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Abstract—This paper conducts a study of input-sensitivity
in collaborative graph algorithms for CPU-GPU systems with
support for Unified Memory. The study, conducted on an
extensive set of real-world graphs from the Koblenz Network,
identifies three main sources of performance inefficiencies that
are influenced by characteristics of the input graph. We develop
autotuning methods to specifically address these inefficiencies.
We then explore machine learning approaches to characterize
the relationship between input graph properties, performance,
and optimization parameters. In applying our learned models to
a test dataset of 70 real-world graphs on the problems of breadth-
first search (BFS) and single-source shortest path (SSSP), we are
able to attain 96.33% of the peak performance on BFS, and
99.40% on SSSP when using the top-3 predictions of a neural
network. We also attain 95.63% of the peak performance on BFS
when using three decision trees trained on different categories
of graphs. The performance of the learned models is superior to
selecting the most frequent optimal configuration, indicating that
the machine learning models were able to successfully correlate
our selected configuration parameters with graph attributes.

Index Terms—heterogeneous memory; graph processing; ma-
chine learning; code optimization

I. INTRODUCTION

Graph algorithms are at the core of data-intensive applica-
tions in many computational domains, including cybersecurity,
medical informatics, business analytics and social data mining.
As such, efficient graph processing is of critical importance.
Recent research has shown that highly-tuned, massively par-
allel GPU graph analytics can yield impressive results [1]–
[4]. Yet, the irregular structure of graphs continues to be a
major obstacle in unleashing the full capabilities of the un-
derlying hardware. Irregularity in real-world graphs can make
performance unpredictable and non-portable across different
inputs and architectures [5]–[7]. Depending on the type of
graph being processed, the same optimized implementation of
an algorithm can produce performance numbers that differ by
orders of magnitude.

Emerging trends in application development further exacer-
bate the challenges with irregularity and input dependence.
Industry vendors have recently introduced technology that
presents a unified view of multiple physical pools of memory
contained within a compute node [8]–[10]. In Unified Mem-
ory(UM) systems, pointers can be freely used between differ-
ent memory regions in the CPU and GPU, relieving developers
from the burden of explicitly managing data. Improved pro-
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Fig. 1: Input sensitivity comparison of two BFS implementa-
tions [Intel Xeon, NVIDIA Pascal, CUDA 10.0]

grammability have made UM an attractive choice for high-end
systems, including those that are set up to use NUMA [11],
[12]. Application developers are taking advantage of UM
to create new collaborative design patterns that emphasize
tight coupling of CPU-GPU tasks [13], [14]. These emerging
paradigms can mitigate GPU oversubscription, a ubiquitous
problem in large-scale graph processing [15], [16]. Although
the programmability benefits are substantial, the collaborative
paradigms make reasoning about performance issues in ir-
regular codes more complicated. The degree of collaboration
must be carefully orchestrated considering the sparsity of
access and the size of the partitions, making performance more
intimately tied with the structure of the input graph [12], [17].
Furthermore, in these collaborative paradigms, segments of
the graph may be concurrently shared between the CPU and
GPU. This not only requires tighter synchronization windows
but also makes it necessary to consider the differences in the
memory hierarchies in the CPU and GPU and how they cater
to the structure of the input graph.

Fig. 1 shows performance variations for two BFS implemen-
tations across 100 directed acyclic graphs. The collaborative
BFS implementation utilizes demand paging and employs
a CPU-and-GPU-Iterative design pattern [14]. Although this
implementation achieves significantly higher performance on
almost all input graphs, it also exhibits higher degrees of
input sensitivity than the non-collaborative version. The best
performance point is 91× better than the worst one. These
numbers reiterate the need for investigating input-sensitivity



Fig. 2: A bottom-up data-driven approach to exploring input sensitivity graph algorithms

in emerging paradigms.
This paper explores input-sensitive behavior of heteroge-

neous graph algorithms running on CPU-GPU systems that
support Unified Memory. The study is conducted on a corpus
of 1000 real-worlds graphs collected from 21 computation
domains [18]. The structure of the graphs are captured using
a set of 67 distinct attributes. The study primarily focuses
on two widely-used and important graph algorithms: Breadth-
First Search (BFS) and Single-Source Shortest Path (SSSP).
We select BFS and SSSP because (i) they are representative
of the computation domains studied (ii) both serve as building
blocks in many important classes of applications such as
cycle detection, maximum flow, and betweenness centrality
and (iii) implementations of both algorithms are featured in the
latest high-performance graph frameworks such as GraphIt [4],
Gunrock [3] and Gaolois [19].

In the first phase, we conduct a performance study to
identify performance characteristics of collaborative graph ap-
plications that are sensitive to the properties of the input graph.
Unlike prior studies however, we take a ground-up, data-
driven approach in which we attempt to automatically discover
the pertinent performance bottlenecks via experimentation and
statistical analysis. This approach, described in Section II,
generalizes to other contexts in a straightforward manner. The
experimental study identifies (i) access density (ii) thread-level
parallelism, and (iii) register space utilization as the three most
important criteria that are sensitive to input graph properties.

