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This research investigates the spatiotemporal dynamics of shoreline change and associated population

impacts in deltaic Bangladesh. This region is among the world’s most dynamic deltas due to monsoon

precipitation that drives tremendous discharge and sediment volumes from the Ganges–Brahmaputra–Meghna

drainage basin. Theoretically, it draws on the concept of adaptive cycles that theorizes systems transitioning

through phases of growth, conservation, release (collapse), and reorganization, with a focus on the cycle’s

release (collapse) phase and coupled linkages between the natural system of shoreline change and social

system of household behavior. We use Landsat imagery to produce and describe a thirty-year record of

shoreline change for an 80-km stretch of the Lower Meghna estuary. Household survey data characterized

population impacts and risk perception for a subregion with high erosion rates. Results identified significant

space–time differences and patterns of shoreline change and population impacts consistent with the

adaptive cycle. North, central, and south regions exhibited statistically significant differences in space–time

patterns of shoreline change. Substantial numbers of households reported displacement due to riverbank

erosion and high levels of experience and worry about future displacement. Results demonstrate how

geospatial analysis of a multidecade record of shoreline change along with analysis of household survey data

can identify regions most vulnerable to riverbank erosion with implications to inform mitigation and

adaptation. This work adds empirical demonstration of coupled adaptive cycles to the literature. Limitations

and complexities of the adaptive cycle framework are discussed. Key Words: adaptive cycle, erosion/accretion,
household survey, remote sensing, spatiotemporal analysis.

S
ettlements in coastal lowlands are vulnerable to

risks associated with environmental processes

such as coastal erosion, sea-level rise (SLR),

higher intensity storm events, and altered rainfall

regimes that create the potential for increased risk con-

tributing to potential social and economic disruption.

Many coastal lowlands in developing countries, partic-

ularly delta environments, are heavily populated with

among the highest densities in the world, with pre-

dicted future population growth (Small et al. 2018).

These economically marginalized populations are

likely to be disproportionately affected (McGranahan,

Balk, and Anderson 2007). Magnitudes and severities

of affected populations have the potential to

threaten economic and political stabilities of host

countries (Smith 2007; Ackerman 2008; Jasparro

and Taylor 2008).

This research investigates the spatiotemporal

dynamics of shoreline change and associated popula-

tion impacts in deltaic Bangladesh. Theoretically, it

draws on the concept of adaptive cycles (Holling

1986; Gunderson and Holling 2002) that theorizes

systems transitioning through phases of growth,

conservation, release (collapse), and reorganization.

This study’s focal system of the Lower Meghna

estuary is a coupled human–natural system in which
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the population relies on ecosystem services and func-

tions of the delta for livelihood strategies. The delta

functions according to natural functions of delta sys-

tem dynamics influencing biophysical patterns and

processes. We present a coupling of both household

adaptive cycles (social system) and landform adap-

tive cycles (natural system) focusing on the adaptive

cycle’s release (collapse) phase described in more

detail later.

The Ganges–Brahmaputra–Meghna (GBM) delta

is an Asian megadelta. Asian megadeltas are large

deltas associated with major Asian river systems

(Chen and Saito 2011). Asian megadeltas include

the Indus, GBM, Irrawaddy, Mekong, Red, Pearl,

Changjiang (Yangtze), and Huanghe (Yellow;

Woodroffe 2010). They are particularly noteworthy

due to their high population concentrations, the

large size of their contributing upstream basins, the

location of source headwaters in the Himalaya mas-

sif, and the importance of monsoon dynamics for

rainfall delivery and river discharge dynamics.

Situated at outlet points through which basin dis-

charge flows, Asian megadeltas are profoundly influ-

enced by processes occurring at basin-wide and

regional scales. The GBM delta is the largest of the

Asian megadeltas, covering an extent of more than

100,000 km2 (Woodroffe et al. 2006). It is among

the world’s most dynamic deltas due to annual mon-

soonal rainfall that drives tremendous discharge vol-

umes influencing sediment transport dynamics and

associated erosion and accretion landform processes

(Chowdhury and Ward 2004; Mikhailov and

Dotsenko 2007; Woodroffe and Saito 2011; Wilson

and Goodbred 2015).
This study analyzes coastal shoreline change and

its impacts on human population for an area located

at the main terminus of the GBM delta (Figure 1).

Within this major, multiriver system, rivers combine

to form the Lower Meghna River and estuary with

hydrodynamics that are largely fluvial dominated

(Woodroffe and Saito 2011) along a gradient that

becomes more tidally influenced with increased

proximity to the Bay of Bengal.

Adaptive Cycles: Linkage of Natural and

Social Systems

Both natural and human dimensions of riverbank

erosion in the Lower Meghna system are particularly

salient due to the severe magnitude of erosion cou-

pled with the large population in this delta region.

Our work links riverbank erosion with impacts and

responses of the social system. Theoretically, we

draw from the concept of adaptive cycles linking

adaptive cycles of aspects of the natural system to

the social system. Although this work is specific to

the Lower Meghna system, our theoretical under-

standing of this system’s coupled adaptive cycles has

potential translation to other coupled systems where

disturbance processes of natural and social systems

are linked.
As originally theorized by Holling (1986), within

an adaptive cycle (Figure 2) a system might be

located in phases of growth (r), conservation (K),

release (X), and reorganization (a). The growth

stage is an entrepreneurial, pioneering stage where

exploitation and sequestering of resources occur.

Figure 1. Study shoreline—east bank of the Lower Meghna

estuary. The red square indicates the location of household

survey field site in Lakshmipur district; the white circle indicates

the northern terminus at Chandpur (city); and the blue triangle

is the Charchanga tidal station.
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This is followed by a conservation stage characterized

by organizational consolidation and accumulation.

This can be thought of as a mature stage, but also as

a stage where natural or social systems might be

poised for collapse should a disturbance event occur.

On collapse, a release stage unleashes organization

and energy accumulated during the conservation

stage. The reorganization phase is a period of restruc-

turing, renewal, and reassembly of system compo-

nents. The adaptive cycle was originally developed

and applied to natural ecological systems and has

been extended to investigation of social systems and

coupled human–natural systems (see Rasmussen and

Reenberg 2012; Goulden et al. 2013; Holdschlag and

Ratter 2013). Holling’s adaptive cycle is closely

related to the concept of panarchy, which posits a

nested set (nested by time–space scales) of hierarchi-

cally organized adaptive cycles (Gunderson and

Holling 2002) that interact via cross-scale interac-

tions and linkages. Much of the adaptive cycle litera-

ture employs this broader panarchy concept along

with resilience. Our work anticipates a similar

approach; here, though, we focus more modestly on

articulating and demonstrating the presence of linked

adaptive cycles interacting across natural and human

systems for the Lower Meghna system without speci-

fying hierarchically scaled relationships.
Figure 2 and Table 1 depict and describe an adap-

tive cycle framework that describes linked adaptive

cycles for riverbank erosion and household dynamics

in the Lower Meghna system littoral. This lower

delta plain region contains floodplain sedimentary

landforms known as char or charlands, on which

deposition from the GBM basin has built landforms

supporting significant populations engaged in house-

hold livelihood activities including farming, fishing,

and mixed employment strategies (Wilde 2000;

Sarker et al. 2003; Wilde 2011). The natural pro-

cesses of the Lower Meghna system in the

Bangladesh delta (Allison 1998a, 1998b; Kuehl et al.

