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This research investigates the spatiotemporal dynamics of shoreline change and associated population
impacts in deltaic Bangladesh. This region is among the world’s most dynamic deltas due to monsoon
precipitation that drives tremendous discharge and sediment volumes from the Ganges—Brahmaputra—Meghna
drainage basin. Theoretically, it draws on the concept of adaptive cycles that theorizes systems transitioning
through phases of growth, conservation, release (collapse), and reorganization, with a focus on the cycle’s
release (collapse) phase and coupled linkages between the natural system of shoreline change and social
system of household behavior. We use Landsat imagery to produce and describe a thirty-year record of
shoreline change for an 80-km stretch of the Lower Meghna estuary. Household survey data characterized
population impacts and risk perception for a subregion with high erosion rates. Results identified significant
space—time differences and patterns of shoreline change and population impacts consistent with the
adaptive cycle. North, central, and south regions exhibited statistically significant differences in space—time
patterns of shoreline change. Substantial numbers of households reported displacement due to riverbank
erosion and high levels of experience and worry about future displacement. Results demonstrate how
geospatial analysis of a multidecade record of shoreline change along with analysis of household survey data
can identify regions most vulnerable to riverbank erosion with implications to inform mitigation and
adaptation. This work adds empirical demonstration of coupled adaptive cycles to the literature. Limitations
and complexities of the adaptive cycle framework are discussed. Key Words: adaptive cycle, erosionfaccretion,
household survey, remote sensing, spatiotemporal analysis.

ettlements in coastal lowlands are vulnerable to

of affected populations have the potential to

Srisks associated with environmental processes
such as coastal erosion, sea-level rise (SLR),
higher intensity storm events, and altered rainfall
regimes that create the potential for increased risk con-
tributing to potential social and economic disruption.
Many coastal lowlands in developing countries, partic-
ularly delta environments, are heavily populated with
among the highest densities in the world, with pre-
dicted future population growth (Small et al. 2018).
These economically marginalized populations —are
likely to be disproportionately affected (McGranahan,
Balk, and Anderson 2007). Magnitudes and severities

threaten economic and political stabilities of host
countries (Smith 2007; Ackerman 2008; Jasparro
and Taylor 2008).

This research investigates the spatiotemporal
dynamics of shoreline change and associated popula-
tion impacts in deltaic Bangladesh. Theoretically, it
draws on the concept of adaptive cycles (Holling
1986; Gunderson and Holling 2002) that theorizes
systems transitioning through phases of growth,
conservation, release (collapse), and reorganization.
This study’s focal system of the Lower Meghna
estuary is a coupled human-natural system in which

Annals of the American Association of Geographers, 0(0) 2020, pp. 1-23 © 2020 by American Association of Geographers
Initial submission, July 2019; revised submission, January 2020; final acceptance, May 2020
Published by Taylor & Francis, LLC.


http://crossmark.crossref.org/dialog/?doi=10.1080/24694452.2020.1799746&domain=pdf&date_stamp=2020-09-18
http://orcid.org/0000-0002-1343-7223

2 Crawford et al.

Bangladesh

L
el

East Bank of
Lower Meghna

Field site

Charchanga
A

0 10 20 30 40Km
L | | | J

Bay of Bengal

Figure 1. Study shoreline—east bank of the Lower Meghna
estuary. The red square indicates the location of household
survey field site in Lakshmipur district; the white circle indicates
the northern terminus at Chandpur (city); and the blue triangle
is the Charchanga tidal station.

the population relies on ecosystem services and func-
tions of the delta for livelihood strategies. The delta
functions according to natural functions of delta sys-
tem dynamics influencing biophysical patterns and
processes. We present a coupling of both household
adaptive cycles (social system) and landform adap-
tive cycles (natural system) focusing on the adaptive
cycle’s release (collapse) phase described in more
detail later.

The Ganges—Brahmaputra-Meghna (GBM) delta
is an Asian megadelta. Asian megadeltas are large
deltas associated with major Asian river systems
(Chen and Saito 2011). Asian megadeltas include
the Indus, GBM, Irrawaddy, Mekong, Red, Pearl,
Changjiang (Yangtze), and Huanghe (Yellow;
Woodroffe 2010). They are particularly noteworthy
due to their high population concentrations, the

large size of their contributing upstream basins, the
location of source headwaters in the Himalaya mas-
sif, and the importance of monsoon dynamics for
rainfall delivery and river discharge dynamics.
Situated at outlet points through which basin dis-
charge flows, Asian megadeltas are profoundly influ-
enced by processes occurring at basin-wide and
regional scales. The GBM delta is the largest of the
Asian megadeltas, covering an extent of more than
100,000 km? (Woodroffe et al. 2006). It is among
the world’s most dynamic deltas due to annual mon-
soonal rainfall that drives tremendous discharge vol-
umes influencing sediment transport dynamics and
associated erosion and accretion landform processes
(Chowdhury and Ward 2004; Mikhailov and
Dotsenko 2007; Woodroffe and Saito 2011; Wilson
and Goodbred 2015).

This study analyzes coastal shoreline change and
its impacts on human population for an area located
at the main terminus of the GBM delta (Figure 1).
Within this major, multiriver system, rivers combine
to form the Lower Meghna River and estuary with
hydrodynamics that are largely fluvial dominated
(Woodroffe and Saito 2011) along a gradient that
becomes more tidally influenced with increased
proximity to the Bay of Bengal.

Adaptive Cycles: Linkage of Natural and
Social Systems

Both natural and human dimensions of riverbank
erosion in the Lower Meghna system are particularly
salient due to the severe magnitude of erosion cou-
pled with the large population in this delta region.
Our work links riverbank erosion with impacts and
responses of the social system. Theoretically, we
draw from the concept of adaptive cycles linking
adaptive cycles of aspects of the natural system to
the social system. Although this work is specific to
the Lower Meghna system, our theoretical under-
standing of this system’s coupled adaptive cycles has
potential translation to other coupled systems where
disturbance processes of natural and social systems
are linked.

As originally theorized by Holling (1986), within
an adaptive cycle (Figure 2) a system might be
located in phases of growth (r), conservation (K),
release (Q), and reorganization («). The growth
stage is an entrepreneurial, pioneering stage where
exploitation and sequestering of resources occur.
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Figure 2. Adaptive cycle (after Gunderson and Holling 2002).

This is followed by a conservation stage characterized
by organizational consolidation and accumulation.
This can be thought of as a mature stage, but also as
a stage where natural or social systems might be
poised for collapse should a disturbance event occur.
On collapse, a release stage unleashes organization
and energy accumulated during the conservation
stage. The reorganization phase is a period of restruc-
turing, renewal, and reassembly of system compo-
nents. The adaptive cycle was originally developed
and applied to natural ecological systems and has
been extended to investigation of social systems and
coupled human-natural systems (see Rasmussen and
Reenberg 2012; Goulden et al. 2013; Holdschlag and
Ratter 2013). Holling’s adaptive cycle is closely
related to the concept of panarchy, which posits a
nested set (nested by time—space scales) of hierarchi-
cally organized adaptive cycles (Gunderson and
Holling 2002) that interact via cross-scale interac-
tions and linkages. Much of the adaptive cycle litera-
ture employs this broader panarchy concept along
with resilience. Our work anticipates a similar
approach; here, though, we focus more modestly on
articulating and demonstrating the presence of linked
adaptive cycles interacting across natural and human
systems for the Lower Meghna system without speci-
fying hierarchically scaled relationships.