In the second phase, we develop parametric methods to
address the inefficiencies that can result from the three per-
formance criteria. The methods include a combination of

source-to-source, compiler and runtime optimizations. For
each method, we expose tunable control parameters and build
an autotuning system. The autotuner is used to generate a
training database of cross-input performance data. We then
evaluate two machine learning approaches, using decision trees
and neural networks, to characterize the relationship between
input graph properties, the optimization parameters, and per-
formance. We build a system around the resulting classifiers,
which when given a new input graph and an implementation,
generates a kernel with the optimal configuration. This work
yields the following results
• in addition to size and volume, (i) degree distribution (ii)

edge density, and (iii) graph diameter can all have signif-
icant impact on performance and optimization choices;

• performance inefficiencies stemming from (i) increased
data movement under UM, (ii) unexploited parallelism,
and (iii) inefficient utilization of the GPU register space
are influenced by the structure of the input graph;

• the relationship between graph structure and performance
can be learned. This learning can be embedded in code
optimizations which can yield integer factor performance
improvements over state-of-the-art implementations.

II. APPROACH

Fig. 2 provides an overview of our approach to exploring
input sensitivity in graph algorithms. Our approach is data-
driven and relies heavily on extensive profiling via hardware
performance counters. Below, we outline the major steps.

1. Identifying input-sensitive performance inefficiencies:
Performance of irregular graph algorithms can be limited by



TABLE I: Performance domains, criteria, metrics and events for characterizing performance of irregular CPU-GPU codes.

Domain Criteria Metric Events

Data Movement
Data volume copy-to-comp ratio CUDA H2D memcpy, CUDA D2H memcpy, ...
Access pattern access density ldst executed, inst compute ld st, ldst issued

Oversubscription page re-migration rate

total bytes transferred over PCIE H2D,
total bytes transferred over PCIE H2D,
total bytes read from DRAM to L2,
total bytes written from L2 DRAM

Achieved
Parallelism

Thread-level parallelism occupancy average active warps per cycles, max warps supported per SM,...
Instruction-level parallelism attained ILP issue slot utilization, warp execution efficiency,...

Control divergence branch efficiency non-divergent branches, total branches
predication rate thread inst executed, not predicated off thread inst executed

Pipeline utilization

execution stall rate stall exec dependency, inst executed, inst issued
memory stall rate stall memory dependency, inst executed, inst issued
sync stall rate stall sync, inst executed, inst issued
fetch stall rate stall inst fetch, inst executed, inst issued

Memory Hierarchy
Utilization

Memory coalescing load divergence global load transactions, global load requests
store divergence global store transactions, global store requests

Cache behavior
L1 miss rate unified l1 hit rate, inst executed
L2 read miss rate l2 requests from tex cache,l2 hits for tex cache requests, inst executed
L2 write miss rate l2 tex cache write hit rate, inst executed

Register space utilization register efficiency tex0 cache sector queries, tex1 cache sector queries, register spills, registers
per thread, ...

many factors. Not all of these are sensitive to input graph prop-
erties. To identify input-sensitive performance bottlenecks, we
first identify a broad range of performance characteristics
observed in CPU-GPU hybrid applications. We call this set
B = {b1, ...bN}. For each performance characteristic bi, we
establish a set of metrics {m1, ...,mj} to quantify program
behavior in each dimension. Each metric in turn is expressed
as a combination of CPU and GPU performance events.

B = {b1, ..., bN} ≈ {{m1, ...,mj}, ..., {m1, ...,mk}}

We then construct a regression model R, to correlate specific
inefficiencies with overall performance P .

R(< {m1, ...,mj}, ..., {m1, ...,mk}, P >) =⇒ B′

From R, we derive a set B′ ⊆ B, which includes the ineffi-
ciencies that are most tightly related to overall performance.
We further analyze the data to obtain a set B′′ ⊆ B′ which
represents the critical performance inefficiencies that are most
input sensitive.

2. Exposing tunable control parameters: For each b ∈ B′′,
we identify a method to address the inefficiency. These
methods include source-to-source, compiler and runtime code
optimizations. The code transformation techniques are then
parameterized to expose a set of tunable parameters.

B′′ = {< t1, ..., tq >, ..., < t1, ..., tr >}

We exhaustively evaluate two graph algorithms in this param-
eter space for all input graphs in the dataset. The performance
is recorded and added to the training database.

3. Mapping graph attributes to optimal tuning parameters:
The size and structure of a graph are defined by using

a set of 67 distinct attributes. These attributes are extracted
via a single pass over the edge-list representation of the
graph. To model the relationships between graph attributes,
optimizations, and performance, we evaluate two machine
learning approaches. Both approaches are illustrated under the
‘learned models’ section in Fig. 2.

