strength of the external en-
vironment, respectively. We also assume that the res-
onator drive is applied since time t0 � −1/κ so that,
at t = 0, the resonator mode has reached a steady
state defined by ρ̇C(t) = 0, in which noise is station-
ary. In this limit, Eq. (A20) is easily solved to give
n = 〈a†a(0)〉 = ε2/[(κ/2)2 + ∆2

c ].
Substituting Eq. (A20) into Eq. (A8), we may evaluate

the central bath correlation functions Cjk(t, s). In prac-
tice, to evaluate these correlators, we find that it is easier
to use the equivalent quantum regression theorem [62].
This results in [18, 49]

Cjk(t) = χjχk(〈a†a(t)a†a(0)〉 − n2)

= χjχkne−κ|t|/2−i∆ct. (A22)

Fourier-transforming this correlation function then yields
the shot-noise spectra given by Eq. (15).

3. Rabi-frequency difference and qubit relaxation

In Sec. II A and Appendix A 1, we considered an ideal
setting in which noise only couples to σzj , j ∈ {1, 2}. In
addition, we took the Rabi frequencies for the two spin-
locking drives to be exactly equal, Ω1 = Ω2 ≡ Ω. Here,
we derive Eq. (21), which accounts for both a finite Rabi
frequency difference (Ω1 6= Ω2) and noise coupling to
the qubits off-axis, via σxj , j ∈ {1, 2}. Throughout this
Appendix, we will assume that the Rabi frequencies Ω1

and Ω2 are approximately time-independent within any
measurement of decay curves for a given target Rabi fre-
quency Ω, even though Ω1 and Ω2 are allowed to undergo
small random fluctuations between distinct sets of mea-
surements at different target values of Ω.

To derive the ME, we follow the same steps as in Ap-
pendix A 1, but replace HSB by Hx

SB(t) ≡
∑
j [BjQj +

BxjQ
x
j (t)] in the definition of the system-bath Hamilto-

nian, below Eq. (A1). In contrast with HSB, Hx
SB in-

cludes an additional central-bath operator Bxj that cou-
ples to the system through Qxj (t). To describe T1-effects,
we take Qxj (t) to be σxj in the frame co-rotating with

the qubit drives, Qxj (t) ≡ σ+
j eiωdjt + H.c. Moving to the

interaction picture with respect to HS + HB as above,
Eq. (A2) is then replaced by

H̃x
SB(t) =

∑
j

[
B̃j(t)Q̃j(t) + B̃xj (t)Q̃xj (t)

]
. (A23)

Taking HS → H ′S, with H ′S given by Eq. (7), Q̃xj (t) ≡
eiHStQxj (t)e−iHSt becomes, in the spin-locking basis,

Q̃xj (t) =
1

2

[
ei(Ωj+ωqj)t − ei(Ωj−ωqj)t

]
τ+
j + H.c.

+ cos(ωqjt)τ
z
j , (A24)

where we have taken ωdj = ωqj , ∀j. We as-

sume that 〈B̃xj (t)〉 = TrB[B̃xj (t)ρB(0)] = 0, ∀t, and
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that all cross-correlations involving any B̃xj (t) vanish:

〈B̃x1 (t1)B̃x2 (t2)〉 = 〈B̃xj (t1)B̃k(t2)〉 = 0 ∀j, k, t1, t2. We

also assume that noise due to B̃xj (t) is stationary, and

derive a TCL ME for H̃x
SB(t) similar to Eqs. (A9)-(A10),

but in which several additional terms due to B̃xj (t) and

Q̃xj (t) arise. Among these terms, some oscillate with an-
gular frequencies Ωj and ωqj ± Ωj . Since we must have
Ωj � ωqj , ∀j (which we assumed in Sec. II A to ar-
rive at Eq. (5) within the RWA), we may neglect these
fast oscillating terms within a secular approximation, as
done below Eq. (A10), without further loss of general-
ity compared with Eq. (8). In addition, analogously to
Eq. (A11), in the additional terms due to noise along

x, noise spectra Sxx,j(ω) ≡
∫∞
−∞ dτ e−iωτ 〈B̃xj (τ)B̃xj (0)〉

are probed by filter functions in passbands of width
∼ 1/t about frequencies ±ωqj , ωqj ±Ωj , and −ωqj ±Ωj .
Assuming that the noise spectra vary negligibly within
these passbands, we take the infinite-time limit as in Ap-
pendix A 1, and move back to the spin-locking reference
frame rotating at the qubit drive frequencies. We then
arrive at the ME

