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We develop a preconditioned fast divided-and-conquer finite element approximation for 
the initial-boundary value problem of variable-order time-fractional diffusion equations. 
Due to the impact of the time-dependent variable order, the coefficient matrix of the re-
sulting all-at-once system does not have a Toeplitz-like structure. In this paper we derive 
a fast approximation of the coefficient matrix by the means of a sum of Toeplitz matrices 
multiplied by diagonal matrices. We show that the approximation is asymptotically con-
sistent with the original problem, which requires O (MN log3 N) computational complexity 
and O (MN log2 N) memory with M and N being the numbers of degrees of freedom in 
space and time, respectively. Furthermore, a preconditioner is introduced to reduce the 
number of iterations caused by the bad condition number of the coefficient matrix. Nu-
merical experiments are presented to demonstrate the effectiveness and the efficiency of 
the proposed method.

© 2021 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Integer-order diffusion partial differential equations were derived under the assumptions that the underlying particle 
movements have a mean free path and a mean waiting time [27,28], which hold for the diffusive transport of solutes in 
homogeneous aquifers when the solute plumes were observed to exhibit a Gaussian type exponentially decaying tails [3]. 
However, field tests showed that the diffusive transport of solutes in heterogeneous aquifers often exhibits highly skewed 
power-law decaying tails [4,5,27,28]. The traditional approach is to tweak the variable parameters in pre-set integer-order 
diffusion equations to address the impact of heterogeneity of the media. However, this approach tends to recover a rapidly 
varying, scale-dependent diffusivity and may overfit the training data but yield less accurate prediction on testing data [30], 
as the Gaussian type solutions of integer-order diffusion equations cannot accurately capture the highly skewed power-law 
decaying behavior of the solute transport in heterogeneous media.

Fractional diffusion equations (FDEs) were derived so that their solutions can accurately capture the highly skewed 
power-law decaying tails that were observed in the solute transport in heterogeneous media [27,28]. Consequently, sig-
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nificant research has been carried out in the numerical approximations to FDEs and the corresponding numerical analysis 
[7–11,14,15,17,24,26,36,40,42]. However, FDEs introduce new mathematical, numerical and computational difficulties that 
are not common for integer-order diffusion equations. For instance, the first-order time derivative of the solutions to the 
time-fractional diffusion equations (tFDEs) exhibits singularity near the initial time t = 0, which makes the error estimates 
in the literature that were proved under full regularity assumptions of the true solutions inappropriate [29,32].

It was shown that the occurrence of the nonphysical solutions to tFDEs at the initial time t = 0 roots from the incom-
patibility between the nonlocality of the power law decaying tails and the locality of the classical initial condition [2,38]. 
It was proved in [38] that tFDEs in which the order varies smoothly to the integer value at the time t = 0 can eliminate 
the nonphysical singularity of the solutions to constant-order tFDEs and have solutions with full regularity. Furthermore, 
variable-order tFDEs occur in many applications [25,33,41,44], as the order relates to the fractal dimension of the porous 
media determined by the Hurst index [27] that changes as the geometrical structure of the media changes. Different numer-
ical approximations were developed and analyzed [31,34,41,44]. In particular, an optimal-order error estimate for a finite 
element approximation to variable-order tFDEs was proved in [43] without an artificial assumption of the smoothness of 
the true solutions.

Because of the memory property of time-fractional differential operators, numerical discretizations of tFDEs at each time 
step require the storage and numerical evaluation of the numerical solutions at all the previous time steps. Consequently, a 
direct numerical approximation to tFDEs typically has O (MN) memory requirement and O (MN2) computational complexity, 
where M and N are the numbers of spatial unknowns and time steps, respectively. The significantly increased computational 
complexity and memory requirement in the numerical simulations of tFDEs makes the FDE modeling in real applications 
computationally intractable.

There has been extensive research on the development of fast numerical solution techniques for tFDEs. Motivated by the 
Toeplitz-like matrix splitting that was originally discovered by some of the authors in the context of spatial FDEs [37], some 
of the authors developed a Toeplitz-like matrix splitting based all-at-once preconditioned fast solution method to solve 
space-time FDEs in a space-time fully coupled manner [13]. All-at-once solution technique was subsequently developed by 
others [6]. The divide-and-conquer (DAC) method is a recursive solution method based on the all-at-once linear algebraic 
system [12,23]. These methods have a greatly reduced computational complexity of O (MN log2 N). An alternative class of 
fast numerical methods is the exponential sum approximation based algorithms [16,20,39]. In these methods, a sum-of-
exponentials (SOE) approximation for the singular kernel in the fractional differential operator was derived to compute the 
fractional derivative in O (log N) or O (log2 N) evaluations. Consequently, these methods can solve tFDEs in O (MN log2 N)

computations.
Nevertheless, these fast methods do not apply to variable-order tFDEs. The coefficient matrices of the numerical schemes 

to variable-order tFDEs lose the Toeplitz-like structure, which was crucial in the development of the all-at-once methods 
[6,13] and DAC methods [12,23], while the exponential sum approximation based algorithms were derived via Laplace 
transform of the singular kernels that cannot be carried out for variable-order tFDEs [20,39].

Concerning the aforementioned issues, the main objective of this work is to find a fast numerical approximation to 
variable-order tFDEs via different approaches. The basic idea is to perform the Taylor expansion on each entry of the coeffi-
cient matrix, which includes the variable order α(t), at a fixed order ᾱ . Consequently, the coefficient matrix is approximated 
by a sum of Toeplitz matrices multiplied by diagonal matrices. We prove that it suffices to keep the first O (log N) terms in 
the expansion in order to retain the first order accuracy in time, which, together with the preconditioned DAC technique 
employing the Toeplitz structure of the approximating matrices, reduce the computational complexity from O (MN2) to 
O (MN log3 N).

The rest of the paper is organized as follows. In Section 2 we present the model problem and its numerical discretization. 
In Section 3 we approximate the coefficient matrix by a sum of Toeplitz-like matrices and analyze its asymptotic consistency. 
In Section 4 we develop a fast DAC method for the approximated system, based on which a preconditioned fast DAC method 
is subsequently proposed. We perform numerical experiments to test the performance of the method in the last section.