The first approach involves training a decision tree to learn a
direct mapping from an input graph, represented by a flat vec-
tor of attributes, to the optimal configuration of optimizations.
The decision tree is constructed primarily to derive insight
about how input graph properties impact the performance
characteristics. A second approach involves training a neural
network to learn the mapping from the pair [graph attributes,
configuration parameters] to a performance metric, e.g. TEPS
(traversed edges per second). The neural network enables the
prediction of performance for multiple configurations.

III. CHARACTERIZING IRREGULAR PERFORMANCE

We perform a hierarchical analysis [20] to characterize and
quantify input sensitivity in irregular codes. First, we break
down overall performance into three domains: data movement,
achieved parallelism and memory hierarchy utilization. The
three areas represent aspects of program behavior that can be
the source of potential performance inefficiencies in irregular
CPU-GPU applications [14]. We then categorize performance
in each dimension into a set of performance criteria. We derive
metrics to quantify performance in each criteria and finally, we
formulate methods to measure each metric using a combina-
tion of available CPU and GPU performance events. Table I
lists the performance domains, criteria, metrics and events.
Next, we discuss the analysis in the context of collaborative
graph algorithms and describe the methodology for measuring
the metrics. In the interest of space, we limit the discussion
to only the key elements in Table I.

A. Data Movement

The volume of data transferred between the CPU and the
GPU has a major impact on the performance of hybrid ap-
plications. Data movement becomes even more critical under
UM systems. In a UM system, data can reside either in
host or device memory during GPU kernel execution and the
placement choice that minimizes data transfer times depends
on the computation and data access patterns of the particular



application. Accessing host-resident data via demand paging is
expensive. Data is fetched over a high-latency, low-bandwidth
channel and page migrations incur additional overhead due to
fault handling. Notwithstanding, the massively multi-threaded
GPU kernels can potentially hide some fraction of the latencies
and mitigate the costs associated with demand paging, making
placement decisions non-obvious. For irregular applications,
data placement choices become more complicated for the
following reasons:

a) Sparse data access: With demand paging, only the
data requested by the GPU is transferred from host memory.
As a result, for graph applications that exhibit sparse or
irregular data access patterns, the actual volume of traffic over
the interconnect can be a lot smaller under demand paging than
bulk-copy. To minimize data traffic, we need to estimate access
density which is dependent on the input graph properties.

b) Oversubscription: Real-world graph analytics typi-
cally deal with very large graphs that oversubscribe GPU de-
vice memory. Under UM, data can be kept in host memory to
mitigate oversubscription. Demand paging eliminates the need
for strip-mining and can provide performance by reducing
the overhead of repeated kernel launches. Nonetheless, this
decision must be made on a per-input basis, considering the
size and dimensions of the graph.

To quantify performance inefficiencies with respect to data
movement we introduce the following metrics.

Copy-to-computation ratio is computed as the ratio of data
copy time to the kernel execution time. Intuitively, this metric
represents the cost to the application due to bulk-copying of
data from host memory.

Access density denotes the fraction of data that is explicitly
requested by the compute elements in the GPU. If every
element in the data structure is touched at least once (i.e.,
dense access) then density = 1. A lower value indicates higher
access sparsity.

Page re-migration rate A page may need to be migrated
more than once if it is evicted from memory before its reuse. In
the traditional design pattern, re-migration only occurs from
CPU to GPU. But in collaborative applications re-migration
can be bi-directional. For a given data structure, the page re-
migration rate is measured as the ratio of the total number
of page migrations to the number of distinct pages requested
by the compute elements. Each requested page is migrated at
least once. Hence, re-migration rate is always ≥ 1.

B. Achieved Parallelism

GPU throughput is a direct result of the amount of par-
allelism exploited in the kernel. This includes both thread-
level and instruction-level parallelism. The shape of the input
graph can impact the attained level of parallelism. For instance,
graphs with higher edge-density provide opportunities for
greater parallelism in applications that use vertex partition-
ing. We quantify the amount of thread-level parallelism with
achieved occupancy which is defined as the ratio of the average
active warps per active cycle to the maximum number of warps
supported on a multiprocessor. Instruction-level parallelism

is measured as attained ILP which is a combination of two
metrics, issue slot utilization and warp execution efficiency.

Complex control-flow can lead to branch divergence which
can also inhibit parallelism. We quantify control divergence
with two metrics: (i) branch efficiency which is the ratio
of non-divergent branches to total branches expressed as a
percentage and (ii) predication rate which is the ratio of
the average active threads per warp executing non-predicated
instructions to the maximum number of threads per warp.

C. Memory Hierarchy Utilization

1) Memory Coalescing: Uncoalesced memory access, a
common occurrence in irregular applications, can cause severe
performance degradation on the GPU. We quantify memory
divergence as the number of global memory transactions per
request, adjusted for the length of the coalescing unit. A value
greater than one indicates application is suffering from some
amount of divergence.

