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Abstract Neuronal activity correlations are key to understanding how populations of neurons
collectively encode information. While two-photon calcium imaging has created a unique

opportunity to record the activity of large populations of neurons, existing methods for inferring

correlations from these data face several challenges. First, the observations of spiking activity

produced by two-photon imaging are temporally blurred and noisy. Secondly, even if the spiking

data were perfectly recovered via deconvolution, inferring network-level features from binary

spiking data is a challenging task due to the non-linear relation of neuronal spiking to endogenous

and exogenous inputs. In this work, we propose a methodology to explicitly model and directly

estimate signal and noise correlations from two-photon fluorescence observations, without

requiring intermediate spike deconvolution. We provide theoretical guarantees on the

performance of the proposed estimator and demonstrate its utility through applications to

simulated and experimentally recorded data from the mouse auditory cortex.

Introduction
Neuronal activity correlations are essential in understanding how populations of neurons encode

information. Correlations provide insights into the functional architecture and computations carried

out by neuronal networks (Abbott and Dayan, 1999; Averbeck et al., 2006; Cohen and Kohn, 2011;
Hansen et al., 2012; Kohn et al., 2016; Kohn and Smith, 2005; Lyamzin et al., 2015; Montijn et al.,
2014; Smith and Sommer, 2013; Sompolinsky et al., 2001; Yatsenko et al., 2015). Neuronal activity
correlations are often categorized in two groups: signal correlations and noise correlations (Cohen
and Kohn, 2011; Cohen andMaunsell, 2009;Gawne and Richmond, 1993; Josić et al., 2009; Lyamzin
et al., 2015; Vinci et al., 2016). Given two neurons, signal correlation quantifies the similarity of
neural responses that are time-locked to a repeated stimulus across trials, whereas noise correlation

quantifies the stimulus-independent trial-to-trial variability shared by neural responses that are

believed to arise from common latent inputs.

Two-photon calcium imaging has become increasingly popular in recent years to record in vivo
neural activity simultaneously from hundreds of neurons (Ahrens et al., 2013; Romano et al., 2017;
Stosiek et al., 2003; Svoboda and Yasuda, 2006). This technology takes advantage of intracellular
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calcium flux mostly arising from spiking activity and captures calcium signaling in neurons in living

animals using fluorescence microscopy. The observed fluorescence traces of calcium concentra-

tions, however, are indirectly related to neuronal spiking activity. Extracting spiking activity from

fluorescence traces is a challenging signal deconvolution problem, and has been the focus of active

research (Deneux et al., 2016; Friedrich et al., 2017; Grewe et al., 2010; Jewell et al., 2020; Jew-
ell and Witten, 2018; Kazemipour et al., 2018; Pachitariu et al., 2018; Pnevmatikakis et al., 2016;
Stringer and Pachitariu, 2019; Theis et al., 2016; Vogelstein et al., 2010, 2009).
The most commonly used approach to infer signal and noise correlations from two-photon

data is to directly apply the classical definitions of correlations for firing rates (Lyamzin et al.,
2015), to fluorescence traces (De Vico Fallani et al., 2015; Francis et al., 2018; Rothschild et al.,
2010;Winkowski and Kanold, 2013). However, it is well known that fluorescence observations are
noisy and blurred surrogates of spiking activity, because of dependence on observation noise,

calcium dynamics and the temporal properties of calcium indicators. Due to temporal blurring,

the resulting signal and noise correlation estimates are highly biased. An alternative approach

is to carry out the inference in a two-stage fashion: first, infer spikes using a deconvolution

technique, and then compute firing rates and evaluate the correlations (Kerlin et al., 2019; Najafi
et al., 2020; Ramesh et al., 2018; Soudry et al., 2015; Yatsenko et al., 2015). These two-stage
estimates are highly sensitive to the accuracy of spike deconvolution, and require high temporal

resolution and signal-to-noise ratios (Lütcke et al., 2013; Pachitariu et al., 2018). Furthermore,
these deconvolution techniques are biased towards obtaining accurate first-order statistics (i.e.,

spike timings) via spatiotemporal priors, which may be detrimental to recovering second-order

statistics (i.e., correlations). Finally, both approaches also undermine the non-linear dynamics of

spiking activity as governed by stimuli, past activity and other latent processes (Truccolo et al.,
2005). There are a few existing studies that aim at improving estimation of neuronal correlations,
but they either do not consider signal correlations (Rupasinghe and Babadi, 2020; Yatsenko et al.,
2015), or aim at estimating surrogates of correlations from spikes such as the connectivity/coupling
matrix (Aitchison et al., 2017;Mishchenko et al., 2011; Soudry et al., 2015; Keeley et al., 2020).
Here, we propose a methodology to directly estimate both signal and noise correlations from

two-photon imaging observations, without requiring an intermediate step of spike deconvolution.

We pose the problem under the commonly used experimental paradigm in which neuronal activity

is recorded during trials of a repeated stimulus. We avoid the need to perform spike deconvolution

by integrating techniques from point processes and state-space modeling that explicitly relate the

signal and noise correlations to the observed fluorescence traces in a multi-tier model. Thus, we

cast signal and noise correlations within a parameter estimation setting. To solve the resulting

estimation problem in an efficient fashion, we develop a solution method based on variational

inference (Jordan et al., 1999; Blei et al., 2017), by combining techniques from Pólya-Gamma
augmentation (Polson et al., 2013) and compressible state-space estimation (Rauch et al., 1965;
Kazemipour et al., 2018; Ba et al., 2014). We also provide theoretical guarantees on the bias and
variance performance of the resulting estimator.

We demonstrate the utility of our proposed estimation framework through application to simu-

lated and real data from themouse auditory cortex during presentations of tones and acoustic noise.

In application to repeated trials under spontaneous and stimulus-driven conditions within the same

experiment, our method reliably provides noise correlation structures that are invariant across the

two conditions. In addition, our joint analysis of signal and noise correlations corroborates existing

hypotheses regarding the distinction between their structures (Keeley et al., 2020; Rumyantsev
et al., 2020; Bartolo et al., 2020). Moreover, while application of our proposed method to spatial
analysis of signal and noise correlations in the mouse auditory cortex is consistent with existing

work (Winkowski and Kanold, 2013), it reveals novel and distinct spatial trends in the correlation
structure of layers 2/3 and 4. In summary, our method improves on existing work by: 1) explicitly

modeling the fluorescence observation process and the non-linearities involved in spiking activity,

as governed by both the stimulus and latent processes, through a multi-tier Bayesian forward
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model, 2) joint estimation of signal and noise correlations directly from two-photon fluorescence

observations through an efficient iterative procedure, without requiring intermediate spike decon-

volution, 3) providing theoretical guarantees on the performance of the proposed estimator, and 4)

gaining access to closed-form posterior approximations, with low-complexity and iterative update

rules and minimal dependence on training data. Our proposed method can thus be used as a

robust and scalable alternative to existing approaches for extracting signal and noise correlations

from two-photon imaging data.

Results
In this section we first demonstrate the utility of our proposed estimation framework through

simulation studies as well as applications on experimentally-recorded data from the mouse auditory

cortex. Then, we present theoretical performance bounds on the proposed estimator. Before

presenting the results, we will give an overview of the proposed signal and noise correlation

inference framework, and outline our contributions and their relationship to existing work. For the

ease of reproducibility, we have archived a MATLAB implementation of our proposed method in

GitHub (Rupasinghe, 2020), and have deposited the data used in this work in the Digital Repository
at the University of Maryland (Rupasinghe et al., 2021).

Signal and Noise correlations
We consider a canonical experimental setting in which the same external stimulus, denoted by st,
is repeatedly presented across L independent trials and the spiking activity of a population of N
neurons are indirectly measured using two-photon calcium fluorescence imaging. Figure 1 (forward
arrow) shows the generative model that is used to quantify this procedure. The fluorescence

observation in the lth trial from the j th neuron at time frame t, denoted by y(j)t,l , is a noisy surrogate of
the intracellular calcium concentrations. The calcium concentrations in turn are temporally blurred

surrogates of the underlying spiking activity n(j)t,l , as shown in Figure 1.
In modeling the spiking activity, we consider two main contributions: 1) the common known

stimulus st affects the activity of the j th neuron via an unknown kernel dj , akin to the receptive field;

neuron 
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Figure 1. The proposed generative model and inverse problem. Observed (green) and latent (orange) variables
pertinent to the jth neuron are indicated, according to the proposed model for estimating the signal (blue) and
noise (red) correlations from two-photon calcium fluorescence observations. Calcium fluorescence traces

(

y(j)t, l
)

of L trials are observed, in which the repeated external stimulus
(

st
)

is known. The underlying spiking activity
(

n(j)t, l
)

, trial-to-trial variability and other intrinsic/extrinsic neural covariates that are not time-locked with the

external stimulus

(

x(j)t, l
)

, and the stimulus kernel
(

dj
)

are latent. Our main contribution is to solve the inverse

problem: recovering the underlying latent signal (S) and noise (N) correlations directly from the fluorescence
observations, without requiring intermediate spike deconvolution.
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2) the trial-to-trial variability and other intrinsic/extrinsic neural covariates that are not time-locked

to the stimulus st are captured by a trial-dependent latent process x
(j)
t,l . Then, we use a Generalized

Linear Model to link these underlying neural covariates to spiking activity (Truccolo et al., 2005).
More specifically, we model spiking activity as a Bernoulli process:

n(j)t,l ∼ Bernoulli
(

�
(

x(j)t,l ,dj
⊤st

))

,

where �(⋅) is a mapping function, which could in general be non-linear.
The signal correlations aim to measure the correlations in the temporal response that is time-

locked to the repeated stimulus, st. On the other hand, noise correlations in our setting quantify
connectivity arising from covariates that are unrelated to the stimulus, including the trial-to-trial

variability (Keeley et al., 2020). Based on the foregoing model, we propose to formulate the signal
(

(�s)i,j
)

and noise
(

(�x)i,j
)

covariance between the ith neuron and j th neuron as:

(�s)i,j ∶=d⊤i cov
(

st, st
)

dj , (�x)i,j ∶=cov
(

x(i)t,l , x
(j)
t,l

)

, (1)

where cov(⋅) is the empirical covariance function defined as cov
(

ut, vt
)

∶= 1
T

∑T
t=1

(

ut −
1
T

∑T
t′=1 ut′

)

(

vt −
1
T

∑T
t′=1 vt′

)⊤
, for a total observation duration of T time frames.

Our main contribution is to provide an efficient solution for the so-called inverse problem: direct

estimation of �s and �x from the fluorescence observations, without requiring intermediate spike
deconvolution (Figure 1, backward arrow). The signal and noise correlation matrices, denoted by S
and N, can then be obtained by standard normalization of �s and �x:

(S)i,j ∶=
(�s)i,j

√

(�s)i,i.(�s)j,j
, (N)i,j ∶=

(�x)i,j
√

(�x)i,i.(�x)j,j
, ∀i, j = 1, 2,⋯ , N. (2)

We note that when spiking activity is directly observed using electrophysiology recordings, the

conventional signal
(

(�con
s )i,j

)

and noise
(

(�con
x )i,j

)

covariances of spiking activity between the ith and
j th neuron are defined as (Lyamzin et al., 2015):

(�con
s )i,j ∶=cov

(

1
L

L
∑

l=1
n(i)t,l ,

1
L

L
∑

l=1
n(j)t,l

)

, (�con
x )i,j ∶=

1
L

L
∑

l=1
cov

(

n(i)t,l−
1
L

L
∑

l′=1

n(i)t,l′ , n
(j)
t,l −

1
L

L
∑

l′=1

n(j)t,l′

)

, (3)

which after standard normalization in Equation 2 give the conventional signal ((Scon)i,j
)

and noise
(

(Ncon)i,j
)

correlations. While at first glance our definitions of signal and noise covariances in

Equation 1 seem to be a far departure from the conventional ones in Equation 3, we show that the
conventional notions of correlation indeed approximate the same quantities as in our definitions:

Scon ≈ S and Ncon ≈ N,

under asymptotic conditions (i.e., T and L sufficiently large). We prove this assertion of asymptotic
equivalence in Appendix 1, which highlights another facet of our contributions: our proposed
estimators are designed to robustly operate in the regime of finite (and typically small) T and L,
aiming for the very same quantities that the conventional estimators could only recover accurately

under ideal asymptotic conditions.

Existing methods used for performance comparison
In order to compare the performance of our proposed method with existing work, we consider

three widely available methods for extracting neuronal correlations. In simulation studies, we

additionally benchmark these estimates with respect to the known ground truth. The existing

methods considered are the following:
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Pearson Correlations from the Two-Photon Data

In this method, fluorescence observations are assumed to be the direct measurements of spiking

activity, and thus empirical Pearson correlations of the two-photon data are used to compute

the signal and noise correlations (Rothschild et al., 2010; Winkowski and Kanold, 2013; Francis
et al., 2018; Bowen et al., 2020). Explicitly, these estimates are obtained by simply replacing n(j)t,l in
Equation 3 by y(j)t,l , without performing spike deconvolution.

Two-stage Pearson Estimation

Unlike the previous method, in this case spikes are first inferred using a deconvolution technique.

Then, following temporal smoothing via a narrow Gaussian kernel the Pearson correlations are

computed using the conventional definitions of Equation 3. For spike deconvolution, we primarily
used the FCSS algorithm (Kazemipour et al., 2018). In order to also demonstrate the sensitivity of
these estimates to the deconvolution technique that is used, we provide a comparison with the

f-oopsi deconvolution algorithm (Pnevmatikakis et al., 2016) in Figure 2–Figure Supplement 1.

Two-stage GPFA Estimation

Similar to the previous method, spikes are first inferred using a deconvolution technique. Then, a

latent variable model called Gaussian Process Factor Analysis (GPFA) (Yu et al., 2009) is applied to
the inferred spikes in order to estimate the latent covariates and receptive fields. Based on those

estimates, the signal and residual noise correlations are derived through a formulation similar to

Equation 1 and Equation 2 (Ecker et al., 2014).

Simulation study 1: Neuronal ensemble driven by external stimulus
We simulated calcium fluorescence observations according to the proposed generative model given

in Proposed forward model, from an ensemble of N = 8 neurons for a duration of T = 5000 time
frames. We considered L = 20 repeated trials driven by the same external stimulus, which we
modeled by an autoregressive process (see Guidelines for model parameter settings for details).