2. A variable-order tFDE and its finite element approximation

In this section we go over the variable-order tFDE model and its finite element approximation.

2.1. On tFDE modeling issues

We begin with the widely used tFDE model

C
0 Dα

t u − ∇ · (K(x)∇)u = f (x, t), (x, t) ∈ � × (0, T ], 0 < α < 1,

u(x,0) = u0(x), x ∈ �; u(x, t) = 0, (x, t) ∈ ∂� × (0, T ],
(1)

which was derived via a continuous time random walk (CTRW) assuming that the mean waiting time has a power-law 
decaying tail [27,28]. Consequently, as field tests showed that solute transport in heterogeneous aquifers often exhibits 
highly skewed and power-law decaying behavior and model (1) was derived under the assumption that the solutions have 
such behavior [5], model (1) accurately models the subdiffusive transport.
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In model (1), � ∈Rd (d = 1, 2, 3) refers to a bounded domain with the piecewise smooth boundary ∂�, x := (x1, · · · , xd), 
∇ := (∂/∂x1, · · · , ∂/∂xd)

T , K(x) := (ki, j(x))d
i, j=1 is a symmetric and positive-definite matrix with uniform lower and upper 

bounds, the Caputo fractional differential operator C
0 Dα

t is defined by [27,28]

0 Iαt g(t) := 1

�(α)

t∫
0

g(s)

(t − s)1−α
ds,

C
0 Dα

t g(t) := 0 I1−α
t g′(t) = 1

�(1 − α)

t∫
0

g′(s)

(t − s)α
ds,

(2)

where �(·) refers to the Gamma function. The tFDE (1) was derived as the diffusion limit of a CTRW, as the number of 
particle jumps tends to infinity. Hence, it holds for relatively large time t > 0, rather than all the way up to the time t = 0
as often assumed in the literature. This explains why the solutions to problem (1) exhibit nonphysical singularity near the 
initial time t = 0.

The following variable-order tFDE model was analyzed in [38]

ut + q(t) R
0 D1−α(t)

t u − ∇ · (K(x)∇)u = f (x, t), (x, t) ∈ � × (0, T ],
u(x,0) = u0(x), x ∈ �; u(x, t) = 0, (x, t) ∈ ∂� × (0, T ].

(3)

Here ut denotes the first-order partial derivative in time, the variable-order Riemann-Liouville fractional derivative is defined 
by [25,41,44]

R
0 D1−α(t)

t g(t) :=
[ 1

�(α(t))

d

dξ

ξ∫
0

g(s)

(ξ − s)1−α(t)
ds

]
ξ=t

.

The variable fractional integral and Caputo fractional differential operator can be defined by replacing the α in (2) by α(t).
A constant-order two time-scale mobile-immobile tFDE was presented in [30] to model the diffusive transport of the 

solute in heterogeneous porous media. In this case a large portion of solute may get absorbed to the media and deviates 
from the transport of the solute in the bulk fluid phase. The absorbed solute may get slowly released back to the bulk fluid 
phase that leads to a subdiffusive transport process. The variable-order tFDE model (3), was motivated by the work in [30]
and accounts for the impact of the deformation of the porous media reflected in the change of the fractal dimension or 
Hurst index of the media. In the model the ut term models the Fickian diffusive transport of the solute in the bulk fluid 
phase, which consists of 1/(1 + q(t)) portion of the total solute mass, and the q(t) R0 D1−α

t u term models the subdiffusive 
transport of the solute absorbed to the solid matrix, which is q(t)/(1 + q(t)) portion of the total solute mass. Note that the 
governing tFDE (3) holds on the entire time interval including the initial time t = 0.

2.2. A finite element approximation

We utilize the following relation between the variable-order Riemann-Liouville and Caputo fractional derivatives [41,44]

R
0 D1−α(t)

t g(t) = C
0 D1−α(t)

t g(t) + g(0)tα(t)−1

�(α(t))
, t ∈ (0, T ]

to rewrite the variable-order Riemann-Liouville tFDE model (3) in the following Caputo form

ut + q(t)C
0 D1−α(t)

t u − ∇ · (K(x)∇)u = −q(t)u0(x)tα(t)−1

�(α(t))
+ f (x, t),

u(x,0) = u0(x), x ∈ �; u(x, t) = 0, (x, t) ∈ ∂� × (0, T ].
(4)

It was proved in [38] that if the variable order α(t) satisfies that α(0) = 1, α′(0) = 0 and limt→0+ α′(t) ln t = 0 in addition 
to the usual smoothness assumption on the variable order α(t) as well as the coefficients, right-hand side and the initial 
data, the problem (4) has a unique solution that has the full regularity.

For M, N ∈N+ , let ti := iτ for i = 0, 1, · · · , N with τ = T /N be a uniform partition of [0, T ] and define a quasi-uniform 
partition of � with the diameter h and M interior nodes. Let Sh be the finite element space of continuous and piecewise-
linear functions on �h with the nodal basis {φi(x)}M .
i=1
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We discretize ut and C
0 D1−α(t)

t u at t = tn by the backward Euler and the L1 discretization, respectively

ut(x, tn) ≈ δt u(x, tn) := u(x, tn) − u(x, tn−1)

τ
,

C
0 D1−α(tn)

t u(x, tn) = 1

�(α(tn))

tn∫
0

us(x, s)

(tn − s)1−α(tn)
ds

≈ δ
1−α(tn)
t u(x, tn) = 1

�(α(tn))

n∑
k=1

tk∫
tk−1

δku(x, tk)

(tn − s)1−α(tn)
ds

= 1

�(1 + α(tn))

n∑
k=1

[
(tn − tk−1)

α(tn) − (tn − tk)
α(tn)

]
δt u(x, tk).