Figure 2 and Table 1 depict and describe an adap-
tive cycle framework that describes linked adaptive
cycles for riverbank erosion and household dynamics
in the Lower Meghna system littoral. This lower
delta plain region contains floodplain sedimentary
landforms known as char or charlands, on which
deposition from the GBM basin has built landforms
supporting significant populations engaged in house-
hold livelihood activities including farming, fishing,

and mixed employment strategies (Wilde 2000;
Sarker et al. 2003; Wilde 2011). The natural pro-
cesses of the Lower Meghna system in the
Bangladesh delta (Allison 1998a, 1998b; Kuehl et al.
2005; Wilson and Goodbred 2015) involve regular
episodes of landform erosion and accretion that con-
ceptually transition through the various phases of
the adaptive cycle with phases of growth, conserva-
tion, release, and reorganization. The system builds
land via sediment deposition, which matures and sta-
bilizes, and the system destroys land via erosion.
This process repeats over time. These natural system
processes are linked to household livelihood pro-
cesses due to the social disturbance caused by river-
bank erosion, which severely affect households that
become displaced and enter the Q-release (collapse)
phase due to lost land resources and associated liveli-
hood resources. Households affected by riverbank
erosion are challenged to negotiate and transition
through the adaptive cycle involving wa-reorganiza-
tion and r-growth (reestablishment) and succeeding
K-conservation (restabilization and maturation)
phases. Using the adaptive cycle framework, we seek
to describe and understand patterns of riverbank ero-
sion as a disturbance event of the Q-release (col-
lapse) phase and how it relates to adaptive cycles of
households within the social system. We do so by
presenting quantitative geospatial analysis of a
thirty-year record on shoreline change of an 80-km
stretch of the eastern bank of the Lower Meghna
estuary. We also present analysis of household survey
data (n=407) that measures household experience
and perception of erosion. The survey was conducted
for households along a 15-km shoreline reach in
Lakshmipur district located in the far southern por-
tion of the fuller 80-km coastline reach (Figure 1).

Shoreline Change: Riverbank Erosion

Riverbank erosion is a recurring problem in
Bangladesh that annually causes tens of thousands of
people to become homeless (Figure 3). Bangladesh’s
Centre for Environmental and Geographic Information
Services predicted that in 2014 more than 36,000 peo-
ple would be displaced due to erosion along the banks
of Bangladesh rivers. The Centre for Environmental
and Geographic InformationServices estimated net
erosion of 162,000 hectares between 1973 and 2018
along banks of major Bangladesh rivers and tributaries
(Ullah, Islam, and Alam 2019).
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Lower Meghna estuary, Bangladesh

of the four phases of adaptive cycles of littoral landforms (char lands) and households located in the

Phase

Description

Potential for change

Connectedness

Littoral landforms
r-Growth

K-Conservation

Q-Release

a-Reorganization

Households
r-Growth

K-Conservation

Q-Release

Incremental sediment
accumulation

and accretion
Growth trajectory:
subtidal—

intertidal-supratidal

Land has emerged
and stabilizes
Vegetation establishment

Site-specific collapse of
landform due to
riverbank erosion

Loss of land,

soil, vegetation

Sites in fluvial/estuarine
nonland state influenced
by hydrological discharge
and sediment dynamics
Potential to enter growth
phase of land
reestablishment

Household formation, land
acquisition, homestead
establishment

Engagement in economic
activities and
experimentation

Household progresses/
progressed through
demographic life cycle;
social networks formed

Established household

livelihood activities

Land and homestead lost
to erosion; severe negative
impacts on

household livelihood
Household displacement
and crisis

Declines as growth
trajectory progresses

Becomes high and poised
for collapse

Suddenly declines pending
potential reorganization

Relatively high for future
landform reestablishment

Declines as household
establishment progresses

Becomes high pending
likely future crisis related
to riverbank erosion

Suddenly declines pending
potential reorganization

Low but starts to increase
with landform emergence/
connection to mainland

Increases as new landform
becomes connected
to mainland

High, but connection to
mainland is
suddenly broken

Low due to broken
connection with mainland

Low initially due to flux
state but starts to increase
as household regains
footing and

livelihood activities

Increases as household has
emerged from crisis and is
reintegrated to

livelihood activities

High at crisis onset but
crisis transitions household
to an in-flux state where
prior livelihood
connections are broken

(Continued)
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Table 1. (Continued).

Phase Description Potential for change Connectedness
a-Reorganization
e  Household in state of flux e Relatively high for future e Low due to in-flux state as
and seeking household reestablishment household seeks to
reestablishment reestablish livelihood
e  Migration to new site and connections

potential to enter growth
phase of household

reestablishment

Figure 3. Shoreline change due to riverbank erosion, Ramgati Upazila, Bangladesh, January 2018.

Coastal Bangladesh is commonly regarded as
being highly vulnerable to SLR; however, addressing
SLR impacts on erosion and accretion and net land
loss and gain is complicated by the complex diversity
of the region’s coastal physical geography (Brammer
2014). Given the 1988 to 2018 timescale of this
research, SLR likely has had negligible impacts on
shoreline change for our study region; however,
Brammer (2014) stated future longer term potential
adverse impacts of SLR, including inland advance of
the saltwater front in western parts of the Ganges
tidal floodplain, impedance of drainage for areas east

of the Lower Meghna river, and increased erosion
rates of older char islands in the Meghna estuary.

A substantial literature has quantified riverbank
erosion patterns for noncoastal, interior regions of
Bangladesh (e.g., Jamuna and Padma Rivers) using
remotely sensed imagery (Khan and Islam 2003;
Baki and Gan 2012). Other research has analyzed
erosion for the exterior coastal region facing the Bay
of Bengal (Rahman, Dragoni, and El-Masri 2011;
Sarwar and Woodroffe 2013), as opposed to our inte-
rior estuarine coast of the Lower Meghna estuary.
Much of the shoreline change research and
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Table 2. Selected erosion rates from delta and coastal research

Citation Region Temporal resolution Spatial resolution Erosion rates
Bangladesh coast
Sarwar and Woodroffe (2013) Bangladesh 10 years 30 m —35 to —285 m/year
Islam et al. (2016) Bangladesh 4 years 30, 60 m 0 to —100 m/year
Salauddin et al. (2018) Bangladesh 5 years 30 m —3 to —130 m/year
Other delta regions
Dada et al. (2016) Niger River delta 5, 10 years 30 m —4 to —30 m/year
Ghoneim et al. (2015) Nile River delta 2 years 1.84, 57 m —30 m/year
Esmail, Mahmod, and Fath (2019) Nile River delta 10 years 15,30 m —5 to —70 m/year
Zhang et al. (2018) Yellow River delta 20 years 30, 60 m —25 to —35 m/year
Qiao et al. (2018) Yangtze River delta 5 years 1.8, 30 m —30 m/year
Indian coast
Jana et al. (2014) India coast 10 years 30, 60 m —1 to —10 m/year
Natesan et al. (2015) India coast 10 years 30, 60 m —7 to —40 m/year
Rani et al. (2018) India coast 10 years 30 m —2 to —80 m/year
Baral et al. (2018) India coast 3 years 23.5, 60 m —1 to —10 m/year
Jayanthi et al. (2018) India coast 10 years 30, 60 m 0 to —55 m/year

Note: Temporal resolution is temporal grain (interval). Several studies spanned multiple decades of extent. Erosion rates were rounded to show

generalized information on relative magnitudes.

elsewhere uses Landsat imagery and geospatial analy-
sis to quantify rates of shoreline change.