2005; Wilson and Goodbred 2015) involve regular

episodes of landform erosion and accretion that con-

ceptually transition through the various phases of

the adaptive cycle with phases of growth, conserva-

tion, release, and reorganization. The system builds

land via sediment deposition, which matures and sta-

bilizes, and the system destroys land via erosion.

This process repeats over time. These natural system

processes are linked to household livelihood pro-

cesses due to the social disturbance caused by river-

bank erosion, which severely affect households that

become displaced and enter the X-release (collapse)

phase due to lost land resources and associated liveli-

hood resources. Households affected by riverbank

erosion are challenged to negotiate and transition

through the adaptive cycle involving a-reorganiza-
tion and r-growth (reestablishment) and succeeding

K-conservation (restabilization and maturation)

phases. Using the adaptive cycle framework, we seek

to describe and understand patterns of riverbank ero-

sion as a disturbance event of the X-release (col-

lapse) phase and how it relates to adaptive cycles of

households within the social system. We do so by

presenting quantitative geospatial analysis of a

thirty-year record on shoreline change of an 80-km

stretch of the eastern bank of the Lower Meghna

estuary. We also present analysis of household survey

data (n¼ 407) that measures household experience

and perception of erosion. The survey was conducted

for households along a 15-km shoreline reach in

Lakshmipur district located in the far southern por-

tion of the fuller 80-km coastline reach (Figure 1).

Shoreline Change: Riverbank Erosion

Riverbank erosion is a recurring problem in

Bangladesh that annually causes tens of thousands of

people to become homeless (Figure 3). Bangladesh’s

Centre for Environmental and Geographic Information

Services predicted that in 2014 more than 36,000 peo-

ple would be displaced due to erosion along the banks

of Bangladesh rivers. The Centre for Environmental

and Geographic InformationServices estimated net

erosion of 162,000 hectares between 1973 and 2018

along banks of major Bangladesh rivers and tributaries

(Ullah, Islam, and Alam 2019).

Figure 2. Adaptive cycle (after Gunderson and Holling 2002).

Coupled Adaptive Cycles of Shoreline Change and Households in Deltaic Bangladesh 3



Table 1. Description of the four phases of adaptive cycles of littoral landforms (char lands) and households located in the
Lower Meghna estuary, Bangladesh

Phase Description Potential for change Connectedness

Littoral landforms

r-Growth

� Incremental sediment

accumulation

and accretion

� Growth trajectory:

subtidal–

intertidal–supratidal

� Declines as growth

trajectory progresses

� Low but starts to increase

with landform emergence/

connection to mainland

K-Conservation

� Land has emerged

and stabilizes

� Vegetation establishment

� Becomes high and poised

for collapse

� Increases as new landform

becomes connected

to mainland

X-Release

� Site-specific collapse of

landform due to

riverbank erosion

� Loss of land,

soil, vegetation

� Suddenly declines pending

potential reorganization

� High, but connection to

mainland is

suddenly broken

a-Reorganization

� Sites in fluvial/estuarine

nonland state influenced

by hydrological discharge

and sediment dynamics

� Potential to enter growth

phase of land

reestablishment

� Relatively high for future

landform reestablishment

� Low due to broken

connection with mainland

Households

r-Growth

� Household formation, land

acquisition, homestead

establishment

� Engagement in economic

activities and

experimentation

� Declines as household

establishment progresses

� Low initially due to flux

state but starts to increase

as household regains

footing and

livelihood activities

K-Conservation

� Household progresses/

progressed through

demographic life cycle;

social networks formed

� Established household

livelihood activities

� Becomes high pending

likely future crisis related

to riverbank erosion

� Increases as household has

emerged from crisis and is

reintegrated to

livelihood activities

X-Release

� Land and homestead lost

to erosion; severe negative

impacts on

household livelihood

� Household displacement

and crisis

� Suddenly declines pending

potential reorganization

� High at crisis onset but

crisis transitions household

to an in-flux state where

prior livelihood

connections are broken

(Continued)
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Coastal Bangladesh is commonly regarded as

being highly vulnerable to SLR; however, addressing

SLR impacts on erosion and accretion and net land

loss and gain is complicated by the complex diversity

of the region’s coastal physical geography (Brammer

2014). Given the 1988 to 2018 timescale of this

research, SLR likely has had negligible impacts on

shoreline change for our study region; however,

Brammer (2014) stated future longer term potential

adverse impacts of SLR, including inland advance of

the saltwater front in western parts of the Ganges

tidal floodplain, impedance of drainage for areas east

of the Lower Meghna river, and increased erosion

rates of older char islands in the Meghna estuary.

A substantial literature has quantified riverbank

erosion patterns for noncoastal, interior regions of

Bangladesh (e.g., Jamuna and Padma Rivers) using

remotely sensed imagery (Khan and Islam 2003;

Baki and Gan 2012). Other research has analyzed

erosion for the exterior coastal region facing the Bay

of Bengal (Rahman, Dragoni, and El-Masri 2011;

Sarwar and Woodroffe 2013), as opposed to our inte-

rior estuarine coast of the Lower Meghna estuary.

Much of the shoreline change research and

Figure 3. Shoreline change due to riverbank erosion, Ramgati Upazila, Bangladesh, January 2018.

Table 1. (Continued).

Phase Description Potential for change Connectedness

a-Reorganization

� Household in state of flux

and seeking

reestablishment

� Migration to new site and

potential to enter growth

phase of household

reestablishment

� Relatively high for future

household reestablishment

� Low due to in-flux state as

household seeks to

reestablish livelihood

connections

Coupled Adaptive Cycles of Shoreline Change and Households in Deltaic Bangladesh 5



elsewhere uses Landsat imagery and geospatial analy-

sis to quantify rates of shoreline change.
Table 2 summarizes selected representative

research of shoreline change in Bangladesh, other

delta regions, and coastal India. These studies reveal

that coastal Bangladesh has the highest erosion rates

at greater than 100m per year, compared to other

reported regions. Compared to Bangladesh’s interior

rivers, relatively little research has investigated ero-

sion in the Lower Meghna estuary (Paul and Rashid

2017; but see Hussain et al. 2014; Ahmed

et al. 2018).

Objectives

This research aims to improve understandings of

shoreline change for a defined study area of the

Lower Meghna estuary (Figure 1). Specific objectives

include the following:

1. Produce shorelines spanning a thirty-year period from

classified Landsat imagery for the years 1988, 1998,

2008, and 2018.

2. Characterize the space–time variability of shoreline

change at decadal and thirty-year temporal scales.

3. Quantify household experience, perception, and risk

of riverbank erosion for a sample of households

located along a 15-km shoreline reach.

