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Abstract
The complex interrelationship between the built environment and social problems is 
often described but frequently lacks the data and analytical framework to explore the 
potential of such a relationship in different applications. We address this gap using 
a machine learning (ML) approach to study whether street-level built environment 
visuals can be used to classify locations with high-crime and lower-crime activities. 
For training the ML model, spatialized  expert narratives are used to label differ-
ent locations. Semantic categories (e.g., road, sky, greenery, etc.) are extracted from 
Google Street View (GSV) images of those locations through a deep learning image 
segmentation algorithm. From these, local visual representatives are generated and 
used to train the classification model. The model is applied to two cities in the U.S. 
to predict the locations as being linked to high crime. Results show our model can 
predict high- and lower-crime areas with high accuracies (above 98% and 95% in 
first and second test cities, accordingly).

Keywords  Geonarrative · Machine learning · Semantic segmentation · Street-view 
image analysis · Urban crime

Introduction

The nature of “place” plays a vital role when it comes to understanding the loca-
tion and context for many social problems. For instance, opioid overdoses were 
a major topic of discussion prior to Covid-19. Now, as we move through the 

 *	 Md Amiruzzaman 
	 mamiruzz@kent.edu

1	 Kent State University, Kent, USA
2	 Case Western Reserve University, Cleveland, USA
3	 Texas A & M University, College Station, USA

http://orcid.org/0000-0002-2292-5798
http://crossmark.crossref.org/dialog/?doi=10.1007/s42001-021-00107-x&domain=pdf


	 Journal of Computational Social Science

1 3

various stages of the epidemic, there is an indication that this situation has wors-
ened [87]. This leads to questions such as why and where will this occur? Under-
standing such contextualized locations are vital to target intervention. The crime 
landscape can be classified in different ways, for example as a micro-environment 
or macro-environment [67, 86]. For example, a city, zipcode, and neighborhood 
areas can be defined as a macro-environment. In contrast, a micro-environment 
is more granular and can be defined as a place within any of those areas. Micro-
environment crime location classification can be a challenging task due to a lack 
of data and associated restrictions such as confidentiality [40]. These spaces can 
be classified in different ways, one of the most obvious being its visual appear-
ance [47, 76], the most famous of which is the theory of “broken windows” that 
continues to inform current research [85, 92]. However, an under-researched 
aspect of linking place-based visual imagery to crime involves AI, no significant 
study was found that tried to use both. In this study, we address this gap by clas-
sifying granular scale crime places based on potential connections to activities 
such as where drugs are purchased, where drug use occurs, and where overdoses 
will occur most frequently [25].

If successful, the identification of potential drug overdose locations might 
improve intervention, such as knowing where to place Project Dawn kits [71]. This 
same logic applies across a variety of other health and crime examples, for example 
knowing where people feel they are or are less safe [70]. While there has been con-
siderable research on these topics generally this work takes place at a single location 
with a suggested transferability of findings (such as street lighting) to other locations 
[62]. Fewer studies have considered the transferability of these findings to different 
locations.

To achieve this, granular detailed primary data needs to be collected in the form 
of environmental audits or participant observations [31, 52]. To this end, this paper 
will leverage previously collected geonarratives to acquire fine-scale multi-time 
period contextualized data, an approach which has successfully been used to under-
stand the heterogeneous variations in a variety of different environments [2, 21, 25, 
26, 41, 49, 55]. Advancing this body of work, and addressing the topic of transfer-
ability of findings, this paper will present an automatic classification of contextual-
ized locations deemed to be important to explain negative localized events and then 
transfer these findings to other test locations. More generally, a further contribution 
is that automation in crime place classification could provide faster and more accu-
rate results while also reducing human overheads.

To do this we extend previous geonarrative research focused on crime landscapes 
with an AI-based Google Street View (GSV) image analysis to classify multiple 
urban places. The AI-based image segmentation tools were used in some social 
applications (see “Semantic segmentation and applications” section), but they were 
not explicitly applied to crime place classification. More specifically, our approach 
and contributions of this study are as follows:

•	 Locations are evaluated by local police officers who provide professional insights 
especially related to drug activities using a geonarrative approach. These geonar-
ratives are processed to label specific places as high-crime or lower-crime.
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•	 Instead of linking a described location to its exact image, a “fuzzy” classification 
occurs of the place using a group of images extracted from the environment sur-
rounding the single place. In this way, a more transferable holistic representation 
of that type of location is acquired.

•	 Semantic segmentation based on a deep learning algorithm is used to extract 
semantic categories (sky, greenery, building, etc.) from these neighborhood 
images. A location visual representative is then computed to model the environ-
mental features of the place. We study different ways to define the representative 
and identify the essential semantic categories that can lead to a good classifica-
tion template.

•	 The location classification of high-crime and lower-crime areas is implemented 
by training a ML classification model with GSV images and geonarratives from 
several police officers patrolling the same set of neighborhoods. Multiple ML 
algorithms will be tested and compared, before the most successful is used to 
identify similar spaces in a different city where validation occurs using police 
report data.

•	 We further investigate the usability and limitation of the model by testing it 
across various other US cities with differing urban characters, using local crime 
indexes to gauge the performance of classification in each location.