Table 2 summarizes selected representative
research of shoreline change in Bangladesh, other
delta regions, and coastal India. These studies reveal
that coastal Bangladesh has the highest erosion rates
at greater than 100m per year, compared to other
reported regions. Compared to Bangladesh’s interior
rivers, relatively little research has investigated ero-
sion in the Lower Meghna estuary (Paul and Rashid
2017; but see Hussain et al. 2014; Ahmed
et al. 2018).

Objectives

This research aims to improve understandings of
shoreline change for a defined study area of the
Lower Meghna estuary (Figure 1). Specific objectives
include the following:

1. Produce shorelines spanning a thirty-year period from
classified Landsat imagery for the years 1988, 1998,
2008, and 2018.

2. Characterize the space—time variability of shoreline
change at decadal and thirty-year temporal scales.

3. Quantify household experience, perception, and risk
of riverbank erosion for a sample of households
located along a 15-km shoreline reach.

These objectives are important for multiple reasons.
First, addressing these objectives within the theoreti-
cal framework of coupled adaptive cycles is an

important contribution that empirically addresses the
adaptive cycle concept, which has typically been
addressed by heuristic or metaphorical treatment
(Sundstrom and Allen 2019), although empirical
research of adaptive cycles is increasing as
described earlier.

Second, there is a need to rigorously analyze
shoreline change for the Lower Meghna estuary,
which has received much less attention compared to
the exterior coast and the interior rivers in
Bangladesh. Recent news reports highlight the
extreme severity of erosion hazards in this region
(Correspondent 2019). Further justification comes
from preliminary work using WorldPop 100 m resolu-
tion gridded population data (Stevens et al. 2015),
enabling us to estimate that in 2010 approximately
720,000 people lived within 5km of our study’s 80-
km shoreline, indicating a large and potentially vul-
nerable population. To preview results, erosion rates
in this densely populated region are among the high-
est rates in the world and in some cases at
extreme levels.

Our work also anticipates the need for long-term
multidecadal analysis at finer temporal scales. The
presence of decadal-scale variation we present here
will suggest variation occurring at an even finer
annual scale (or finer) erosion and accretion dynam-
ics. This is important for our study area and others
because affected populations and policy leaders often
must undertake adaptive or mitigative behaviors at
timescales finer than decadal scales.
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Table 3. Landsat images from Path 137, Row 44 used in analyses

Image date Representative dry season year Tidal level (mm)? Landsat platform and resolution
2/19/1988 1988 3,120 Landsat 5TM (30 m)
2/14/1998 1998 2,640 Landsat 5TM (30 m)
12/16/2007° 2008 1,300° Landsat 7TM (30 m)
1/4/2018 2018 Unknown® Landsat 8 OLI (30 m)

Notes: “Tidal levels are observed and estimated levels at Charchanga station. The 1,300 mm level for 12/16/2007 is estimated via

regression relationship as described in text.

P12/16/2007 is used to estimate the early 2008 dry season shoreline because this image is the temporally closest cloud-free image.
“Tidal level data not available, but level is highly likely to be within the range of other stated levels.

Data and Methods
Landsat Images and Tidal Data

Landsat images were selected (Table 3) based on
inspection of imagery available from the U.S.
Geological Survey Global Visualization View Web
site (USGS 2018). All images had a 30-m pixel res-
olution. Criteria guiding image selection were
as follows:

1. Full shoreline coverage of approximately 80km of
shoreline from Chandpur (north) to a southern
terminus in Lakshmipur district (Figure 1).

2. Approximate January—February dry season anniversary
dates with cloud-free coverage.

3. Similar and preferably high tidal levels at the
Charchanga tidal station (Figure 1) occurring at 10:00
a.m. local time corresponding to the approximate time
of scene acquisition.

Landsat path/row 137 (path) and 44 (row) provides
full coverage of the 80-km shoreline. January and
February dry season dates were preferred for two rea-
sons. First, the monsoon climate causes many images
acquired outside of the dry season to be cloud covered.
Second, the majority of erosion occurs during the
monsoon period associated with higher precipitation-
related river discharge. Shorelines derived during suc-
cessive dry seasons therefore effectively capture before
and after snapshots of the shorelines, revealing the
effects of the dominant monsoon period of erosion.
Tidal level is an important consideration for
shoreline mapping. Ideally, levels synchronized to
image acquisition dates and times would be identical
and as high as possible to represent the high-water
line. Tidal-level data are not consistently available
at multiple locations spanning the shoreline for 1988
to 2018. We used tidal data (Table 3) from two sta-
tions: Charchanga and Chandpur (Figure 1). Hourly

Charchanga data were available for 1998 to 2000
from the Permanent Service for Mean Sea Level
(n.d.) based in Liverpool, UK, although the original
source was the Bangladesh Water Development
Board (n.d.). Three-hour Chandpur data covering
1995 to 2018 were acquired directly from the
Bangladesh Water Development Board. Source data
were reported in millimeter units.

Tidal levels for Charchanga after 2000 and at
10:00 a.m. local time were estimated via linear
regression using the Chandpur 9:00 a.m. water level
as a predictor. Data were limited to December
through February for the years 1995 to 2000 where
tidal-level data existed for both Charchanga and
Chandpur. Regression results (n=445, R* = 0.96)
were used to estimate Charchanga levels at 10:00
a.m. for 1995 through 2000, closely corresponding to
the approximate image acquisition times. Applying
regression results to predict 2001 through 2018
Charchanga tidal levels, we are able to confidently
state water levels for the Charchanga tidal station
for all but the 2018 image date. A 2018 estimate
was not possible because corresponding 2018 data for
Chandpur were not available.

Landsat platforms included Landsat-5 Thematic
Mapper (TM), Landsat-7 Enhanced Thematic
Mapper (ETM), and Landsat-8 Operational Land
Imager (OLIL; Table 3). We focused on the eastern
shoreline of the Lower Meghna shoreline because of
related social science field work we are conducting in
proximal villages. We hope to extend future analysis
to encompass the western shoreline to address the
pattern of the channel’s behavior (widening, etc.)
within the broader context of delta system dynamics.