These objectives are important for multiple reasons.

First, addressing these objectives within the theoreti-

cal framework of coupled adaptive cycles is an

important contribution that empirically addresses the

adaptive cycle concept, which has typically been

addressed by heuristic or metaphorical treatment

(Sundstrom and Allen 2019), although empirical

research of adaptive cycles is increasing as

described earlier.

Second, there is a need to rigorously analyze

shoreline change for the Lower Meghna estuary,

which has received much less attention compared to

the exterior coast and the interior rivers in

Bangladesh. Recent news reports highlight the

extreme severity of erosion hazards in this region

(Correspondent 2019). Further justification comes

from preliminary work using WorldPop 100m resolu-

tion gridded population data (Stevens et al. 2015),

enabling us to estimate that in 2010 approximately

720,000 people lived within 5 km of our study’s 80-

km shoreline, indicating a large and potentially vul-

nerable population. To preview results, erosion rates

in this densely populated region are among the high-

est rates in the world and in some cases at

extreme levels.
Our work also anticipates the need for long-term

multidecadal analysis at finer temporal scales. The

presence of decadal-scale variation we present here

will suggest variation occurring at an even finer

annual scale (or finer) erosion and accretion dynam-

ics. This is important for our study area and others

because affected populations and policy leaders often

must undertake adaptive or mitigative behaviors at

timescales finer than decadal scales.

Table 2. Selected erosion rates from delta and coastal research

Citation Region Temporal resolution Spatial resolution Erosion rates

Bangladesh coast

Sarwar and Woodroffe (2013) Bangladesh 10 years 30 m �35 to �285 m/year

Islam et al. (2016) Bangladesh 4 years 30, 60 m 0 to �100 m/year

Salauddin et al. (2018) Bangladesh 5 years 30 m �3 to �130 m/year

Other delta regions

Dada et al. (2016) Niger River delta 5, 10 years 30 m �4 to �30 m/year

Ghoneim et al. (2015) Nile River delta 2 years 1.84, 57 m �30 m/year

Esmail, Mahmod, and Fath (2019) Nile River delta 10 years 15, 30 m �5 to �70 m/year

Zhang et al. (2018) Yellow River delta 20 years 30, 60 m �25 to �35 m/year

Qiao et al. (2018) Yangtze River delta 5 years 1.8, 30 m �30 m/year

Indian coast

Jana et al. (2014) India coast 10 years 30, 60 m �1 to �10 m/year

Natesan et al. (2015) India coast 10 years 30, 60 m �7 to �40 m/year

Rani et al. (2018) India coast 10 years 30 m �2 to �80 m/year

Baral et al. (2018) India coast 3 years 23.5, 60 m �1 to �10 m/year

Jayanthi et al. (2018) India coast 10 years 30, 60 m 0 to �55 m/year

Note: Temporal resolution is temporal grain (interval). Several studies spanned multiple decades of extent. Erosion rates were rounded to show

generalized information on relative magnitudes.
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Data and Methods

Landsat Images and Tidal Data

Landsat images were selected (Table 3) based on

inspection of imagery available from the U.S.

Geological Survey Global Visualization View Web

site (USGS 2018). All images had a 30-m pixel res-

olution. Criteria guiding image selection were

as follows:

1. Full shoreline coverage of approximately 80 km of

shoreline from Chandpur (north) to a southern

terminus in Lakshmipur district (Figure 1).

2. Approximate January–February dry season anniversary

dates with cloud-free coverage.

3. Similar and preferably high tidal levels at the

Charchanga tidal station (Figure 1) occurring at 10:00

a.m. local time corresponding to the approximate time

of scene acquisition.

Landsat path/row 137 (path) and 44 (row) provides

full coverage of the 80-km shoreline. January and

February dry season dates were preferred for two rea-

sons. First, the monsoon climate causes many images

acquired outside of the dry season to be cloud covered.

Second, the majority of erosion occurs during the

monsoon period associated with higher precipitation-

related river discharge. Shorelines derived during suc-

cessive dry seasons therefore effectively capture before

and after snapshots of the shorelines, revealing the

effects of the dominant monsoon period of erosion.
Tidal level is an important consideration for

shoreline mapping. Ideally, levels synchronized to

image acquisition dates and times would be identical

and as high as possible to represent the high-water

line. Tidal-level data are not consistently available

at multiple locations spanning the shoreline for 1988

to 2018. We used tidal data (Table 3) from two sta-

tions: Charchanga and Chandpur (Figure 1). Hourly

Charchanga data were available for 1998 to 2000

from the Permanent Service for Mean Sea Level

(n.d.) based in Liverpool, UK, although the original

source was the Bangladesh Water Development

Board (n.d.). Three-hour Chandpur data covering

1995 to 2018 were acquired directly from the

Bangladesh Water Development Board. Source data

were reported in millimeter units.

Tidal levels for Charchanga after 2000 and at

10:00 a.m. local time were estimated via linear

regression using the Chandpur 9:00 a.m. water level

as a predictor. Data were limited to December

through February for the years 1995 to 2000 where

tidal-level data existed for both Charchanga and

Chandpur. Regression results (n¼ 445, R2 ¼ 0.96)

were used to estimate Charchanga levels at 10:00

a.m. for 1995 through 2000, closely corresponding to

the approximate image acquisition times. Applying

regression results to predict 2001 through 2018

Charchanga tidal levels, we are able to confidently

state water levels for the Charchanga tidal station

for all but the 2018 image date. A 2018 estimate

was not possible because corresponding 2018 data for

Chandpur were not available.
Landsat platforms included Landsat-5 Thematic

Mapper (TM), Landsat-7 Enhanced Thematic

Mapper (ETM), and Landsat-8 Operational Land

Imager (OLI; Table 3). We focused on the eastern

shoreline of the Lower Meghna shoreline because of

related social science field work we are conducting in

proximal villages. We hope to extend future analysis

to encompass the western shoreline to address the

pattern of the channel’s behavior (widening, etc.)

within the broader context of delta system dynamics.

Geospatial Shoreline Mapping

To enhance shoreline extraction, the modified

normalized difference water index (MNDWI) was

Table 3. Landsat images from Path 137, Row 44 used in analyses

Image date Representative dry season year Tidal level (mm)a Landsat platform and resolution

2/19/1988 1988 3,120 Landsat 5 TM (30 m)

2/14/1998 1998 2,640 Landsat 5 TM (30 m)

12/16/2007b 2008 1,300a Landsat 7 TM (30 m)

1/4/2018 2018 Unknownc Landsat 8 OLI (30 m)

Notes: aTidal levels are observed and estimated levels at Charchanga station. The 1,300mm level for 12/16/2007 is estimated via

regression relationship as described in text.
b12/16/2007 is used to estimate the early 2008 dry season shoreline because this image is the temporally closest cloud-free image.
cTidal level data not available, but level is highly likely to be within the range of other stated levels.