Figure 2 shows the corresponding estimation results.
The first column of Figure 2-A shows the ground truth noise (top) and signal (bottom) correlations

(diagonal elements are all equal to 1 and omitted for visual convenience). The second column
shows estimates of the noise and signal correlations using our proposed method, which closely

match the ground truth. The third, fourth and fifth columns, respectively, show the results of the

Pearson correlations from the two-photon data, two-stage Pearson, and two-stage GPFA estimation

methods. Through a qualitative visual inspection, it is evident that these methods incur high false

alarms and mis-detections of the ground truth correlations.

To quantify these comparisons, the normalized mean square error (NMSE) of different estimates

with respect to the ground truth are shown below each of the subplots (Figure 2-A). Our proposed
method achieves the lowest NMSE compared to the others. Furthermore, we observed a significant

mixing between signal and noise correlations in these other estimates. To quantify this leakage

effect, we first classified each of the correlation entries as in-network or out-of-network, based

on being non-zero or zero in the ground truth, respectively (see Performance evaluation). We

then computed the ratio between the power of out-of-network components and the power of

in-network components as a measure of leakage. The leakage ratios are also reported in Figure 2-A.
The leakage of our proposed estimates is the lowest of all four techniques, in estimating both the

signal and noise correlations. In order to further probe the performance of our proposed method,

the simulated external stimulus st, latent trial-dependent process x
(1)
t,1 , simulated observations y

(1)
t,1 ,

estimated calcium concentration ẑ(1)t,1 , the putative spikes n̂
(1)
t,1 ∶= ẑ

(1)
t,1 − �ẑ

(1)
t−1,1, and the estimated

mean of the latent state m(1)xt,1 , for the first trial of the first neuron are shown in Figure 2-B. These
results demonstrate the ability of the proposed estimation framework in accurately identifying the

latent processes, which in turn leads to an accurate estimation of the signal and noise correlations

as shown in Figure 2-B.
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Figure 2. Results of simulation study 1. A) Estimated noise and signal correlation matrices from different
methods. Rows from left to right: ground truth, proposed method, Pearson correlations from two-photon

recordings, two-stage Pearson estimates and two-stage GPFA estimates. The normalized mean squared error

(NMSE) of each estimate with respect to the ground truth and the leakage effect quantified by the ratio between

out-of-network and in-network power (leakage) are indicated below each panel. B) Simulated external stimulus

(orange), latent trial-dependent process (red), fluorescence observations (black), estimated calcium

concentrations (purple), putative spikes (green) and estimated mean of the latent state (blue) by the proposed

method, for the first trial of neuron 1.

Figure 2–Figure supplement 1. Sensitivity of two-stage estimates to the choice of the underlying spike
deconvolution technique.

Figure 2–Figure supplement 2. Performance of two-stage estimates based on ground truth spikes.
Figure 2–Figure supplement 3. Performance comparison under stimulus integration model mismatch.
Figure 2–Figure supplement 4. Performance under calcium decay model mismatch.
Figure 2–Figure supplement 5. Performance comparison under varying SNR levels and firing rates.
Figure 2–Figure supplement 6. Performance comparison under observation noise model mismatch.

The main sources of the observed performance gap between our proposed method and the

existing ones are the bias incurred by treating the fluorescence traces as spikes, low spiking rates,

non-linearity of spike generation with respect to intrinsic and external covariates, and sensitivity to

spike deconvolution. For the latter, we demonstrated the sensitivity of the two-stage Pearson esti-

mates to the choice of the deconvolution technique in Figure 2–Figure Supplement 1. Furthermore,
in order to isolate the effect of said non-linearities on the estimation performance, we applied the

two-stage methods to ground truth spikes in Figure 2–Figure Supplement 2. Our analysis showed
that both two-stage estimates incur significant estimation errors even if the spikes were recovered

perfectly, mainly due to the limited number of trials (L = 20 here). In accordance with our theoretical
analysis of the asymptotic behavior of the conventional signal and noise correlation estimates

given in Appendix 1, we also showed in Figure 2–Figure Supplement 2 that the performance of the
two-stage Pearson estimates based on ground truth spikes, but using L = 1000 trials, dramatically
improves. Our proposed method, however, was capable of producing reliable estimates with the

number of trials as low as L = 20, which is typical in two-photon imaging experiments.

Analysis of robustness with respect to modeling assumptions

While the preceding results are quite favorable to our proposed method, the underlying generative

models were the same as those used to estimate signal and noise correlations, which is in contrast

to conventional real data validation with known ground truth. Access to ground truth correlations

in two-photon imaging experimental settings, however, is quite challenging. In order to further

probe the robustness of our proposed method in the absence of ground truth data, we utilized

surrogate data that parallel the setting of Figure 2, but deviate from our modeling assumptions.
1) Robustness to stimulus integration model mismatch. First, we considered surrogate data gener-

ated with a non-linear stimulus integration model by replacing the linear receptive field component

d⊤j st with d
⊤
j st + (d̃

⊤
j,1st)

2 + (d̃⊤j,2st)
2, where d̃j,1 and d̃j,2 are akin to quadratic receptive field components.
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We assumed a linear stimulus integration model in our estimation framework (i.e., d̃j,1 = d̃j,2 = 0).
Figure 2–Figure Supplement 3 shows the resulting correlation estimates. While the performance
of our proposed signal correlation estimates degrade under this setting as compared to Figure 2,
our proposed estimates still outperform existing methods. In addition, the model mismatch in the

stimulus integration component does not affect the accuracy of noise correlation estimation in our

method.

2) Robustness to calcium decay model mismatch. Next, we tested our proposed estimation
framework on data simulated with a different calcium decay model. Specifically, we simulated

data with second-order autoregressive calcium dynamics, and at a lower signal-to-noise ratio (SNR)

compared to the setting of Figure 2, and used our inference framework which assumes first order
calcium dynamics for estimation. Figure 2–Figure Supplement 4 shows the corresponding noise
and signal correlations estimated by the proposed method under these conditions. Even though

the performance slightly degrades (in terms of NMSE and leakage ratio), our method is able to

recover the underlying correlations faithfully under this setting.

3) Robustness to SNR level and firing rate. Next, we compared the performance of Pearson and
Two-Stage Pearson methods with our proposed method under varying SNR levels and average

firing rates, as shown in Figure 2–Figure Supplement 5. While the performance of all methods
degrades at low SNR levels or firing rates (SNR < 10 dB, firing rate < 0.5 Hz), our proposed method
outperforms the existing methods for a wide range of SNR and firing rate values. To quantify this

comparison, we have also indicated the mean and standard deviation of the relative performance

gain of our proposed estimates across SNR levels and firing rates as insets in Figure 2–Figure
Supplement 5.
4) Robustness to observation noise model mismatch. Finally, we repeated the foregoing compar-

isons under varying SNR levels and firing rates, only now we included an additional observation

noise model mismatch. Similar to the treatment in Deneux et al. (2016), we considered two tempo-
rally correlated observation noise models: white noise with a low frequency drift (Figure 2–Figure
Supplement 6, top panels) and pink noise (Figure 2–Figure Supplement 6, bottom panels). In ac-
cordance with the results in Figure 2–Figure Supplement 5, our proposed method outperforms
the existing ones for a wide range of SNR and firing rate values and under both observation noise

model mismatch conditions. From Figure 2–Figure Supplement 6-C and F, it can be observed that
the ground truth spikes are favorably recovered as a byproduct of our method, even though the

estimated calcium concentrations are contaminated by the temporally correlated fluctuations in

observation noise. This in turn results in accurate signal and noise correlation estimates.

Simulation study 2: Spontaneous activity
Next, we present the results of a simulation study in the absence of external stimuli (i.e. st = 0),
pertaining to the spontaneous activity condition. It is noteworthy that the proposed method can

readily be applied to estimate noise correlations during spontaneous activity, by simply setting the

external stimulus st and the receptive field dj to zero in the update rules (see Proposed forward
model for details). We simulated the ensemble spiking activity based on a Poisson process (Smith
and Brown, 2003) using a discrete time-rescaling procedure (Brown et al., 2002; Smith and Brown,
2003), so that the data are generated using a different model than that used in our inference
framework (i.e., Bernoulli process with a logistic link as outlined in Proposed forward model). As

such, we eliminated potential performance biases in favor of our proposed method by introducing

the aforementioned model mismatch. We simulated L = 20 independent trials of spontaneous
activity of N = 30 neurons, observed for a time duration of T = 5000 time frames. The number of
neurons in this study is notably larger than that used in the previous one, to examine the scalability

of our proposed approach with respect to the ensemble size.

Figure 3 shows the comparison of the noise correlation matrices estimated by our proposed
method, Pearson correlations from two-photon recordings, two-stage Pearson, and two-stage GPFA

estimates, with respect to the ground truth. The Pearson and the two-stage estimates are highly
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Figure 3. Results of simulation study 2. Estimated noise correlation matrices using different methods based
from spontaneous activity data. Rows from left to right: ground truth, proposed method, Pearson correlations

from two-photon recordings, two-stage Pearson and two-stage GPFA estimates. The normalized mean squared

error (NMSE) of each estimate with respect to the ground truth and the ratio between out-of-network power

and in-network power (leakage) are shown below each panel.

variable and result in excessive false detections. Our proposed estimate, however, closely follows

the ground truth, which is also reflected by the comparatively lower NMSE and leakage ratios, in

spite of the mismatch between the models used for data generation and inference. In addition,

our proposed method exhibits favorable scaling with respect to the ensemble size, thanks to the

underlying low-complexity variational updates (see Low-complexity parameter updates for details).

Real data study 1: Mouse auditory cortex under random tone presentation
We next applied our proposed method to experimentally recorded two-photon observations from

the mouse primary auditory cortex (A1). The dataset consisted of recordings from 371 excitatory
neurons in layer 2/3 A1, from which we selected N = 16 responsive neurons (i.e., neurons that
exhibited at least one spiking event in at least half of the trials considered; see Guidelines for

model parameter settings). A random sequence of four tones was presented to the mouse, with

the same sequence being repeated for L = 10 trials. Each trial consisted of T = 3600 time frames,
and each tone was two seconds long followed by a four-second silent period (see Experimental

procedures for details). We considered an integration window of R = 25 frames for stimulus
encoding (see Guidelines for model parameter settings for details). The comparison of the noise

and signal correlation estimates obtained by our proposed method, Pearson correlations from

two-photon recordings, two-stage Pearson and two-stage GPFA methods is shown in Figure 4-A. The
spatial map of the 16 neurons considered in the analysis in the field of view is shown in Figure 4-B.
Figure 4-C shows the stimulus tone sequence st, two-photon observations y(1)t,1 , estimated calcium
concentration ẑ(1)t,1 , putative spikes n̂

(1)
t,1 ∶= ẑ

(1)
t,1 − �ẑ

(1)
t−1,1 and the estimated mean of the latent state m

(1)
xt,1 ,

for the first trial of the first neuron.

We estimated the Best Frequency (BF) of each neuron as the tone that resulted in the highest

level of fluorescence activity. The results in Figure 4-A are organized such that the neurons with
the same BF are neighboring, with the BF increasing along the diagonal. Thus, expectedly (Bowen
et al., 2020) our proposed method as well as the Pearson and two-stage Pearson estimates show
high signal correlations along the diagonal. However, the two-stage GPFA estimates do not reveal

such a structure. By visual inspection, as also observed in the simulation studies, the Pearson

correlations from two-photon recordings, two-stage Pearson and two-stage GPFA estimates have

significant leakage between the signal and noise correlations, whereas our proposed signal and

noise correlation estimates in Figure 4-A suggest distinct spatial structures.
To quantify this visual comparison, we used a statistic based on the Tanimoto similarity metric

(Lipkus, 1999), denoted by Ts(X,Y) for two matrices X and Y. As a measure of dissimilarity, we used
Td(X,Y) ∶= 1 − Ts(X,Y) (see Performance evaluation for details). The comparison of Td(Ŝ, N̂) for the
four estimates is presented in the second column of Table 1. To assess statistical significance, for
each comparison we obtained null distributions corresponding to chance occurrence of dissimilar-

ities using a shuffling procedure as shown in Figure 4-D, and then computed one-tailed p-values
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Figure 4. Application to experimentally-recorded data from the mouse A1. A) Estimated noise (top) and signal
(bottom) correlation matrices using different methods. Rows from left to right: proposed method, Pearson

correlations from two-photon data, two-stage Pearson and two-stage GPFA estimates. B) Location of the

selected neurons with the highest activity in the field of view. C) Presented tone sequence (orange),

observations (black), estimated calcium concentrations (purple), putative spikes (green) and estimated mean

latent state (blue) in the first trial of the first neuron. D) Null distributions of chance occurrence of dissimilarities

between signal and noise correlation estimates using different methods. The observed test statistic in each

case is indicated by a dashed vertical line. E) Scatter plots of signal vs. noise correlations for individual cell pairs

(blue dots) corresponding to each method. Data were normalized for comparison by computing z-scores. For

each case, the linear regression model fit is shown in red, and the slope and p-value of the t-test are indicated

as insets.

Figure 4–Figure supplement 1. Probing the effect of stimulus integration window length on the performance
of the proposed estimates.

Figure 4–Figure supplement 2. Inspecting the inferred latent processes under high fluorescence activity due
to rapid increase in firing rate.

Table 1. Dissimilarity metric statistics for the estimates in Figure 4-A (also illustrated in Figure 4-D), linear
regression statistics of the comparison between signal and noise correlations in Figure 4-E, and the average
NMSE across 50 trials used in the shuffling procedure illustrated in Figure 5-A.