Geospatial Shoreline Mapping

To enhance shoreline extraction, the modified
normalized difference water index (MNDWI) was
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Figure 4. Example of transects at 50-m increments used for
Digital Shoreline Analysis System shoreline change analysis.
Landsat infrared band in background with black indicating water.

derived for each image (Xu 2006). MNDW!I is com-
monly used to aid shoreline identification and uses
the middle infrared and green bands to create an
index enhancing shoreline separation. It is defined
as

Green—MIR

MNDWI = Green + MIR " (1)
Six bands were used with MNDWI as input for
ISODATA unsupervised classifications specified to
contain ten output classes. The included bands were
Blue, Green, Red, NIR, MIR, SWIR, and MNDWI.
The ISODATA classification was reclassified to two
classes, water and nonwater, via interactive visual
inspection with the source imagery. A majority-
smoothing filter was applied to clean up “salt and
pepper” effects. Shorelines were derived following
Daniels’s (2012) shoreline extraction methodology.
Gaps (i.e., breaks in the shoreline) were present at
mouths of the larger tributaries. For smaller tributaries,
editing was performed to extend the shorelines

smoothly across gaps. Four shorelines were produced for
the dry season periods of 1988, 1998, 2008, and 2018.

Quantifying Shoreline Change

Shoreline change was quantified using the Digital
Shoreline Analysis System (DSAS) extension in

ArcGIS (Himmelstoss, Henderson, and Farris 2018).
Change rates were calculated for the thirty-year
period between 1988 and 2018 and decadal periods
1988 to 1998, 1998 to 2008, and 2008 to 2018.
Each estimated change rate used two shoreline
inputs corresponding to start and end dates. A digi-
tal baseline was created and manually located in the
interior onshore area, and digital transects were cast
orthogonal to the baseline at 50-m intervals for a
total of 1,551 transects (Figure 4). Ideally transects
extend to intersect shorelines at a 90° angle. In
practice, it is rare for transect-shoreline intersec-
tions to be exactly perpendicular. We designed our
linear baseline to closely parallel the shorelines by
inserting inflection points (see Figure 5) so that
intersections would be as close to perpendicular
as possible.

Much shoreline change research, like this study,
uses a 50-m interval with Landsat-derived shorelines.
Other literature, primarily concerned with sand vol-
ume and associated error estimation, suggests selec-
tion of transect interval spacing based on factors
such as erosion risk and human development pres-
ence. Our selection of a 50-m interval follows a large
body of the prior research and accords well with the
30-m pixel resolution of Landsat imagery.

DSAS measures the distance of shoreline move-
ment along transects enabling net shoreline move-
ment (NSM) in meters, a measure of the distance
that the shoreline has moved over time. The end
point rate (EPR) used for analysis divides NSM by
the intervening time between shorelines to report a
shoreline change rate in meters per year. Negative
values indicate erosion, and positive values indicate
accretion. For a small number of transects, there
were cases where zero or one shoreline was present
due to gaps (i.e., unclassified or mapped shoreline).
These situations are reported as gaps.

Shoreline Accuracy Assessment

Assessing shoreline accuracy for historical imagery
presents challenges due to the impossibility of field-
based ground truthing and the absence of very high-
resolution imagery for this region prior to 2000. A
fuller account of shoreline accuracy will be presented
in a separate publication (but see Crawford and
Rahman 2017). To summarize, a first approach
assessed accuracy for a February 2000 Landsat image.
Shoreline derived from a SPOT 10-m panchromatic
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1 1998-2008 s 2008-2018 |

Erosion Accretion
End Point Rate . e e
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meters peryear “_35, 300--150 -150-9*  *9-150  150-300 > 300 Kilometers

Solid yellow lines are shorelines for initial years of the period. Background images are Landsat
A & B: dashed lines are transects extending from inflection points of the white Baseline. infrared bands for terminal years.

Note: The "*"in the legend for the lowest erosion/accretion classes indicates that this lower/upper bound is approximate.
As described in text, a 90m net shoreline movement defined accretion/erosion events. Over 10 years, this is equivalent to
EPR = plus or minus 9.0 assuming exact anniversary dates. Over the full 30 year period, this is equivalent to

EPR = plus or minus 3.0.

Figure 5. Shoreline change and end point rates (m/year), 1988-2018. Note: EPR = end point rate.

image from February 2000 and with a similar tidal 22.9m. Based on these results, the general accu-
level was used to measure Landsat-to-SPOT shore- racy of Landsat shorelines for 2000 and image
line distance offsets using DSAS. The mean abso- dates used for analysis was estimated to be approx-

lute distance offset was 28.6 m with a median of imately 25 to 30 m.
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Table 4. Sample households by distance zones from 2017 shoreline

Distance zone

(distance from Number of % of all sampled Minimum distance Maximum distance Mean distance
2017 shoreline)® households households to shoreline (m) to shoreline (m) to shoreline (m)
1: 0—805 m 213 52.3 42.2 800.0 405.2
2: 805-1,610 m 131 32.2 807.9 1,603.5 1,143.1
3: >1,610 m 63 15.5 1,629.0 5,269.6 2,544.9
Total for all zones 407 100.0 42.2 5,269.6 973.9

Note: “Distance units reported in meters corresponding to zone breakpoints of 0.5, 1.0, and >1.0 miles.

An additional accuracy approach was employed to
account for water level differences. A set of six
Landsat images from the year 2000 dry season with
varying Charchanga station water levels was used to
derive vector shorelines. A linear regression estimate
of the relationship between mean shoreline difference
and water level difference revealed that shoreline
position is shifted 7m for every 1-m difference in
water level. Although it is desirable but not possible
to have identical water levels for all images used for
actual analysis, our attention to selecting image dates
with water levels as similar as possible is important to
measuring change as accurately as possible.

Based on two complementary accuracy assessment
approaches identifying a general Landsat shoreline
accuracy of ~25 to 30m coupled with the 7m per 1-
m water level difference relationship, a conservative
threshold was selected to determine meaningful shore-
line change. We adopted a conservative threshold of
a 90-m NSM to define highly probable erosion or
accretion events at the transect level; in other words,
real shoreline change. Transects with NSM at or
lower than —90m were classified as erosion.
Transects with NSM at or higher than 90m were
classified as accretion. Transects with NSM greater
than —90m and lower than 90m were classified as
stable (i.e., no detectable change). As noted earlier, a
small number of transects were classified as gaps.

Household Survey

Households were sampled from fifteen adjacent
villages in Lakshmipur district located at the far
southern end of our prior 80-km shoreline reach
(Figure 1). The target region had a total population
of approximately 40,000 according to the most
recent 2011 Bangladesh census. This region was
selected based on prior pilot fieldwork including an
expert workshop we held in Dhaka revealing it to
have experienced significant riverbank erosion.

Additionally, visual inspection of time series imagery
confirmed it to be a highly erosion-prone area.