Coupled Adaptive Cycles of Shoreline Change and Households in Deltaic Bangladesh 7



derived for each image (Xu 2006). MNDWI is com-

monly used to aid shoreline identification and uses

the middle infrared and green bands to create an

index enhancing shoreline separation. It is defined

as

MNDWI ¼ Green�MIR

GreenþMIR
: (1)

Six bands were used with MNDWI as input for

ISODATA unsupervised classifications specified to

contain ten output classes. The included bands were

Blue, Green, Red, NIR, MIR, SWIR, and MNDWI.

The ISODATA classification was reclassified to two

classes, water and nonwater, via interactive visual

inspection with the source imagery. A majority-

smoothing filter was applied to clean up “salt and

pepper” effects. Shorelines were derived following

Daniels’s (2012) shoreline extraction methodology.

Gaps (i.e., breaks in the shoreline) were present at

mouths of the larger tributaries. For smaller tributaries,

editing was performed to extend the shorelines

smoothly across gaps. Four shorelines were produced for

the dry season periods of 1988, 1998, 2008, and 2018.

Quantifying Shoreline Change

Shoreline change was quantified using the Digital

Shoreline Analysis System (DSAS) extension in

ArcGIS (Himmelstoss, Henderson, and Farris 2018).

Change rates were calculated for the thirty-year

period between 1988 and 2018 and decadal periods

1988 to 1998, 1998 to 2008, and 2008 to 2018.

Each estimated change rate used two shoreline

inputs corresponding to start and end dates. A digi-

tal baseline was created and manually located in the

interior onshore area, and digital transects were cast

orthogonal to the baseline at 50-m intervals for a

total of 1,551 transects (Figure 4). Ideally transects

extend to intersect shorelines at a 90� angle. In

practice, it is rare for transect–shoreline intersec-

tions to be exactly perpendicular. We designed our

linear baseline to closely parallel the shorelines by

inserting inflection points (see Figure 5) so that

intersections would be as close to perpendicular

as possible.
Much shoreline change research, like this study,

uses a 50-m interval with Landsat-derived shorelines.

Other literature, primarily concerned with sand vol-

ume and associated error estimation, suggests selec-

tion of transect interval spacing based on factors

such as erosion risk and human development pres-

ence. Our selection of a 50-m interval follows a large

body of the prior research and accords well with the

30-m pixel resolution of Landsat imagery.
DSAS measures the distance of shoreline move-

ment along transects enabling net shoreline move-

ment (NSM) in meters, a measure of the distance

that the shoreline has moved over time. The end

point rate (EPR) used for analysis divides NSM by

the intervening time between shorelines to report a

shoreline change rate in meters per year. Negative

values indicate erosion, and positive values indicate

accretion. For a small number of transects, there

were cases where zero or one shoreline was present

due to gaps (i.e., unclassified or mapped shoreline).

These situations are reported as gaps.

Shoreline Accuracy Assessment

Assessing shoreline accuracy for historical imagery

presents challenges due to the impossibility of field-

based ground truthing and the absence of very high-

resolution imagery for this region prior to 2000. A

fuller account of shoreline accuracy will be presented

in a separate publication (but see Crawford and

Rahman 2017). To summarize, a first approach

assessed accuracy for a February 2000 Landsat image.

Shoreline derived from a SPOT 10-m panchromatic

Figure 4. Example of transects at 50-m increments used for

Digital Shoreline Analysis System shoreline change analysis.

Landsat infrared band in background with black indicating water.
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image from February 2000 and with a similar tidal

level was used to measure Landsat-to-SPOT shore-
line distance offsets using DSAS. The mean abso-
lute distance offset was 28.6 m with a median of

22.9 m. Based on these results, the general accu-

racy of Landsat shorelines for 2000 and image
dates used for analysis was estimated to be approx-
imately 25 to 30 m.

Figure 5. Shoreline change and end point rates (m/year), 1988–2018. Note: EPR ¼ end point rate.

Coupled Adaptive Cycles of Shoreline Change and Households in Deltaic Bangladesh 9



An additional accuracy approach was employed to

account for water level differences. A set of six

Landsat images from the year 2000 dry season with

varying Charchanga station water levels was used to

derive vector shorelines. A linear regression estimate

of the relationship between mean shoreline difference

and water level difference revealed that shoreline

position is shifted 7m for every 1-m difference in

water level. Although it is desirable but not possible

to have identical water levels for all images used for

actual analysis, our attention to selecting image dates

with water levels as similar as possible is important to

measuring change as accurately as possible.
Based on two complementary accuracy assessment

approaches identifying a general Landsat shoreline

accuracy of �25 to 30m coupled with the 7m per 1-

m water level difference relationship, a conservative

threshold was selected to determine meaningful shore-

line change. We adopted a conservative threshold of

a 90-m NSM to define highly probable erosion or

accretion events at the transect level; in other words,

real shoreline change. Transects with NSM at or

lower than �90m were classified as erosion.

Transects with NSM at or higher than 90m were

classified as accretion. Transects with NSM greater

than �90m and lower than 90m were classified as

stable (i.e., no detectable change). As noted earlier, a

small number of transects were classified as gaps.

Household Survey

Households were sampled from fifteen adjacent

villages in Lakshmipur district located at the far

southern end of our prior 80-km shoreline reach

(Figure 1). The target region had a total population

of approximately 40,000 according to the most

recent 2011 Bangladesh census. This region was

selected based on prior pilot fieldwork including an

expert workshop we held in Dhaka revealing it to

have experienced significant riverbank erosion.

Additionally, visual inspection of time series imagery
confirmed it to be a highly erosion-prone area.

Households were selected using a stratified ran-
dom spatial sampling design to survey households
located within three zones defined by distance from

Landsat-derived 2017 shoreline (Table 4). A total of
420 surveys were completed within the three zones.
Spatial locations of thirteen households were clearly

erroneous, yielding a final sample of 407 households
in the three zones: Zone 1, 0.0 to 0.5 miles
(n¼ 213); Zone 2, 0.5 to 1.0 miles (n¼ 131); and
Zone 3, 1.0 to 10.0 miles (n¼ 63). Zones closer to

the shoreline were sampled more intensively to cap-
ture a strong number of households at greater ero-
sion risk. Our spatially explicit sample was generated

by an initial set of 420 latitude–longitude points
randomly generated by zone using GIS software.
Large-format field maps were produced to aid field

navigation and household recruitment. A team of
six data enumerators supervised by two project lead-
ers was deployed. Data enumerators used the field
maps and Global Positioning System to navigate to

the random point locations and approach the nearest
household for recruitment into the study. If a house-
hold declined participation, enumerators approached

the next nearest household. The survey instrument
and all human subject activities were approved by
the Institutional Review Board of Virginia

Polytechnic Institute and State University. To
address Objective 3’s focus on riverbank erosion
impacts within the context of the adaptive cycle’s

X-collapse phase, we focused on analysis of the fol-
lowing three questions selected from the full set of
ninety-five multipart questions:

Q1. Since 2008, how many times has this household

had to relocate due to riverbank erosion?

Q2. For the current year of 2018, how worried are you

that your home will fall into the Meghna River due to

riverbank erosion?