ρ̇(t) = −i
∑
j

Ωj
2

[
τzj , ρ(t)

]
+
∑
jk

(
L−jk + L+

jk

)
ρ(t)

+
∑
j

(
γzj
2
D
[
τzj
]

+ γ−j D
[
τ−j
]

+ γ+
j D

[
τ+
j

])
ρ(t),

(A25)

where L±jk are introduced in Eq. (A13) and

γzj ≡
1

2
[Sxx,j(ωqj) + Sxx,j(−ωqj)] , (A26)

γ±j ≡
1

4
[Sxx,j(ωqj ± Ωj) + Sxx,j(−ωqj ± Ωj)] . (A27)

Allowing for Ω1 and Ω2 to be distinct, we intro-
duce the Rabi frequency difference δΩ ≡ Ω1 − Ω2 and
the average Rabi frequency Ω ≡ (Ω1 + Ω2)/2, so that
Ω1 = Ω + δΩ/2 and Ω2 = Ω − δΩ/2. We then as-
sume that Sjk(ω) varies negligibly around ω = Ω over the
range of values taken by δΩ, allowing us to approximate
Sjk(±Ω1) ≈ Sjk(±Ω2) ≈ Sjk(±Ω), ∀j, k. For the shot-
noise spectra produced experimentally, this amounts to
assuming that δΩ is negligible in comparison with the
width κ of the peak, δΩ� κ. This enables us to approx-
imate L−jk + L+

jk ≈ Ljk in Eq. (A25), with Ljk given by

Eq. (9). Likewise, as in Ref. [23], we assume that Sxx,j(ω)
varies negligibly over the small (typically, ∼ 1-100 MHz)
frequency ranges between ±ωqj − Ωj and ±ωqj + Ωj for
all j, and thus take Sxx,j(ωqj ± Ωj) ≈ Sxx,j(ωqj) and
Sxx,j(−ωqj ± Ωj) ≈ Sxx,j(−ωqj) in Eq. (A27). Un-
der these approximations, Eq. (A25) then reduces to
Eq. (21), in which the damping rates due to noise along
x are given by

Γ1,j ≡ Sxx,j(ωqj) + Sxx,j(−ωqj) = 1/T
(j)
1 , (A28)

with T
(j)
1 the longitudinal relaxation time of qubit j in

a free-evolution experiment. The effects of noise along
x are then accounted for phenomenologically in the non-

linear regression approach, by using the average T
(j)
1 val-

ues measured in independent free-evolution experiments.
Though a simultaneous characterization of all noise

spectra Sjk(ω) and Sxx,j(ω) for all qubit axes would be
much preferable in principle [45], the above approach, in
which the effect of Sxx,j(ω) is captured by a single pa-

rameter T
(j)
1 , has been successfully employed in a single-

qubit context [25]. For sufficiently strong photon shot
noise, longitudinal qubit relaxation effects are a signifi-
cant, but weak correction that need only be taken into
account at Rabi frequencies for which Sjk(ω) is the weak-
est, i.e., at the tails of the Lorentzian spectra. Though

not accounting for T
(j)
1 would make the reconstructed

Sjk(ω) to be significantly off at the tails, we do not ex-
pect the details of the additional noise spectra Sxx,j(ω)
to lead to significant effects beyond corrections obtained
with Eq. (21).

Appendix B: Confidence intervals for spectrum
estimates

M-estimators were introduced in the 1960s for robust
estimation of a parameter using data whose distribution
function is only approximately known: for example, the
observations may follow a normal distribution, except for
a fraction of them which is affected by experimental er-
ror [66]. Following the steps of Ref. [67], in this Appendix
we discuss the asymptotic normality of these estimators
when the number of observations tends to infinity. This
will lead us to the approximate confidence intervals for
the spectrum values presented in the main text. No ex-
cessive emphasis is put on mathematical rigor; the follow-
ing steps are valid under suitable regularity conditions
that an interested reader may find in Ref. [67].