2) Cache Behavior: Although cache performance is not
as critical for irregular applications on the GPU, it has been
shown that locality does exist and can have a significant impact
on performance [21]. Indirect memory addressing and memory
access based on node values make it difficult to determine the
amount of locality in irregular applications. Nonetheless, some
forms of locality can be captured by properties of the input
graph. For example, graphs with uniform edge distribution
might exhibit better data locality.

3) Register Utilization: Utilization of the register file is
critical for GPU performance. Effective allocation can elimi-
nate spills and improve single-threaded performance. Since the
register space is a shared resource, over allocation can limit
the number of threads in a block and consequently reduce
thread concurrency. In irregular applications, optimal register
allocation is input dependent for the following reasons.

a) Launch Bounds: Kernel launch bounds can vary
across input datasets. The allocation policy must take this into
account. A smaller block size implies that the register allocator
can be more aggressive while a larger block size merits a
conservative approach.

b) Dependence chains: The diameter of an input graph
determines the length of the dependency chains in the kernel.
Kernels with longer chains, and consequently longer live
ranges, will require a larger number of registers to avoid spills.
This will increase the register pressure which in turn may limit
the size of the thread blocks.

D. Pinpointing Input-Sensitive Performance Inefficiencies

Although each metric is important, in this work, we are
primarily interested in identifying those criteria that are (i)
most critical and (ii) most input-sensitive. To this end, we
formulate a regression model in which each metric from
Table I constitutes an explanatory variable while overall per-
formance is designated as the response variable. Performance
is measured as billions of traversed edges per second (GTEPS),
which allows us to normalize across input graphs and across



different systems. We execute the graph algorithms on each in-
put graph in the database and collect the metrics via hardware
performance counter-based profiling. Because of multiplexing
of performance counters, a total of 16 runs was necessary
to collect all metrics. Each profile run was repeated 4 times
and the average values were included in the regression dataset.
Principal Component Analysis is applied to address issues with
multicolinearity (e.g., L1 and L2 miss rates).

TABLE II: Regression statistics for identifying input-sensitive
performance criteria. = metrics that are performance critical
and input sensitive; = performance-critical but not input
sensitive; = not performance-critical

Metric coeff t P[97.5] variance

si
gn

ifi
ca

nt

occupancy 1.0471 8.486 0.000 1112.91
access density 2.2555 3.930 0.000 2142.83
load divergence -0.9260 4.002 0.000 33.26
L2 read miss rate -0.9473 -12.782 0.000 118.36
branch efficiency 0.0397 0.856 0.000 269.29
register efficiency 0.9451 1.314 0.001 1716.05
page re-migration -0.0722 -2.007 0.022 17.46

in
si

gn
ifi

ca
nt

copy-to-comp -0.5672 -11.413 0.034
predication rate 0.2294 5.103 0.045
attained ILP 0.5910 1.927 0.054
exec stall rate 0.1251 3.132 0.156
store divergence -3.5798 -3.306 0.391
L2 write miss rate -0.0024 -0.924 0.783
sync stall rate 0.0021 0.213 0.817
memory stall rate

eliminated via PCAL1 miss rate
fetch stall rate

The regression results are reported in Table II. The rows are
sorted in ascending order of the P-value at 97.5% confidence
interval. Of the 17 metrics, three were eliminated via PCA. Of
the remaining 14 variables, seven are statistically significant.
Of these, branch efficiency and page re-migration has little
impact in determining overall performance. We eliminate these
two from further consideration in our study.

We then analyze the data to determine the spread of values
for each statistically significant metric. The spread, calculated
as the variance, is the leading indicator of input sensitivity.
We observe that although memory divergence is a significant
determinant of performance, it is not impacted by variations
in the structure of the input graph. We select the three metrics,
highlighted in green, with the highest input sensitivity for the
next phase of the study.

IV. EXPOSING TUNABLE CONTROL PARAMETERS

We identify three optimization techniques to mitigate the
performance bottlenecks identified by the regression model:
(i) data placement for access density (ii) launch bound se-
lection for occupancy and (iii) register allocation for register
efficiency. We parameterize the heuristics employed by each
optimization and expose the tunable parameters for external
control by an autotuner. The source-level transformations are
implemented within LLVM [22]. The runtime system and the
SASS register allocator are implemented as standalone tools.