Table 4. Sample households by distance zones from 2017 shoreline

Distance zone

(distance from

2017 shoreline)a
Number of

households

% of all sampled

households

Minimum distance

to shoreline (m)

Maximum distance

to shoreline (m)

Mean distance

to shoreline (m)

1: 0� 805 m 213 52.3 42.2 800.0 405.2

2: 805–1,610 m 131 32.2 807.9 1,603.5 1,143.1

3: >1,610 m 63 15.5 1,629.0 5,269.6 2,544.9

Total for all zones 407 100.0 42.2 5,269.6 973.9

Note: aDistance units reported in meters corresponding to zone breakpoints of 0.5, 1.0, and >1.0 miles.
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Q3: Regardless of specific future dates or years, how

strongly do you believe that your house will fall into

the Meghna River at some date in the future?

We also performed geospatial analysis to estimate

the number of households lost to erosion by January

2019 following the May and June 2018 household

survey. This was accomplished via overlaying a

Landsat-derived January 2019 shoreline with house-

hold locations.

Analytical Methods

Multiple visual, descriptive, and inferential statis-

tical methods were used characterize spatiotemporal

patterns of shoreline change. We employed simple

visual interpretation combined with the more rigor-

ous Grouping Analysis tool of ArcGIS software

(Environmental Systems Research Institute 2019) to

define distinct regions for the thirty-year record of

change (1998–2018) that are used to organized pre-

sentation throughout. We used the 1988 to 2018

EPR as the focal variable observed at the transect

level as input. The method returns an F statistic for

each number of potential cluster results (two to fif-

teen clusters) whose maximum F statistic informs

selection of an optimal number of clusters (regions)

and associated cluster boundaries. After defining

regions, cross-tabulations by period and region with

associated chi-square tests identified the presence of

statistically significant differences in percentage of

transect change categories (e.g., erosion vs. accre-

tion). To identify significant regional differences in

transect EPRs for each period, the Kruskal–Wallis

independent samples median test was used due to

our sample’s violation of assumptions of normality

and equal variances.
For each region and to identify significant differ-

ences in transect EPR across time, the related sam-

ples Friedman’s two-way analysis of variance by

ranks test was used. This nonparametric test is

appropriate for repeated measures where normality

and equal variance are not present. Temporal

sequence analysis was used to quantify percentage

frequencies of change trajectories. All transects were

coded for each decade to represent change categories

(e.g., E¼ erosion, A¼ accretion). For example, a

transect receiving a code of AEE experienced succes-

sive decades of accretion, erosion, and erosion.

Cross-tabulation of region versus code was applied

with chi-square testing and interpretation. This

method identifies space–time differences in trajecto-

ries of shoreline change. All statistical tests were

implemented using SPSS software. To address our

Objective 3 related to human dimensions, we report

and interpret survey frequency responses and the

percentage of households lost to erosion by

January 2019.

Results

Regional Differences

Figure 5 depicts shoreline positions and EPR by

region and period. Three regions were defined visu-

ally and by ArcGIS grouping analysis. A maximum

F statistic for a four-region grouping suggested an

optimal grouping of four regions; however, and as

described next, we report results using three regions

of north, central, and south, which had the second

highest F statistic. The initial four-region grouping

analysis results divided our ultimately selected south

region into two regions. The clear pattern of a prom-

inent accretionary central region landform and the

fact that two southern regions identified by grouping

analysis both experienced high, relatively similar

erosion rates informed the decision to present results

for three regions. We combined the two southern

regions obtained by grouping analysis into one south

region. We later refer to a subregion in the south,

which conforms to the grouping analysis inferen-

tial results.
Summarizing for the three regions, results show a

clear pattern for 1998 to 2018 erosion dominance

for north and south with accretion dominance for

the central region. Figure 6 depicts by region and

period the percentages of eroding and accreting

transects and mean EPR.

Moderate overall erosion was present in the

north, showing temporal variation by decade. The

1988 to 1998 period had a mix of erosion and accre-

tion, with 1998 to 2008 experiencing low and

medium erosion relative to highest erosion rates in

the south for the latter decade. The 2008 to 2018

period was erosion dominant but at lower magnitude

than the prior decade.
The central region experienced a prominent pen-

insular accretion lobe. The 1988 to 1998 period wit-

nessed accreting land that extended southward. 1998

to 2008 witnessed the emergence of a prominent

accreting lobe in a northern subregion of the central
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Figure 6. Shoreline change by region and period; zero kilometers on the x axis is located at the Chandpur northern terminus.
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region coupled with southern erosion (in the central

region) that had emerged in the prior decade. 2008

to 2018 experienced complex dynamics. A northern

section of the emerging lobe eroded with a mix of

erosion and accretion in the southern section of this

lobe. Generally, the central region’s lobular landform

is emerging and stabilizing but migrating slightly

southward. In short, this peninsular accreting subre-

gion is a real feature.

The south experienced the highest erosion rates

of any region. By decade, 1988 to 1998 was erosion

dominant but with an intermediate section

experiencing accretion. 1998 to 2008 saw this accre-

tion disappear with erosion prevalent throughout.

2008 to 2018 witnessed a continued dominance of

erosion with the northern subregion experiencing

extreme EPR greater than 300 m per year, creating

the erosional crescent evident for the full 1988 to

2018 period.
We note that our baseline contains inflection

points in the central and south regions with

locations that are indicated by two dashed yellow

transects (Figure 5).

Shoreline Change by Region and Decade

Cross-tabulation and chi-square results revealed

statistically significant differences in percentages of

transect categories by region and time period

(Table 5). For the full thirty-year period

(1988–2018), over 90 percent of north and south

transects experienced erosion compared to the cen-

tral region, where 96.7 percent of transects experi-

enced accretion. For 1988 to 1998, however, the

north was accretion dominant at 64.7 percent, and

the south had substantial accretion at 19.1 percent,

although it was erosion dominant at 76.8 percent.

The central region experienced 92.4 percent accre-

tion during this first decade, generally consistent

with the thirty-year record. For the latter two deca-

des (1998–2008 and 2008–2018), both north and

south experienced transect erosion percentages over

90 percent in most cases (the north region had 83.9

percent in 2008–2018). For these same latter two

decades, central erosion increased, indicating a cen-

tral pattern of initial accretion associated with the

initial formation of prominent accretion, including

the notable accretion of a lobular landform, followed

by erosion.
Kruskal–Wallis tests revealed statistically signifi-

cant differences in EPR measures by region and

decade (Table 6). All multiple comparison differ-

ences were significant for the full thirty-year period

(1988–2018) with the south as the most erosional

region. The north’s median EPR was negative,

revealing it to be dominantly erosional. The central

region had a positive median EPR consistent with its

pattern of accretion.

For the first decade (1988–1998), all multiple

comparison differences were significantly different.