Dissimilarity Td (Ŝ, N̂) Regression statistics (Figure 4-E) Shuffling test (Figure 5)
Estimate (Figure 4-D) slope (p-value) R2 value NMSE in N̂ NMSE in Ŝ

Proposed 0.8725 (p < 10−4) 0.02 (p = 0.84) 4 × 10−4 1.07 ± 0.16 1.32 ± 0.19
Pearson 0.6675 (p = 0.71) 0.33 (p = 2 × 10−4) 0.11 0 0

Two-Stage Pearson 0.7325 (p = 0.09) 0.15 (p = 0.10) 0.02 1.84 ± 0.34 0.55 ± 0.12
Two-Stage GPFA 0.7625 (p < 10−4) 0.02 (p = 0.86) 3 × 10−4 2.32 ± 0.52 2.26 ± 0.51

from those distributions (see Performance evaluation for details). Table 1 and Figure 4-D includes
these p-values, which show that the proposed estimates (boldface numbers in Table 1, second
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column) indeed have the highest dissimilarity between signal and noise correlations. The higher

leakage effect in the other three estimates is also reflected in their smaller Td(Ŝ, N̂) values.
To further investigate this effect, we have depicted the scatter plots of signal vs. noise correla-

tions estimated by each method in Figure 4-E. To examine the possibility of the leakage effect on a
pairwise basis, we performed linear regression in each case. The slope of the model fit, the p-value

for the corresponding t-test, and the R2 values are reported in the third and fourth columns of
Table 1 (the slope and p-values are also shown as insets in Figure 4-E). Consistent with the results
ofWinkowski and Kanold (2013), the Pearson estimates suggest a significant correlation between
the signal and noise correlation pairs (as indicated by the higher slope in Figure 4-E). However,
none of the other estimates (including the proposed estimates) in Figure 4-E register a significant
trend between signal and noise correlations. This further corroborates our assessment of the high

leakage between signal and noise correlations in Pearson estimates, since such a leakage effect

could result in overestimation of the trend between the signal and noise correlation pairs. The signal

and noise correlations estimated by our proposed method show no pairwise trend, suggesting

distinct patterns of stimulus-dependent and stimulus-independent functional connectivity (Kohn
et al., 2016;Montijn et al., 2014; Rothschild et al., 2010; Keeley et al., 2020).
A key advantage of our proposed method over the Pearson and two-stage approaches is the

explicit modeling of stimulus integration. The relevant parameter in this regard is the length of

the stimulus integration window R. While in our simulation studies the value of R was known, it
needs to be set by the user in real data applications. To this end, domain knowledge or data-driven

methods such as cross-validation and model order selection can be utilized (see Guidelines for

model parameter settings for details). Noting that the number of parameters to be estimated

linearly scales with R, it must be chosen large enough to capture the stimulus effects, yet small
enough to result in favorable computational complexity. Here, given that the typical tone response

duration of mouse A1 neurons is < 1 s (Linden et al., 2003; DeWeese et al., 2003; Petrus et al., 2014),
with a sampling frequency of fs = 30 Hz, we surmised that a choice of R ∼ 30 suffices to capture
the stimulus effects. We further examined the effect of varying R on the proposed correlation
estimates in Figure 4–Figure Supplement 1. As shown, small values of R (e.g., R = 1 or 10) may not
be adequate to fully capture stimulus integration effects. By considering values of R in the range
25 − 50, we observed that the correlation estimates remain stable. We thus chose R = 25 for our
analysis.

Careful inspection of the second panel in Figure 4-C shows that the fluorescence activity often
saturates to ∼ 4 times its baseline value. This effect is due to successive closely-spaced spikes, which
implies the occurrence of more than one spike per frame and thus violates our Bernoulli modeling

assumption. To inspect the performance of our methodmore carefully under this scenario, we show

in Figure 4–Figure Supplement 2 a zoomed-in view of the estimated latent processes ẑ(1)t,1 (calcium
concentration) and n̂(1)t,1 (putative spikes) for a sample data segment with high fluorescence activity.
The estimated latent processes reveal two mechanisms leveraged by our inference method to

mitigate the aforementioned model mismatch: first, our proposed method predicts spiking events

in adjacent time frames to compensate for rapid increase in firing rate and thus infers calcium

concentration levels that match the observed fluorescence; secondly, even though our generative

model assumes that there is only one spiking event in a given time frame, this restriction is mitigated

in our inference framework by relaxing the constraint n̂(j)t,l ∶= ẑ
(j)
t,l − �ẑ

(j)
t−1,l ≤ 1, as explained in Low-

complexity parameter updates. While this relaxation was performed for the sake of tractability

of the inverse solution, it in fact leads to improved estimation results under episodes of rapid

increase in firing rate, by allowing the putative spike magnitudes n̂(j)t,l to be greater than 1. The latter
is evident in the magnitude of the inferred spikes in Figure 4–Figure Supplement 2, following the
rise of fluorescence activity.

Given that the ground truth correlations are not available for a direct comparison, we instead

performed a test of specificity that reveals another key limitation of existing methods. Fluorescence

observations exhibit structured dynamics due to the exponential intracellular calcium concentration
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Figure 5. Assessing the specificity of different estimation results shown in Figure 4. Rows from left to right:
proposed method, Pearson correlations from two-photon data, two-stage Pearson and two-stage GPFA

estimates. A) The estimated noise correlations using different methods after random temporal shuffling of the

observations. The mean and standard deviation of the NMSE across 50 trials are indicated below each panel. B)
Histograms of the noise correlation estimates between the first and third neurons over the 50 temporal
shuffling trials. The estimate based on the original (un-shuffled) data in each case is indicated by a dashed

vertical line.

decay (as shown in Figure 4-C, for example), which are in turn related to the underlying spikes that
are driven non-linearly by intrinsic/extrinsic stimuli as well as the properties of the indicator used.

As such, an accurate inference method is expected to be specific to this temporal structure. To

test this, we randomly shuffled the T time frames consistently in the same order in all trials, in
order to fully break the temporal structure governing calcium decay dynamics, and then estimated

correlations from these shuffled data using the different methods. The resulting estimates of noise

correlations are shown in Figure 5-A for one instance of such shuffled data. The average NMSE
for a total of 50 shuffled samples with respect to the original un-shuffled estimates (in Figure 4-A)
are tabulated in the fifth and sixth columns of Table 1, and are also indicated below each panel in
Figure 5-A.
A visual inspection of Figure 5-A shows that the Pearson correlations from two-photon recordings

expectedly remain unchanged. Since this method treats each time frame to be independent,

temporal shuffling does not impact the correlations in anyway. On the other extreme, both of the

two-stage estimates seem to detect highly variable and large correlation values, despite operating

on data that lacks any relevant temporal structure. Our proposed method, however, remarkably

produces negligible correlation estimates. Although both the two-stage and proposed estimates

show variability with respect to the shuffled data (Table 1, fifth column), the standard deviation of
the NMSE values of our proposed method are considerably smaller than those of the two-stage

methods (Table 1, fifth column). For further inspection, the histograms of a single element ((N̂)1,3)
of the estimated correlation matrices across the 50 shuffling trials are shown in Figure 5-B. The
original un-shuffled estimates are marked by the dashed vertical lines in each case. The proposed

estimate in Figure 5-B is highly concentrated around zero, even though the un-shuffled estimate is
non-zero. However, the two-stage estimates produce correlations that are widely variable across

the shuffling trials. This analysis demonstrates that our proposed method is highly specific to

the temporal structure of fluorescence observations, whereas the Pearson correlations from two-

photon recordings, two-stage Pearson and two-stage GPFA methods fail to be specific.

Real data study 2: Spontaneous vs. stimulus-driven activity in the mouse A1
To further validate the utility of our proposed methodology, we applied it to another experimentally-

recorded dataset from the mouse A1 layer 2/3. This experiment pertained to trials of presenting a

sequence of short white noise stimuli, randomly interleaved with silent trials of the same duration.
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Figure 6. Comparison of spontaneous and stimulus-driven activity in the mouse A1. A) A sample trial sequence
in the experiment. Stimulus-driven (stim) trials were recorded with randomly interleaved spontaneous (spon)

trials of the same duration. B) Estimated noise and signal correlation matrices under spontaneous (top) and

stimulus-driven (bottom) conditions. Rows from left to right: proposed method, Pearson correlations from

two-photon data, two-stage Pearson and two-stage GPFA estimates. C) Location of the selected neurons with

highest activity in the field of view. D) Stimulus onsets (orange), observations (black), estimated calcium

concentrations (purple) and putative spikes (green) for the first trial from two pairs of neurons with high signal

correlation (top) and high noise correlation (bottom), as identified by the proposed estimates.

Figure 6–Figure supplement 1. Histograms of the similarity/dissimilarity metrics under the shuffling procedure.

Figure 6-A shows a sample trial sequence. The two-photon recordings thus contained episodes of
stimulus-driven and spontaneous activity (see Experimental procedures for details). Under this

experimental setup, it is expected that the noise correlations are invariant across the spontaneous

and stimulus-driven conditions. In accordance with the foregoing results of real data study 1,

we also expect the signal and noise correlation patterns to be distinct. Each trial considered in

the analysis consisted of T = 765 frames (see Experimental procedures for details). We selected
N = 10 responsive neurons (according to the criterion described in Guidelines for model parameter
settings), each with L = 10 trials. Similar to real data study 1, we chose a stimulus integration
window of length R = 25 frames.
Figure 6-B shows the resulting noise and signal correlation estimates under the spontaneous

(N̂spon, top) and stimulus-driven (N̂stim and Ŝstim, bottom) conditions. Figure 6-C shows the spatial
map of the 10 neurons considered in the analysis in the field of view. A visual inspection of the
first column of Figure 6-B indeed suggests that N̂spon and N̂stim are saliently similar, and distinct

from Ŝstim. The Pearson correlations obtained from two-photon data (second column) and the
two-stage Pearson and GPFA estimates (third and fourth columns, respectively), however, evidently

lack this structure. As in the previous study, we quantified this visual comparison using the similarity

metric Ts(X,Y) and the dissimilarity metric Td(X,Y) (see Performance evaluation for details). These
statistics are reported in Table 2 along with the p-values (null distributions are shown in Figure 6–
Figure Supplement 1), which show that the only significant outcomes (boldface numbers) are those
of our proposed method. While it is expected from the experiment design for the noise correlations
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Table 2. Similarity/dissimilarity metric statistics for the estimates in Figure 6.
Estimation Method Ts(N̂spon, N̂stim) Td(Ŝstim, N̂stim)

Proposed 0.5716 (p = 0.003) 0.7946 (p = 0.004)
Pearson 0.3031 (p = 0.61) 0.5032 (p = 0.92)

Two-Stage Pearson 0.2790 (p = 0.05) 0.7862 (p = 0.39)
Two-Stage GPFA 0.2008 (p = 0.50) 0.7792 (p = 0.22)

under the two settings to be similar, the only method that detects this expected outcome with

statistical significance is our proposed method. Moreover, the statistically significant dissimilarity

between the signal and noise correlations of our proposed estimates corroborate the hypothesis

that signal and noise are encoded by distinct functional networks (Kohn et al., 2016;Montijn et al.,
2014; Rothschild et al., 2010; Keeley et al., 2020).
Furthermore, Figure 6-D shows the time course of the stimulus, observations, estimated calcium

concentrations and putative spikes for the first trial from two pairs of neurons with high signal

correlation (j = 2, 8, top) and high noise correlation (j = 3, 5, bottom). As expected, the putative
spiking activity of the neurons with high signal correlation (top) are closely time-locked to the

stimulus onsets. The activity of the two neurons with high noise correlation (bottom), however,

is not time-locked to the stimulus onsets, even though the two neurons exhibit highly correlated

activity. The correlations estimated via the proposed method thus encode substantial information

about the inter-dependencies of the spiking activity of the neuronal ensemble.

Real data study 3: Spatial analysis of signal and noise correlations in themouse A1
Lastly, we applied our proposed method to examine the spatial distribution of signal and noise

correlations in the mouse A1 layers 2/3 and 4 (data from Bowen et al. (2020)). The dataset included
fluorescence activity recorded during multiple experiments of presenting sinusoidal amplitude-

modulated tones, with each stimulus being repeated across several trials (see Experimental pro-

cedures and Bowen et al. (2020) for experimental details). In each experiment, we selected on
average around 20 responsive neurons for subsequent analysis (according to the criterion described
in Guidelines for model parameter settings). For brevity, we compare the estimates of signal and

noise correlations using our proposed method only with those obtained by Pearson correlations

from the two-photon data. The latter method was also used in previous analyses of data from this

experimental paradigm (Winkowski and Kanold, 2013).
In parallel to the results reported in Winkowski and Kanold (2013), Figure 7-A and Figure 7-B

illustrate the correlation between the signal and noise correlations in layers 2/3 and 4, respectively.

Consistent with the results of Winkowski and Kanold (2013), the signal and noise correlations
exhibit positive correlation in both layers, regardless of the method used. However, the correlation

coefficients (i.e., slopes in the insets) identified by our proposed method are notably smaller than

those obtained from Pearson correlations, in both layer 2/3 (Figure 7-A) and layer 4 (Figure 7-B).
Comparing this result with our simulation studies suggests that the stronger linear trend between

the signal and noise correlations observed using the Pearson correlation estimates is likely due to

the mixing between the estimates of signal and noise correlations. As such, our method suggests

that the signal and noise correlations may not be as highly correlated with one another as indicated

in previous studies of layer 2/3 and 4 in mouse A1 (Winkowski and Kanold, 2013).
Next, to evaluate the spatial distribution of signal and noise correlations, we plotted the cor-

relation values for pairs of neurons as a function of their distance for layer 2/3 (Figure 7-C) and
layer 4 (Figure 7-D). The distances were discretized using bins of length 10 �m. The scatter of the
correlations along with their median at each bin are shown in all panels. Then, to examine the

spatial trend of the correlations, we performed linear regression in each case. The slope of the

model fit, the p-value for the corresponding t-test, and the R2 values are reported in Table 3 (the
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Figure 7. Comparison of signal and noise correlations across layers 2/3 and 4. A) Scatter-plot of noise vs. signal
correlations (blue) for individual cell-pairs in layer 2/3, based on the proposed (left) and Pearson estimates

(right). Data were normalized for comparison by computing z-scores. The linear model fits are shown in red,

and the slope and p-value of the t-tests are indicated as insets. Panel B corresponds to layer 4 in the same

organization as panel A. C) Signal (top) and noise (bottom) correlations vs. cell-pair distance in layer 2/3, based

on the proposed (left) and Pearson estimates (right). Distances were binned to 10 �m intervals. The median of
the distributions (black) and the linear model fit (red) are shown in each panel. The slope of the linear model fit,

and the p-value of the t-test are also indicated as insets. Dashed horizontal lines indicate the zero-slope line for

ease of visual comparison. Panel D corresponds to layer 4 in the same organization as panel C. E) Spatial spread

of signal (top) and noise (bottom) correlations in layer 2/3, based on the proposed (left) and Pearson estimates

(right). The horizontal and vertical axes in each panel respectively represent the relative dorsoventral and

rostrocaudal distances between each cell-pair, and the heat-map indicates the magnitude of correlations.

Marginal distributions of the signal (blue) and noise (red) correlations along the dorsoventral and rostrocaudal

axes for the proposed method (darker colors) and Pearson method (lighter colors) are shown at the top and

right side of the sub-panels. Panel F corresponds to layer 4 in the same organization as panel E.