0 cudaMalloc(dev_ptr, ...);
1 cudaMemCpy(dev_ptr, host_ptr, ...);
2 kernel<<<grid_size,block_size>>(dev_ptr)
3 cudaMemCpy(...);

(a) before

0 for d in D
1 mem[d] = get_placement_auto();
2 // allocation site
3 i f (mem[d] == dev)
4 cudaMalloc(dev_ptr, ...);
5 else
6 cudaMallocManaged(host_ptr, ...);
7 // copy-in site
8 i f (mem[d] == dev)
9 cudaMemCpy(dev_ptr, host_ptr);

10

11 unsigned i n t BLK = get_thread_block_auto();
12 i f (is_legal(grid_size, BLK)) {
13 i f (mem[d] == dev)
14 kernel<<<grid_size,block_size>>(dev_ptr)
15 else
16 kernel<<<grid_size,block_size>>>(host_ptr)
17 }
18 else
19 exit_gracefully();
20 // copy-out site
21 i f (mem[d] == dev)
22 cudaMemCpy();

(b) after

Fig. 3: Source-to-source transformations for exposing data
placement and thread block size parameters for autotuning

A. Data placement

In UM systems, the penalty associated with data movement
is largely determined by allocation decisions. On CUDA
devices, data can be mapped to a managed space via the
cudaMallocManaged() API. Data in the managed space
is allocated to host and device memory using a first-touch pol-
icy. Our parameterization of data placement decisions involves
a source-to-source transformation and a runtime system.

1) Source-to-source: As outlined in Fig. 3, each application
goes through two source-level transformations.

(i) Parameterize placement of each data structure: For each
data structure accessed by a GPU kernel, we identify the
allocation and deallocation sites. Each site is bracketed with a
placement-dependent clause and appropriate calls to the host
allocator and deallocator are inserted in the host path. We
wrap each copy site with a condition such that copy calls are
only invoked when the data structure is allocated to device
memory. Alternate launch configurations are added to the
kernel launch site. For a kernel with n arguments, 2n − 1
alternate configurations are added.

(ii) Insert calls to the runtime system: The parameterized
source is instrumented with calls to the runtime system. A
single call is inserted at the allocation site for each data
structure to obtain its placement location.

2) Runtime: The runtime system obtains placement param-
eters from the autotuning search algorithm. Each data structure
in the application has a boolean-valued parameter for each
kernel invocation. A true value indicates host placement and
demand paging while false denotes device placement.



B. Launch bound selection

A pass over the application source replaces each kernel
invocation with a new invocation in which the thread block
size is replaced by a variable whose value is supplied by the
autotuner at runtime. The source-to-source pass also instru-
ments the code with the following runtime calls (Fig. 3).

(i) get_thread_block_size(): obtain the value of the
thread block size from the autotuner

(ii) is_legal(): check the legality of the block size pre-
scribed by the autotuner

(iii) exit_gracefully(): if the block size is deemed il-
legal then the program exits gracefully and communicates
to the autotuner to retry the instance.

The block size parameter can take any integer value between
one and the maximum threads allowed per block.

C. Register allocation

Designing an autotuning scheme for GPU register allocation
is challenging for two reasons. First, it is not obvious which
parameters should be exposed for external control. Second,
the closed-form nature of CUDA SASS makes it difficult
to implement a new allocation scheme. We address these
issues by introducing the notion of eagerness in GPU register
allocation. Intuitively, for a given kernel with a fixed register
pressure, an eager allocator will attempt to allocate more,
and usually longer and complex, live ranges to registers. By
contrast, a lazy allocator will take a conservative approach and
forego assignment of a live range even if a sufficient number of
registers are available for allocation. Depending on the need,
the system can be set up to support different levels of eagerness
in the register allocation. In this study, we parameterize the
CUDA register allocator on an eagerness scale which consists
of the following levels: (i) conservative (ii) moderate (iii)
aggressive. The autotuner sends the eagerness value to the
compiler in the following way.

(i) Compilation flag: The nvcc compiler supports the flag
--maxrregcount REG which can be used to limit the
maximum number of registers allocated to a kernel. We map
the eagerness value to the REG parameter. moderate maps
to the default allocation; while conservative and aggressive
map to [default− r] and [default+ r], respectively.

(ii) SASS pass: We extract the SASS representation from the
nvcc-generated binary using turingas [23] and implement
a register assignment pass on the SASS which attempts to
assign live ranges to registers that were skipped by the nvcc
allocator. If the parameter value is conservative or moderate
then no new registers are allocated. If the value is aggressive
then it will attempt to allocate live ranges of size ≤ k.

V. APPLYING MACHINE LEARNING

After identifying performance criteria with high input sensi-
tivity and implementing techniques to control tunable param-
eters, we train machine learning models under two different
approaches. The primary goal in both cases is to build a
model that, given an unseen graph, it predicts the optimal

configuration, which can be later used to generate a new and
more efficient kernel.

A. Graph Dataset

The master dataset consists of 1000 real-world graphs ob-
tained from the Koblenz Network Collection [18]. The graphs
represent 21 domains, including social networks, biological
networks and road networks. Edges and nodes capture the
nature of relationships across these domains, including col-
laboration, communication, affiliation and trust. This dataset
consists of three main classes of graphs (i) bipartite, undirected
(ii) unipartite, directed, and (iii) unipartite, undirected. We
refer to these classes as bipartite, directed and undirected,
respectively. Graphs in each class can be either weighted or
unweighted.