The north region, however, experienced positive

EPR indicating accretion. The central region had a

notably high median accretion rate. The south was

the lone region with a negative EPR indicating ero-

sion. For the second decade (1998–2008), the north

and south both were erosional but were not signifi-

cantly different from each other; both, though, were

significantly different from the central region’s posi-

tive EPR, indicating again central accretion. For the

third decade (2008–2018), all regions had negative

EPR consistent with erosion. The south, however,

Table 5. Percentage of transects eroding or accreting,
1988 through 2018

Region/period Erosion Accretion No change Gap

1988–2018

North (n¼ 529) 98.9 0.0 0.6 0.6

Central (n¼ 368) 0.0; 96.7 0.3 3.0

South (n¼ 654) 93.3 3.1 3.2 0.5

All (N¼ 1,551) 73.0 24.2 1.6 1.1

Chi-square ¼ 1,434.7, df¼ 6, p< 0.001

1988–1998

North (n¼ 529) 31.8 64.7 3.0 0.6

Central (n¼ 368) 0.0 92.4 0.0 7.6

South (n¼ 654) 76.8 19.1 1.8 2.3

All (N¼ 1,551) 43.3 52.0 1.8 3.0

Chi-square ¼ 662.1, df¼ 6, p< 0.001

1998–2008

North (n¼ 529) 95.3 0.9 1.3 2.5

Central (n¼ 368) 35.3 54.3 1.4 9.0

South (n¼ 654) 97.1 0.0 0.0 2.9

All (N¼ 1,551) 81.8 13.2 0.8 4.2

Chi-square ¼ 780.5, df¼ 6, p< 0.001

2008–2018

North (n¼ 529) 83.9 1.1 12.5 2.5

Central (n¼ 368) 75.8 14.7 4.9 4.6

South (n¼ 654) 94.6 0.0 4.6% 0.8

All (N¼ 1,551) 86.5 3.9 7.4% 2.3

Chi-square ¼ 201.2, df¼ 6, p< 0.001

Note: Chi-square tests were run on count data (e.g., counts of transects)

but are reported as percentages of total regional transect counts shown

in first column to ease interpretation. Row percentages sum to 100.0%

but in some cases to 100.1% due to rounding.
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was differentiated from the north and central regions

with a significantly larger (negative) EPR.
Related samples Friedman’s two-way analysis of

variance by ranks tests revealed statistically signifi-

cant differences in EPR over time (Table 7). This

test looks at individual transect EPR values, ranks

them from lowest to highest, computes mean rank

by region, and tests for significant differences in

regions’ mean ranks. Given that negative (positive)

EPR indicates erosion (accretion), lower (higher)

mean ranks are generally associated with erosion

(accretion). For a given transect, there are three

repeated measures of EPR. The lowest EPR, which

could be either negative or positive, receives rank ¼
1. The second lowest EPR receives rank ¼ 2. The

highest EPR receives rank ¼ 3. Given that the three

repeated measures could all be positive or all be neg-

ative, interpretation of results is facilitated by exam-

ining test results in concert with the mean EPR of

each region’s decadal period shown in Table 7.
For all regions combined, Time 1 (1988–1998)

was significantly different from Times 2 and 3

(1998–2008 and 2008–2018), although the latter

two periods did not differ significantly. Throughout

we refer to mean ranks with the smallest reported

numerical values as being the highest rank and larg-

est numbers being the lowest rank; for example, a

mean rank of one is the highest rank relative to a

mean rank of three, which is the lowest rank. Time

1’s lowest mean rank (highest and positive mean

EPR) indicates that 1988 to 1998 was a period of

accretion, whereas later decades shifted to become

periods of erosion.
For all regions, all multiple comparisons across

periods were significantly different, although the

pattern of differences varied. For the north, Time 2

had the highest mean rank (lowest and negative

mean EPR) followed by Time 3 (negative mean

EPR), showing that Time 2 experienced greater

erosion than Time 3. Time 1’s lowest mean rank

(positive mean EPR) indicates it to be an initial

period of accretion that was followed by periods

of erosion.
For the central region, Time 1 had the lowest

mean rank (highest and positive mean EPR) fol-

lowed by Time 2 and then Time 3, which had the

highest mean rank (lowest and negative mean EPR).

Times 1 and 2 were both periods of accretion but

with higher accretion rates in Time 1. Time 3

shifted to become a period of erosion.
For the south, Time 1 had the lowest mean rank

(lowest and negative mean EPR) followed by Times

2 and 3. All mean EPR values were negative, indi-

cating erosion dominance in this region. Results

show that the magnitude of erosion increased signifi-

cantly across the three-decadal, thirty-year period.

Table 6. Differences in EPR by region and decade in meters per year

EPR 1988–2018 EPR 1988–1998 EPR 1998–2008 EPR 2008–2018

Region Mediana M Mediana M Medianb M Medianc M

North –43.2 –45.7 34.1 10.6 –102.1 –103.0 –30.1 –45.9

Central 79.6 93.8 254.3 222.4 121.8 120.5 –33.1 –38.1

South –94.0 –100.6 –82.4 –40.8 –96.2 –99.7 –133.1 –162.1

All –52.1 –36.6 25.5 36.6 –84.8 –51.2 –59.6 –93.8

Notes: Kruskal–Wallis independent samples median test. EPR ¼ end point rate.
aAll comparisons significantly different.
bNorth and south not significantly different; north and south significantly different from central.
cNorth and central not significantly different; north and central significantly different from south.

Table 7. Differences in EPR for regions across decadal time periods

Decade All regionsa Northb Centralb Southb

Time 1: 1988–1998 2.49 (36.6 m/year) 2.59 (10.6 m/year) 2.60 (222.4 m/year) 2.35 (–40.8 m/year)

Time 2: 1998–2008 1.78 (–51.2 m/year) 1.36 (–103.0 m/year) 1.93 (120.5 m/year) 2.04 (–99.7 m/year)

Time 3: 2008–2018 1.73 (–93.8 m/year) 2.05 (–45.9 m/year) 1.48 (–38.1 m/year) 1.61 (–162.1 m/year)

Notes: Related samples Friedman’s two-way analysis of variance by ranks, left values are mean ranks, values in parentheses are mean EPR (m/year).

EPR ¼ end point rate.
aTimes 2 and 3 not significantly different. Time 2 and Time 3 significantly different from Time 1.
bAll comparisons significantly different.
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Figure 7 depicts spatial and temporal dynamics as

temporally directed scatterplots by region. This

approach shows visually the same patterns as evident

in the inferential statistical tests described earlier.

For each region and decade, percentage of transects

experiencing change (erosion or accretion) is plotted

on the x axis with mean EPR plotted on the y axis.

Coordinates (0, 0) indicate 0 percent of transects

experiencing erosion or accretion.

Sequence Analysis of Change Trajectories

Sequence analysis enables discrimination of

change trajectories by region across time (Table 8).

All 1,551 transects were assigned codes describing

decadal change categories where E¼ erosion,

A¼ accretion, S¼ stable (no detectable change),

and G¼ gaps. For each transect, the sequential codes

were concatenated, yielding a set of twenty-two code

sequences empirically present in the 1,551 transects.

For example, AES represents a sequence of accretion

(1998–1998), erosion (1998–2008), and stable

(2008–2018). The six most frequently occurring

sequences represented 91.0 percent of all sequences.