Figure 7–Figure supplement 1. Comparing the marginal distributions of signal and noise correlations along
the dorsoventral and rostrocaudal axes.

Figure 7–Figure supplement 2. Marginal angular distributions of signal and noise correlations.
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Table 3. Linear regression statistics for the analysis of correlations vs. cell-pair distance
Statistics of layer 2/3 correlations Statistics of layer 4 correlations

Correlations slope (p-value) R2 value slope (p-value) R2 value

Proposed Signal Corr. −9 × 10−5 (p = 0.002) 0.012 −1 × 10−4 (p = 3 × 10−6) 0.023

Pearson Signal Corr. −5 × 10−5 (p = 0.02) 0.007 −3 × 10−5 (p = 0.02) 0.005

Proposed Noise Corr. −1 × 10−4 (p = 0.005) 0.010 −5 × 10−5 (p = 0.06) 0.004

Pearson Noise Corr. −4 × 10−5 (p = 0.1) 0.003 −5 × 10−5 (p = 0.02) 0.005

slope and p-values are also shown as insets in Figure 7-C & D).
From Table 3 and Figure 7-C & D (upper panels), it is evident that the signal correlations show a

significant negative trend with respect to distance, using both methods and in both layers. However,

the slope of these negative trends identified by our method (boldface numbers in Table 3) is notably
steeper than those identified by Pearson correlations. On the other hand, the trends of the noise

correlations with distance (bottom panels) are different between our proposedmethod and Pearson

correlations: our proposed method shows a significant negative trend in layer 2/3, but not in layer

4, whereas the Pearson correlations of the two-photon data suggest a significant negative trend

in layer 4, but not in layer 2/3. In addition, the slopes of these negative trends identified by our

method (boldface numbers in Table 3) are steeper than or equal to those identified by Pearson
correlations.

Our proposed estimates also indicate that noise correlations are sparser and less widespread

in layer 4 (Figure 7-D) than in layer 2/3 (Figure 7-C). To further investigate this observation, we
depicted the two-dimensional spatial spread of signal and noise correlations in both layers and

for both methods in Figure 7-E & F, by centering each neuron at the origin and overlaying the
individual spatial spreads. The horizontal and vertical axes in each panel respectively represent the

relative dorsoventral and rostrocaudal distances, and the heat-maps represent the magnitude of

correlations. Comparing the proposed noise correlation spread in Figure 7-E with the corresponding
spread in Figure 7-F, we observe that the noise correlations in layer 2/3 are indeed more widespread
and abundant than in layer 4, as can be expected by more extensive intralaminar connections in

layer 2/3 vs. 4 (Watkins et al., 2014;Meng et al., 2017a,b; Kratz and Manis, 2015).
The spatial spreads of signal and noise correlations based on the Pearson estimates are re-

markably similar in both layers (Figure 7-E & F, right panels), whereas they are saliently different for
our proposed estimates (Figure 7-E & F, left panels). This further corroborates our hypothesis on
the possibility of high mixing between the signal and noise correlation estimates obtained by the

Pearson correlation of two-photon data. To further examine the differences between the signal

and noise correlations, the marginal distributions along the dorsoventral and rostrocaudal axes

are shown in Figure 7-E & F, selectively overlaid for ease of visual comparison. To quantify the
differences between the spatial distributions of signal and noise correlations estimated by each

method, we performed Kolmogorov–Smirnov (KS) tests on each pair of marginal distributions,

which are summarized in Figure 7–Figure Supplement 1. Although the marginal distributions of
signal and noise correlations are significantly different in all cases from both methods, the effect

sizes of their difference (KS statistics) are higher for our proposed estimates compared to those of

the Pearson estimates.

Finally, the spatial spreads of correlations for either method and in each layer suggest non-

uniform angular distributions with possibly directional bias. To test this effect, we computed the

angular marginal distributions and performed KS tests for non-uniformity, which are reported

in Figure 7–Figure Supplement 2. These tests indicate that all distributions are significantly non-
uniform. In addition, the angular distributions of both signal and noise correlations in layer 4 exhibit

salient modes in the rostrocaudal direction, whereas they are less directionally selective in layer 2/3

(Figure 7–Figure Supplement 2).
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In summary, the spatial trends identified by our proposed method are consistent with empirical

observations of spatially heterogeneous pure-tone frequency tuning by individual neurons in

auditory cortex (Winkowski and Kanold, 2013). The improved correspondence of our proposed
method compared to results obtained using Pearson correlations could be the result of the demixing

of signal and noise correlations in our method. As a result of the demixing, our proposed method

also suggests that noise correlations have a negative trend with distance in layer 2/3, but are much

sparser and spatially flat in layer 4. In addition, the spatial spread patterns of signal and noise

correlations are more structured and remarkably more distinct for our proposed method than

those obtained by the Pearson estimates.

Theoretical analysis of the bias and variance of the proposed estimators
Finally, we present a theoretical analysis of the bias and variance of the proposed estimator.

Note that our proposed estimation method has been developed as a scalable alternative to the

intractable maximum likelihood (ML) estimation of the signal and noise covariances (see Overview of

the proposed estimation method). In order to benchmark our estimates, we thus need to evaluate

the quality of said ML estimates. To this end, we derived bounds on the bias and variance of the

ML estimators of the kernel dj for j = 1,⋯ , N and the noise covariance �x. In order to simplify the
treatment, we posit the following mild assumptions:

Assumption (1). We assume a scalar time-varying external stimulus (i.e. st = st, and hence
dj = dj ,d = [d1, d2,⋯ , dN ]⊤ ). Furthermore, we set the observation noise covariance to be �w = �2wI,
for notational convenience.

Assumption (2). We derive the performance bounds in the regime where T and L are large,
and thus do not impose any prior distribution on the correlations, which are otherwise needed to

mitigate overfitting (see Preliminary assumptions).

Assumption (3). We assume the latent trial-dependent process and stimulus to be slowly varying
signals, and thus adopt a piece-wise constant model in which these processes are constant within

consecutive windows of length W (i.e., xt,l = xWk ,l and st = sWk
, for (k − 1)W + 1 ≤ t < kW and

k = 1,⋯ , K withWk = (k − 1)W + 1 and KW = T ) for our theoretical analysis, as is usually done in
spike count calculations for conventional noise correlation estimates.

Our main theoretical result is as follows:

Theorem 1 (Performance Bounds). Let q > 1
64
, 0 < � < 1∕2, and 0 < � ≤ 1∕2 be fixed constants,

�2m ∶= maxi(�x)i,i and �2s ∶= 1
K

∑K
k=1 s

2
Wk
. Then, under Assumptions (1) - (3), the bias and variance of the

maximum likelihood estimators d̂ and �̂x, conditioned on an event AW with ℙ
(

AW
)

≥ 1 − � satisfy:
|

|

|

|

biasAW

(

d̂j
)

|

|

|

|

≤ 1
√

W 1−2�
C1

(

2�w
√

1 + �2 + 1
)

+ �j ,

√

VarAW

(

d̂j
)

≤

√

(�x)j,j
KL�2s (1 − �)

+ 1
√

W 1−2�
C2

(

2�w
√

1 + �2 + 1
)

+ �̃j ,

|

|

|

|

biasAW

(

(�̂x)i,j
)

|

|

|

|

≤
|

|

|

(

�x
)

i,j
|

|

|

KL(1 − �)
+
√

logW
W 1−2�

C3
(

14�w
√

1 + �2 + 3
)

+ �i,j ,

√

VarAW

(

(�̂x)i,j
)

≤

√

(KL−1)
(

(�x)2i,j+(�x)i,i(�x)j,j
)

K2L2(1−�)
+
√

logW
W 1−2�

C4
(

2�w
√

1 + �2 + 1
)

+ �̃i,j ,

for all i, j = 1, 2,⋯ , N , if logW ≥ max
⎧

⎪

⎨

⎪

⎩

log(8KLN∕�)
q

,
32�2mq
�2

,
2 log(64q)
1 − 2�

,
max{6.25, 4

(

‖�x‖∞ + maxk,j
{

|sWk
dj|

})2}
8q�2m

, log 2

⎫

⎪

⎬

⎪

⎭

,

where �j and �̃j denote bounded terms that are (�2w) or 
(

1
W

)

, �i,j and �̃i,j denote bounded terms that
are (�2w) or 

(

1
W 1−2�

)

and C1, C2, C3 and C4 are bounded constants given in Appendix 2.
Proof. The proof of Theorem 1 is provided in Appendix 2.
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In order to discuss the implications of this theoretical result, several remarks are in order:

Remark 1: Achieving near oracle performance

A common benchmark in estimation theory is the performance of the idealistic oracle estimator, in
which an oracle directly observes the true latent process xt,l and the true kernel dj and forms the
correlation estimates. In this case, the oracle would incur zero bias and variance of order  (1∕KL)
in estimating dj , and outputs an estimate of �x with bias and variance in the order of  (1∕KL).
Theorem 1 indeed states that for sufficiently largeW and small �w, the bias and variance of the ML
estimators are arbitrarily close to those of the oracle estimator. Recall that our variational inference

framework is in fact a solution technique for the regularized ML problem. Hence, the bounds in

Theorem 1 provide a benchmark for the expected performance of the proposed estimators, by

quantifying the excess bias and variance over the performance of the oracle estimator.

Remark 2: Effect of the observation noise and observation duration

As the assumed window of stationarity W → ∞ (and hence the observation duration T → ∞),
the loss of performance of the proposed estimators only depends on �2w, the variance of the
observation noise. As a result, at a given observation noise variance �2w, these bounds provide a
sufficient upper bound on the time duration of the observations required for attaining a desired

level of estimation accuracy. It is noteworthy that �2w is typically small in practice, as it pertains to
the effective observation noise and is significantly diminished by pixel averaging of the fluorescence

traces following cell segmentation.

Remark 3: Effect of the number of trials

Finally, note that the bounds in Theorem 1 have terms that also drop as the number of trials L
grows. These terms in fact pertain to the performance of the oracle estimator. As the number of

trials grows (L → ∞), the oracle estimates become arbitrarily close to the true parameters �x and
dj . Thus, our theoretical performance bounds also provide a sufficient upper bound on the number
of trials L required for the oracle estimator to attain a desired level of estimation accuracy.

Discussion
We developed a novel approach for the joint estimation of signal and noise correlations of neuronal

activities directly from two-photon calcium imaging observations and tested our method with

experimental data. Existing widely used methods either take the fluorescence traces as surrogates

of spiking activity, or first recover the unobserved spikes using deconvolution techniques, both

followed by computing Pearson correlations or connectivity matrices. As such, they typically result in

estimates that are highly biased and are heavily dependent on the choice of the spike deconvolution

technique. We addressed these issues by explicitly relating the signal and noise covariances to the

observed two-photon data via a multi-tier Bayesian model that accounts for the observation process

and non-linearities involved in spiking activity. We developed an efficient estimation framework by

integrating techniques from variational inference and state-space estimation. We also established

performance bounds on the bias and variance of the proposed estimators, which revealed favorable

scaling with respect to the observation noise and trial length.

We demonstrated the utility of our proposed estimation framework on both simulated and

experimentally-recorded data from the mouse auditory cortex. In our simulation studies, we evalu-

ated the robustness of our proposed method with respect to several model mismatch conditions

induced by the stimulus integration model, calcium decay, SNR level, firing rate, and temporally

correlated observation noise. In all cases, we observed that our proposed estimates outperform

the existing methods in recovering the signal and noise correlations.

There are two main sources for the observed performance gap between our proposed method

and existing approaches. The first source is the favorable soft decisions on the timing of spikes
achieved by our method as a byproduct of the iterative variational inference procedure. An accurate
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probabilistic decoding of spikes results in better estimates of the signal and noise correlations,

and conversely having more accurate estimates of the signal and noise covariances improves the

probabilistic characterization of spiking events. This is in contrast with both the Pearson correlations

computed from two-photon data and two-stage methods: in computing the Pearson correlations

from two-photon data, spike timing is heavily blurred by the calcium decay; in the two-stage

methods, erroneous hard decisions on the timing of spikes result in biases that propagate to and
contaminate the downstream signal and noise correlation estimation and thus results in significant

errors.

The second source of performance improvement is the explicit modeling of the non-linear

mapping from stimulus and latent covariates to spiking through a canonical point process model,

which is in turn tied to a two-photon observation model in a multi-tier Bayesian fashion. Our

theoretical analysis in Theorem 1 corroborates that this virtue of our proposed methodology results

in robust performance under limited number of trials. As we have shown in Appendix 1, as the

number of trials L and trial duration T tend to infinity, conventional notions of signal and noise
correlation indeed recover the ground truth signal and noise correlations, as the biases induced

by non-linearities average out across trial repetitions. However, as exemplified in Figure 2–Figure
Supplement 2, in order to achieve comparable performance to our method using few trials (e.g.,
L = 20), the conventional correlation estimates require considerably more trials (e.g., L = 1000).
Application to two-photon data recorded from the mouse primary auditory cortex showed that

unlike the aforementioned existing methods, our estimates provide noise correlation structures that

are expectedly invariant across spontaneous and stimulus-driven conditions within an experiment,

while producing signal correlation structures that are largely distinct from those given by noise

correlation. These results provide evidence for the involvement of distinct functional neuronal

network structures in encoding the stimulus-dependent and stimulus-independent information.

Our analysis of the relationship between the signal and noise correlations in layers 2/3 and 4 in

mouse A1 indicated a smaller correlation between signal and noise correlations than previously

reported (Winkowski and Kanold, 2013). Thus, our proposed method suggests that the signal and
noise correlations reflect distinct circuit mechanisms of sound processing in layers 2/3 vs 4. The

spatial distribution of signal correlations obtained by our method was consistent with previous

work showing significant negative trends with distance (Winkowski and Kanold, 2013). However,
in addition, our proposed method revealed a significant negative trend of noise correlations with

distance in layer 2/3, but not in layer 4, in contrast to the outcome of Pearson correlation analysis.