Related work

Linking crime to detailed landscapes

Fear of crime is a product of actual and perceived threats, environmental and human 
based, and that can negatively impact the quality of life [13, 16, 77, 83]. Arguably 
being able to identify and understand the geographic nature of these fears and actual 
risks can lead to more effective intervention strategies. However, the required data 
and associated knowledge, at such fine sub-neighborhood scales are often hard to 
acquire [11, 61, 91]. For example, the risk of violence or where drug overdoses will 
occur is linked to a variety of different environmental factors, such as the quality of 
housing stock, local vegetation, lighting, open and dense spaces, and the interrela-
tionship between all of these.

The local perception of what this mix means in terms of risk translates into how, 
where, and when people conduct their daily activity [32, 77, 78]. An alternative con-
ceptualization is that this mix results in a landscape of actual and perceived criminal 
opportunity and victims [89]. While there is a rich literature that has delved into 
such interconnections [73], especially the importance of micro spaces [12], and pat-
terns of opportunity and victims [18], less has been attempted in developing more 
transferable rules. Yet, given the challenge in finding detailed local data, alternative 
more ubiquitous solutions to gauge such localized risk is required.

To effectively achieve this, we also have to add spatial context; it is not enough to 
just find overlay associations of where crimes and environments intersect, but rather 
we need to know why they occur there. For example, while we may know on which 
street a rape or a drug overdose has occurred, it is far harder to understand that event 
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in terms of the knowledge that can be transferred elsewhere. Advances to more tra-
ditional crime data analysis include both big data [10, 30] and primary data solu-
tions using new field methods. In this paper, we leverage aspects from both of these 
advances [74, 75].

Ground level observations and geonarratives

Advances in online spatialized ground-level imagery, for example, GSV and the 
advances in global positioning system (GPS) cameras have opened various possibili-
ties for auditing within neighborhood environments for different time periods [19, 
75, 79]. One frequently used source for these audits is GSV due to their ubiqui-
tous nature [36, 46]. There are, however, limitations including varying time frames 
within the imagery, not having recent imagery, and geographic gaps in the collection 
[5, 27].

An advance on GSV as an audit tool has been putting similar technology in terms 
of GPS enabled cameras into the hands of local practitioners or researchers so that 
data can be collected for any space and any time period. Simply put, data can be col-
lected in a more responsive way to the environment being studied—either filling in 
data gaps, capturing landscapes immediately after temporal inflection points (such 
as after a political or natural hazard externality), or to investigate changes over short 
(by month) or longer (by year) durations [20, 24].

A companion data collection is the spatial video geonarrative (SVG). Simply put, 
by adding an expert “witness,” not only are images and coordinates collected, but so 
to their context [21–23]. This is vital as it not only improves official data with more 
depth but can be used to fill in the gaps caused when geographic (areas too danger-
ous to collect in) or institutional bias (not deemed important enough to collect) are 
at play. For example, an event such as a rape or overdose is more than just a point 
on a map. It is the location of a geographic story that involves a narrative of the vic-
tim, perpetrator, other actors, society, and the physical environment. These types of 
spatial [39] or “Go along” interviews have proven useful in adding depth for this and 
other topics notoriously missing or lacking richness in official data sources such as 
genocide spaces, homelessness, drug overdoses, and infectious disease spread [25, 
26]. SVG is a qualitative GIS [43], and mixed-method [48, 80] that lends richness to 
more traditional spatial data and methods.

Indeed, the geonarrative not only provides an insightful commentary of objects 
and places in the environment but moving through that landscape also helps inspire 
that commentary [3, 7, 15, 31, 42, 52, 66]. Places that are identified in these nar-
ratives can then be mapped because of the associated coordinate information [2]. 
In this way, an alley is not only described but can be mapped - it is not just a linear 
object from another spatial data source, but a series of interconnected places where 
different but interlinked events occur.

SVG can be seen as part of the current theoretical shift to include behavior and 
physical environment at the micro-space scale to understand how and why events 
occur [8, 34, 72, 96]. More specifically these methods also collect and analyze data 
in such a way that interventions can be developed [2, 49]. The advance this paper 
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makes is combining the advances of both on-the-ground imagery availability with 
these contexts generating geonarratives in a machine learning environment to make 
these insights transferable to other locations based on the visual appearance of the 
landscape.

Semantic segmentation and applications

Our goal was to understand the difference between places in terms of the presence 
and combination of visible objects. For example, two places may differ in terms of 
the amount of greenery, building type, or quality of the building. A GSV image from 
a commercial area may show more buildings and less greenery compared to a resi-
dential block. In this study, we wanted to see if there were any differences between 
high-crime and lower-crime areas based on their semantic segmentation information 
(SSI) which is the extraction of objects using computer vision. To do this, AI-based 
models can be used to predict object types within an image and then provide associ-
ated and transferable labels [95].

More specifically, semantic segmentation methods label pixels in specific regions 
of an image for known objects, then scene parsing tools segment and label the whole 
image within semantic categories. Different deep learning methods have been suc-
cessfully applied to achieve this including DeepLab [17]), SegNet [6], DPN [59], 
LRR [35], Piecewise [58], and PSPNet [95].