Given a loss function λ(z) that penalizes deviation be-
tween a model and experimental observations, the gen-

eral form of an M-estimator θ̂ for a p-dimensional param-
eter vector θ is

θ̂ = argmin
θ

d∑
α=1

λ(zα), (B1)

where zα is the α-th realization of a random vari-
able Z associated with experimental observations, and
whose probability distribution is parameterized by θ. In
Sec. II B, the parameter θ is the spectrum vector, θ = S,
while in Sec. IV, θ is the spectrum vector supplemented
by the Rabi frequency difference δΩ between the qubit
drives. Throughout the main text, zα quantifies the rel-
ative deviation of observations from their expected value
〈Oα〉θ via zα = (Oα − 〈Oα〉θ)/σα, where Oα is the sam-
ple mean of M projective measurements performed on
the two-qubit system and σ2

α = var(Oα). Throughout
this Appendix, we will assume that all realizations zα
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are independent and identically distributed (i.i.d.). For
example, under ideal conditions (in the absence of any ex-
perimental error), and in the asymptotic limit in which
each Oα is obtained from M → ∞ projective measure-
ments, the central limit theorem implies that each zα is
sampled from the standard normal distribution N (0, 1).

Since the value of θ that minimizes the right-hand side
of Eq. (B1) may be found by setting derivatives with
respect to θ` to zero, M-estimators are often alternatively
defined by the solution of a set of p estimating equations

d∑
α=1

ψ`(zα) = 0, ` ∈ {1, 2, . . . , p}. (B2)

To describe the minimization problem of Eq. (B1), above,
we set ψ`(zα) ≡ ∂λ(zα)/∂θ`. It is also convenient to
introduce the d-dimensional column vectors ψ(zα) and
Ψ(θ), whose components ` are defined as ψ`(zα) and

Ψ`(θ) ≡
∑d
α=1 ψ`(zα), respectively. With this notation,

the estimating equations for the M-estimator of θ may
be written succinctly as

Ψ(θ̂) = 0. (B3)

To discuss the asymptotic behavior of θ̂, we Taylor-

expand Eq. (B3) about θ̂ = θ∗, where θ∗ is the true
value of θ, and truncate to the first order. This gives

Ψ(θ̂) ≈ Ψ(θ∗) + Ψ̇(θ∗)(θ̂ − θ∗), (B4)

where Ψ̇(θ∗) is the p × p matrix of derivatives of Ψ(θ)
at θ = θ∗, namely,

Ψ̇k`(θ
∗) ≡ ∂Ψk(θ)

∂θ`

∣∣∣∣
θ=θ∗

=

d∑
α=1

∂ψk(zα)

∂θ`

∣∣∣∣
θ=θ∗

. (B5)

By definition of M-estimators, Eq. (B3), the left-hand

side of Eq. (B4) must vanish, Ψ(θ̂) = 0. Assuming that

Ψ̇(θ∗) is invertible then gives

θ̂ − θ∗ ≈ −Ψ̇(θ∗)−1Ψ(θ∗). (B6)

Recall that Ψ̇(θ∗) and Ψ(θ∗) are ultimately functions
of the realizations zα of the random variable describing
the deviation of an experimental observation Oα from
its expected value. We thus investigate the asymptotic
behavior of Ψ̇(θ∗) and Ψ(θ∗) as the number of observa-
tions tend to infinity, d→∞, assuming that the zα’s are

i.i.d. Since, by definition, Ψ`(θ
∗) =

∑d
α=1 ψ`(zα), the

central limit theorem implies the following convergence
in distribution:

Ψ(θ∗) =
d∑

α=1

ψ(zα)→
√
dNp(0, cov(ψ)), (B7)

where Np(µ,Σ) is the p-dimensional multivariate normal
distribution with mean µ and covariance matrix Σ. To

arrive at Eq. (B7), we have used the fact that E[ψ] = 0
at θ = θ∗, where E(ψ) is the expectation value of ψ
over realizations of the random variable Z. This property
must be satisfied for any M-estimator since, by the weak

law of large numbers, E[ψ] = limd→∞
1
d

∑d
α=1ψ(zα),

where
∑d
α=1ψ(zα) = 0 at θ = θ̂ by Eq. (B3), and

limd→∞ θ̂ = θ∗ due to asymptotic consistency of M-
estimators [67]. Because E[ψ] = 0, the covariance matrix

in Eq. (B7) is simply given by cov(ψ) = E(ψψT ).
In addition, applying the weak law of large numbers

to the last expression in Eq. (B5) leads to the following
convergence in probability:

Ψ̇(θ∗)→ dE(ψ̇), (B8)

where we have introduced the matrix ψ̇(zα), whose com-

ponents are ψ̇k`(zα) ≡ ∂ψk(zα)/∂θ`|θ=θ∗ .
Substituting Eqs. (B7) and (B8) into Eq. (B6), apply-

ing Slutsky’s theorem [46], and using the linear trans-

formation property cov(Bx) = Bcov(x)BT , where x is
a random column vector and B a constant matrix, then

implies that θ̂ − θ∗ converges in distribution to

θ̂ − θ∗ → Np
(

0,Σθ
)
, (B9)

with the covariance matrix

Σθ =
1

d
E
(
ψ̇
)−1

E
(
ψψT

)[
E
(
ψ̇
)−1

]T
, (B10)

where θ is evaluated at θ∗.
We may now use the definition ψ`(zα) ≡ ∂λ(zα)/∂θ`

to approximate the covariance matrix of θ̂− θ∗ in terms
of derivatives of loss functions for d � 1. Evaluating
the derivatives using the chain rule and approximating
expectation values of functions of observations f(Z) by

E(f) ≈ 1
d

∑d
α=1 f(zα) for M � 1 then gives

E[ψψT ] ≈ 1

d
JTD2J, (B11)

E[ψ̇]k` ≈
1

d
(JT∆J)k` +

1

d

∑
α

Dαα
∂2zα
∂θk∂θ`

∣∣∣∣
θ=θ∗

,

(B12)

where we have introduced the Jacobian matrix with el-
ements Jα` ≡ ∂zα/∂θ`|θ=θ∗ , and where ∆ and D are
diagonal matrices whose non-zero elements are Dαα =
∂λ/∂z|z=zα and ∆αα = ∂2λ/∂z2

∣∣
z=zα

, respectively.

These derivatives are readily obtained for simple loss
functions. In particular, for quadratic loss, λ(z) = z2/2,
we have Dαα = zα and ∆αα = 1, whereas for Huber loss,
the following hold:

Dαα =

{
zα, |zα| ≤ δ0,
δ0sign(zα), otherwise,

∆αα =

{
1, |zα| ≤ δ0,
0, otherwise.

(B13)
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FIG. 7. Robust estimation approach. Comparison of spectral reconstructions using Huber loss (top row) and weighted least
squares (bottom row). (a) Reconstructions of the spectra from experimental data using the Huber loss function. (b) Same
reconstructions using weighted least squares. (c) Reconstructions from simulated data using the Huber loss function. (d)
Same reconstructions using weighted least squares. Solid lines: ideal spectra given by Eq. (15). Gray, green, yellow and brown
curves correspond to S11(ω), S22(ω), Re[S12(ω)], and Im[S12(ω)], respectively. Inset of (b): decay curve for the sample mean
τz2 as a function of evolution time with Ω/2π = 1.848 MHz. Inset of (d): decay curve for simulated sample means of τz1
with Ω/2π = 2.120 MHz. Blue dots: experimental data [inset of (a)] or simulated data [inset of (d)]. Solid lines: non-linear
regression with Huber loss (red) and weighted least squares (green). In both insets, the initial qubit state is |+x,+x〉. Dashed
lines in the main plots indicate spectrum frequencies ω/2π = ±Ω/2π corresponding to the insets.

Substituting Eq. (B11) and (B12) into Eq. (B10) gives

an approximation of the covariance matrix Σθ of θ̂ − θ∗
for d � 1. We then estimate 95% confidence intervals
presented in the main text from

θ̂` ± 1.96
√

Σθ
``.