The lack of a negative trend in layer 4 could be attributed to the sparse nature of the noise

correlation spread in layer 4, as revealed by our analysis of two-dimensional spatial spreads. The

latter analysis indeed revealed that the noise correlations in layer 2/3 are more widespread than

those in layer 4, consistent with existing work based on whole-cell patch recordings (Meng et al.,
2017a,b).
The two-dimensional spatial spreads of signal and noise correlations obtained by our method

are more distinct than those obtained by Pearson correlations. The spatial spreads also allude

to directionality of the functional connectivity patterns, with a notable rostrocaudal preference in

layer 4. This result seems surprising in light of existing evidence for quasi-rostrocaudal organization

of the tonotopic axis in mouse A1 (Romero et al., 2020). However, given the heterogeneity of
tuning in both layers 2/3 and 4 with a best frequency interqartile range of ∼1-1.5 octaves over
the imaging field (Bowen et al., 2020) and using supra-threshold tones, we expect that the tones
will drive not only neurons with the corresponding best frequency, but also neurons tuned to

neighboring frequencies. Moreover, there is high connectivity between layer 4 cells within a few 100
�m across the tonotopic axis (Kratz and Manis, 2015; Meng et al., 2017a), potentially amplifying
and broadening the effect of supra-threshold tones.

Our proposed method can scale up favorably to larger populations of neurons, thanks to the

underlying low-complexity variational updates in the inference procedure. Due to its minimal

dependence on training data, our estimation framework is also applicable to single-session analysis
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of two-photon data with limited number of trials and duration. Another useful byproduct of the

proposed framework is gaining access to approximate posterior densities in closed-form, which

allows further statistical analyses such as construction of confidence intervals. Our proposed

methodology can thus be used as a robust and scalable alternative to existing approaches for

extracting neuronal correlations from two-photon calcium imaging data.

A potential limitation of our proposed generative model is the assumption that there is at most

one spiking event per time frame for each neuron, in light of the fact that typical two-photon imaging

frame durations are in the range of 30–100ms. Average spike rates of excitatory neurons in mouse
A1 layers 2/3 and 4 are of the order of < 10 Hz (Petrus et al., 2014; Forli et al., 2018) and thus our
model is reasonable for the current study, although it might not be optimal during bursting activity.

It is noteworthy that we relax this assumption in the inference framework by allowing the magnitude

of putative spikes to be greater than one, thus alleviating the model mismatch during episodes of

rapid increase in firing rate. This assumption can also be made more precise by adopting a Poisson

model, but that would render closed-form variational density updates intractable.

Furthermore, in the regime of extremely low spiking rate and high observation noise, the

proposed method may fail to capture the underlying correlations faithfully and its performance

degrades to those of existing methods based on Pearson correlations, as we have shown through

our simulation studies. Nevertheless, our method addresses key limitations of conventional signal

and noise correlation estimators that persist even in high spiking rate and high SNR conditions.

Our proposed estimation framework can be used as groundwork for incorporating other notions

of correlation such as the connected correlation function (Martin et al., 2020), and to account for
non-Gaussian and higher-order structures arising from spatiotemporal interactions (Kadirvelu
et al., 2017; Yu et al., 2011). Other possible extensions of this work include leveraging variational in-
ference beyond the mean-field regimeWang and Blei (2013), extension to time-varying correlations
that underlie rapid task-dependent dynamics, and extension to non-linear models such as those

parameterized by neural networks (Aitchison et al., 2017). In the spirit of easing reproducibility, a
MATLAB implementation of our proposed method as well as the data used in this work are made

publicly available (Rupasinghe, 2020; Rupasinghe et al., 2021).

Methods and Materials
Proposed forward model
Suppose we observe fluorescence traces ofN neurons, for a total duration of T discrete-time frames,
corresponding to L independent trials of repeated stimulus. Let yt,l ∶= [y(1)t,l , y

(2)
t,l ,⋯ , y(N)t,l ]

⊤, zt,l ∶=
[z(1)t,l , z

(2)
t,l ,⋯ , z(N)t,l ]

⊤, and nt,l ∶= [n(1)t,l , n
(2)
t,l ,⋯ , n(N)t,l ]

⊤ be the vectors of noisy observations, intracellular

calcium concentrations, and ensemble spiking activities, respectively, at trial l and frame t. We
capture the dynamics of yt,l by the following state-space model:

yt,l = Azt,l + wt,l, zt,l = � zt−1,l + nt,l,

where A ∈ ℝN×N represents the scaling of the observations, wt,l is zero-mean i.i.d. Gaussian noise
with covariance �w, and 0 ≤ � < 1 is the state transition parameter capturing the calcium dynamics
through a first order model. Note that this state-space is non-Gaussian due to the binary nature of

the spiking activity, i.e., n(j)t,l ∈ {0, 1}. We model the spiking data as a point process or Generalized
Linear Model with Bernoulli statistics (Eden et al., 2004; Paninski, 2004; Smith and Brown, 2003;
Truccolo et al., 2005):

n(j)t,l ∼ Bernoulli
(

�(j)t,l
)

, �(j)t,l = �
(

x(j)t,l ,dj
⊤st

)

where �(j)t,l is the conditional intensity function (Truccolo et al., 2005), which wemodel as a non-linear
function of the known external stimulus st and the other latent intrinsic and extrinsic trial-dependent
covariates, xt,l ∶= [x(1)t,l , x

(2)
t,l ,⋯ , x(N)t,l ]

⊤
. While we assume the stimulus st ∈ ℝM to be common to all
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Figure 8. Probabilistic graphical model of the proposed forward model. The fluorescence observations at the tth
time frame and lth trial: yt,l , are noisy surrogates of the intracellular calcium concentrations: zt,l. The calcium
concentration at time t is a function of the spiking activity nt,l , and the calcium activity at the previous time point
zt−1,l. The spiking activity is driven by two independent mechanisms: latent trial-dependent covariates xt,l , and
contributions from the known external stimulus st, which we model by D⊤st (in which the receptive field D is
unknown). Then, we model xt,l as a Gaussian process with constant mean �x, and unknown covariance �x.
Finally, we assume the covariance �x to have an inverse Wishart prior distribution with hyper-parameters  x
and �x. Based on this forward model, the inverse problem amounts to recovering the signal and noise
correlations by directly estimating �x and D (top layer) from the fluorescence observations

{

yt,l
}T ,L
t=1,l=1 (bottom

layer).

neurons, we model the distinct effect of this stimulus on the j th neuron via an unknown kernel
dj ∈ ℝM , akin to the receptive field.

The non-linear mapping of our choice is the logistic link, which is also the canonical link for a

Bernoulli process in the point process and Generalized Linear Model frameworks (Truccolo et al.,
2005). Thus, we assume:

�
(

x(j)t,l ,dj
⊤st

)

=
exp

(

x(j)t,l + dj
⊤st

)

1 + exp
(

x(j)t,l + dj
⊤st

) .

Finally, we assume the latent trial dependent covariates to be a Gaussian process xt,l ∼ (�x,�x),
with mean �x ∶= [�(1)x , �

(2)
x ,⋯ , �(N)x ]⊤ and covariance �x.

The probabilistic graphical model in Figure 8 summarizes the main components of the aforemen-
tioned forward model. According to this forward model, the underlying noise covariance matrix that

captures trial-to-trial variability can be identified as �x. The signal covariance matrix, representing
the covariance of the neural activity arising from the repeated application of the stimulus st, is
given by �s ∶= D⊤ cov

(

st, st
)

D, where D ∶= [d1,d2,⋯ ,dN ] ∈ ℝM×N . The signal and noise correlation

matrices, denoted by S and N, can then be obtained by standard normalization of �s and �x:

(S)i,j ∶=
(�s)i,j

√

(�s)i,i.(�s)j,j
, (N)i,j ∶=

(�x)i,j
√

(�x)i,i.(�x)j,j
, ∀i, j = 1, 2,⋯ , N.

The main problem is thus to estimate {�x,D} from the noisy and temporally blurred data
{

yt,l
}T ,L
t=1,l=1.

Overview of the proposed estimation method
First, given a limited number of trials L from an ensemble with typically low spiking rates, we need
to incorporate suitable prior assumptions to avoid overfitting. Thus, we impose a prior ppr(�x) on
the noise covariance, to compensate sparsity of data. A natural estimation method to estimate

{�x,D} in a Bayesian framework is to maximize the observed data likelihood p({yt,l}T ,Lt,l=1|�x,D), i.e.,
maximum likelihood (ML). Thus, we consider the joint likelihood of the observed data and latent
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processes to perform Maximum a Posteriori (MAP) estimation:

p(y, z, x,�x|D)

= ppr(�x)
T ,L
∏

t,l=1

1
√

(2�)N |�w|
exp

(

−1
2
(yt,l − Azt,l)⊤�−1w (yt,l − Azt,l)

)

T ,L,N
∏

t,l,j=1

(

exp
(

x(j)t,l + dj
⊤st

))z(j)t,l −�z
(j)
t−1,l

1 + exp
(

x(j)t,l + dj
⊤st

)

T ,L
∏

t,l=1

1
√

(2�)N |�x|
exp

(

(

xt,l − �x
)⊤�−1x

(

xt,l − �x
)

)

(4)

Inspecting this MAP problem soon reveals that estimating �x and D is a challenging task: 1)
standard approaches such as Expectation-Maximization (EM) (Shumway and Stoffer, 1982) are
intractable due to the complexity of the model, arising from the hierarchy of latent processes and

the non-linearities involved in their mappings, and 2) the temporal coupling of the likelihood in the

calcium concentrations makes any potential direct solver scale poorly with T .
Thus, we propose an alternative solution based on Variational Inference (VI) (Beal, 2003; Blei

et al., 2017; Jordan et al., 1999). VI is a method widely used in Bayesian statistics to approximate
unwieldy posterior densities using optimization techniques, as a low-complexity alternative strategy

to Markov Chain Monte Carlo sampling (Hastings, 1970) or empirical Bayes techniques such as EM.
To this end, we treat {xt,l}

T ,L
t,l=1 and �x as latent variables and {zt,l}

T ,L
t,l=1 andD as unknown parameters to

be estimated. We introduce a framework to update the latent variables and parameters sequentially,

with straightforward update rules. We will describe the main ingredients of the proposed framework

in the following subsections. Hereafter, we use the shorthand notations y ∶= {yt,l}
T ,L
t,l=1, z ∶= {zt,l}

T ,L
t,l=1,

and x ∶= {xt,l}
T ,L
t,l=1.

Preliminary assumptions
For the sake of simplicity, we assume that the constants �, A, �w and �x are either known or can be
consistently estimated from pilot trials. Next, we take ppr(�x) to be an Inverse Wishart density:

�x ∼ InvWishN ( x, �x),

which turns out to be the conjugate prior in our model. Thus,  x and �x will be the hyper-parameters
of our model. Procedures for hyper-parameter tuning and choosing the key model parameters

are given in subsections Hyper-parameter tuning and Guidelines for model parameter settings,

respectively.

Decoupling via Pólya-Gamma augmentation
Direct application of VI to problems containing both discrete and continuous random variables

results in intractable densities. Specifically, finding a variational distribution for xt,l in our model
with a standard distribution is not straightforward, due to the complicated posterior arising from

co-dependent Bernoulli and Gaussian random variables. In order to overcome this difficulty, we

employ Pólya-Gamma (PG) latent variables (Pillow and Scott, 2012; Polson et al., 2013; Linderman
et al., 2016). We observe from Equation 4 that the posterior density, p(x|z,D,�x) is conditionally
independent in t, l with:

p(xt,l|z,D,�x) ∝ p(xt,l|�x)
N
∏

j=1

(

exp
(

x(j)t,l + dj
⊤st

))z(j)t,l −�z
(j)
t−1,l

1 + exp
(

x(j)t,l + dj
⊤st

) .

Thus, upon careful inspection we see that this density has the desired form for the PG augmentation

scheme (Polson et al., 2013). Accordingly, we introduce a set of auxiliary PG-distributed i.i.d. latent
random variables !t,l ∶= [!

(1)
t,l , !

(2)
t,l ,⋯ , !(N)t,l ]

⊤, !(j)t,l ∼ PG(1, 0) for 1 ≤ j ≤ N , 1 ≤ t ≤ T and 1 ≤ l ≤ L, to

21 of 50



derive the complete data log-likelihood:

log p(y, z, x,!,�x|D)

= −TL
2
log |�x| + log ppr

(

�x
)

+
T ,L
∑

t,l=1

{

− 1
2
(

yt,l − Azt,l
)⊤ �−1w

(

yt,l − Azt,l
)

− 1
2
(

xt,l − �x
)⊤�−1x

(

xt,l − �x
)

+
N
∑

j=1

{(

z(j)t,l − �z
(j)
t−1,l −

1
2

)(

x(j)t,l + dj
⊤st

)

− 1
2
!(j)t,l

(

x(j)t,l + dj
⊤st

)2
+ log p

PG(1,0)

(

!(j)t,l
)}

}

+ C, (5)

where ! ∶=
{

!t,l
}T ,L
t,l=1 and C accounts for terms not depending on y, z, x,!, �x and D. The complete

data log-likelihood is notably quadratic in zt,l, which as we show later admits efficient estimation
procedures with favorable scaling in T .

Deriving the optimal variational densities
In this section, we will outline the procedure of applying VI to the latent variables x =

{

xt,l
}T ,L
t,l=1 ,! =

{

!t,l
}T ,L
t,l=1 and �x, assuming that the parameter estimates ẑ and D̂ of the previous iteration are

available. The methods that we propose to update the parameters ẑ and D̂ subsequently, will be
discussed in the next section.

The objective of variational inference is to posit a family of approximate densities  over the
latent variables, and to find the member of that family that minimizes the Kullback-Leibler (KL)

divergence to the exact posterior:

q∗(x,!,�x|ẑ, D̂) = argmin
q∈

KL
(

q(x,!,�x|ẑ, D̂)
‖

‖

‖

p(x,!,�x|y, ẑ, D̂)
)

.

However, evaluating the KL divergence is intractable, and it has been shown (Blei et al., 2017) that
an equivalent result to this minimization can be obtained by maximizing the alternative objective

function, called the evidence lower bound (ELBO):

ELBO (q) = E[log p(x,!,�x, y|ẑ, D̂)] − E[log q(x,!,�x|ẑ, D̂)].