Other research has used SSI from images of urban environments to understand 
and visualize different patterns [19, 24, 57, 60, 69, 82]. For instance, Odgers et al. 
[69] investigated visual indicators of economic variation; more greenery was asso-
ciated with higher median home prices. Similar findings were reported by Li et al. 
[57], while Ye, Zeng, Shen, Zhang, and Lu [94] quantitatively measured the percep-
tual-based visual quality of streets. We intend to extend these approaches to show 
how semantic categories (extracted from GSV images around known event loca-
tions) can also be used to classify potential crime activities in other locations.

Methodological framework

In order to develop an effective transferrable classification scheme, it is important 
to expand the area of interest beyond too specific an image. For example, while a 
single streetlight may be known locally as where violence occurs, it is important 
to capture the immediate surroundings of that location as it is not useful to identify 
all streetlights as being dangerous. Therefore, when classifying an object, it is not 
wise to decide about a class based on a single object [28, 50]. To achieve this goal, a 
more holistic approach is needed to summarize the area in terms of multiple spatial 
objects and their interconnection.

Figure  1 illustrates our approach for classifying places associated with crimes. 
First, the insights of police officers who patrol city streets on a daily basis are cap-
tured as geonarratives (Fig. 1a).
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These narratives are then classified based on the keywords where police officer 
described a place as being problematic based on a serious crime or not. While future 
work can further work on the nuances required to tease out specific crime types, 
here, to prove the conceptual applicability, we reduce crime locations into this 
binary of higher or lower levels of crime activity. Second, for each of these loca-
tion types, GSV images are sampled and extracted and then segmented into catego-
ries (e.g., road, sky, greenery, etc.) utilizing an AI based SSI extraction algorithm 
(Fig.  1b). The achieved semantic representations of the neighborhood images are 
used to compute location visual representatives, where important subsets of the 
semantic categories are studied and selected. Third, a ML classification model is 
established between the visual representatives and the location crime labels, which 
is tested using multiple ML algorithms (Fig.  1c). We implement this model with 
GSV and the geonarratives recorded by several police officers in the same city. We 
further apply this trained model to a different Midwest city where similar places are 
labeled using a geo-tagged police report dataset. Finally, the model is tested in dif-
ferent geographical areas in the U.S. to examine the usability and limitation of the 
model for different visual appearances.

Location labeling with police geonarratives

Multiple geonarratives were recorded on police rides for a single U.S. city with a 
population of about 200,000. The geonarrative data consists of over six months of 
conversation between the time of 8:00 am to 5:00 pm, and eight different police 
officers participated to describe crime places. The purpose of these rides was to col-
lect insights regarding the link between the built environment and different types of 
crime. Explanations about data collection protocols have previously been described 
[22]. The audio narratives were transcribed into text files. From these narrative files, 
sentences mentioning specific locations with crimes related to drugs, robbery, theft, 
etc. were labeled.

Obviously, not all crimes have the same level of severity and we are following 
a similar classification to the FBI in terms of more severe (violent) and less severe 

Fig. 1   Overview of the approach. a Showing labeling of geonarratives as high-crime and lower-crime, b 
Use SSI from GSV images to find representative, and c Use ML techniques to classify places and vali-
date the findings
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(property) crimes [9, 33]. For the purpose of this study, acts of violence are used to 
define high-crime areas and lower-crime areas (meaning crime still had occurred 
but was not of the highest concern) was matched with property crime events. If a 
sentence had a violence-related keyword, then the corresponding location was 
labeled as being a high-crime area. Similarly, the description of property crimes 
was labeled as signaling a lower-crime area. These locations provide PlaCes Of 
Interests (PCOIs) with high-crimes and lower-crimes. Moreover, we randomly 
sampled the city for PCOIs with lower-crime activities (i.e., places are not labeled 
as high-crime areas). Then, n PCOIs in the city, P1,P2,… ,Pn , are labeled as 
Pi ∈ {HighCrime|LowerCrime} , i = 1, 2,… , n . In our experiment, we use n = 400 . 
The details of crime location classification is described in “Crime location classifi-
cation” section.

Location imagery representation

Place neighborhood sampling

To understand the proximate environment of a PCOI holistically, we focus on the 
visual appearance of that place as well its neighborhood. To capture the surround-
ing for a PCOI Pi , a circular neighborhood area is defined as �(Pi,R) with a radius 
R. The road network inside � is retrieved from OpenStreetMap (OSM). Then, mi 
Neighborhood Sampling Points (NSP) Sj

i
 , j = 1, 2,… ,mi , are uniformly sampled on 

these street segments, where Sj
i
 is � meters apart from each other. Here, two param-

eters are specified related to the questions of spatial characteristics:

•	 R defines the neighborhood size: how big is the neighborhood whose visual 
appearance can indicate the crime tendency of a location?

•	 � defines the sampling resolution: what is the appropriate number of street 
images needed to represent a neighborhood?

While the correct settings will likely vary by location and will require local 
expert insight, for this paper we used heuristics to evaluate a set of options to finally 
decided upon R = 200 m and � = 20 m (see Fig. 2). The total number of sampling 
points mi at each Pi varies in a range between [100, 300]. The total number of GSV 
images used in our classification is 2Σn

i=1
mi (2 for left-side and right-side street 

views) which in practice is about 200,000 images.