(5)

We multiply (4) by any χh ∈ Sh , integrate the resulting equation on �, and replace ut(x, tn), C
0 D1−α(tn)

t u(x, tn) by δu(x, tn)

and δ1−α(tn)
n u(x, tn), respectively, and then to replace u(x, tn) by the trial function

un
h :=

M∑
i=1

un
i φi ∈ Sh, (6)

to obtain a finite element scheme for the tFDE model (4): Find un
h such that the following equation holds for any χh ∈ Sh

(
δt un

h,χh
) + q(tn)

(
δ

1−α(tn)
t un

h,χh
) + (

K(·)∇un
h,∇χh

)

= −q(tn)t
α(tn)−1
n

�(α(tn))

(
u0,χh

) + (
f (·, tn),χh

)
.

(7)

Let L2(�) be the space of the Lebesgue square integrable functions in � and Hm(�) be the Sobolev space of functions 
with derivatives of order up to m in L2(�). Let

Ȟm(�) :=
{

v ∈ Hm(�) : ∇ · (K(x)∇) j v(x) = 0, x ∈ ∂�, ∀ j < m/2, j ∈N
}
.

For a Hilbert space X , we introduce the Sobolev spaces involving time [1,35]

Hm(0, T ;X )

:=
{

f (x, t) : ∂ l f (·, t)

∂tl
∈ X , t ∈ (0, T ),

∥∥∥∥∂ l f (·, t)

∂tl

∥∥∥∥
X

∈ L2(0, T ), 0 ≤ l ≤ m

}

with the norm being defined by

‖ f ‖Hm(0,T ;X ) :=
( m∑

l=0

T∫
0

∥∥∥∥∂ l f (·, t)

∂tl

∥∥∥∥
2

X
dt

)1/2

.

The following stability and error estimates for finite element scheme (7) was proved in [43].

Theorem 2.1. Suppose that α, q ∈ C1[0, T ] with 0 < αm ≤ α(t) ≤ 1 for t ∈ [0, T ], ki, j ∈ C1(�) for i, j = 1, . . . , d, u0 ∈ Ȟ4 and 
f ∈ H1(0, T ; Ȟ2) ∩ H2(0, T ; L2). If α(0) = 1, α′(0) = 0 and limt→0+ α′(t) ln t exists, an optimal order error estimate holds

‖uh − u‖ := max
1≤n≤N

‖un
h − u(·, tn)‖L2(�)

≤ Q
(‖u0‖Ȟ4 + ‖ f ‖H1(0,T ;Ȟ2)

+ ‖ f ‖H2(0,T ;L2)

)(
N−1 + h2).

If α(0) < 1, a suboptimal order error estimate holds

‖uh − u‖ ≤ Q
(‖u0‖Ȟ4 + ‖ f ‖H1(0,T ;Ȟ2)

+ ‖ f ‖H2(0,T ;L2)

)(
N−α(0) + h2).

In both cases, the stability estimate holds

‖uh‖ ≤ Q
(‖u0‖Ȟ4 + ‖ f ‖H1(0,T ;Ȟ2)

+ ‖ f ‖H2(0,T ;L2)

)
.

Here Q = Q (T , αm, ‖α‖C1[0,T ], ‖k‖C1[0,T ]).
18
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3. An approximation to the all-at-once system

Like in the constant-order tFDE case, the numerical scheme (7) has a computational complexity of order O (MN2) as it 
requires the evaluation of the numerical solutions at all the previous time steps. Due to the impact of the variable order 
α(t), the scheme loses the Toeplitz-like structure. Hence, the fast methods developed for constant-order tFDEs do not apply.

3.1. Matrix form of the all-at-once system

To develop a fast solution method, we follow the previous practice to begin with the exploration of the matrix structure. 
In this section we prove the following theorem

Theorem 3.1. The finite element scheme (7) can be expressed in the following space-time coupled all-at-once matrix form

Au = f (8)

where u, f ∈RN M are block vectors of the form

u :=
(

u1,u2, · · · ,uN
)T

, un := (un
1, un

2, · · · , un
M)T

f :=
(

f1, f2, · · · , fN
)T

, fn := ( f n
1 , f n

2 , · · · , f n
M)T , 1 ≤ n ≤ N.

(9)

The stiffness matrix A can be decomposed in the tensor product form

A = BN ⊗ M0 + τ IN ⊗ M1. (10)

Here IN ∈RN×N is the identity matrix, BN is a lower triangular matrix generated by the time dependent derivatives, M0, M1 ∈RM×M

are the sparse mass and stiffness matrices with (M0)i, j = (φi, φ j) and (M1)i, j = (K(·)∇φi, ∇φ j), respectively.

Proof 3.1. We incorporate (6) into the finite element scheme (7) and use (5) to rewrite (7) as follows

n∑
k=1

bn,k
(
uk

h,χh
) + τ

(
K(·)∇un

h,∇χh
)

= τα(tn)q(tn)
(nα(tn) − (n − 1)α(tn)

�(1 + α(tn))
− nα(tn)−1

�(α(tn))

)(
u0,χh

)

+τ
(

f (·, tn),χh
)
,

(11)

where the coefficients bn,k for 1 ≤ k ≤ n ≤ N are given as follows

bn,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + τα(tn)q(tn)

�(1 + α(tn))
, k = n;

τα(tn)q(tn)

�(1 + α(tn))

[
2α(tn) − 2

]
− 1, k = n − 1;

τα(tn)q(tn)

�(1 + α(tn))

[
(n − k + 1)α(tn)

−2(n − k)α(tn) + (n − k − 1)α(tn)
]
, 1 ≤ k ≤ n − 2.

(12)

The f n
i in (9) is given by

f n
i := τ ( f (·, tn),φi)

+τα(tn)q(tn)
(nα(tn) − (n − 1)α(tn)

�(1 + α(tn))
− nα(tn)−1

�(α(tn))

)
(u0, φi).

(13)

A careful examination of (11) and (12) reveals that the following decomposition holds.