For a sufficiently weakly non-linear relationship be-
tween zα and the parameters, the term proportional to
second-order derivatives in Eq. (B12) may be neglected,
leading to the compact expression

Σθ ≈ (JT∆J)−1(JTD2J)(JT∆J)−1. (B14)

Though we do account for the term containing second-
order derivatives in all confidence-interval calculations
presented in the main text for completeness, in all cases
studied here, this term is found to be negligible. Since it
avoids the computation of second-order derivatives of zα
with respect to all possible pairs of θk and θ`, evaluation
of the confidence intervals through Eq. (B14) is much
more efficient numerically, leading to significant savings
in computation time.

Appendix C: Comparison of reconstructions with
weighted least squares vs. Huber loss functions

Spectral estimation based on weighted least squares is
particularly vulnerable to outliers in experimental data,
thus motivating robust estimation strategies such as M-
estimation. In this Appendix, we further illustrate the
adverse effect of outliers by comparing two-qubit spec-
trum reconstructions obtained with the robust Huber loss
function with estimates based on weighted least squares,
considering both experimental and simulated data.

Figure 7 displays estimates of the two-qubit spectra
obtained from Eq. (13) using the Huber loss function
(top row) with the tuning parameter δ0 = 1, along with
estimates obtained using weighted least squares (bottom
row). In Fig. 7(a) and Fig. 7(b), we show reconstructions
using the experimental data discussed in Sec. IV. A close
inspection of these figures reveals that reconstructions
obtained by using weighted least squares are significantly
more noisy, an effect that is particularly visible in S22(ω)
between ω/2π = −2.0 MHz and ω/2π = −1.8 MHz. To
verify that this effect stems from the fitting procedure,
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we plot an example of decay curve – here, τz2 – as a func-
tion of evolution time for Ω/2π = 1.848 MHz as an inset
in Fig. 7(b). This inset reveals that while the fit using
Huber loss closely follows the bulk of the data points, the
fit using weighted least squares goes astray, most plau-
sibly due to the influence of outliers in the many decay
curves involved in the global regression procedure. As
indicated by the dashed vertical lines in Fig. 7(a)-(b),
the reconstructed spectra at the corresponding frequen-
cies ω/2π = ±1.848 MHz lie closer to the theoretical
value using Huber loss than with weighted least squares,
in particular for S22(ω).

To verify that such a failure of weighted least squares
can indeed arise from outliers, we reproduce the effect
with simulated data in Fig. 7(c)-(d). To produce the
simulated data used in the spectral estimation, we first
calculate the two-qubit density matrix ρ(t) by substi-
tuting the spectra given by Eq. (15) into the ME de-
fined by Eqs. (8)-(9), which we solve numerically for
the shot-noise parameters measured in the experiment
(caption of Fig. 6). From the resulting ρ(t), we evalu-
ate probabilities associated with binary outcomes (±1)
of projective measurements, and generate M = 2000
simulated outcomes for each observable Or by sampling
a Bernoulli distribution. We then evaluate the sample
means Oα of projective measurement outcomes for each

combination of initial state, observable, and evolution
time given in Table II, and their corresponding standard
deviations. Finally, to emulate experimental error, we
use a δ-contaminated model [46], in which each value of
Oα is assigned a probability 0.1 to be replaced by an out-
lier, which we model by sampling a uniform probability
distribution between −1 and +1.

After constructing this simulated data set, we per-
form the reconstructions using the procedure explained
in Sec. II B. Despite the presence of numerous outliers,
Fig. 7(c) shows that our procedure successfully recon-
structs all the spectra when using Huber loss. How-
ever, in Fig. 7(d), the equivalent reconstructions using
weighted least squares are remarkably more noisy, and
even involve a spurious positive-frequency component.
The discrepancy between outcomes of the two loss func-
tions is significantly more pronounced than in the ex-
periment, as may be expected for the rather pessimistic
model of outliers employed here. The inset of Fig. 7(d)
displays the outcome of the fitting procedure for a pair of
frequencies at which weighted least squares failed to pro-
duce accurate spectrum estimates [Ω/2π = 2.120 MHz,
dashed vertical lines in Fig. 7(c)-(d)]. Again, while the
decay curve fitted using weighted least squares wanders
away, Huber loss produces a decay curve that closely fol-
lows the bulk of the data.
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