GSV image extraction

GSV provides panoramic street views of most U.S. locations. In order to extract 
images of actual buildings and landscapes (i.e., side-view), but not the road ahead 
(i.e., road-view), the heading of each street at each NSP was calculated. Since the 
default camera angle 0 ◦ is fixed to the north; three consecutive NSPs along the street 
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are utilized: (lat0, lng0) , (lat1, lng1) , (lat2, lng2) , with their latitudes and longitudes. 
The heading angle at (lat1, lng1) is computed as:

Based on � , the side-view angles to the left and right sides are computed and used to 
retrieve the images from GSV.

Semantic image segmentation

A neural network-based semantic segmentation tool PSPnet [95] is used to extract 
the SSI from the images (see Fig. 3). Each image is represented by a 19-dimension 
vector of occupancy values of 19 different object categories (classes), namely, road, 
sidewalk, building, wall, fence, pole, traffic light, traffic sign, vegetation, terrain, 
sky, person, rider, car, truck, bus, train, motorcycle, bicycle.

To get the occupancy of an object in an image, we calculate the ratio of the total 
number of pixels representing the object to the total pixels in the image (see Eq. 2).

(1)� = atan2 (x, y)

where

x = cos(lat0) × sin(|lng0 − lng2|),
y = cos(lat0) × sin(lat2)

− sin(lat0) cos(lat2) × cos(|lng0 − lng2|).

Fig. 2   Data collection procedure in an area of radius R. The red circle represents the target center of the 
location, and the sample points are shown by blue circles
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So, essentially each image has the occupancy values calculated for 19 different 
categories, which forms the vector to represent a PCOI in this study. If any category 
is missing in an image, the corresponding value is zero in the vector. This process 
allows us to represent the significance of different categories of objects present in a 
scene.

Location visual representative

To train the classification model, a representative of Pi acquired from the neighbor-
hood images of the labeled location is defined. To achieve this, two major questions 
need to be answered:

•	 How to extract Pi from the neighborhood image segmentation vectors?
•	 How to find essential semantic categories that improve the classification results?

Representative identification

In this section we present three different approaches to find representative vectors. 
First, we show use of Singular-Value Decomposition (SVD) method to find repre-
sentative vectors (see “SVD method” section). Second, we show use of Principal 
Component Analysis (PCA) to obtain representative vectors (see “SVD method” 
section), and Third, we show use of Central Tendency Method to find representative 
vectors (see “SVD method” section). Details of each approach is presented below.

(2)Occupancy of an objecti =
Pixel count of the objecti∑n

i=1
Pixel count of the objecti

Fig. 3   Example of GSV and Semantic segmented images: (left) GSV image and its corresponding (right) 
semantic segmented image. In the semantic segmented image light-blue color represents as sky, green 
color as trees, light green color as grass, gray color as pole, dark-gray as building, pink color as sidewalk, 
blue color as cars, and purple color as road respectively
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SVD method

Each PCOI Pi is represented by a matrix of semantic segmentation results, A19×2mi
 , 

where mi is the number of NSPs and 2 is for the left and right side images at each 
NSP. 19 is the number of semantic categories. Note that mi is not a fixed number for 
each location. We apply multiple approaches to extract a good representative of the 
matrix, and then use it as the characteristic feature in ML classification.

First, Ai is factorized by a Singular-Value Decomposition (SVD) [54] as 
Ai = U19×19Σ19×2mi

V2mi×2mi
 , where U and V are orthogonal matrices with orthonor-

mal eigenvectors, and Σ is a diagonal matrix with eigenvalues. Then, top k largest 
values in Σ is selected to reduce dimensionality so that an approximation matrix is 
achieved:

Here Âi is a 19 × k matrix as the location visual representative of Pi . First, each Pi 
is represented by the same size matrix so it can be applied in classification. Second, 
different k values can be set to test the performance of classification. We test from 
k = 20 leading to a large matrix representative, to the smallest value k = 1 where Âi 
becomes a 19 dimensional representative vector. In our experiments, the vector rep-
resentation creates better classification outcome.

PCA method

In data analysis and dimensionality reduction, Principal Component Analysis (PCA) 
is one of the popular methods. As done in “SVD method” section, in this section we 
used PCA to reduce dimensions row-wise and find centroid [44], then we found the 
vector that is closest to the centroid using Eq. 4, where, J is the minimum distance 
between jth centroid and one of its vectors.

where vi is random vectors and cj is the jth centroid of vi vectors. Based on the mini-
mum distance between the centroid and vectors associated with a place, we selected 
a vector that closely resembles the centroid and used that vector as a representative 
to classify places.

Central tendency method

In geography, statistical measures of central tendency (i.e., mean, and median) have 
been used in defining a representative location of a small-size areal distribution [38]. 
Visual appearances in a small neighborhood can be considered as a specific areal 
distribution.

The location representative at Pi follows the concept of central tendency. First, 
the image segmentation vectors at NSPs Sj

i
 are ordered by the distances (Euclidean 

(3)Âi = Û19×19Σ̂19×kV̂k×k.