A = BN ⊗ M0 + τ IN ⊗ M1. (14)

Here BN ∈ RN×N is a lower triangular matrix defined by (BN )n,k := bn,k for 1 ≤ k ≤ n ≤ N . We observe from (12) that the 
matrix BN can be decomposed as
19
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BN = CN + diag(�)TN , (15)

where CN is a bi-diagonal matrix, in which the all the entries on the main diagonal is 1 and all the entries on the subdigonal 
is −1, � = (�n)N

n=1 is given by �n := τα(tn)q(tn)/�(1 +α(tn)), and the entries (TN )n,k of the lower triangular matrix TN are 
given by

(TN )n,k :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, k = n,

2α(tn) − 2, k = n − 1,

(n − k + 1)α(tn) − 2(n − k)α(tn)

+(n − k − 1)α(tn), 1 ≤ k ≤ n − 2.

(16)

3.2. Approximations of BN

Theorem 3.2. Let ᾱ = 1
2

(
αmin + αmax

)
. Then for 1 ≤ k ≤ n − 2, (TN )n,k can be approximated by

(TN )n,k ≈ (T̃N )n,k =
s∑

j=0

(α(tn) − ᾱ) j

j!
[
(n − k + 1)ᾱ ln j(n − k + 1)

−2(n − k)ᾱ ln j(n − k) + (n − k − 1)ᾱ ln j(n − k − 1)
]
,

(17)

for some s ∈N+ with the residue Rn,k
s+1 given by

Rn,k
s+1 = (α − ᾱ)s+1

2(s + 1)!
{
η(η − 1)

[ lns+1(n − k + ξ1)

(n − k + ξ1)2−η
+ lns+1(n − k − ξ2)

(n − k − ξ2)2−η

]

+(s + 1)(2η − 1)
[ lns(n − k + ξ1)

(n − k + ξ1)2−η
+ lns(n − k − ξ2)

(n − k − ξ2)2−η

]

+s(s + 1)
[ lns−1(n − k + ξ1)

(n − k + ξ1)2−η
+ lns−1(n − k − ξ2)

(n − k − ξ2)2−η

]}
,

(18)

here ξ1, ξ2 ∈ (0, 1), η = ᾱ + θ(α(tn) − ᾱ), θ ∈ (0, 1).

Proof 3.2. We decouple the nonlinear dependence of n and k in (TN )n,k for 1 ≤ k ≤ n − 3 by applying the Taylor’s expansion 
of power functions. Define ψ(x) := (n − k + 1)x − 2(n − k)x + (n − k + 1)x . Then

ψ(α) =
s∑

j=0

(α − ᾱ) j

j! ψ( j)(ᾱ) + (α − ᾱ)s+1

(s + 1)! ψ(s+1)(ᾱ + θ(α − ᾱ)), θ ∈ (0,1),

here ψ( j)(α) represent the j-th derivative. Replacing the ψ(α) part in the definition (16) of (TN )n,k yields

(TN )n,k =
s∑

j=0

(α(tn) − ᾱ) j

j!
[
(n − k + 1)ᾱ ln j(n − k + 1)

−2(n − k)ᾱ ln j(n − k) + (n − k − 1)ᾱ ln j(n − k − 1)
]
+ Rn,k

s+1,

(19)

with the local truncation error Rn,k
s+1 given by

Rn,k
s+1 = (α − ᾱ)s+1

(s + 1)!
[
(n − k + 1)ᾱ+θ(α−ᾱ) lns+1(n − k + 1)

−2(n − k)ᾱ+θ(α−ᾱ) lns+1(n − k)

+(n − k − 1)ᾱ+θ(α−ᾱ) lns+1(n − k − 1)
]
, θ ∈ (0,1).

Dropping Rn,k in (19) yields the approximation (17) of (TN )n,k for 1 ≤ k ≤ n − 2.
s+1

20
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To seek a more compact form of Rn,k
s+1, we define g(x) = xη lns+1 x with η = ᾱ + θ(α − ᾱ). Direct calculation yields

g′(x) = ηxη−1 lns+1 x + (s + 1)xη−1 lns x,

g′′(x)= η(η − 1)xη−2 lns+1 x + η(s + 1)xη−2 lns x

+(s + 1)(η − 1)xη−2 lns x + s(s + 1)xη−2 lns−1 x

= xη−2
[
η(η − 1) lns+1 x + (s + 1)(2η − 1) lns x + s(s + 1) lns−1 x

]
.

We incorporate these with the following relation

g(x + 1) − 2g(x) + g(x − 1) = 1

2

[
g′′(x + ξ1) + g′′(x − ξ2)

]
, ξ1, ξ2 ∈ (0,1)

to simplify the local truncation error Rn,k
s+1 to (18), which finishes the proof.

According to Theorem 3.2, we obtain an approximation T̃N of TN by replacing (TN )n,k by (T̃N )n,k for 1 ≤ k ≤ n − 3. Thus 
the linear system (8) can be approximated by

Ãũ = f, Ã = B̃N ⊗ M0 + τ IN ⊗ M1, (20)

where B̃N = CN + diag(�)T̃N . To prove the asymptotically consistency of the approximated system to the original problem, 
we bound the local truncation error Rn,k

s+1 in the following theorem.

Theorem 3.3. For 1 ≤ k ≤ n − 3, the Rn,k
s+1 can be bounded by

|Rn,k
s+1| ≤

Q

2s+1
√

s
.

Furthermore, for any ε > 0 it holds for s ≥ 1 − αmin

ln 2
ln N − 1

max
1≤k≤n≤N

∣∣(B̃N )n,k − (BN)n,k
∣∣ ≤ Q

N
√

s
.

Here Q is a constant independent of N.

Proof 3.3. We incorporate (18) with |ᾱ − α(tn)| ≤ 1/2 and (n − k − 1) ≥ (n − k + 1)/2 for n − k ≥ 3 to obtain

|Rn,k
s+1| ≤

Q

2s+1

( 1

(s + 1)!
lns+1(n − k + 1)

(n − k + 1)2−η
+ 1

s!
lns(n − k + 1)

(n − k + 1)2−η

+ 1

(s − 1)!
lns−1(n − k + 1)

(n − k + 1)2−η

)
.