Further, we assume  to be a mean-field variational family (Blei et al., 2017), resulting in the
overall variational density of the form:

q
(

x,!,�x
)

= q
(

�x
)

T ,L
∏

t,l=1

(

q
(

xt,l
)

N
∏

j=1
q
(

!(j)t,l
)

)

. (6)

Under the mean field assumptions, the maximization of the ELBO can be derived using the opti-

mization algorithm ‘Coordinate Ascent Variational Inference’ (CAVI) (Bishop, 2006; Blei et al., 2017).
Accordingly, we see that the optimal variational densities in Equation 6 take the forms:

log q∗
(

xt,l
)

∝ Eq∗(�x)q∗(!t,l)
[

log p
(

xt,l|!t,l,�x, y, ẑ, D̂
)]

log q∗
(

!(j)t,l
)

∝ Eq∗(xt,l)
[

log p
(

!(j)t,l |xt,l,�x, y, ẑ, D̂
)]

log q∗
(

�x
)

∝ Eq∗(x)
[

log p
(

�x|x, y, ẑ, D̂
)]

Upon evaluation of these expectations, we derive the optimal variational distributions as:

q∗(xt,l) ∼ (mxt,l ,Qxt,l ), q∗
(

!(j)t,l
)

∼ PG
(

1, c(j)t,l
)

, q∗(�x) ∼ InvWishN (Px, 
x).

whose parametersmxt,l ∶= [m
(1)
xt,l
, m(2)xt,l ,⋯ , m(N)xt,l

]⊤, Qxt,l , c
(j)
t,l , Px, and 
x can be updated given parameter

estimates D̂ and ẑ:

Qxt,l = (
̃t,l + 
xP−1x )
−1, mxt,l = Qxt,l

(

ẑt,l − �ẑt−1,l −
1
2
1 − 
̃t,l D̂⊤st + 
xP−1x �x

)

,

Px ∶=  x +
T ,L
∑

t,l=1

{

Qxt,l +mxt,lm
⊤
xt,l
− �xm⊤

xt,l
−mxt,l�

⊤
x + �x�

⊤
x

}

, c(j)t,l =

√

(

Qxt,l
)

j,j
+
(

m(j)xt,l + d̂
⊤
j st

)2
,
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and 
x ∶= �x + TL, with 
̃t,l ∈ ℝN×N denoting a diagonal matrix with entries (
̃t,l)j,j ∶=
1

2c(j)t,l
tanh

( c(j)t,l
2

)

and 1 ∈ ℝN denoting the vector of all ones.

Low-complexity parameter updates
Note that even though z is composed of the latent processes zt,l, we do not use VI for its inference,
and instead consider it as an unknown parameter. This choice is due to the temporal dependencies

arising from the underlying state-space model in Equation 4, which hinders a proper assignment
of variational densities under the mean field assumption. We thus seek to estimate both z and D
using the updated variational density q∗(x,!,�x).
First, note that the log-likelihood in Equation 5 is decoupled in l, which admits independent

updates to {zt,l}Tt=1, for l = 1,⋯ , L. As such, given an estimate D̂, we propose to estimate {zt,l}Tt=1 as:

{ẑt,l}Tt=1 = argmax
{zt,l}Tt=1

Eq∗(x,!,�x)
[

log p
(

y, z, x,!,�x|D̂
)]

= argmin
{zt,l}Tt=1

T
∑

t=1

{

1
2
(

yt,l − Azt,l
)⊤ �−1w

(

yt,l − Azt,l
)

−
N
∑

j=1

(

m(j)xt,l + d̂
⊤
j st

)(

z(j)t,l − �z
(j)
t−1,l

)

}

,

under the constraints 0 ≤ z(j)t,l − �z
(j)
t−1,l ≤ 1, for t = 1,⋯ , T and j = 1,⋯ , N . These constraints are

a direct consequence of n(j)t,l = z
(j)
t,l − �z

(j)
t−1,l being a Bernoulli random variable with E

[

n(j)t,l
]

∈ [0, 1].
While this problem is a quadratic program and can be solved using standard techniques, it is not

readily decoupled in t, and thus standard solvers would not scale favorably in T .
Instead, we consider an alternative solution that admits a low-complexity recursive solution

by relaxing the constraints. To this end, we relax the constraint zt,l − �zt−1,l ⪯ 1 and replace the
constraint zt,l − �zt−1,l ⪰ 0 by penalty terms proportional to |

|

|

z(j)t,l − �z
(j)
t−1,l

|

|

|

. The resulting relaxed

problem is thus given by:

min
{zt,l}Tt=1

T
∑

t=1

{

1
2
(

yt,l − Azt,l
)⊤ �−1w

(

yt,l − Azt,l
)

+
N
∑

j=1
�(j)t,l

|

|

|

z(j)t,l − �z
(j)
t−1,l

|

|

|

}

, (7)

where �(j)t,l ∶= � |m
(j)
xt,l + d̂

⊤
j st| with � ≥ 1 being a hyper-parameter. Given that the typical spiking rates

are quite low in practice, m(j)xt,l + d̂
⊤
j st is expected to be a negative number. Thus, we have assumed

that −m(j)xt,l − d̂
⊤
j st = |m(j)xt,l + d̂

⊤
j st|.

The problem of Equation 7 pertains to compressible state-space estimation, for which fast
recursive solvers are available (Kazemipour et al., 2018). The solver utilizes the Iteratively Re-
weighted Least Squares (IRLS) (Ba et al., 2014) framework to transform the absolute value in the
second term of the cost function into a quadratic form in zt,l, followed by Fixed Interval Smoothing
(FIS) (Rauch et al., 1965) to find the minimizer. At iteration k, given a current estimate z[k−1], the
problem reduces to a Gaussian state-space estimation of the form:

yt,l = Azt,l + wt,l, zt,l = �zt−1,l + vt,l, (8)

with wt,l ∼  (0,�w) and vt,l ∼  (0,�[k]vt,l ), where �
[k]
vt,l
∈ ℝN×N is a diagonal matrix with

(

�[k]vt,l
)

j,j ∶=
√

(

ẑ(j)[k−1]t,l −�ẑ(j)[k−1]t−1,l

)2
+"2

/

�(j)t,l , for some small constant " > 0. This problem can be efficiently solved using
FIS, and the iterations proceed for a total of K times or until a standard convergence criterion is met
(Kazemipour et al., 2018). It is noteworthy that our proposed estimator of the calcium concentration
zt,l can be thought of as soft spike deconvolution, which naturally arises from our variational
framework, as opposed to the hard spike deconvolution step used in two-stage estimators.
Finally, given q∗(x,!,�x) and the updated ẑ, the estimate of dj for j = 1, 2,⋯ , N can be updated

in closed-form by maximizing the expected complete log-likelihood Eq∗(x,!,�x)
[

log p(y, ẑ, x,!,�x|D)
]

:

d̂j =
( T ,L
∑

t,l=1

(

(
̃t,l)j,jstst⊤
)

)−1( T ,L
∑

t,l=1

{

(

ẑ(j)t,l − �ẑ
(j)
t−1,l −

1
2

)

st − (
̃t,l)j,jm(j)xt,l st
})

.
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The VI procedure iterates between updating the variational densities and parameters until conver-

gence, upon which we estimate the noise and signal covariances as:

�̂x ∶= mode{q∗(�x)} =
Px


x +N + 1
, �̂s ∶= D̂⊤ E[stst⊤] D̂.

The overall combined iterative procedure is outlined in Algorithm 1. Furthermore, a MATLAB

implementation of this algorithm is publicly available in Rupasinghe (2020). It is worth noting that
a special case of our proposed variational inference procedure can be used to estimate signal

and noise correlations from electrophysiology recordings. Given that spiking activity, i.e. {nt,l}
T ,L
t,l=1,

is directly observed in this case, the solution to the optimization problem in Eq. (7) is no longer

required. Thus, the parameters �x and D can be estimated using a simplified variational procedure,
which is outlined in Algorithm 2 in Appendix 3.

Guidelines for model parameter settings
There are several key model parameters that need to be set by the user prior to the application of

our proposed method. Here, we provide our rationale and criteria for choosing these parameters,

which could also serve as guidelines in facilitating the applicability and adoption of our method by

future users. We will also provide the specific choices of these parameters used in our simulation

studies and real data analyses.

Number of neurons selected for the analysis (N )
While our proposed method scales-up well with the population size due to low-complexity update

rules involved, including neurons with negligible spiking activity in the analysis would only increase

the complexity and potentially contaminate the correlation estimates. Thus, we performed an initial

pre-processing step to extract N neurons that exhibited at least one spiking event in at least half of
the trials considered.

Stimulus integration window length (R)
The number of lags R considered in stimulus integration is a key parameter that can be set through
data-driven approaches or using prior domain knowledge. Examples of common data-driven criteria

include cross-validation, Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC),

which balance the estimation accuracy and model complexity (Arlot et al., 2010; Ding et al., 2018).
To quantify the effect of R on model complexity, we first describe the stimulus encoding model

in our framework. Suppose that the onset of the pth tone in the stimulus set (p = 1,⋯ , P , where P is
the number of distinct tones) is given by a binary sequence f (p)t ∈ {0, 1}T . The choice of R implies
that the response at time t post-stimulus depends only on the Rmost recent time lags. As such,
the effective stimulus at time t corresponding to tone p is given by s(p)t ∶= [f (p)t , f (p)t−1,⋯ , f (p)t−R+1]

⊤ ∈ ℝR.

By including all the P tones, the overall effective stimulus at the ttℎ time frame is given by st ∶=
[s(1)⊤t ,⋯ , s(P )⊤t ]⊤ ∈ ℝRP . The stimulus modulation vector dj would thus be RP -dimensional. As a
result, the number of parameters (M = RP ) to be estimated linearly increases with R. By using
additional domain knowledge, we chose R to be large enough to capture the stimulus effects, and
at the same time to be small enough to control the complexity of the algorithm.

As an example, given that the typical tone response duration of mouse primary auditory neurons

is < 1 s (Linden et al., 2003; DeWeese et al., 2003; Petrus et al., 2014), with a sampling frequency
of fs = 30 Hz, a choice of R ∼ 30 would suffice to capture the stimulus effects. By further examining
the effect of varying R on the proposed correlation estimates in Figure 4–Figure Supplement 1, we
chose R = 25 for our real data analyses.

Observation noise covariance (�w) and scaling matrix (A)
We assumed that the observation noise covariance �w is diagonal, and estimated the diagonal
elements using the background fluorescence in the absence of spiking events, for each neuron.

We set A = aI, where I ∈ ℝN×N represents the identity matrix, and estimated a by considering the
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Algorithm 1 Estimation of �x and D through the proposed iterative procedure
Inputs: Ensemble of fluorescence measurements {yt,l}T ,Lt,l=1, constants �,A,�w and �x, hyper-parameters  x, �x,
� and �, tolerance at convergence � and the external stimulus stOutputs: �̂x and D̂Initialization: Initial choice of �vt,l , 
̃t, �̂x and D̂, residual = 10 �, 
x = �x + LT
1: while residual ≥ � do
Estimate calcium concentrations using Fixed Interval Smoothing

2: for l = 1,⋯ , L do
Forward filter:

3: for t = 1,⋯ , T do
4: z(t|t−1), l = � z(t−1|t−1), l
5: P(t|t−1), l = �2 P(t−1|t−1), l + �vt,l
6: Bt, l = P(t|t−1), lA⊤(A P(t|t−1), l A⊤ + �w)−1
7: z(t|t), l = z(t|t−1), l + Bt, l(yt,l − A z(t|t−1), l)
8: P(t|t), l = (I − Bt,l A)P(t|t−1), l
9: end for
Backward smoother:

10: for t = T − 1,⋯ , 1 do
11: ẑt,l = z(t|t),l + �P(t|t),lP−1(t+1|t),l(ẑt+1,l − z(t+1|t),l)
12: end for
13: end for
Update variational parameters

14: for t = 1,⋯ , T and l = 1,⋯ , L do
15: Qxt,l = (
̃t,l + 
xP

−1
x )

−1

16: mxt,l = Qxt,l
(

ẑt,l − �ẑt−1,l −
1
2 1 − 
̃t,l D̂

⊤st + 
xP−1x �x
)

17: �(j)t,l ∶= � |m
(j)
xt,l + d̂

⊤
j st|

18: for j = 1,⋯ , N do
19: c(j)t,l =

√

(

Qxt,l
)

j,j
+
(

m(j)xt,l + d̂
⊤
j st

)2

20: (
̃t,l)j,j ∶=
1

2c(j)t,l
tanh

( c(j)t,l
2

)

21: end for
22: end for
23: Px ∶=  x +

T ,L
∑

t,l=1
{Qxt,l +mxt,lm

⊤
xt,l
− �xm⊤

xt,l
−mxt,l�

⊤
x + �x�

⊤
x }

Update IRLS covariance approximation
24: for l = 1,⋯ , L, t = 1,⋯ , T and j = 1,⋯ , N do
25:

(

�vt,l
)

j,j ∶=
√

(

ẑ(j)t,l −�ẑ
(j)
t−1,l

)2
+"2

/

�(j)t,l
26: end for
Update outputs and the convergence criterion

27: for j = 1,⋯ , N do
28: d̂j =

(

T ,L
∑

t,l=1

(

(
̃t,l)j,jstst⊤
)

)−1( T ,L
∑

t,l=1

{

(

ẑ(j)t,l − �ẑ
(j)
t−1,l −

1
2

)

st − (
̃t,l)j,jm
(j)
xt,l st

}

)

29: end for
30: (D̂)prev = D̂, D̂ =

[

d̂1, d̂2,⋯ , d̂N
]

31: (�̂x)prev = �̂x, �̂x =
Px


x+N+1

32: residual = ‖(�̂x)prev − �̂x‖2∕‖(�̂x)prev‖2 + ‖(D̂)prev − D̂‖2∕‖(D̂)prev‖2

33: end while
34: Return �̂x and D̂
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average increase in fluorescence after the occurrence of isolated spiking events. Specifically, we

derived the average fluorescence activity of multiple trials triggered to the fluorescence rise onset,

and set a as the increment in the magnitude of this average fluorescence immediately following the
rise onset.

State transition parameter (�)
We chose � in the range [0.95, 0.98], which match the slow dynamics of the calcium indicator in our
data. We tested the robustness of our estimates under different choices of � in this range through
the method outlined in Hyper-parameter tuning, and accordingly chose the optimal value of �.

Mean of the latent trial-dependent process (�x)
We estimated �x as a constant that is proportional to the average firing rate. To this end, we
parametrized each component of �x as �(j)x = −a� + b�

1
LT

∑T ,L
t,l=1 y

(j)
t,l , for j = 1,⋯ , N . The constants

a� and b� were chosen such that −2 ≤ �(j)x ≤ −10, which gives the range of baseline parameters
compatible with observed firing rates in our experimental data.