In our experiments with machine learning, we use a subset
of the master dataset (676 graphs). In particular, to get more
reliable performance data, we eliminated graphs that were
very small (< 1000 nodes), and graphs for which it was not
possible to extract all relevant features. Graphs were processed
to extract a vector of 67 attributes for each graph. These
attributes include statistics that describe the graph structure,
mostly related to degree distribution, edge density, and graph
diameter [18].

Using the autotuning methods presented in Section IV, each
graph is annotated with its corresponding optimal configura-
tion. Every configuration is a triplet of three tunable optimiza-
tion parameters: data placement, thread block size, and register
allocation. For finding the optimal configuration the autotuner
explores the space of the following values for each parameter
respectively: [device, host], [64, 128, 256, 512,
1024], [conservative, moderate, aggressive].

The subset of 676 graphs is split into training (606 graphs)
and testing datasets (70 graphs). The training data is used
for training all models and selecting their hyperparamenters.
The test set is only used for calculating and reporting final
accuracies. It is worth to note, that there is no intersection
between the graphs in the training and test datasets. The
training dataset contains 268 directed, 69 undirected, and
269 bipartite graphs. The test dataset contains 31 directed,
8 undirected, and 31 bipartite graphs.

B. Approach 1: Decision Trees

We train decision tree classifiers to learn the mapping of
graphs, represented by their attributes, directly to their optimal
configuration. The classifiers implement an optimized version
of the C4.5 decision tree algorithm. We train three separate
decision trees specific to each graph type: bipartite, directed,
and undirected. In order to obtain the optimal configuration on
a new graph, its attributes are fed through the correct decision
tree according to the graph type, and the tree outputs the values
of the predicted optimal configuration.

C. Approach 2: Multi Layer Perceptron

On a different approach, instead of taking as input graph
attributes and learning to predict the optimal configuration, a



Fig. 4: Feature space visualization across different domains.

neural network is trained to predict the performance GTEPS.
In this case, for each graph in our training and test datasets,
30 instances can be generated, increasing the size of the
training dataset to 18180, and the size of the test dataset to
2100 instances. Each new instance is the concatenation of the
graph attributes with a configuration triplet. Every instance
is labeled with the corresponding GTEPS value found by the
autotuning process. In this new formulation the neural network
is trained with examples using all configuration types, instead
of manually filtering the best configurations, as in the case of
the decision tree classifiers.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Target Applications: The target applications in this study
include topology-driven hybrid implementations of BFS and
SSSP from the Galois graph optimization framework [19].
Both are optimized for CPU-GPU collaborative execution
using Galois primitives. We consider these highly-tuned im-
plementations as the baseline.

2) Evaluation Platform: All experiments were conducted
on a compute node featuring a POWER8 system with 128
logical cores connected to two NUMA sockets. The node has
four NVIDIA Tesla P100 GPUs connected to the CPU via
NVLink. Experiments are conducted with CUDA 10.0 runtime
and driver. All applications are compiled with nvcc at the
highest optimization level. Each experimental run is repeated
five times in both training and testing phases and only the
average numbers are used in the study.

B. Graph Feature Space

To get better insight into the structure of graphs across
different domains, we visualize the feature space using Prin-
cipal Component Analysis (PCA) and k-means clustering.
Fig. 4 plots the top two principal components (PC1 and PC2).
Domains are color coded and clusters are shown using a ?.
In addition to size and volume, the features represented in
PC1 and PC2 include degree distribution (captured via the
GINI coefficient), edge density and the graph diameter. We

undirected

directed

bipartite

Fig. 5: Violin plots with kernel density and distribution for 10
performance criteria.

observe that PC1 features are sufficient to capture the struc-
tural differences among the three main categories of graphs,
creating clear delineations bipartite (left), directed (right),
and undirected (center). PC2 and the sub-clusters in each
group further distinguish structurally similar graphs within
each category. We also observe that there can be structural
similarity between graphs that belong to different domains.
For example, the clusters that form around the Authorship
networks also include many graphs from the Ratings networks.
Similarly, graphs that belong to the same domain may exhibit
different structural properties. For example, graphs represent-
ing Communication networks appear in four different clusters.
Finally, there might be graphs that belong to a particular
domain that have their own unique features, as seen from the
cluster around Infrastructure networks (top right corner).

C. Performance Criteria and Input Sensitivity

Fig. 5 visualizes the performance space of BFS across ten
different criteria from Section III. As expected we see wide
variation in overall performance (TEPS) across input graphs
in all three categories. Interestingly however, many of the
points are clustered in the bottom half, indicating that the BFS
implementation yields poor performance for a large fraction
of the input graphs. The most dominant performance criteria
are the ones associated with data movement which shows
considerable variation and closely resembles the TEPS plots.
TLP, measured via occupancy, is significant for undirected and
directed graphs but tends to have less of an impact on bipartite
graphs. Branch efficiency and store coalescing proved to be
input insensitive, both exhibiting favorable numbers for all
input graphs. This is not surprising given the computation and
data access patterns in BFS.