(21)

For ŝ ≥ 1, direct calculations show that the function g1(x) := lnŝ x/x2−η attains its maximum at x = eŝ/(2−η) on 1 ≤ x ≤ N . 
Combining this with (21) and the Stirling’s formula s! ≈ √

2π s
(

s/e
)s

for s � 1 we get

|Rn,k
s+1| ≤

Q

2s+1

( 1

(s + 1)!

(
s+1
2−η

)s+1

(
e

s+1
2−η

)2−η
+ 1

s!

(
s

2−η

)s

(
e

s
2−η

)2−η
+ 1

(s − 1)!

(
s−1
2−η

)s−1

(
e

s−1
2−η

)2−η

)

≤ Q

2s+1

( es+1

√
2π(s + 1)(s + 1)s+1

(s + 1)s+1

(2 − η)s+1es+1

+ es

√
2π sss

ss

(2 − η)ses
+ es−1

√
2π(s − 1)(s − 1)s−1

(s − 1)s−1

(2 − η)s−1es−1

)

= Q

2s+1

( 1√
2π(s + 1)(2 − η)s+1

+ 1√
2π s(2 − η)s

+ 1√
s−1

)
≤ Q

s+1
√ , s ≥ 2.

(22)
2π(s − 1)(2 − η) 2 s

21



J. Jia, H. Wang and X. Zheng Applied Numerical Mathematics 163 (2021) 15–29
Plugging (22) into (15) yields

max
1≤k≤n≤N

∣∣(B̃N )n,k − (BN)n,k
∣∣ ≤ Q

Nαmin
√

s2s+1
.

By setting s + 1 ≥ 1 − αmin

ln 2
ln N for any ε > 0, i.e., 2s+1 ≥ N1−αmin , we immediately obtain

max
1≤k≤n≤N

|(B̃N)n,k − (BN)n,k| ≤ Q

N
√

s
,

which finishes the proof.

Remark 3.1. Theorem 3.3 implies that

max
1≤i, j≤M,N

∣∣(A)i, j − (Ã)i, j
∣∣ → 0, s → ∞,

which proves the asymptotically consistency of the approximated system to the original problem.

4. A preconditioned fast DAC solver

By the block lower-triangular structure of A and the sparsity of the mass and the stiffness matrices, the all-at-once 
system Au = f can be solved based on the Kronecker product, which requires O (MN2) storage and O (MN2) operations. 
To reduce the memory requirement and the computational complexity, we develop a preconditioned fast DAC method 
for the approximated system Ãũ = f, in which the Toeplitz-like structure of B̃ is exploited for the efficient matrix-vector 
multiplications. For convenience, we slightly abuse the notations to replace ũ by u in the following statement.

4.1. A fast DAC method

It is clear that the matrix-vector multiplication (IN ⊗ M1)v for any v ∈ RN M requires O (N M) memories and O (N M)

operations. The remaining task is to efficiently implement the 
(
B̃N ⊗ M0

)
v. Define the operator P by Pv := (v1, · · · , vN ) ∈

RM×N for any v = (v1, · · · , vN )� ∈RN M with v1, · · · , vN ∈RM . By the relation

(
B̃N ⊗ M0

)
u = P−1(M0(B̃N(Pu)�)�

)
, (23)

it suffices us to investigate the implementation of B̃N vN for some vN ∈RN .
Let B̃N vN = pN for N = 2 J with J ∈N+ and N ′ = N/2. Then B̃N , vN and pN can be divided as

B̃N =
⎡
⎣B̃∗

N ′ 0

�̃N ′ B̃∗∗
N ′

⎤
⎦ , vN =

[
v∗

N ′
v∗∗

N ′

]
, pN =

[
p∗

N ′
p∗∗

N ′

]
, (24)

where, by the approximation (17), �̃N ′ can be expressed as

�̃N ′ = diag(D0)T0 + diag(D1)T1 + · · · + diag(Ds)Ts

in which D j := (D j
i )

N ′
i=1 with

D j
i = τα(ti+N′ )q(ti+N ′)(α(ti+N ′) − ᾱ) j

j!�(1 + α(ti+N ′))
, 1 ≤ i ≤ N ′

and T j := Toeplitz(t j
c , t

j
r ) for 0 ≤ j ≤ s with t j

c = (t j
ci)

N ′
i=1 and t j

r = (t j
ri)

N ′
i=1 referring to the first column and the first row of 

T j , respectively

t j
ci = (N ′ + i)ᾱ ln j(N ′ + i) − 2(N ′ + i − 1)ᾱ ln j(N ′ + i − 1)

+(N ′ + i − 2)ᾱ ln j(N ′ + i − 2), 1 ≤ i ≤ N ′,

t j
ri = (N ′ − i + 2)ᾱ ln j(N ′ − i + 2) − 2(N ′ − i + 1)ᾱ ln j(N ′ − i + 1)

+(N ′ − i)ᾱ ln j(N ′ − i), 1 ≤ i ≤ N ′.

Then B̃N vN = pN can be divided into the following two sub-systems
22
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p∗
N ′ = B̃∗

N ′ v∗
N ′ , p∗∗

N ′ = �̃N ′ v∗
N ′ + B̃∗∗

N ′ v∗∗
N ′ . (25)

Indeed, the matrix-vector multiplication T jvN ′ can be carried out efficiently via the discrete fast Fourier transform. However, 
as proved in Theorem 3.3, the local truncation error Rn,k

s+1 may not be sufficiently small for k near n, which in turn affects 
the accuracy of the approximations. For this reason we keep the true values in the original matrix BN ′ of the entries on the 
right-up bands of �N ′ with width c = O (�log n�) as follows

�̃N ′ = �̂N ′ + �N ′ (26)

where

�̂N ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̃1,1 · · · �̃1,N ′−c 0 0 · · · 0

�̃2,1 · · · �̃2,N ′−c �̃2,N ′−c+1 0 · · · 0

...
...

. . .
. . .

. . .
. . .

...