(4)J = min(||v(j)
i
− cj||2)
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or cosine) to the vector at the original place Pi , and then a median vector is achieved. 
Second, a mean vector of these vectors is directly computed by averaging the 19 
category dimensions. In our experiments, the mean vector leads to higher accuracy 
in classification than the median vector, and it has better computational efficiency.

Categorical subsets

Initially we extracted 19 semantic categories (i.e., road, sidewalk, building, wall, 
fence, pole, traffic light, traffic sign, vegetation, terrain, sky, person, rider, car, truck, 
bus, train, motorcycle, and bicycle) from GSV images and used the SSI to classify 
places. However, the classification model was complicated due to the 19 different 
independent variables. Also, we understand that using all 19 categories in the clas-
sification model may not be necessary. There may be some categories that do not 
contribute to classifying crime locations, so it is more efficient to identify a subset of 
more important classifiers. For example, greenery and open spaces can play a criti-
cal role in determining the safety of a neighborhood [56]. We investigate multiple 
combinations of the dimensions and compare their classification performance in a 
heuristic way. We find that six major categories out of 19 can achieve the same level 
of accuracy in crime location prediction. Please see more discussion in “Experiment 
results and discussion” section.

Crime location classification

We used sentiment analysis to determine high- and lower-crime area related sen-
tences. Sentiment analysis is a process to identify positive and negative sentences 
using text-mining [14]. In this study, positive sentences are those that are not related 
to crime, and negative sentences are those related to either violent or property crime. 
The bag-of-words is a popular text-mining approach to understand the sentiment of 
a sentence [90].

In this study, the keywords, such as murder, robbery, gun, drugs, and assault (and 
their variations for example robberies) are used to identify negative sentences, and 
beautiful, amazing, happy, and family are used to identify positive sentences. A fre-
quency count of positive and negative words was calculated to classify sentences 
from the geonarrative data. We checked each sentence manually for its rightful cat-
egory. Because keywords alone do not fully capture an event, to increase accuracy, 
we manually analyzed those sentences so that they could be classified into high- 
or lower- crime categories. In the manual analysis, two researchers independently 
analyzed the result and then discussed on disputed categories and finalized the cat-
egorization after an agreement. We discarded neutral sentences (i.e., not related to 
places) from further analysis. From these, a classification model was trained and 
tested using a three-step approach to gauge effectiveness and limitations. The results 
are reported and discussed in “Experiment results and discussion” section.

Step 1: Several supervised ML algorithms including Logistic Regression, Sup-
port Vector Machine (SVM), Random Forest (FR), and Naive Bayes (NB) were 
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trained to recognize high-crime or lower-crime PCOIs in the imagery. About 
n = 400 PCOIs were labeled for the test city, of which 80% were used to train the 
model, and 20% to validate the classification results. In particular, three comparison 
experiments were performed with different model inputs:

•	 Using different location representatives as discussed in “SVD method” section, 
in order to identify a lower level of crime severity using only the visual charac-
terization of the neighborhood.

•	 Using the neighborhood representatives versus using only the image segmen-
tation vector at the exact location Pi , in order to justify our approach of using 
street-level appearance in a neighborhood.

•	 Using the full 19-dimension representative vectors versus using different combi-
nations of the semantic dimensions, in order to find essential categories linked to 
linking to tendency of crimes and drug uses.

Step 2: The trained model is applied in another city, approximately 20 miles from 
the original test environment (i.e., City 1). To evaluate the classification accuracy, 
locations in this second city (i.e., City 2) are labeled as being  high-crime/lower-
crime from a police report dataset. The report included both crime and the location 
of the crime. Using the FBI crime severity, we labeled places as high-crime and 
lower-crime (Fig. 4).

Step 3: To assess global transferability the trained model is tested on a varying 
set of different urban environments from across the US. These locations are labelled 
based on their crime indexes and then used to evaluate the model’s effectiveness as 
the region changes.

To verify our findings and model accuracy, we downloaded the Federal Bureau 
of Investigation’s (FBI’s) Uniform Crime Report (UCR) from their official 
website. Following the guidelines provided by Douglas, Burgess, Burgess, and 
Ressler [29], we grouped crime incidents information into two categories: violent 
crime and property crime. We used the UCR data to calculate the crime scores. 
In this study, we considered criminal activities such as, (a) violent crime (murder, 
rape, robbery, assault), and (b) property crime (burglary, theft, vehicle theft). We 

Fig. 4   Model accuracy analysis using different US zipcode locations
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divided the number of criminal activities by their respective population to get the 
crime rate for each type of criminal activity separately, then we normalized the 
crime rate for 100 residents, this was done so that we can compare crime scores 
of neighborhoods. All crime types should not be considered the same based [9] 
so violent crime are weighted differently to property crime. We assigned these 
“seriousness weights” to the FBI UCR data, and noticed that the average value 
for violent crimes is three times that of property crimes. Hence, considering the 
nature and severity of the crime in the crime score calculation we multiplied vio-
lent crime by 0.75 and property crime by 0.25, i.e.,

In addition, we compared neighborhood crime scores to both the proximate neigh-
borhood crime scores and the average national crime score. As a result, a higher 
crime score means a high-crime area and a lower crime score means a lower-crime 
area.

