
Short Modules for Introducing
Heterogeneous Computing∗

Conference Tutorial

David P. Bunde1, Apan Qasem2,
Philip Schielke3

1Knox College
Galesburg, IL 61401

dbunde@knox.edu
2Department of Computer Science

Texas State University
San Marcos, TX 78666

apan@txstate.edu
3Concordia University Texas

Austin, TX 78726
Philip.Schielke@concordia.edu

Abstract

CS faculty have spent the last several years adding parallel computing to their
curricula since essentially all processors sold today have multiple cores. A
typical target system is a multicore processor with identical cores. This is the
configuration for most current desktop and laptop systems, but the technology
continues to evolve and systems are incorporating heterogeneity. Many phone
processors include cores of different sizes so the phone can vary its power and
performance profile over time. Other processors incorporate low-power modes
or instructions for specialized computations. Meanwhile, high-end systems
make heavy use of accelerators such as graphics cards. We are at a stage where
heterogeneous computing concepts should pervade the curriculum rather than
being limited to upper-level courses.

This tutorial motivates heterogeneous parallel programming and then presents
modules that introduce aspects of it such as energy/performance tradeoffs,

∗Copyright is held by the author/owner.

67



SIMD programming, the benefit of memory locality, processor instruction set
design tradeoffs, and CPU task mapping. Each module uses only a few days
of class time and includes assignments and/or lab exercises which are avail-
able online (https://github.com/TeachingUndergradsCHC/modules/). Here
are the modules:

1. The first module shows the challenges and benefits of task mapping on
a heterogeneous system. The module includes a lab to provide students
with hands-on experience running parallel workloads in heterogeneous
environments. It is aimed at CS 2, but also fits in Systems and Parallel
Programming courses.

2. The second module looks at heterogeneity on ARM processors, particu-
larly Thumb mode, a low-power mode with restricted instructions. The
module is based on the Raspberry Pi, a low-cost system aimed at hobby-
ists. It highlights performance/power tradeoffs and is aimed at Computer
Organization.

3. The third module shows how memory locality can improve performance
on a program that uses CUDA to run on a graphics processing unit
(GPU). This module demonstrates heterogeneity resulting from both
CUDA’s SIMD model of computing and the different memory types on
a GPU. It highlights memory locality and is aimed at systems-oriented
courses.

Acknowledgements

This tutorial presents work supported by NSF grants OAC-1829644 & OAC-
1829554.

68