�̃c,1 · · · �̃c,N ′−c �̃c,N ′−c+1 �̃c,N ′−c+2 · · · 0

...
...

. . .
. . .

. . .
. . .

...

�̃N ′,1 · · · �̃N ′,N ′−c �̃N ′,N ′−c+1 �̃N ′,N ′−c+2 · · · �̃N ′,N ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�N ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 (BN)1,N ′−c+1 (BN)1,N ′−c+2 · · · (BN)1,N ′

0 · · · 0 0 (BN)2,N ′−c+2 · · · (BN)2,N ′

...
...

. . .
. . .

. . .
. . .

...

0 · · · 0 0 0 · · · (BN)c,N ′

...
...

. . .
. . .

. . .
. . .

...

0 · · · 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore, the matrix �̂N ′ reserves the Toeplitz-like structure like �̃N ′

�̂N ′ = diag(D0)T̂0 + diag(D1)T̂1 + · · · + diag(Ds)T̂s

where T̂ j = Toeplitz(t̂ j
c , ̂t

j
r ) (0 ≤ j ≤ s) with t̂ j

c = t j
c and

t̂ j
r = [t j

r1, · · · , t j
rN ′−c,0, · · · ,0]T (27)

Repeating the subdivision procedure like (24)–(27) generates the following fast DAC algorithm for the matrix-vector multi-
plication B̃N vN .

Theorem 4.1. The matrix-vector multiplication B̃N vN requires O (N log2 N) memory and O (N log3 N) operations.

Proof 4.1. It is well known that the matrix-vector multiplication T jvN ′ can be performed in O (N ′ log N ′) operations via 
the discrete fast Fourier transform. Thus the implementation of �̂N ′ vN ′ only requires O (sN ′ log N ′) operations and O (sN ′)
memory. As s takes the value of O (log N) in Theorem 3.3, the aforementioned computational cost and storage become 
O (N ′ log N ′ log N) and O (N ′ log N), respectively. Let �̃N and �̃N be the total computational cost and the storage of the 
implementations of �̂N ′ vN ′ in the fast DAC method. Then
23
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Algorithm 1 Fast DAC algorithm for B̃N vN .

function pN = fastDAC(B̃N ,vN )

if N ≤ 2

pN = B̃N vN

else

p∗ = fastDAC(B̃∗,v∗)

p∗∗ = fastDAC(B̃∗∗,v∗∗) + �̂N ′ v∗

end if

end function

�̃N = O (N ′ log N ′ log N) + 2�̃N ′

= O (N ′ log N ′ log N) + 2O (
N ′

2
log

N ′

2
log N) + 22�̃ N′

2

= · · · = O
(

log2 N(N ′ + 2
N ′

2
+ 22 N ′

22
+ · · · + 2 J N ′

2 J
)
) = O (N log3 N)

�̃N = O (N ′ log N) + 2�̃N ′

= O (N ′ log N) + 2O (
N ′

2
log N) + 22�̃ N′

2

= · · · = O
(

log N(N ′ + 2
N ′

2
+ 22 N ′

22
+ · · · + 2 J N

2 J
)
) = O (N log2 N).

(28)

The matrix �N ′ has c(c+1)
2 nonzero entries totally, which implies that the storage and the computational work of the 

matrix-vector multiplication �N ′ vN ′ are both O (log2 N). Let εθ and εφ be the computational cost and the storage of �nvn

for n = N/2, · · · , N/2 J . Similar calculations like (28) yield

εθ = c(c + 1)

2
+ 2

c(c + 1)

2
+ · · · + 2 J c(c + 1)

2
= 2 J − 1

2

c(c + 1)

2
= O (Nc2),

εφ = c(c + 1)

2
+ 2

c(c + 1)

2
+ · · · + 2 J c(c + 1)

2
= 2 J − 1

2

c(c + 1)

2
= O (Nc2).

In particular, setting c = log N yields εθ = O (N log2 N) and εφ = O (N log2 N). Consequently the total flops �N and the 
total storage �N of the fast DAC algorithm for B̃N vN are approximately

�N = �̃N + εθ = O (N log3 N), �N = �̃N + εφ = O (N log2 N),

which finishes the proof.

Remark 4.1. It is worth mentioning that it takes O (N2) operations to generate the entries of BN while only O (N log N)

operations are needed to generate the entries of B̃N in the fast DAC method.

Remark 4.2. According to the discussions on this section, the memory requirement and the computational cost of carrying 
out the matrix-vector multiplication Ãv are O (MN log2 N) and O (MN log3 N), respectively. Consequently the all-at-once sys-
tem (20) can be solved by Krylov subspace methods with O (MN log2 N) storage and O (MN log3 N) operations per iteration.

4.2. A preconditioned fast DAC method

To reduce the number of iterations, we follow the criteria suggested in [21,22] to select the preconditioner Mp = B̃N ⊗M0

for the approximated system, tat is, we solve the following linear system instead of (20)

M−1Ãu = M−1f. (29)
p p
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As we have discussed the implementation of B̃N vN (and thus Ãv) in details in Section 4.1, we remain to consider the fast 
solver of the system Mpv = y for any y ∈RN M .

By the definition of Mp , we express v = M−1
p y by

v = (
B̃N ⊗ M0

)−1
y = P−1(M−1

0 (B̃−1(Py)�)�
)
,

that is, it suffices to consider

B̃N vN = zN , for zN ∈ RN . (30)

Let vN = [vN ′ , v∗∗
N ′ ]� and zN = [zN ′ , z∗∗

N ′ ]� . Then, similar to (25), vN = B̃−1zN can be divided into the following two sub-
systems

v∗
N ′ = B̃∗−1

N ′ z∗
N ′ , v∗∗

N ′ = B̃∗∗−1
N ′

(
z∗∗

N ′ − �̃N ′v∗
N ′

)
, (31)

in which the matrix-vector multiplication �̃N ′ v∗
N ′ can be efficiently performed as discussed in Section 4.1. Repeating the 

subdivision procedure like (30)–(31) generates the following fast DAC algorithm (named by InvDAC algorithm) for solving 
the system (30).