Experiment results and discussion

In this section, we present our experimental results: first, we show how our model 
classified high and lower crime areas within a city. Second, we show how our 
model performance was evaluated using police recorded crime data. Third, we 
show our proposed model performance in other geographical areas. Finally, we 
discuss the model’s performance and limitations.

(5)crime score = ((violent crime × 0.75) + (property crime × .025))

Fig. 5   Classification results in four cases (HH, HL, LH, LL) of n = 400 locations in City 1. Y-axis shows 
the classification rate (0-1) and different ML algorithms are shown in different colors
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Classification performance in the test urban environment

Comparing different location visual representatives

Figure 5 shows the classification results for n = 400 locations where 200 are labelled 
as high-crime and another 200 as lower- crime. The mean vector is used and the 
rates of classification in four cases are shown: (1) HH: high-crime identified as high-
crime; (2) HL: high-crime identified as lower-crime; (3) LH: lower-crime identified 
as high-crime; (4) LL: low- crime identified as lower-crime. We compute a classifi-
cation accuracy by:

Table 1 reports the classification performance of different location visual rep-
resentatives. In general, the accuracy of using the mean vector is the highest: LR 
(83.50%), SVM (72.75%), RF (98.75%), and NB (92.50%), and RF algorithm 
shows the best performance (so it is used as the default for the other experiments 
below). In contrast, the median vector only achieves a 46.25% accuracy with the 
RF algorithm. The reason for this is that the median vector only selects one NSP 
from the neighborhood which lacks the necessary representation. The accuracy 
of the SVD method increases from lower than 50% to above 80%, when k (i.e., 
row-dimension) decreases from 50 to 1. Also, representative vector obtained 
from PCA helped to achieve better classification accuracy than SVD vectors 
(see Table  1). The reason may be arguably explained as: Visual appearance in 
the neighborhood is an anisotropic geometric distribution with sporadic changes. 
Using a large k includes considerable variation which in turn negatively impacts 
the classification, while finding a few major components with a small k can 
remove such variations. In addition, the accuracy of the mean vector shows the 
best performance which indicates that the classification of social areal attributes 

(6)Accuracy =
(HH + LL)

(HH + HL + LH + LL)

Table 1   Classification accuracy 
with different location visual 
representatives in percentage 
(%)

Method  Representative 
dimensions

LR SVM RF NB

20 × 19 45.50 46.25 48.50 47.50
15 × 19 52.50 57.50 57.75 56.25
10 × 19 56.50 61.75 62.25 62.50

SVD 5 × 19 65.25 66.50 77.75 73.50
4 × 19 66.75 67.50 78.50 74.75
3 × 19 68.25 68.75 79.50 75.25
2 × 19 73.50 69.50 82.25 79.50
1 × 19 75.25 70.50 84.50 82.25

PCA 1 × 19 80.75 71.25 87.25 85.75
Mean 1 × 19 83.50 72.75 98.75 92.50
Median 1 × 19 42.25 45.50 46.25 48.25
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may respond better to an aggregated global representation rather than visual cat-
egories. We realize the danger in drawing such a conclusion from this initial work 
and we intend to further explore this finding.

Comparing with the semantic vector at the exact location (City 1)

When only two GSV images are extracted at Pi , the classification accuracy after 
training drops to below 50% with all four ML methods. The negative comparison 
to the 19-dimension mean vector validates our assumption that GSV images in a 
neighborhood can better predict crime tendency due to being less reliant on heav-
ily weighting a single image. For example Figs. 6, and 7 shows two similar loca-
tions though the “context” of their surrounding neighborhood images results in a 
different classification.

Fig. 6   GSV images are classified as being high-crime (top row) and lower-crime (bottom row). Images A 
and B are from two different locations, and they have similar visual appearances, however the addition of 
their neighborhood images (in the same row) can better predict their classes

Fig. 7   Semantic segmented images are classified as being high-crime (top row) and lower-crime (bottom 
row). Images A and B are from two different locations, and they have similar visual appearances, how-
ever the addition of their neighborhood images (in the same row) can better predict their classes
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Comparing subsets of semantic dimensions

In order to determine which of the 19 semantic categories best detects crime 
events, non-significant categories such as pole, traffic-light, traffic-sign, person, 
rider, truck, bus, train, motorcycle, bicycle are removed. While some of these 
may play a role in the crime “story” as extracted from the narratives, their gen-
eral infrequency and therefore lack of pixel portions makes them unsuitable for 
classification.

In the end, six significant categories (i.e., road, sidewalk, building, fence, veg-
etation, sky), as shown in the second row of Table  2, reach a similar accuracy 
level when using all 19 categories.

These 6 dimensions are further explored with road, sidewalk, and building 
found to be the most important, while the other three can be used to improve the 
accuracy of the subset.