Households were selected using a stratified ran-
dom spatial sampling design to survey households
located within three zones defined by distance from
Landsat-derived 2017 shoreline (Table 4). A total of
420 surveys were completed within the three zones.
Spatial locations of thirteen households were clearly
erroneous, yielding a final sample of 407 households
in the three zones: Zone 1, 0.0 to 0.5 miles
(n=213); Zone 2, 0.5 to 1.0 miles (n=131); and
Zone 3, 1.0 to 10.0 miles (n=063). Zones closer to
the shoreline were sampled more intensively to cap-
ture a strong number of households at greater ero-
sion risk. Our spatially explicit sample was generated
by an initial set of 420 latitude-longitude points
randomly generated by zone using GIS software.
Large-format field maps were produced to aid field
navigation and household recruitment. A team of
six data enumerators supervised by two project lead-
ers was deployed. Data enumerators used the field
maps and Global Positioning System to navigate to
the random point locations and approach the nearest
household for recruitment into the study. If a house-
hold declined participation, enumerators approached
the next nearest household. The survey instrument
and all human subject activities were approved by
the Institutional Review Board of Virginia
Polytechnic Institute and State University. To
address Objective 3’s focus on riverbank erosion
impacts within the context of the adaptive cycle’s
Q-collapse phase, we focused on analysis of the fol-
lowing three questions selected from the full set of
ninety-five multipart questions:

QI. Since 2008, how many times has this household
had to relocate due to riverbank erosion?

Q2. For the current year of 2018, how worried are you
that your home will fall into the Meghna River due to
riverbank erosion?
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Q3: Regardless of specific future dates or years, how
strongly do you believe that your house will fall into
the Meghna River at some date in the future?

We also performed geospatial analysis to estimate
the number of households lost to erosion by January
2019 following the May and June 2018 household
survey. This was accomplished via overlaying a
Landsat-derived January 2019 shoreline with house-
hold locations.

Analytical Methods

Multiple visual, descriptive, and inferential statis-
tical methods were used characterize spatiotemporal
patterns of shoreline change. We employed simple
visual interpretation combined with the more rigor-
ous Grouping Analysis tool of ArcGIS software
(Environmental Systems Research Institute 2019) to
define distinct regions for the thirty-year record of
change (1998-2018) that are used to organized pre-
sentation throughout. We used the 1988 to 2018
EPR as the focal variable observed at the transect
level as input. The method returns an F statistic for
each number of potential cluster results (two to fif-
teen clusters) whose maximum F statistic informs
selection of an optimal number of clusters (regions)
and associated cluster boundaries. After defining
regions, cross-tabulations by period and region with
associated chi-square tests identified the presence of
statistically significant differences in percentage of
transect change categories (e.g., erosion vs. accre-
tion). To identify significant regional differences in
transect EPRs for each period, the Kruskal-Wallis
independent samples median test was used due to
our sample’s violation of assumptions of normality
and equal variances.

For each region and to identify significant differ-
ences in transect EPR across time, the related sam-
ples Friedman’s two-way analysis of variance by
ranks test was used. This nonparametric test is
appropriate for repeated measures where normality
and equal variance are not present. Temporal
sequence analysis was used to quantify percentage
frequencies of change trajectories. All transects were
coded for each decade to represent change categories
(e.g., E=erosion, A =accretion). For example, a
transect receiving a code of AEE experienced succes-
sive decades of accretion, erosion, and erosion.
Cross-tabulation of region versus code was applied
with chi-square testing and interpretation. This

method identifies space—time differences in trajecto-
ries of shoreline change. All statistical tests were
implemented using SPSS software. To address our
Objective 3 related to human dimensions, we report
and interpret survey frequency responses and the

percentage of households lost to erosion by
January 2019.

Results
Regional Differences

Figure 5 depicts shoreline positions and EPR by
region and period. Three regions were defined visu-
ally and by ArcGIS grouping analysis. A maximum
F statistic for a four-region grouping suggested an
optimal grouping of four regions; however, and as
described next, we report results using three regions
of north, central, and south, which had the second
highest F statistic. The initial four-region grouping
analysis results divided our ultimately selected south
region into two regions. The clear pattern of a prom-
inent accretionary central region landform and the
fact that two southern regions identified by grouping
analysis both experienced high, relatively similar
erosion rates informed the decision to present results
for three regions. We combined the two southern
regions obtained by grouping analysis into one south
region. We later refer to a subregion in the south,
which conforms to the grouping analysis inferen-
tial results.

Summarizing for the three regions, results show a
clear pattern for 1998 to 2018 erosion dominance
for north and south with accretion dominance for
the central region. Figure 6 depicts by region and
period the percentages of eroding and accreting
transects and mean EPR.

Moderate overall erosion was present in the
north, showing temporal variation by decade. The
1988 to 1998 period had a mix of erosion and accre-
tion, with 1998 to 2008 experiencing low and
medium erosion relative to highest erosion rates in
the south for the latter decade. The 2008 to 2018
period was erosion dominant but at lower magnitude
than the prior decade.

The central region experienced a prominent pen-
insular accretion lobe. The 1988 to 1998 period wit-
nessed accreting land that extended southward. 1998
to 2008 witnessed the emergence of a prominent
accreting lobe in a northern subregion of the central
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Figure 6. Shoreline change by region and period; zero kilometers on the x axis is located at the Chandpur northern terminus.
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Table 5. Percentage of transects eroding or accreting,
1988 through 2018

Region/period Erosion  Accretion No change Gap

1988-2018
North (n=529) 98.9 0.0 0.6 0.6
Central (n=368) 0.0; 96.7 0.3 3.0
South (n=654) 93.3 3.1 3.2 0.5
All (N=1,551) 73.0 24.2 1.6 1.1
Chi-square = 1,434.7, df =6, p < 0.001

1988-1998
North (n=529) 31.8 64.7 3.0 0.6
Central (n=368) 0.0 92.4 0.0 7.6
South (n=654) 76.8 19.1 1.8 2.3
All (N=1,551) 43.3 52.0 1.8 3.0
Chi-square = 662.1, df =6, p < 0.001

1998-2008
North (n=529) 95.3 0.9 1.3 2.5
Central (n=368) 35.3 54.3 1.4 9.0
South (n=654) 97.1 0.0 0.0 2.9
All (N=1,551) 81.8 13.2 0.8 4.2
Chi-square = 780.5, df =6, p < 0.001

2008-2018
North (n=529) 83.9 1.1 12.5 2.5
Central (n=368) 75.8 14.7 4.9 4.6
South (n=654) 94.6 0.0 4.6% 0.8
All (N=1,551) 86.5 3.9 7.4% 2.3

Chi-square = 201.2, df=6, p < 0.001

Note: Chi-square tests were run on count data (e.g., counts of transects)
but are reported as percentages of total regional transect counts shown
in first column to ease interpretation. Row percentages sum to 100.0%
but in some cases to 100.1% due to rounding.

region coupled with southern erosion (in the central
region) that had emerged in the prior decade. 2008
to 2018 experienced complex dynamics. A northern
section of the emerging lobe eroded with a mix of
erosion and accretion in the southern section of this
lobe. Generally, the central region’s lobular landform
is emerging and stabilizing but migrating slightly
southward. In short, this peninsular accreting subre-
gion is a real feature.