Parameter choices for simulation study 1

In the first simulation study, we set � = 0.98, � = 8, A = 0.1I, �x = −4.51 and �w = 2 × 10−4I
(I ∈ ℝ8×8 represents the identity matrix and 1 ∈ ℝ8 represents the vector of all ones), so that

the SNR of simulated data was in the same range as that of experimentally-recorded data. We

used a 6th order autoregressive process with a mean of −1 as the stimulus (st), and considered
R = 2 (M = 2) lags of the stimulus (i.e., st = [st, st−1]⊤) in both the generative model and inference
procedure. The components of the linear and quadratic stimulus modulation vectors, i.e. dj , d̃j,1
and d̃j,2, were chosen at random uniformly in the range [−0.5, 0.5]. The variance of st was set in each
case such that the average power of the overall signal component (d⊤j st for the linear model, and
d⊤j st + (d̃

⊤
j,1st)

2 + (d̃⊤j,2st)
2 for the non-linear model) was comparable to the average power of the noise

component (x(j)t,l ).

Parameter choices for simulation study 2

In the second simulation study, we set � = 0.98, A = 0.1I, �x = −4.51 and �w = 10−4I (I ∈ ℝ30×30

represents the identity matrix and 1 ∈ ℝ30 represents the vector of all ones) when generating the

fluorescence traces
{

yt,l
}T ,L
t,l=1, so that the SNR of the simulated data was in the same range as of

real calcium imaging observations. Furthermore, we simulated the spike trains based on a Poisson

process (Smith and Brown, 2003) using the discrete time re-scaling procedure (Brown et al., 2002;
Smith and Brown, 2003). Following the assumptions in Brown et al. (2002), we used an exponential
link to simulate the observations:

n(j)t,l ∼ Poisson
(

�(j)t,l
)

, �(j)t,l = exp
(

x(j)t,l
)

.

as opposed to the Bernoulli-logistic assumption in our recognition model. Then, we estimated the

noise covariance �̂x using the Algorithm 1, with a slight modification. Since there are no external
stimuli, we set st = 0 and D = 0. Accordingly, in Algorithm 1, we initialized D̂ = 0 and did not perform
the update on D̂ in the subsequent iterations.

Parameter choices for real data study 1

The dataset consisted of recordings from 371 excitatory neurons, from which we selected N = 16
responsive neurons for the analysis. Each trial consisted of T = 3600 time frames (the sampling
frequency was 30 Hz, and each trial had a duration of 120 seconds), with the presentation of a
random sequence of four tones (P = 4). The spiking events were very sparse and infrequent, and
hence this dataset fits our model with at most one spiking event in a time frame.

We considered R = 25 (M = 100) time lags in this analysis and further examined the effect of
varying R in Figure 4–Figure Supplement 1. We set � = 0.95 and A = I (I ∈ ℝ16×16 represents the

identity matrix).
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Parameter choices for real data study 2

Each trial consisted of T = 765 frames (25.5 seconds) at a sampling frequency of 30 Hz. The A1
neurons studied here had low response rates (in both time and space), with only ∼ 10 neurons
exhibiting spiking activity in at least half of the trials. Thus, we selected N = 10 neurons and
L = 10 trials for the analysis, and chose R = 25 lags of the stimulus (M = 25) in the model for the
stimulus-driven condition. We set � = 0.95 and A = 0.75I (I ∈ ℝ10×10 represents the identity matrix).

Parameter choices for real data study 3

Each experiment consisted of L = 5 trials of P = 9 different tone frequencies repeated at 4 different
amplitude levels, resulting in each concatenated trial being ∼ 180 second long (see Bowen et al.
(2020) for more details). We set the number of stimulus time lags considered to be R = 25 (M = 225).
For each layer, we analyzed fluorescence observations from six experiments. In each experiment,

we selected the most responsive N ∼ 20 neurons for the subsequent analysis. We set � = 0.95 and
A = I.

Performance evaluation
Simulation studies

Since the ground truth is known in simulations, we directly compared the performance of each signal

and noise correlation estimate with the ground truth signal and noise correlations, respectively.

Suppose the ground truth correlations are given by the matrix X and the estimated correlations are
given by the matrix X̂. To quantify the similarity between X and X̂, we defined the following two
metrics:

Normalized Mean Squared Error (NMSE): The NMSE computes the mean squared error of X̂ with
respect to X using the Frobenius Norm:

NMSE ∶=
‖X − X̂‖2F
‖X‖2F

.

Ratio between out-of-network power and in-network power (leakage): First, we identified the in-
network and out-of-network components from the ground truth correlation matrix X. Suppose
that if the true correlation between the ith neuron and the j th neuron is non-zero, then ||

|

(X)i,j
|

|

|

> �x,
for some �x > 0. Thus, we formed a matrix Xin that masks the in-network components, by setting
(

Xin
)

i,j = 1 if
|

|

|

(X)i,j
|

|

|

> �x and
(

Xin
)

i,j = 0 if
|

|

|

(X)i,j
|

|

|

≤ �x. Likewise, we also formed a matrix Xout that

masks the out-of-network components, by setting
(

Xout
)

i,j = 1 if ||
|

(X)i,j
|

|

|

≤ �x and
(

Xout
)

i,j = 0 if
|

|

|

(X)i,j
|

|

|

> �x. Then, using these two matrices we quantified the leakage effect of X̂ comparative to X
by:

leakage ∶=
‖X̂ ⋅ Xout

‖

2
F

‖X̂ ⋅ Xin
‖

2
F

,

where (⋅) denotes element-wise multiplication.

Real data studies

To quantify the similarity and dissimilarity between signal and noise correlation estimates, we

used a statistic based on the Tanimoto similarity metric (Lipkus, 1999), denoted by Ts(X,Y) for
two matrices X and Y. For two vectors a and b with non-negative entries, the Tanimoto coefficient
(Lipkus, 1999) is defined as:

T (a,b) ∶= a⊤b
a⊤a + b⊤b − a⊤b

.

The Tanimoto similarly metric between two matrices can be defined in a similar manner, by

vectorizing the matrices. Thus, we formulated a similarity metric between two correlation matrices

X and Y as follows. Let X+ ∶= max{X, 0I} and X− ∶= max{−X, 0I}, with the max{⋅, ⋅} operator
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interpreted element-wise. Note that X = X+ − X−, and X+,X− have non-negative entries. We then
defined the similarity matrix by combining those of the positive and negative parts as follows:

Ts(X,Y) ∶= " T (X+,Y+) + (1 − ") T (X−,Y−)

where " ∈ [0, 1] denotes the percentage of positive entries in X and Y. As a measure of dissimilarity,
we used Td(X,Y) ∶= 1 − Ts(X,Y). The values of Td(Ŝ, N̂) in Table 1 and Ts(N̂spon, N̂stim) and Td(Ŝstim, N̂stim)
reported in Table 2 were obtained based on the foregoing definitions.
To further assess the statistical significance of these results, we performed following randomized

tests. To test the significance of Ts(N̂spon, N̂stim), for each comparison and each algorithm, we fixed the
first matrix (i.e. N̂spon) and randomly shuffled the entries of the second one (N̂stim in both cases) while

respecting symmetry. We repeated this procedure for 10000 trials, to derive the null distributions
that represented the probabilities of chance occurrence of similarities between two random groups

of neurons.

To test the significance of Td(Ŝ, N̂) and Td(Ŝstim, N̂stim), for each comparison and each algorithm,
again we fixed the first matrix (i.e. signal correlations). Then, we formed the elements of the

second matrix (akin to noise correlations) as follows. For each element of the second matrix, we

assigned either the same element as the signal correlations (in order to model the leakage effect)

or a random noise (with same variance as the elements in the noise correlation matrix) with equal

probability. As before, we repeated this procedure for 10000 trials, to derive the null distributions

that represent the probabilities of chance occurrence of dissimilarities between two matrices that

have some leakage between them.

Hyper-parameter tuning
The hyper-parameters that directly affect the proposed estimation are the inverse Wishart prior

hyper-parameters:  x and �x. Given that �x appears in the form of 
x ∶= TL+�x, we will consider  x

and 
x as the main hyper-parameters for simplicity. Here, we propose a criterion for choosing these
two hyper-parameters in a data-driven fashion, which will then be used to construct the estimates

of the noise covariance matrix �̂x and weight matrix D̂. Due to the hierarchy of hidden layers in
our model, an empirical Bayes approach for hyper-parameter selection using a likelihood-based

performance metric is not straightforward. Hence, we propose an alternative empirical method for

hyper-parameter selection as follows.

For a given choice of  x and 
x, we estimate �̂x and D̂ following the proposed method. Then,
based on the generative model in Proposed forward model, and using the estimated values of �̂x
and D̂, we sample an ensemble of simulated fluorescence traces ŷ =

{

ŷ(l)t
}T ,L
t,l=1, and compute the

metric d
(

 x, 
x
)

:

d
(

 x, 
x
)

∶= Dfrob

(

cov(ŷ, ŷ), cov(y, y)
)

,

where cov(⋅) denotes the empirical covariance and Dfrob(X,Y) ∶= ‖X − Y‖2F . Note that Dfrob(X,Y)
is strictly convex in X. Thus, minimizing Dfrob (X,Y) over X for a given Y has a unique solution.
Accordingly, we observe that d

(

 x, 
x
)

is minimized when cov(ŷ, ŷ) is nearest to cov(y, y). Therefore,
the corresponding estimates �̂x and D̂ that generated ŷ, best match the second-order statistics of y
that was generated by the true parameters �x and D.
The typically low spiking rate of sensory neurons observed in practice may render the estimation

problem ill-posed. It is thus important to have an accurate choice of the scale matrix  x in the

prior distribution. However, an exhaustive search for optimal tuning of  x is not computationally

feasible, given that it has N(N + 1)∕2 free variables. Thus, the main challenge here is finding the
optimal choice of the scale matrix  x,opt.

To address this challenge, we propose the following method. First, we fix  x,init = �I, where � is a
scalar and I ∈ ℝN×N is the identity matrix. Next, given  x,init we find the optimal choice of 
x as:


x,init = argmin

x∈


d( x,init, 
x) ,

28 of 50



where 
 is a finite set of candidate solutions for 
x > N − 1. Let �̂x,init denote the noise covariance
estimate corresponding to hyper-parameters

(

 x,init, 
x,init
)

. We will next use �̂x,init to find a suitable
choice of  x. To this end, we first fix 
x,opt ∶= TL + �̃x, for some N − 1 < �̃x ≪ TL. Note that by
choosing �̃x to be much smaller than TL, the final estimates become less sensitive to the choice of

x. Then, we construct a candidate set  for  x,opt by scaling �̂x,init with a finite set of scalars � ∈ ℝ+:

 =
{

��̂x,init, � ∈ ℝ+
}

. To select  x,opt, we match it with the choice of 
x,opt by solving:

 x,opt = argmin
 x∈ 

d
(

 x, 
x,opt
)

.

Finally, we use these hyper-parameters
(

 x,opt, 
x,opt
)

to obtain the estimators �̂x and D̂ as the output
of the algorithm.

Experimental procedures
All procedures were approved by the University of Maryland Institutional Animal Care and Use

Committee. Imaging experiments were performed on a P60 (for real data study 1) and P83 (for real

data study 2) female F1 offspring of the CBA/CaJ strain (The Jackson Laboratory; stock #000654)

crossed with transgenic C57BL/6J-Tg(Thy1-GCaMP6s)GP4.3Dkim/J mice (The Jackson Laboratory;

stock #024275) (CBAxThy1), and F1 (CBAxC57). The third real data study was performed on data

from P66-P93 and P166-P178 mice (see Bowen et al. (2020) for more details). We used the F1
generation of the crossed mice because they have good hearing into adulthood (Frisina et al.,
2011).
We performed cranial window implantation and 2-photon imaging as previously described in

Francis et al. (2018); Liu et al. (2019); Bowen et al. (2019). Briefly, we implanted a cranial window
of 3 mm in diameter over the left auditory cortex. We used a scanning microscope (Bergamo II

series, B248, Thorlabs) coupled to Insight X3 laser (Spectra-physics) (study 1) or pulsed femtosecond

Ti:Sapphire 2-photon laser with dispersion compensation (Vision S, Coherent) (studies 2 and 3) to

image GCaMP6s fluorescence from individual neurons in awake head-fixed mice with an excitation

wavelengths of � = 920 nm and � = 940 nm, respectively. The microscope was controlled by
ThorImageLS software. The size of the field of view was 370 × 370 �m. Imaging frames of 512 × 512
pixels (pixel size 0.72 �m) were acquired at 30 Hz by bidirectional scanning of an 8 kHz resonant
scanner. The imaging depth was around 200 �m below pia.

Data pre-processing

A circular ROI was manually drawn over each cell body to extract raw fluorescence traces from

individual cells. Neuropil contamination subtraction and baseline correction were performed on

the raw fluorescence traces of each cell (Francis et al., 2018; Liu et al., 2019; Bowen et al., 2020)
according to

Fcell−�nFneuropil−baseline

baseline
, where �n was set to 0.7 in real data study 1 (Francis et al., 2018), 0.8 in

real data study 2 (Liu et al., 2019) and 0.9 in real data study 3 (Bowen et al., 2020). The two-photon
observations

{

yt,l
}T ,L
t,l=1 used in our analyses are the output of this pre-processing step.

Stimuli for real data study 1

During imaging experiments, we presented 4 tones (4, 8, 16 and 32 kHz) at 70 dB SPL. The tones
were 2 s in duration with an inter-trial silence of 4 s. For the sequence of tones, we first generated
a randomized sequence that consisted of 5 repeats for each tone (20 tones in total) and then the
same sequence was repeated for 10 trials.

Stimuli for real data study 2

During imaging experiments, we presented a 75 dB SPL 100 ms broadband noise (4–48 kHz) as
the auditory stimulus. Each trial was 5.1 s long (1 s pre-stimulus silence + 0.1 s stimulus + 3 s
post-stimulus silence), and the inter-trial duration was 3 s. Spontaneous neuronal activity was
collected from activity during randomly interleaved no-stimuli trials of the same duration, and these

trials had complete silence throughout the trial duration (5.1 s long).
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Then, we extracted 50 such trials from each type, and formed 10 (L = 10) trials each of 25.5 s
duration (T = 765 frames) for the subsequent analysis, by concatenating five 5.1 s trials. This final
step was performed to increase the effective trial duration.

Stimuli for real data study 3

During imaging experiments, sounds were played at four sound levels (20, 40, 60, and 80 dB SPL).