Algorithm 2 The InvDAC algorithm.

function vN = InvDAC(B̃N , zN )

if N ≤ 2

vN = B̃−1
N zN

else

v∗ = InvDAC(B̃∗, z∗)

z∗∗ = z∗∗ − �̃N ′ v∗

v∗∗ = InvDAC(B̃∗∗, z∗∗)

end if

end function

Combining the Algorithm 2 with Theorem 4.1 yields the following theorem.

Theorem 4.2. The computational cost and storage of solving (30) by Algorithm 2 are O (N log3 N) and O (N log2 N), respectively.

5. Numerical experiments

5.1. Efficiency of the fast method

We carry out numerical experiments to investigate the performance of the fast DAC method (FDAC) and the precon-
ditioned FDAC (PFDAC) by comparing them with the forward substitution method (FS). The generalized minimal residual 
(GMRES) iteration method is applied to solve the linear systems. The convergence rates, the numbers Iter, Iter f and Iterpre

of iterations in FS, FDAC and PFDAC, respectively, the CPU times C P U M and C P U M f of generating BN and B̃N , respectively, 
and the CPU times C P U , C P U f and C P U pre of solving the linear systems (8) and (20), respectively are recorded. According 
to Theorem 3.3, we set c = s = 2�ln N/ ln 2� in our numerical experiments.

Let T = 1, � = [0, 1]d for d = 1, 2, 3 and α(t) = α0 + (α1 − α0)t with α0 = 1 and α1 = 0.8. The exact solution and the 
corresponding right-hand side term are given by

u(x, t) = t2 sin(2πx1) × · · · × sin(2πxd),

f (x, t) =
(

2t + 2q(t)t1+α(t)

�(2 + α(t))
+ 4dπ2t2

)
sin(2πx1) × · · · × sin(2πxd).

Experiment 1. Let q(t) = 1 and K = diag(0.01, · · · , 0.01) ∈ Rd×d with d = 1, 2, 3. Numerical results are listed in Ta-
bles 1–7, from which we observe that: (i) All three methods have almost the same accuracy and temporal convergence 
rates. (ii) It is more efficient to generate the coefficient matrix of the approximated system than that of the original prob-
lem. (iii) The FDAC is much more efficient than the FS while the number of iterations for both of them grow rapidly due 
to the bad condition number of the coefficient matrix. (iv) The PFDAC significantly reduces the number of iterations and 
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Table 1
Convergence for d = 1 in Experiment 1.

FS FDAC PFDAC

N h ‖u − uh‖ order ‖u − uh‖ order ‖u − uh‖ order

23 1/25 4.5547E-02 – 4.5548E-02 – 4.5548E-02 –
24 1/25 2.2935eE-02 0.99 2.2935E-02 0.99 2.2935E-02 0.99
25 1/25 1.1430eE-02 1.00 1.1430E-02 1.00 1.1430E-02 1.00
26 1/25 5.6305E-03 1.04 5.6305E-03 1.02 5.6305E-03 1.02
27 1/25 2.7202E-03 1.05 2.7201E-03 1.05 2.7201E-03 1.05

Table 2
Errors and convergence rates for d = 2 in Experiment 1.

FS FDAC PFDAC

N h ‖u − uh‖ order ‖u − uh‖ order ‖u − uh‖ order

23 1/25 2.7843E-02 – 2.7844E-02 – 2.7844E-02 –
24 1/25 1.3952E-02 1.00 1.3951E-02 1.00 1.3951E-02 1.00
25 1/25 6.8836E-03 1.02 6.8836E-03 1.02 6.8836E-03 1.02
26 1/25 3.3210E-03 1.05 3.3210E-03 1.05 3.3210E-03 1.05
27 1/25 1.5335E-03 1.11 1.5335E-03 1.11 1.5335E-03 1.11

Table 3
Errors and convergence rates for d = 3 in Experiment 1.

FS FDAC PFDAC

N h ‖u − uh‖ order ‖u − uh‖ order ‖u − uh‖ order

23 1/25 1.7220E-2 – 1.7221E-2 – 1.7221E-2 –
24 1/25 8.5739E-3 1.01 8.5738E-3 1.01 8.5738E-3 1.01
25 1/25 4.1799E-3 1.04 4.1799E-3 1.04 4.1799E-3 1.04
26 1/25 1.9669E-3 1.09 1.9670E-3 1.09 1.9669E-3 1.09
27 1/25 8.8281E-4 1.16 8.8281E-4 1.16 8.8281E-4 1.16

Table 4
CPU times for d = 1 in Experiment 1.

N h CPU Iter CPU f Iter f CPUpre Iterpre

29 1/23 17.7 s 35 1 m 38 s 35 2.35 s 1
210 1/23 3 m 16 s 63 6 m 44 s 63 5.22 s 1
211 1/23 33 m 42 s 116 28 m 20 s 117 11.3 s 1
212 1/23 4 h 38 m 221 2 h 2 m 224 25.2 s 1
213 1/23 1 d 14 h 438 10 h 30 m 439 55.8 s 1
214 1/23 > 21 d – 1 d 16 h 873 2 m 5 s 1

Table 5
CPU times for d = 2 in Experiment 1.

N h CPU Iter CPU f Iter f CPUpre Iterpre

29 1/23 45 s 24 9 m 44 s 23 21 s 1
210 1/23 4 m 45 s 37 40 m 37 49 s 1
211 1/23 48 m 30 s 67 2 h 43 m 66 1 m 46 s 1
212 1/23 8 h 10 m 121 11 h 20 m 121 4 m 20 s 1
213 1/23 2 d 18 h 235 2 d 47 m 235 9 m 44 s 1
214 1/23 > 30 d – 8 d 4 h 465 23 m 42 s 1

consequently saves much time compared with the FDAC, which demonstrates the effectiveness of the proposed precondition 
and thus provides a potential mean for large-scale and high-dimensional simulations.