The south experienced the highest erosion rates
of any region. By decade, 1988 to 1998 was erosion
dominant but with an intermediate section
experiencing accretion. 1998 to 2008 saw this accre-
tion disappear with erosion prevalent throughout.
2008 to 2018 witnessed a continued dominance of
erosion with the northern subregion experiencing
extreme EPR greater than 300 m per year, creating
the erosional crescent evident for the full 1988 to
2018 period.

We note that our baseline contains inflection
points in the central and south regions with

locations that are indicated by two dashed yellow
transects (Figure 5).

Shoreline Change by Region and Decade

Cross-tabulation and chi-square results revealed
statistically significant differences in percentages of
transect categories by region and time period
(Table 5). For the full thirty-year period
(1988-2018), over 90 percent of north and south
transects experienced erosion compared to the cen-
tral region, where 96.7 percent of transects experi-
enced accretion. For 1988 to 1998, however, the
north was accretion dominant at 64.7 percent, and
the south had substantial accretion at 19.1 percent,
although it was erosion dominant at 76.8 percent.
The central region experienced 92.4 percent accre-
tion during this first decade, generally consistent
with the thirty-year record. For the latter two deca-
des (1998-2008 and 2008-2018), both north and
south experienced transect erosion percentages over
90 percent in most cases (the north region had 83.9
percent in 2008-2018). For these same latter two
decades, central erosion increased, indicating a cen-
tral pattern of initial accretion associated with the
initial formation of prominent accretion, including
the notable accretion of a lobular landform, followed
by erosion.

Kruskal-Wallis tests revealed statistically signifi-
cant differences in EPR measures by region and
decade (Table 6). All multiple comparison differ-
ences were significant for the full thirty-year period
(1988-2018) with the south as the most erosional
region. The north’s median EPR was negative,
revealing it to be dominantly erosional. The central
region had a positive median EPR consistent with its
pattern of accretion.

For the first decade (1988-1998), all multiple
comparison differences were significantly different.
The north region, however, experienced positive
EPR indicating accretion. The central region had a
notably high median accretion rate. The south was
the lone region with a negative EPR indicating ero-
sion. For the second decade (1998-2008), the north
and south both were erosional but were not signifi-
cantly different from each other; both, though, were
significantly different from the central region’s posi-
tive EPR, indicating again central accretion. For the
third decade (2008-2018), all regions had negative
EPR consistent with erosion. The south, however,
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Table 6. Differences in EPR by region and decade in meters per year
EPR 1988-2018 EPR 1988-1998 EPR 1998-2008 EPR 2008-2018
Region Median® M Median® M Median® M Median® M
North -43.2 —45.7 34.1 10.6 -102.1 -103.0 -30.1 -45.9
Central 79.6 93.8 254.3 121.8 120.5 -33.1 -38.1
South -94.0 -100.6 -82.4 -96.2 -99.7 -133.1 -162.1
All -52.1 -36.6 25.5 -84.8 -51.2 -59.6 -93.8
Notes: Kruskal-Wallis independent samples median test. EPR = end point rate.
*All comparisons significantly different.
PNorth and south not significantly different; north and south significantly different from central.
“North and central not significantly different; north and central significantly different from south.
Table 7. Differences in EPR for regions across decadal time periods
Decade All regions® North® Central South®

Time 1: 1988-1998
Time 2: 1998-2008
Time 3: 2008-2018

2.49 (36.6 m/year)
1.78 (-51.2 m/year)
1.73 (-93.8 m/year)

2.59 (10.6 m/year)
1.36 (-103.0 m/year)
2.05 (—45.9 m/year)

2.60 (222.4 m/year)
1.93 (120.5 m/year)
1.48 (-38.1 m/year)

2.35 (—40.8 m/year)
2.04 (-99.7 m/year)
1.61 (-162.1 m/year)

Notes: Related samples Friedman’s two-way analysis of variance by ranks, left values are mean ranks, values in parentheses are mean EPR (m/year).

EPR = end point rate.

*Times 2 and 3 not significantly different. Time 2 and Time 3 significantly different from Time 1.

P All comparisons significantly different.

was differentiated from the north and central regions
with a significantly larger (negative) EPR.

Related samples Friedman’s two-way analysis of
variance by ranks tests revealed statistically signifi-
cant differences in EPR over time (Table 7). This
test looks at individual transect EPR values, ranks
them from lowest to highest, computes mean rank
by region, and tests for significant differences in
regions’ mean ranks. Given that negative (positive)
EPR indicates erosion (accretion), lower (higher)
mean ranks are generally associated with erosion
(accretion). For a given transect, there are three
repeated measures of EPR. The lowest EPR, which
could be either negative or positive, receives rank =
1. The second lowest EPR receives rank = 2. The
highest EPR receives rank = 3. Given that the three
repeated measures could all be positive or all be neg-
ative, interpretation of results is facilitated by exam-
ining test results in concert with the mean EPR of
each region’s decadal period shown in Table 7.

For all regions combined, Time 1 (1988-1998)
was significantly different from Times 2 and 3
(1998-2008 and 2008-2018), although the Ilatter
two periods did not differ significantly. Throughout
we refer to mean ranks with the smallest reported
numerical values as being the highest rank and larg-
est numbers being the lowest rank; for example, a
mean rank of one is the highest rank relative to a

mean rank of three, which is the lowest rank. Time
I’s lowest mean rank (highest and positive mean
EPR) indicates that 1988 to 1998 was a period of
accretion, whereas later decades shifted to become
periods of erosion.

For all regions, all multiple comparisons across
periods were significantly different, although the
pattern of differences varied. For the north, Time 2
had the highest mean rank (lowest and negative
mean EPR) followed by Time 3 (negative mean
EPR), showing that Time 2 experienced greater
erosion than Time 3. Time 1’s lowest mean rank
(positive mean EPR) indicates it to be an initial
period of accretion that was followed by periods
of erosion.

For the central region, Time 1 had the lowest
mean rank (highest and positive mean EPR) fol-
lowed by Time 2 and then Time 3, which had the
highest mean rank (lowest and negative mean EPR).
Times 1 and 2 were both periods of accretion but
with higher accretion rates in Time 1. Time 3
shifted to become a period of erosion.

For the south, Time 1 had the lowest mean rank
(lowest and negative mean EPR) followed by Times
2 and 3. All mean EPR values were negative, indi-
cating erosion dominance in this region. Results
show that the magnitude of erosion increased signifi-
cantly across the three-decadal, thirty-year period.
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Figure 7. Temporally directed scatterplots of mean accretion and erosion end point rates.

Figure 7 depicts spatial and temporal dynamics as
temporally directed scatterplots by region. This
approach shows visually the same patterns as evident
in the inferential statistical tests described earlier.
For each region and decade, percentage of transects
experiencing change (erosion or accretion) is plotted
on the x axis with mean EPR plotted on the vy axis.
Coordinates (0, 0) indicate O percent of transects
experiencing erosion or accretion.