Model performance in City 2

The trained model with City 1 data is tested for a nearby and, therefore, simi-
lar City 2, with a population of about 15,000. A police report data set including 
geo-tagged crime information in four consecutive years was processed to extract 
high-crime locations with high activities of gunshot, robbery, drug arrests, etc. A 
study conducted by Andresen, Linning, and Malleson [4] used random samples 
to understand spatial concentrations and spatial stability of criminal event data 
at the micro-spatial unit. The authors mentioned that random sampling can help 
increase confidence in the results. Random lower-crime locations were similarly 
sampled in the city as well. With this dataset, the trained classification models are 
tested on n = 135 PCOIs using about 45,196 images. The model achieves good 
classification accuracy with RF at 95.55%. It shows that this model can be used 
in another but generally similar urban environment since City 2 is only 20 miles 
away from City 1. Also, this case study indicates that the model supports the local 
crime report from the police.

Table 2   Classification accuracy report with semantic categories in percentage (%)

Location representative vector semantic dimensions  Logistic 
regression

SVM Random forest Naïve Bayes

All 19 categories 83.50 72.75 98.75 92.50
Road, sidewalk, building, fence, vegetation, sky 83.25 72.50 98.45 92.35
Road, sidewalk, building, fence, sky 81.50 71.40 97.45 91.75
Road, sidewalk, building, fence, vegetation 78.80 70.25 97.25 91.20
Road, sidewalk, building, fence 76.50 68.25 96.75 89.80
Road, sidewalk, building, vegetation 74.75 67.50 95.45 87.90
Road, sidewalk, building 72.25 64.80 89.75 86.50
Road, building 66.40 63.24 76.50 74.30



1 3

Journal of Computational Social Science	

Model performance across geographical regions

While being able to translate findings to similar local urban environments is use-
ful, a test of true transferability is in how the model performs in geographically 
distinct regions (see Fig. 4). To answer this question, seven US states (Table 3) 
are selected in which to apply the model. First, a few zipcode regions (ZR) of 
these states are selected with high and lower crime occurrences based on the FBI 
Uniform Crime Report. As previously described, (a) violent crime (murder, rape, 
robbery, assault), and (b) property crime (burglary, theft, vehicle theft) are used 
to define high and lower crime locations.

Second, from those ZRs 200 PCOIs are sampled in each state, 100 each in high 
and lower ZRs. These PCOIs are randomly generated to find their accurate geo-
locations within the ZRs. Their neighborhood images are retrieved from GSV and 
semantic segmentation is applied to them (see Fig. 4).

Third, the trained model is tested by using the mean vector with six dimen-
sions (i.e., road, sidewalk, building, fence, vegetation, sky) as the location repre-
sentative vector to classify these PCOIs. Table 3 reports the classification results 
with RF algorithm in the four cases (HH, HL, LH, LL). The total accuracy is 
reported for these states ranging from high to low.

Finally, we wanted to see whether our model can classify places (i.e., zip-
code areas) in other states than Ohio. To accomplish this task, we used FBI uni-
form crime report and selected high and low crimes zipcode areas. Also, in our 
study, we test the model in New York City, which has a markedly different urban 
landscape to most other US cities. Similarly, 100 high-crime PCOIs and 100 

Table 3   Classification accuracy report at different areas

RB is used. HC: High-Crime; LC: Low-Crime

Areas ZRs HH HL LH LL Accuracy (%)

NY(HC) 14203, 14210, 14204 97 78 22 3 87
NY(LC) 14209, 14222
MI(HC) 48201, 48226 88 70 30 12 80
MI(LC) 44221
CO(HC) 80211 72 78 22 28 75
CO(LC) 80209, 80210
FL(HC) 33127, 33137 74 72 28 26 73
FL(LC) 33125, 33126
MS(HC) 39209 69 68 32 31 68
MS(LC) 39211
CA(HC) 94603 66 67 33 34 65
CA(LC) 94611, 94516
TX(HC) 78227 61 65 35 39 63
TX(LC) 78258
NYC(HC) 10453, 10454, 10455 66 71 29 34 68
NYC(LC) 10019, 10023, 10304
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lower-crime PCOIs are selected and classified. This result is shown in the last 
row of Table 3.

Multi‑dimension scaling

Multi-Dimension Scaling (MDS) is a method to convert high-dimensional data to 
a lower-dimension. In this study, we used MDS methods in “Location visual repre-
sentative” section to reduce samples and find representative vectors. In this section, 
we convert the samples obtained in “Location visual representative” section to 2D 
form and plot them using scatterplots. In machine learning, researchers often use 
MDS techniques to separate high-dimensional data to reduced or low-dimensions 
[63, 64], such as Principal Component Analysis (PCA) and t-distributed Stochastic 
Neighbor Embedding (t-SNE).

In this study, we used both PCA and t-SNE to convert data to 2-dimensions (see 
Fig. 8). This allowed us to see how high- and lower-crime areas are visually separate 
from each other. Figure  8 shows most high- and lower-crime places are far from 
each other. However, a few of them are very close to each other. This helps to under-
stand why the ML model failed to achieve 100% accuracy.