The remaining 9.0 percent of sequences were defined

as OOO, meaning other, which are the various other

sequence combinations of E, A, S, and G. This

yielded seven total sequence codes in that were sub-

jected to cross-tabulation by region and sequence.

The associated chi-square test was statistically signif-

icant. For all regions combined (the total row), EEE

had the highest frequency at 39.6 percent, followed

Figure 7. Temporally directed scatterplots of mean accretion and erosion end point rates.

Table 8. Sequences of change trajectories by region (%)

Region EEE AEE AAE EES AAA AES OOO Total

North 24.8 54.1 0.9 7.0 0.0 4.7 8.5 100.0

Central 0.0 30.2 42.1 0.0 9.5 1.1 17.1 100.0

South 73.9 17.6 0.0 2.9 0.0 0.8 4.9 100.0

Total 39.6 33.0 10.3 3.6 2.3 2.2 9.0 100.0

Notes: E¼ erosion; A¼ accretion; S¼ stable (no detectable change); OOO¼multiple other less frequent sequences. First character is 1988–1998, second

character is 1998–2008, and third character is 2008–2018. Chi-square ¼ 1,167.8, df ¼ 12, p< 0.001.
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by AEE (33.0 percent) and AAE (10.3 percent;

Table 6). These first three sequences accounted for

82.9 percent of all transects.
The south region had high frequencies of erosion

dominance with EEE (73.9 percent) and AEE (17.6

percent) accounting for 91.5 percent of its transects.

Excluding OOO, the central region’s highest fre-

quencies were AAE (42.1 percent), AEE (30.2 per-

cent), and AAA (9.5 percent) accounting for 81.8

percent of its transects. The North’s highest frequen-

cies were AEE (54.1 percent) and EEE (24.8 per-

cent) accounting for 78.9 percent of its transects.

The north experienced initial accretion (1988–1998)

in roughly half of its transects but thereafter was ero-

sion dominant. The north, unlike other regions,

experienced the highest frequency of stable transects,

although at low percentages compared to erosion.

The S for the last decade indicates shoreline stability

for parts of the north that was much less present for

the central or south regions.

Household Survey Results

Results reveal substantial impacts of riverbank

erosion on human population. The household survey

field site in the south region (Figure 8) had notably

high erosion rates during 2008 to 2018. All transects

spanning the extent of the household survey region

were defined as eroding with a mean EPR of

�113.1m/year (median ¼ �110.7, minimum ¼
�38.2, maximum ¼ �225.9, SD¼ 36.3). Of the 407

total households, 43.7 percent reported at least one
residential move since 2008 due to riverbank erosion

(Table 9; 56.3 percent had zero moves in the bottom
row). For households located in Zone 1 (closest to

the shoreline), 53.1 percent experienced relocation
since 2008, and 19.8 percent relocated at least two

times. Results show a heightened relocation experi-
ence for households currently most proximal to the

shoreline and that households more distant from
the current shoreline also have prior experience of

the adaptive cycle’s X-release (collapse) phase
related to riverbank erosion.

Many households experienced “worry” regarding

displacement during 2018 (Table 10). The survey
was conducted in May and June 2018 and asked

about levels of worry regarding displacement during
the remaining months of 2018 following the May

and June survey. In total, 51.4 percent reported
being very worried or worried. In Zone 1, 70.0 percent

reported being very worried or worried, indicating a
heightened perception of erosion risk for households

in closer proximity to the shoreline.
A large percentage of households (85.2 percent)

believed that, at some point in the future, their home

would be eroded and lost to the river (Table 11). For
households in Zone 1, 92.9 percent either strongly
believed or believed that their home would be lost.
Results for Zones 2 and 3 were lower but also high at

Figure 8. Households lost to erosion from May–June 2018 to January 2019: 5.9 percent of 407. Background image is a PlanetScope 3m

false color composite dated January 2019 (Planet Team 2017). Household location confidentiality was preserved by randomly shifting

locations ±50m in the x and y directions along with the choice of map scale and point symbol size.
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77.7 percent and 74.6 percent, respectively, in terms

of belief of an ultimate loss due to erosion.
In terms of estimated household loss from May

and June 2018 survey fieldwork to January 2019, a

total of twenty-four households (5.9 percent) were

likely lost to erosion (Figure 8) focused to the north

(left in Figure 8) of this subregion, which had higher

erosion rates. Additionally, and as would be

expected, all of these households were located in

Zone 1, which experienced an 11.3 percent loss

of households.

Discussion and Conclusion

Three decades of shoreline were mapped and ana-

lyzed for an 80-km stretch of the Lower Meghna

estuary. Results indicate regional variation of erosion

and accretion patterns with an overall dominance of

erosion. We found differences in erosion and

accretion patterns between the north, central, and
south regions that varied by decade and identified
using descriptive and inferential methods. Erosion
rates were generally larger than rates for other

regions reported Table 1, in most cases much larger.
Global data of coastal erosion rates are rare,
although two recent studies have deployed big data

approaches using Google Earth Engine’s archive of
historical Landsat imagery to estimate global patterns
of shoreline change (Luijendijk et al. 2018;

Mentaschi et al. 2018). Luijendijk et al. (2018)
focused on global sandy beaches and so is not
directly comparable to our region, which is not

sandy; however, we note that their highest observed
hotspot rate had a mean rate of �16.0m/year (ero-
sion) for a site in Louisiana for the period 1984 to
2016. Mentaschi et al. (2018) used a similar

approach and reported change in areal rather than
linear rates, finding eroded coastal land surface of
28,000 km2, which is more than twice the magnitude

Table 9. Number of household residential moves since 2008 due to riverbank erosion (%)

No. of residential moves due to riverbank erosion

Distance zone from 2017 shorelinea 0 1 2 3 4

1: 0� 805 m (n¼ 213) 46.9 33.3 14.1 5.2 0.5

2: 805–1,610 m (n¼ 131) 61.8 32.1 3.8 1.5 0.8

3: >1,610 m (n¼ 63) 76.2 23.8 0.0 0.0 0.0

All zones (n¼ 407) 56.3 31.4 8.6 3.2 0.5

Note: aDistance units reported in meters corresponding to zone breakpoints of 0.5, 1.0, and >1.0 miles.

Table 10. Percentage of households by level of worry that home will erode into the river during 2018 following the May
and June 2018 survey period

Distance zone from 2017 shorelinea
1 2 3 4 5

Very worried Worried Neutral Not worried Very not worried

1: 0–805 m (n¼ 213) 55.9 14.1 5.6 13.6 10.8

2: 805–1,610 m (n¼ 131) 17.5 18.3 6.9 35.1 22.1

3: >1,610 m (n¼ 63) 9.5 11.1 1.6 49.2 28.6

All zones (n¼ 407) 36.4 15.0 5.4 26.0 17.2

Note: aDistance units reported in meters corresponding to zone breakpoints of 0.5, 1.0, and >1.0 miles.