Sequence Analysis of Change Trajectories

Sequence analysis enables discrimination of
change trajectories by region across time (Table 8).
All 1,551 transects were assigned codes describing

A =accretion, S=stable (no detectable change),
and G = gaps. For each transect, the sequential codes
were concatenated, yielding a set of twenty-two code
sequences empirically present in the 1,551 transects.
For example, AES represents a sequence of accretion
(1998-1998), erosion (1998-2008), and stable
(2008-2018). The six most frequently occurring
sequences represented 91.0 percent of all sequences.
The remaining 9.0 percent of sequences were defined
as OOQO, meaning other, which are the various other
sequence combinations of E, A, S, and G. This
yielded seven total sequence codes in that were sub-
jected to cross-tabulation by region and sequence.
The associated chi-square test was statistically signif-
icant. For all regions combined (the total row), EEE

decadal change categories where E =erosion, had the highest frequency at 39.6 percent, followed
Table 8. Sequences of change trajectories by region (%)

Region EEE AEE AAE EES AAA AES 000 Total

North 24.8 54.1 0.9 7.0 0.0 4.7 8.5 100.0

Central 0.0 30.2 42.1 0.0 9.5 1.1 17.1 100.0

South 73.9 17.6 0.0 2.9 0.0 0.8 4.9 100.0

Total 39.6 33.0 10.3 3.6 2.3 2.2 9.0 100.0

Notes: E=erosion; A = accretion; S =stable (no detectable change); OOO = multiple other less frequent sequences. First character is 1988-1998, second
character is 1998-2008, and third character is 2008-2018. Chi-square = 1,167.8, df = 12, p <0.001.
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Figure 8. Households lost to erosion from May—June 2018 to January 2019: 5.9 percent of 407. Background image is a PlanetScope 3 m
false color composite dated January 2019 (Planet Team 2017). Household location confidentiality was preserved by randomly shifting
locations #50 m in the x and y directions along with the choice of map scale and point symbol size.

by AEE (33.0 percent) and AAE (10.3 percent;
Table 6). These first three sequences accounted for
82.9 percent of all transects.

The south region had high frequencies of erosion
dominance with EEE (73.9 percent) and AEE (17.6
percent) accounting for 91.5 percent of its transects.
Excluding OOOQO, the central region’s highest fre-
quencies were AAE (42.1 percent), AEE (30.2 per-
cent), and AAA (9.5 percent) accounting for 81.8
percent of its transects. The North’s highest frequen-
cies were AEE (54.1 percent) and EEE (24.8 per-
cent) accounting for 78.9 percent of its transects.
The north experienced initial accretion (1988-1998)
in roughly half of its transects but thereafter was ero-
sion dominant. The north, unlike other regions,
experienced the highest frequency of stable transects,
although at low percentages compared to erosion.
The S for the last decade indicates shoreline stability
for parts of the north that was much less present for
the central or south regions.

Household Survey Results

Results reveal substantial impacts of riverbank
erosion on human population. The household survey
field site in the south region (Figure 8) had notably
high erosion rates during 2008 to 2018. All transects
spanning the extent of the household survey region
were defined as eroding with a mean EPR of

—113.1 m/year (median = —110.7, minimum =
—38.2, maximum = —225.9, SD =36.3). Of the 407
total households, 43.7 percent reported at least one
residential move since 2008 due to riverbank erosion
(Table 9; 56.3 percent had zero moves in the bottom
row). For households located in Zone 1 (closest to
the shoreline), 53.1 percent experienced relocation
since 2008, and 19.8 percent relocated at least two
times. Results show a heightened relocation experi-
ence for households currently most proximal to the
shoreline and that households more distant from
the current shoreline also have prior experience of
the adaptive cycle’s Q-release (collapse) phase
related to riverbank erosion.

Many households experienced “worry” regarding
displacement during 2018 (Table 10). The survey
was conducted in May and June 2018 and asked
about levels of worry regarding displacement during
the remaining months of 2018 following the May
and June survey. In total, 51.4 percent reported
being very worried or worried. In Zone 1, 70.0 percent
reported being wvery worried or worried, indicating a
heightened perception of erosion risk for households
in closer proximity to the shoreline.

A large percentage of households (85.2 percent)
believed that, at some point in the future, their home
would be eroded and lost to the river (Table 11). For
households in Zone 1, 92.9 percent either strongly
believed or believed that their home would be lost.
Results for Zones 2 and 3 were lower but also high at
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Table 9. Number of household residential moves since 2008 due to riverbank erosion (%)
No. of residential moves due to riverbank erosion
Distance zone from 2017 shoreline® 0 1 2 3 4
1: 0—805 m (n=213) 46.9 333 14.1 5.2 0.5
2: 805-1,610 m (n=131) 61.8 32.1 3.8 1.5 0.8
3: >1,610 m (n=63) 76.2 23.8 0.0 0.0 0.0
All zones (n=407) 56.3 314 8.6 3.2 0.5

Note: “Distance units reported in meters corresponding to zone breakpoints of 0.5, 1.0, and >1.0 miles.

Table 10. Percentage of households by level of worry that home will erode into the river during 2018 following the May
and June 2018 survey period

1 2 3 4 5
Distance zone from 2017 shoreline® Very worried Worried Neutral Not worried Very not worried
1: 0-805 m (n=213) 55.9 14.1 5.6 13.6 10.8
2: 805-1,610 m (n=131) 17.5 18.3 6.9 35.1 22.1
3: >1,610 m (n=63) 9.5 11.1 1.6 49.2 28.6
All zones (n=407) 36.4 15.0 5.4 26.0 17.2

Note: “Distance units reported in meters corresponding to zone breakpoints of 0.5, 1.0, and >1.0 miles.

Table 11. Percentage of households by level of belief that home will erode into river at some point in the future

1 2 3 4 5
Distance zone from 2017 shoreline® Strongly believe Believe Neutral Do not believe Strongly do not believe
1: 0-805 m (n=213) 59.6 333 6.1 0.5 0.5
2: 805-1,610 m (n=130) 25.4 52.3 18.5 3.1 0.8
3: >1,610 m (n=63) 14.3 60.3 20.6 4.8 0.0
All zones (n=406) 41.6 43.6 12.3 2.0 0.5

Note: “Distance units reported in meters corresponding to zone breakpoints of 0.5, 1.0, and >1.0 miles.

77.7 percent and 74.6 percent, respectively, in terms
of belief of an ultimate loss due to erosion.

In terms of estimated household loss from May
and June 2018 survey fieldwork to January 2019, a
total of twenty-four households (5.9 percent) were
likely lost to erosion (Figure 8) focused to the north
(left in Figure 8) of this subregion, which had higher
erosion rates. Additionally, and as would be
expected, all of these households were located in
Zone 1, which experienced an 11.3 percent loss

of households.