D. Model Prediction

In our experiments, decision trees and MLPs are trained
using 10-fold cross validation for hyperparameter selection.
We used the corresponding training set for each of the two
graph algorithms, BFS and SSSP. The hyperparameters are
fixed across all folds, and those that perform best are selected
for the final model. The decision trees are fine-tuned by



trying different values for maximum depth, maximum features,
minimum samples split, and split criteria. As separate decision
trees are trained for different graph types, each has its own
selected hyperparameters. The MLP hyperparameters were
selected by a random search amongst different batch sizes,
hidden layer sizes, learning rates, and L2 regularization values.
The MLP for SSSP uses adam optimizer with alpha of 0.2355,
learning rate of 0.0007, batch size of 128, and four hidden
layers (80, 60, 40, 20). The MLP for BFS uses adam optimizer
with an alpha of 0.02819, learning rate of 0.0020, batch size
of 128, and three hidden layers (60, 60, 60). Both MLPs use
ReLU activations for all hidden layers and output a continuous
value representing the predicted GTEPS. Networks are trained
for a maximum of 1000 training iterations with early stopping.

Once the model selection is completed, all models are
evaluated using two performance statistics calculated from the
predictions on a separate test set (not seen during training):

a) Percentage of Optimal: Represents the attained frac-
tion of optimal performance achieved by the predicted con-
figuration for each graph, given by pred/opt, where pred
is the actual GTEPS for the predicted configuration, and
opt is the best possible GTEPS. opt is discovered via an
exhaustive exploration of the entire optimization space. The
reported performance is the geometric mean of all individual
performances of graphs in the test dataset.

b) Speedup over Default Baseline (Galois): Represents
the speedup of the predicted configuration over Galois. This
baseline uses [data placement=device, thread block size=256,
and registers allocation=moderate]. The formula is given by
pred/base, where base is the actual GTEPS for Galois. The
geometric mean over all graphs is reported.

Particularly for the MLP, since we are able to produce
predictions for multiple configurations, we include top-1 and
top-3 performance measures for all metrics in Tables III-IV.

TABLE III: Percentage of optimal. Geometric mean is reported
for all graph types. Combined represents the entire test set.

Model Bipartite Directed Undirected Combined
Top-1 MLP BFS 0.9587 0.9223 0.9688 0.9436
Top-3 MLP BFS 0.9788 0.9389 1.0000 0.9633
Top Config BFS 0.9893 0.8370 0.6468 0.8751
Top-1 MLP SSSP 0.9835 0.9703 0.9751 0.9766
Top-3 MLP SSSP 0.9944 0.9923 0.9986 0.9940
Top Config SSSP 0.9584 0.9081 0.9558 0.9355

TABLE IV: Speedup over default baseline (Galois). Geometric
mean is reported for all graph types. Combined represents the
entire test set.

Model Bipartite Directed Undirected Combined
Top-1 MLP BFS 1.9865 1.8630 2.1689 1.9503
Top-3 MLP BFS 2.0282 1.8966 2.2387 1.9911
Top Config BFS 2.0499 1.6906 1.4480 1.8089
Top-1 MLP SSSP 1.7695 1.7610 1.8759 1.7775
Top-3 MLP SSSP 1.7891 1.8010 1.9211 1.8090
Top Config SSSP 1.7244 1.6481 1.8387 1.7026

1) MLP: The percentage of optimal reported in Table III
shows that the MLP is able to predict configurations close to
the optimal performance. One clear advantage of the neural
network approach is that we can easily predict GTEPS for all
configurations. Given an input graph, we can feed the network
with 30 pairs of graph attributes and configurations parameters,
collecting the predicted GTEPS for all of them. The top k
configurations are the ones with the highest k predicted values,
and can be used to generate k kernels as part of the autotuning
process. It is worth to note that in all cases the percentage of
optimal is over 92% for BFS and over 97% for SSSP. As we
increase the value of k, predictions become more accurate.

A summary of the number of times a configuration is chosen
as optimal for all graphs in the test dataset is presented in
Table V. Clearly, the optimal choice is input dependent and
a one-size-fits-all heuristic, no matter how sophisticated, is
bound to yield sub-optimal results.

TABLE V: Optimal Configuration Set for BFS and SSSP (Data
Placement, Thread Block Size, Registers Allocation)

Configuration Occurrences (BFS) Occurrences (SSSP)
host,1024,aggressive 36 23
device,1024,aggressive 19 26
host,1024,moderate 5 9
host,512,moderate 4 0
host,512,aggressive 2 2
host,1024,conservative 1 0
host,512,conservative 1 0
host,64,conservative 1 0
host,64,moderate 1 0
device,1024,moderate 0 10

Using the information provided in Table V, we are able
to compare the machine learning models directly with a
“classifier” that always predicts the most frequent optimal
configuration in the test dataset. The lines marked as “Top
Config” in Tables III and IV show the geometric mean for such
cases. The MLP outperforms this method by a good margin.