Experiment 2. Let q(t) = 1, K = 1 and d = 1. Numerical results are presented in Tables 8–9. Similar conclusions can 
be obtained as Experiment 1. In addition, we observed that when K becomes larger, the numbers of iterations of PFDAC 
increase compared with Table 4.

5.2. Comparison with high-order scheme

We compare the performances between PFDAC and the high-order scheme (HOS) proposed in [42] by solving the follow-
ing time-dependent variable-order fractional diffusion equation
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Table 6
CPU times for d = 3 in Experiment 1.

N h CPU Iter CPU f Iter f CPUpre Iterpre

29 1/22 1 m 43 s 51 12 m 22 s 52 26 s 1
210 1/22 12 m 2 s 94 53 m 20 s 93 59 s 1
211 1/22 2 h 5 m 183 3 h 37 m 183 2 m 12 s 1
212 1/22 1 d 3 h 367 15 h 20 m 370 5 m 2 s 1
213 1/22 7 d 12 h 500 1 d 14 h 500 11 m 1
214 1/22 > 30 d – >5 d – 24 m 22 s 1

Table 7
CPU times generating BN and B̃N in Experiment 1.

N CPUM CPUM f

29 0.22 s 0.05 s
210 0.88 s 0.05 s
211 3.4 s 0.11 s
212 13.8 s 0.23 s
213 56 s 0.5 s
214 3 m 4 s 1.1 s

Table 8
Errors and convergence rates of Experiment 2.

FS FDAC PFDAC

N h ‖u − uh‖ order ‖u − uh‖ order ‖u − uh‖ order

23 1/27 2.1724E-03 – 2.1724E-03 – 2.1724E-03 –
24 1/27 1.0803E-03 1.01 1.0803E-03 1.01 1.0803E-03 1.01
25 1/27 5.3868E-04 1.00 5.3868E-04 1.00 5.3868E-04 1.00
26 1/27 2.6840E-04 1.01 2.6840E-04 1.01 2.6840E-04 1.01
27 1/27 1.3343E-04 1.01 1.3343E-04 1.01 1.3343E-04 1.01

Table 9
CPU times of Experiment 2.

N h CPU Iter CPU f Iter f CPUpre Iterpre

29 1/23 1.27 s 8 17 s 8 22 s 5
210 1/23 9.72 s 15 1 m 8 s 15 56 s 6
211 1/23 2 m 9 s 29 5 m 18 s 29 2 m 23 s 6
212 1/23 29 m 2 s 59 14 m 39 s 59 5 m 1 s 6
213 1/23 10 h 3 m 118 1 h 7 m 118 12 m 25 s 7

Table 10
Comparisons of two methods in Experiment 3.

α0 = 0.2 α0 = 1

N ‖u − uh‖ CPU ‖u − uh‖ CPU

PFDAC 29 4.4915e-04 0.05 s 1.20100e-3 0.04 s
210 2.2629e-04 0.08 s 6.0050e-04 0.07 s
211 1.1339e-04 0.12 s 3.0025e-04 0.11 s
212 5.5641e-05 0.26 s 1.5012e-04 0.19 s
213 2.6681e-05 0.44 s 7.5064e-05 0.30 s

HOS 25 4.8884e-04 0.09 s 1.4557e-04 0.10 s
26 2.2512e-04 0.16 s 3.6364e-05 0.09 s
27 1.0245e-04 0.30 s 9.0831e-06 0.17 s
28 4.6396e-05 0.65 s 2.2651e-06 0.22 s
29 2.0949e-05 1.65 s 5.6089e-07 0.48 s

u′(t) + q(t)C
0 D1−α(t)

t u(t) = f (t) − u(0)tα(t)−1

�(α(t))
, t ∈ (0, T ], u(0) = u0.

Experiment 3. Let q(t) = 1, u(t) = 1 + t1+α0 and α(t) = α0 + (α1 − α0)t with α1 = 0.8. If α0 < 1, the exact solution has 
singularity at the initial time, which is common in the context of constant-order fractional problems and can be eliminated 
by setting α0 = 1. We evaluate the CPU times (CPU) of PFDAC by adding CPUM to CPUpre . We intend to compare the CPU 
times of two methods under the same threshold of the error. Numerical results are presented in Table 10, from which we 
27



J. Jia, H. Wang and X. Zheng Applied Numerical Mathematics 163 (2021) 15–29
observe that if the solution has singularity at the initial time, the accuracy of the HOS may be affected and the PFDAC is 
more efficient than the HOS. If the solution is smooth, HOS is faster than the PFDAC. Based on these motivations, we will 
carry out studies on fast implementations of HOS in the near future by the idea of the current work.

6. Concluding remarks

In this article we derived a fast approximation method for variable-order time-fractional diffusion PDEs in multiple space 
dimension. Since variable-order fractional differential operators lose the translation invariance or convolution structure, the 
fast solution methods developed for constant-order fractional PDEs, which depend heavily on these properties, fail to apply. 
In this article, we approximate the coefficient matrices by a finite sum of Toeplitz-like matrices. Consequently, we solve the 
discrete system in an all-at-once fashion by combining the solution technique developed for constant-order time-fractional 
PDEs [13] as well as the fast solution technique on the steady-state variable-order space-fractional PDEs in one space 
dimension [18,19]. Numerical experiments show the utility of the fast method.

Finally, we comment on some modeling issues of the two time-scale variable-order time-fractional diffusion PDE (3). For 
simplicity of exposition, we assume f ≡ 0 and the fractional order 0 < α < 1 is constant. It is well known that the classical 
Fickian diffusion PDE is not invariant under the time inversion t :→ −t , which reflects the fact that the diffusion process is 
physically not revisable. Consequently, the two time-scale time-fractional diffusion PDE is not time invariant. In fact, since 
the fractional time derivative is defined as the convolution of the first-order differential operator with a power-law kernel, 
the fractional time differential operator is not invariant either under the time inversion. The reason is that the subdiffusive 
process modeled by the time-fractional derivative is still a diffusion process, although with a heavy tail, and hence is not 
physically revisable.
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