Discussion and Conclusion

Three decades of shoreline were mapped and ana-
lyzed for an 80-km stretch of the Lower Meghna
estuary. Results indicate regional variation of erosion
and accretion patterns with an overall dominance of

erosion. We found differences in erosion and

accretion patterns between the north, central, and
south regions that varied by decade and identified
using descriptive and inferential methods. Erosion
rates were generally larger than rates for other
regions reported Table 1, in most cases much larger.
Global data of coastal erosion rates are rare,
although two recent studies have deployed big data
approaches using Google Earth Engine’s archive of
historical Landsat imagery to estimate global patterns
of shoreline change (Luijendijk et al. 2018§;
Mentaschi et al. 2018). Luijendijk et al. (2018)
focused on global sandy beaches and so is not
directly comparable to our region, which is not
sandy; however, we note that their highest observed
hotspot rate had a mean rate of —16.0 m/year (ero-
sion) for a site in Louisiana for the period 1984 to
2016. Mentaschi et al. (2018) used a similar
approach and reported change in areal rather than
linear rates, finding eroded coastal land surface of
28,000 km?, which is more than twice the magnitude
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Figure 9. Shorelines at subdecadal temporal scales: (A) annual shorelines from 2000 to 2018 (selected dates not labeled for space),
Landsat infrared band from January 2018 in background; (B) selected shorelines from 2000 to 2015, PlanetScope 3 m false-color image
from February 2019 in background (Planet Team 2017), vertical black symbols indicate concrete embankment endpoints.

of accreting land. Our findings suggest that our non-
sandy, estuarine delta study region is among the
most dynamic coastlines in the world, with extreme
rates of erosion in selected portions that transition
households into the disruptive Q-collapse phase of
the adaptive cycle.

This work explicitly positions coastal erosion and
population impacts in our study area within the the-
oretical framework of adaptive cycles experiencing r-
growth, K-conservation, Q-release, and o-growth
phases. In doing so, it links natural cycles to human
and social cycles with an empirical focus on the
Q-release (collapse) phases related to coastal erosion
and human disruption. We believe that the adaptive
cycle is highly relevant to geophysical processes of
delta landforms over broad time horizons and have
shown that households are indeed disrupted due to
erosion connected to the process of riverbank

erosion. More work is needed to empirically charac-
terize the other cycle phases, particularly but not
limited to the human dimension of how population
reorganizes, regrows, and restabilizes. To do so will
likely require longitudinal household data as opposed
to a cross-sectional approach, although our house-
hold survey does include historical retrospective
information. Although arguing merits of the adap-
tive cycle, we note that others who have also
engaged in empirical investigation identify limits of
the adaptive cycle approach (Rasmussen and
Reenberg 2012; Goulden et al. 2013). For example,
and in our case, is it desirable for households to
repeatedly cycle through the process of erosion-
related disruption, even if it fits the pattern of the
adaptive cycle (arguably not)? Imposition of a one-
size-fits-all adaptive cycle can be viewed as a conser-
vative status quo understanding that misses the
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Concrete
embankment

Figure 10. New embankment in Ramgati Upazila; construction started 1 February 2015 and was completed 31 January 2017.

potential for systems to leap out of the cycle or for
actors to change the cycle, albeit for altered systems
that still in future states might be understood by the
adaptive cycle. Rasmussen and Reenberg (2012)
stated for a Sahelian study that “the picture of a uni-
directional process of land degradation and system
collapse ... is a simplification of more complex real-
ities” (14). Our social system in the Lower Meghna
certainly involves more complexities than presented
here. For example, some households (or household
members) might opt out of the system by migrating
to urban centers and thereby enter in to a new sys-
tem. Dislocated households might also relocate in
nearby and similarly vulnerable coastal sites that are
eroded in short time spans such that households
might not cleanly and simplistically cycle through
the adaptive cycle as portrayed in Figure 2. Instead,
they might be jolted in relatively short order from
the o-reorganization phase directly back in to the
Q-release (collapse) phase—an unfortunate pattern
of being locked (at least for some time period) into
a reoccurring release-reorganization pattern. Further,
power structures connected to higher social-scale

political ecologies can play roles in mitigating dis-
ruptive aspects via social aid or mobilization to engi-
neer mitigative measures such as shoreline
embankment as described next.

Returning to shoreline change, our results point
to the possibility of analysis at finer timescales than
the decadal scale. Preliminary work has mapped
shorelines annually at approximate dry season anni-
versary dates for 1988 to 2018 (Figure 9). Successive
annual shorelines (Figure 9A) depict a continuous
history of erosion; however, it is visually evident
that the rate of shoreline change varies substantially
by year and location. Analysis at five- or ten-year
temporal resolutions misses the annual variation evi-
dent for this region. More generally, heightened
attention to relevant temporal scales is important to
resolve subannual, annual, and multidecadal variabil-
ity (Vos et al. 2019).

The evolving CubeSat paradigm potentially pro-
vides daily imagery for much of the Earth’s surface
(Poghosyan and Golkar 2017). CubeSat is a moniker
for a constellation of small imaging satellites.
Commercial companies such as Planet Labs (Planet
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Team 2017) have in recent years deployed CubeSat
constellations. Figure 9B shows a PlanetScope 3 m
false-color infrared image from Planet Labs taken on
3 February 2019 covering much of the extent of our
household survey. A 3.5-km concrete embankment
is evident as a white linear feature in the north half
(left in figure) that was constructed from 1 February
2015 to 31 January 2017 (Figure 10) and effectively
halted erosion for this small reach of newly
embanked shoreline.

For future work, we envision transect-specific
sequence code strings of length 30, one code charac-
ter for each year of change in our 1988 to 2018
annual data. Transects can then be subjected to data
mining methods for resulting discrete sequence data
including analyses of classification and dissimilarity
analysis, longitudinal entropy, and various metrics
available via the TraMiner package in R
(Gabadinho et al. 2010; Bleisch et al. 2014;
Delmelle 2016; Mas, de Vasconcelos, and Franca-
Rocha 2019). Applying sequence methods to dense
time series of shoreline change trajectories, or socio-
environmental change more broadly, opens rich
possibilities to characterize typologies or, metaphori-
cally, climatologies of change.

Investigation of process dynamics is beyond the
scope of this study, but our team is currently investi-
gating the role of monsoon precipitation and other
process drivers. We do not view this as a limitation
but rather as a reality of our stated objectives. A
study limitation is the issue of shoreline positional
accuracy, which we addressed in an earlier section.
Although it is impossible to assess accuracy for more
temporally distant shorelines, future work will pro-
duce a more robust assessment using field-based
Global Positioning System data obtained for the
most recent year and higher resolution imagery as
available and financially feasible to obtain. Other
future work points to predictive modeling of shore-
line change using annual resolution shorelines with
relevant predictor variables following a theory-guided
data science (Karpatne et al. 2017).

In conclusion, the decadal-scale analysis presented
here is an important achievement revealing statisti-
cally significant results that, beyond statistical signif-
icance, have real-world implications for vulnerable
coastal populations in the Bangladesh delta. Linked
(or coupled) adaptive cycles focusing empirically on
the Q-release (collapse) phase spanning human and
natural systems were theoretically articulated and

demonstrated for a study area located in the largest
Asian megadelta of the GBM basin. Coastal popula-
tions in Bangladesh, other densely populated Asian
megadeltas, and elsewhere share similar vulnerabil-
ities. High-quality scientific data and analysis of
shoreline change can be deployed to inform mitiga-
tion and adaptation measures based on sound knowl-
edge of historical patterns such as those presented
here and projections of future change.
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