We performed additional experiments to evaluate the ro-
bustness of the MLPs. The idea is to observe the variance
of the selected MLP architecture and hyperparameters, when
trained using different 10 random weight initializations. The
results are fairly robust for both graph algorithms, SSSP and
BFS. In the case of BFS, there were only 3 instances were the
trained models are showing higher variance. Complete results
are shown in Fig. 6.

2) Decision Trees: The motivation behind training de-
cision trees is that we could identify the most important
features from the tree structure. After our experimentation
with BFS, we discovered that for the bipartite graphs de-
cision tree, the most important features, in order of im-
portance, were max left degree, left size, and volume. For
the directed graphs, the most important features were vol-
ume and outdegree balanced inequality ratio. For the undi-
rected graphs, volume, degree assortativity, wedge count, and
gini coefficient (details of each attribute in [18]). For all
decision trees, volume was an important attribute. For SSSP
many of the same features emerged as critical for making
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Fig. 6: Using the hyperparameters found by cross-validation, we train 10 different models with random weight initialization
for each graph algorithm. The boxplots above summarize the percentage of optimal achieved by the top-3 predictions for all
models applied to the test set. A low variance indicates higher confidence that the model is generalizing the problem rather
than getting lucky.

optimization decisions. In addition, the graph diameter also
proved consequential. Graphs with longer diameters, and
consequently longer dependency chains, increase the register
pressure. This increased pressure is amortized in the case
of a full traversal, as in BFS, but is significant in the path
discovery tasks embedded in SSSP. Therefore, unlike BFS, for
many graph instances a moderate register allocation policy is
necessary. This is reflected in the optimal configuration data
presented in Table V.

VII. RELATED WORK

A. Hybrid Graph Algorithms

There has been significant work on large-scale graph pro-
cessing on CPU-GPU platforms in the past few years. Some
have focused on algorithmic improvements [24], [25], while
others have looked at developing specialized compiler- and
system-level techniques [26]–[28]. More recently, researchers
have proposed holistic frameworks for high-performance graph
processing that combine optimization strategies at different
levels [3], [4], [19]. Although these frameworks yield im-
pressive speedups over traditional methods, it has been shown
that the performance improvements are not consistent across
different types of graphs [4], [21]. GraphIt aims to address this
shortcoming with a DSL that enables programmers to select
input-specific optimizations and algorithms [4]. GraphIt can
consistently provide high performance across a range input
graphs when the right parameters are selected. The responsi-
bility of setting the parameters still lies with the programmer,

however. This work aims to address this issue with a learned
model that automatically selects the optimization parameters
based on the characteristics of the input graph.

There have also been a few experimental studies that
specifically look at input dependence in graph algorithms. The
initial study by Burtscher et al. showed that it is possible
to characterize irregularity along certain specific dimensions,
such as memory coalescing [5]. Later studies build on this
idea and look at other performance characteristics such as
occupancy and task mapping [6], [21], [29]. However, none
have explored input dependence in the context of collaborative
design patterns, as this work does.

B. Machine Learning in Performance Modeling

The initial application of machine-learning-based perfor-
mance tuning emerged as a response to prohibitively long
tuning times for search-based autotuning [30]. Earlier work
focused on pruning the optimization parameters space [31]
and finding optimal compiler optimization sequences [32].
As neural networks and other learning algorithms gained
popularity, they were applied to a variety of performance
optimization problems. Many variants of popular ML tech-
niques have been successfully applied to different branches –
in performance optimization through code changes [33], [34],
predicting runtime configurations [35], [36], selecting suitable
data structures [37], identifying performance bottlenecks [38],
[39], and system energy management [40], [41]. To the best
of our knowledge this is the first attempt at using machine



learning to understand input sensitivity of graph algorithms
under Unified Memory systems.

VIII. CONCLUSIONS

In this paper, we explore input-sensitive behavior of collab-
orative graph algorithms running on CPU-GPU systems that
support Unified Memory. We provide contributions in identi-
fying input-sensitive performance inefficiencies and evaluating
machine learning approaches for modeling the relationship
between input graph properties and performance.

Our experiments show that the selected graph attributes and
performance criteria and metrics, are suitable for developing
effective machine learning models. We achieve up to 96.33%
of the maximum GTEPS performance for breadth-first search,
and 99.40% for single source shortest path.

Future work includes generalizing the approach to a larger
subset of important graph algorithms. In particular, we will
investigate transfer learning methods to eliminate the need for
retraining models on each new algorithm. We also expect to
extend our training dataset by including graphs from the SNAP
database and graphs generated synthetically.
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