Table 11. Percentage of households by level of belief that home will erode into river at some point in the future

Distance zone from 2017 shorelinea
1 2 3 4 5

Strongly believe Believe Neutral Do not believe Strongly do not believe

1: 0–805 m (n¼ 213) 59.6 33.3 6.1 0.5 0.5

2: 805–1,610 m (n¼ 130) 25.4 52.3 18.5 3.1 0.8

3: >1,610 m (n¼ 63) 14.3 60.3 20.6 4.8 0.0

All zones (n¼ 406) 41.6 43.6 12.3 2.0 0.5

Note: aDistance units reported in meters corresponding to zone breakpoints of 0.5, 1.0, and >1.0 miles.
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of accreting land. Our findings suggest that our non-

sandy, estuarine delta study region is among the

most dynamic coastlines in the world, with extreme

rates of erosion in selected portions that transition

households into the disruptive X-collapse phase of

the adaptive cycle.
This work explicitly positions coastal erosion and

population impacts in our study area within the the-

oretical framework of adaptive cycles experiencing r-

growth, K-conservation, X-release, and a-growth
phases. In doing so, it links natural cycles to human

and social cycles with an empirical focus on the

X-release (collapse) phases related to coastal erosion

and human disruption. We believe that the adaptive

cycle is highly relevant to geophysical processes of

delta landforms over broad time horizons and have

shown that households are indeed disrupted due to

erosion connected to the process of riverbank

erosion. More work is needed to empirically charac-

terize the other cycle phases, particularly but not

limited to the human dimension of how population

reorganizes, regrows, and restabilizes. To do so will

likely require longitudinal household data as opposed

to a cross-sectional approach, although our house-

hold survey does include historical retrospective

information. Although arguing merits of the adap-

tive cycle, we note that others who have also

engaged in empirical investigation identify limits of

the adaptive cycle approach (Rasmussen and

Reenberg 2012; Goulden et al. 2013). For example,

and in our case, is it desirable for households to

repeatedly cycle through the process of erosion-

related disruption, even if it fits the pattern of the

adaptive cycle (arguably not)? Imposition of a one-

size-fits-all adaptive cycle can be viewed as a conser-

vative status quo understanding that misses the

Figure 9. Shorelines at subdecadal temporal scales: (A) annual shorelines from 2000 to 2018 (selected dates not labeled for space),

Landsat infrared band from January 2018 in background; (B) selected shorelines from 2000 to 2015, PlanetScope 3m false-color image

from February 2019 in background (Planet Team 2017), vertical black symbols indicate concrete embankment endpoints.
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potential for systems to leap out of the cycle or for

actors to change the cycle, albeit for altered systems

that still in future states might be understood by the

adaptive cycle. Rasmussen and Reenberg (2012)

stated for a Sahelian study that “the picture of a uni-

directional process of land degradation and system

collapse … is a simplification of more complex real-

ities” (14). Our social system in the Lower Meghna

certainly involves more complexities than presented

here. For example, some households (or household

members) might opt out of the system by migrating

to urban centers and thereby enter in to a new sys-

tem. Dislocated households might also relocate in

nearby and similarly vulnerable coastal sites that are

eroded in short time spans such that households

might not cleanly and simplistically cycle through

the adaptive cycle as portrayed in Figure 2. Instead,

they might be jolted in relatively short order from

the a-reorganization phase directly back in to the

X-release (collapse) phase—an unfortunate pattern

of being locked (at least for some time period) into

a reoccurring release–reorganization pattern. Further,

power structures connected to higher social-scale

political ecologies can play roles in mitigating dis-

ruptive aspects via social aid or mobilization to engi-

neer mitigative measures such as shoreline

embankment as described next.
Returning to shoreline change, our results point

to the possibility of analysis at finer timescales than

the decadal scale. Preliminary work has mapped

shorelines annually at approximate dry season anni-

versary dates for 1988 to 2018 (Figure 9). Successive

annual shorelines (Figure 9A) depict a continuous

history of erosion; however, it is visually evident

that the rate of shoreline change varies substantially

by year and location. Analysis at five- or ten-year

temporal resolutions misses the annual variation evi-

dent for this region. More generally, heightened

attention to relevant temporal scales is important to

resolve subannual, annual, and multidecadal variabil-

ity (Vos et al. 2019).
The evolving CubeSat paradigm potentially pro-

vides daily imagery for much of the Earth’s surface

(Poghosyan and Golkar 2017). CubeSat is a moniker

for a constellation of small imaging satellites.

Commercial companies such as Planet Labs (Planet

Figure 10. New embankment in Ramgati Upazila; construction started 1 February 2015 and was completed 31 January 2017.
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Team 2017) have in recent years deployed CubeSat

constellations. Figure 9B shows a PlanetScope 3m

false-color infrared image from Planet Labs taken on

3 February 2019 covering much of the extent of our

household survey. A 3.5-km concrete embankment

is evident as a white linear feature in the north half

(left in figure) that was constructed from 1 February

2015 to 31 January 2017 (Figure 10) and effectively

halted erosion for this small reach of newly

embanked shoreline.
For future work, we envision transect-specific

sequence code strings of length 30, one code charac-

ter for each year of change in our 1988 to 2018

annual data. Transects can then be subjected to data

mining methods for resulting discrete sequence data

including analyses of classification and dissimilarity

analysis, longitudinal entropy, and various metrics

available via the TraMiner package in R

(Gabadinho et al. 2010; Bleisch et al. 2014;

Delmelle 2016; Mas, de Vasconcelos, and Franca-

Rocha 2019). Applying sequence methods to dense

time series of shoreline change trajectories, or socio-

environmental change more broadly, opens rich

possibilities to characterize typologies or, metaphori-

cally, climatologies of change.
Investigation of process dynamics is beyond the

scope of this study, but our team is currently investi-

gating the role of monsoon precipitation and other

process drivers. We do not view this as a limitation

but rather as a reality of our stated objectives. A

study limitation is the issue of shoreline positional

accuracy, which we addressed in an earlier section.

Although it is impossible to assess accuracy for more

temporally distant shorelines, future work will pro-

duce a more robust assessment using field-based

Global Positioning System data obtained for the

most recent year and higher resolution imagery as

available and financially feasible to obtain. Other

future work points to predictive modeling of shore-

line change using annual resolution shorelines with

relevant predictor variables following a theory-guided

data science (Karpatne et al. 2017).
In conclusion, the decadal-scale analysis presented

here is an important achievement revealing statisti-

cally significant results that, beyond statistical signif-

icance, have real-world implications for vulnerable

coastal populations in the Bangladesh delta. Linked

(or coupled) adaptive cycles focusing empirically on

the X-release (collapse) phase spanning human and

natural systems were theoretically articulated and

demonstrated for a study area located in the largest

Asian megadelta of the GBM basin. Coastal popula-

tions in Bangladesh, other densely populated Asian

megadeltas, and elsewhere share similar vulnerabil-

ities. High-quality scientific data and analysis of

shoreline change can be deployed to inform mitiga-

tion and adaptation measures based on sound knowl-

edge of historical patterns such as those presented

here and projections of future change.
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