Discussion

It is widely accepted that different “local” or microenvironments are linked to, or 
are even predictive of crime events [37, 84]. In this paper, we have used machine 
learning approaches to see if it’s possible to use street-level built environment 
imagery to classify those types of locations in an automated and geographically rep-
licable manner. Evidence from Table 3 shows that this is indeed possible, with the 
model trained in City 1 achieving an accuracy of 87% and 80% in the other similar 
“regional” states of New York and Michigan. This is largely due to the similarities 
in their visual appearance. The model’s accuracy decreases though with distance, 
as does also the visual appearance of sub-neighborhood spaces. In Colorado, Flor-
ida, and Missouri, for example, the accuracy falls to 65% to 75%. In California and 
Texas, the landscapes have even greater dissimilarity to Ohio, reflected in model 
performance drops below 65%. Again, this can be attributed to many of those micro 
space elements which have been linked to crime, such as different building types, 
sidewalk styles, openness, and vegetation types. This is not to say there isn’t nuance 

Fig. 8   Scatterplots (left) 2-components from PCA, (right) reduced dimension to 2D using t-SNE
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within a straight distance decay effect of visual similarity; the classification accu-
racy for high-crime PCOIs in New York City was only 68%, since it has dense high-
rise buildings and landscapes [1, 53].

The finding that the ecological connection between micro space and crime will 
vary geographically in terms of content is not surprising. This raises the question of 
how replicable are the classic crime-and-built environment research [12, 89] to other 
built environments in terms of replicating their specific detail using a machine learn-
ing approach. For example, how transferable are systematic observations of neigh-
borhood spaces beyond their study space [80]? Likewise, can the results from other 
AI-enhanced single location studies find application beyond their study site [93]? 
This leads to other questions such as, where does the model accuracy change, mean-
ing where are those boundaries of - regional difference? For example, the results for 
City 2 were acceptable. It could also be argued that the results for New York State 
and Michigan were acceptable, or at least the models could be tweaked with mini-
mal local image training. Might it be possible, by understanding these boundaries, 
to create image libraries in order to tweak classification models regionally so that 
research in “City A” would need the “Region A” trained model supplemented with 
20% additional training?

Even now, the models presented still achieved 60+% prediction for any test envi-
ronment. Can these results be further mined to identify common location-neutral 
built environment characteristics and crime drivers? This will be explored in fur-
ther research, where more specific crime types are investigated using this modeling 
approach.

Implications

Often local law-enforcement agencies help to classify places as high and low crime 
areas [88]. However, human-led classification of places may be biased, because of 
personal belief and misjudgment [68]. Our approach uses AI and computer vision 
to classify places, which has the advantage through machine learning of increased 
accuracy and bias-free results [81]. Evidence from our study suggests that among all 
the semantic categories, road, sidewalk, building, fence, vegetation, and sky are the 
major categories that can help to determine if a place can be labeled as high/lower 
crime. For example, the semantic category of fence was commonly found with high-
crime areas, which has support in the crime literature by Kim [47] and then Rooney 
[76].

Likewise, our study also suggests areas with more vegetation have more posi-
tive associations and are more visually pleasing. According to Kuppinger [51], 
more green areas are attractive to home buyers and greenery is related to comfort, 
quality of lifestyle, and convenience. Conversely, crime tends to locate in less 
green areas. In our study, greenery was an important category that helped to sepa-
rate high- and lower-crime areas (see Table 2). Similarly, a study conducted by 
Katyal [45] noticed that less building and openness of an area help identify crime 
areas. In other words, the density of the built environment is negatively corre-
lated with high-crime areas. The results of our study indicate that the semantic 
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category building was one of the major predictors of crime classification (see 
Figs.  6 and 7). However, while the evidence from our study generally supports 
these studies in terms of buildings, openness, and crime, we also acknowledge 
that considerable complexity exists within these overall categories, and that the 
next steps are to further extract these details. For example, while vegetation in 
general is a positive association, we know of the research connection between 
different park types and crime, or the perception of crime [65]. Further image 
analysis could again consider such nuances in vegetative cover, or even the type 
of open space.

Conclusions and future work

This paper presents an ML approach to automatically identify the types of places 
linked to crime based on their visual characteristics, with thematic classification 
occurring through the mining of police officer geonarratives. By using this contex-
tualized labeling of images, in addition to taking a more “complete” visual of the 
neighborhood by extracting images around the described location, predictive models 
were generated that could successfully identify crime environments in other cities 
beyond the point of data collection. In this way, potentially, model findings can be 
extrapolated where little local data exists. Even for more data-rich environments, 
this type of automatic classification approach could be more operational for more 
resource stretched police departments. A further benefit in model adoption would be 
the reduction in human-led classification biases.

By comparing these model outputs to different regions, it was found that a dis-
tance decay in model performance was evident, with neighboring (and therefore 
more similar) urban environments being better predicted. Future questions to be 
explored include, how to define regions based on model accuracy (and where addi-
tional training is needed), how the model performs for more specific crime types, 
whether it is possible to directly establish crime-environment patterns from the 
images using deep learning, instead of performing semantic segmentation first.

What we have shown is that it is possible to apply models and findings from more 
data and resource-rich environments to more challenging jurisdictions. Future work 
might show us where, for example, potential rape locations can be found in any 
urban environment using minimal additional model training. That type of tool could 
prove invaluable in getting ahead of, rather than just reporting about, where crimes 
are likely to occur.
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