Auditory stimuli consisted of sinusoidal amplitude-modulated (SAM) tones (20 Hz modulation,

cosine phase), ranging from 3–48 kHz. The frequency resolution was 2 tones/octave (0.5 octave
spacing) and each of these tonal stimuli was 1 s long, repeated five times with a 4—6 s inter-stimulus
interval (see Bowen et al. (2020) for details).
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Appendix 1

Relationship to existing definitions of Signal and Noise correlations
Recall that the conventional definitions of signal and noise covariance of spiking activity

between the ith and j th neuron are (Lyamzin et al., 2015):

(�con
s )i,j =cov

(

1
L
∑

l
n(i)t,l ,

1
L
∑

l
n(j)t,l

)

,

(�con
x )i,j =

1
L
∑

l
cov

(

n(i)t,l−
1
L
∑

l′
n(i)t,l′ , n

(j)
t,l −

1
L
∑

l′
n(j)t,l′

)

,

where cov
(

ut, vt
)

∶= 1
T

∑T
t=1

(

ut −
1
T

∑T
t′=1 ut′

)(

vt −
1
T

∑T
t′=1 vt′

)⊤
, is the empirical covariance.

The correlations, are then derived by the standard normalization:

(Scon)i,j ∶=
(�con

s )i,j
√

(�con
s )i,i.(�con

s )j,j
, (Ncon)i,j ∶=

(�con
x )i,j

√

(�con
x )i,i.(�con

x )j,j
, ∀i, j = 1, 2,⋯ , N. (9)

Suppose that the spiking events follow the forward model:

n(j)t,l ∼ Bernoulli
(

�(j)t,l
)

,

�(j)t,l = �
(

x(j)t,l ,dj
⊤st

)

,

where � ∶ ℝ2 → [0, 1] is a differentiable non-linear mapping. We assume xt,l and st to be
independent. Without loss of generality, let E

[

st
]

= 0 and E
[

xt,l
]

= �x . Further, we define

the notation Xt ≈ Yt to denote almost sure equivalence, i.e., Xt
a.s.

←←←←←←←←←←←←→ Z and Yt
a.s.

←←←←←←←←←←←←→ Z for some
random variable Z.
First, let us consider (Scon)i,j . Noting that E

[

n(j)t,l
]

= E
[

�(j)t,l
]

and E
[

n(i)t,ln
(j)
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]

, we

conclude as T →∞:

(�con
s )i,j ≈ cov
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1
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1
L
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�(j)t,l

)

,

from the law of large numbers. Then, if we consider the Taylor series expansion of

�
(

x(j)t,l ,dj
⊤st

)

around the mean (�(j)x , 0), we get:
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,

where �(i)t,l and �
(j)
t,l represent the higher order terms. Then, as L→ ∞, we get:

(�con
s )i,j ≈cov

(

(

di
⊤st

)

�(di⊤st)
(

�(i)x , 0
)

,
(

dj
⊤st

)

�(dj⊤st)
(

�(j)x , 0
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)

+ �t,l,

since lim
L→∞

1
L

L
∑

l=1

(

x(j)t,l
)

= �(j)x by the Law of Large numbers. Thus, we see that:

(�con
s )i,j ≈ CSdi

⊤ cov
(

st, st
)

dj + �t,l
= CS (�s)i,j + �t,l,

where CS is a constant and �t,l is typically small if the latent process xt,l and the stimulus
st are concentrated around their means. Then, the signal correlations are obtained by
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normalization of the signal covariance as in Equation 9, through which the scaling factor CS
cancels and we get:

(Scon)i,j ≈ (S)i,j .

Thus, as T , L→ ∞, we see that S is indeed the signal correlation matrix that is aimed to be
approximated by the conventional definitions.

Next, let us consider (Ncon)i,j . Similar to foregoing analysis of the signal covariance, as
T →∞ we get:

(�con
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cov
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L
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)

.

Then, from a Taylor series expansion, we get:
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x )i,j ≈

1
L
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cov
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(
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,

where �(i)t,l and �
(j)
t,l represent the higher order terms. Then, as L→ ∞:

(�con
x )i,j ≈

1
L
∑

l
cov

(

(

x(i)t,l − �
(i)
x

)

�(
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x(j)t,l − �
(j)
x

)

�(

x(j)t,l
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�(j)x , 0
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from the law of large numbers. Accordingly, we see that:

(�con
x )i,j ≈ CN

1
L
∑

l
cov

(

x(i)t,l − �
(i)
x , x

(j)
t,l − �

(j)
x

)

+ �t,l

= CN (�x)i,j + �t,l,

where CN is a constant and �t,l is typically small if the latent process xt,l and the stimulus st are
concentrated around their means. Then, the noise correlations are derived by normalization

of the noise covariance given in Equation 9. This cancels out the scaling factor CN , and we
get:

(Ncon)i,j ≈ (N)i,j .

Thus, we similarly conclude that as T , L→ ∞, the conventional definition of noise correlation
Ncon indeed aims to approximate N.
As a numerical illustration, we demonstrated in Figure 2–Figure Supplement 2 that the

conventional definitions of the correlations indeed approximate our proposed definitions,

but require much larger number of trials to be accurate. More specifically, in order to achieve

comparable performance to our method using L = 20 trials, the conventional correlation
estimates require L = 1000 trials.
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Appendix 2

Proof of Theorem 1
In what follows, we present a comprehensive proof of Theorem 1. Recall the following key

assumptions:

Assumption (1). We assume a scalar time-varying external stimulus (i.e. st = st, and hence
dj = dj ,d = [d1, d2,⋯ , dN ]⊤ ). Furthermore, we set the observation noise covariance to be
�w = �2wI, for notational convenience.
Assumption (2). We derive the performance bounds in the regime where T and L are

large, and thus do not impose any prior distribution on the correlations (i.e., ppr(�x) ∝ 1),
which are otherwise needed to mitigate overfitting (see Preliminary assumptions).

Assumption (3). We assume the latent trial-dependent process and stimulus to be slowly
varying signals, and thus adopt a piece-wise constant model in which these processes

are constant within consecutive windows of length W (i.e., xt,l = xWk ,l and st = sWk
, for

(k−1)W +1 ≤ t < kW and k = 1,⋯ , K withWk = (k−1)W +1 and KW = T ) for our theoretical
analysis, as is usually done in spike count calculations for conventional noise correlation

estimates.

Proof of Theorem 1. First, recall the proposed forward model (see Proposed forward model)
under Assumption (1)–(3):

yt,l = Azt,l + wt,l,

zt,l = � zt−1,l + nt,l,

n(j)t,l ∼ Bernoulli
(

�
(

x(j)Wk ,l

))

,

xWk ,l ∼
(

�x + sWk
d, �x

)

,

where � (⋅) ∶= exp(⋅)
1+exp(⋅)

, is the logistic function. Note that we have re-defined the latent process

xt,l by absorbing the stimulus activity std to the mean of xt,l for notational convenience,
without loss of generality. Hereafter, we also assume that A = I without loss of gener-
ality. For a truncation level B (to be specified later), consider the event AW =

{

|

|

|

x(j)Wk ,l
|

|

|

≤

B and 1
2(1+exp (B))

≤ n(j)Wk ,l
≤ 1 − 1

2(1+exp (B))
for j = 1,⋯ , N, k = 1,⋯ , K and l = 1,⋯ , L

}

, such that

nWk ,l =
[

n(1)Wk ,l
, n(2)Wk ,l

,⋯ , n(N)Wk ,l

]⊤
∶= 1

W

∑W
w=1 n(k−1)W +w,l. First, we derive convenient forms of the

maximum likelihood estimators via the Laplace’s approximations and asymptotic expansions

(Wong, 2001) through the following lemma:
Lemma 1. Conditioned on event AW , the maximum likelihood estimators of the stimulus kernel
of the jth neuron and the noise covariance between the ith and jth neurons take the forms:

d̂j = d̃j
(

1 + 
(

�2w
))

(

1 + 
( 1
W

))

and
(�̂x)i,j = (�̃x)i,j

(

1 + 
(

�2w
))

(

1 + 
( 1
W

))

,

where

d̃j =
1

L
∑K

k=1 s
2
Wk

K,L
∑

k,l=1
sWk

(

�−1
(

ñ(j)Wk ,l

)
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)

and

(�̃x)i,j =
1
KL

K,L
∑

k,l=1

(

�−1
(

ñ(i)Wk ,l

)

− �(i)x − sWk
d̃i

)(
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(
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)

− �(j)x − sWk
d̃j

)

,
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with ñWk ,l =
[

ñ(1)Wk ,l
, ñ(2)Wk ,l

,⋯ , ñ(N)Wk ,l

]⊤
∶= 1

W

∑W
w=1

(

y(k−1)W +w,l − �y(k−1)W +w−1,l
) and �−1(z) ∶= ln(z∕(1−

z)).
Proof of Lemma 1. First, maximizing the data likelihood, we derive the estimators:

d̂j = argmax
dj

p(y|�x,d) =
∫
(

1
L
∑K
k=1 s

2
Wk

∑K,L
k,l=1 sWk

(

x(j)Wk ,l
− �(j)x

)

)

p(y|n)p(n|x)p(x|�x,d) dndx

∫ p(y|n)p(n|x)p(x|�x,d) dndx
,

(10)

and

(�̂x)i,j = argmax
(�x)i,j

p(y|�x,d) =
∫
(

1
KL

∑K,L
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(
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∫ p(y|n)p(n|x)p(x|�x ,d) dndx
.

(11)

where Wk = (k − 1)W + 1. Then, we simplify these integrals based on the saddle point
method of asymptotic expansions (Wong, 2001). To that end, first consider the numerator of
Equation 10 denoted by I (1)

num
. First, we evaluate the integration in I (1)

num
with respect to the

variable n. To that end, note:

I (1)
num

= ∫ ℎ(1)
num

(n) exp
(

A1f1(n)
)

dn,

where ℎ(1)
num
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k=1 �
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)2
and dn is shorthand notation for the product mea-

sure of the discrete random vector n. Observing that∇f1(n̂) = 0 for n̂ ∶=
{

n̂t,l = yt,l − �yt−1,l
}T ,L
t,l=1,

using the method of asymptotic expansions, I (1)
num
can be evaluated as:
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num
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where the determinant of the Hessian matrix |
|

H(f1)||, is a negative function of �. Note that
the covariance of this Gaussian integral

(

−(H(f1))−1
)

is a function of � ∈ (0, 1), and hence
is bounded. Thus, all higher order error terms in Equation 12 are also bounded, as higher
order moments of Gaussian distributions are functions of the covariance.

Next, we simplify the integral ℎ(1)
num

(n̂) in Equation 12 using a similar procedure. We have:
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,⋯ , ñ(N)Wk ,l

]⊤
∶=

1
W

∑W
w=1 n̂(k−1)W +w,l, r

(1)
num

(x) = 1
√

(2�)(W +1)KLN�2TNLw |Σx|KL
exp

(

− 1
2

∑

t

(

xWk ,l − �x − sWk
d
)⊤ Σ−1x

(

xWk ,l − �x − sWk
d
)

)

×
(

1
L
∑K
k=1 s

2
Wk

∑K
k=1 sWk ,l

(

x(j)Wk ,l
− �(j)x

)

)

and A2 = W . Then, we note that the gradient of f2,

∇f2(x̂) = 0 for x̂ ∶=
{

x̂(j)Wk ,l
= �−1

(

ñ(j)Wk ,l

)}K,L,N

k,l,j=1
, where �−1(z) ∶= logit(z) = ln(z∕(1 − z)). Accord-

ingly, by re-applying the saddle point method of asymptotic expansions, we evaluate the

integral in Equation 13 as:

ℎ(1)
num

(n̂) = r(1)
num

(x̂) × exp (A2f2(x̂))

√

(2�)KLN

−A2|H(f2(x̂))|

(

1 + 
(

1
A2

))

, (14)

where the determinant of the Hessian, |H(f2(x̂))| = −
∏

k,l,j ñ
(j)
Wk ,l

(

1 − ñ(j)Wk ,l

)

< 0 when condi-
tioned on eventAW . The higher order terms in Equation 14will be bounded if the covariance
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of the saddle point approximation
(

−(H(f2(x̂)))−1
)

is bounded, which we ensure by condi-

tioning on event AW . This completes the evaluation of I
(1)
num
.

Following the same sequence of arguments, we evaluate the denominator of Equation 10
denoted by I (1)

den
. Accordingly, we derive:

I (1)
den

= ℎ(1)
den
(n̂) × exp (A1f1(n̂))

√

(2�)TLN
−A1|H(f1)|

(

1 + 
(

1
A1

))

,

ℎ(1)
den
(n̂) = r(1)

den
(x̂) × exp (A2f2(x̂))

√

(2�)KLN

−A2|H(f2(x̂))|

(

1 + 
(

1
A2

))

, (15)

where r(1)
den
(x) = 1

√

(2�)(W +1)KLN�2TNLw |Σx|KL
exp

(

− 1
2

∑

k,l

(

xWk ,l − �x − sWk
d
)⊤ Σ−1x

(

xWk ,l − �x − sWk
d
)

)

.

Finally, by combining Equation 12, Equation 14 and Equation 15, the maximum likelihood
estimator in Equation 10 takes the form:

d̂j =
I (1)
num

I (1)
den

= d̃j

(

1 + 
(

1
A1

))(

1 + 
(

1
A2

))

(

1 + 
(

1
A1

))(

1 + 
(

1
A2

)) = d̃j
(

1 + 
(

�2w
))

(

1 + 
( 1
W

))

.

Further, following the same sequence of reasoning, simplifying the numerator (I (2)
num

) and
denominator (I (2)

den
) of Equation 11 yields:

(�̂x)i,j =
I (2)
num

I (2)
den

= (�̃x)i,j

(

1 + 
(

1
A1

))(

1 + 
(

1
A2

))

(

1 + 
(

1
A1

))(

1 + 
(

1
A2

)) = (�̃x)i,j
(

1 + 
(

�2w
))

(

1 + 
( 1
W

))

.

This concludes the proof of Lemma 1.

Given that �−1(z) is unbounded for z = 0 or z = 1, we consider another truncation:
�−1B′ (z) ∶= min{max{�

−1(z),−B′}, B′}, where B′ = 2 log (2 exp (B) + 1). This choice of B′ guaran-

tees that over AW ,
|

|

|

|

�−1B′
(

n(j)Wk ,l

)

|

|

|

|

< B′ for all j = 1,⋯ , N , k = 1,⋯ , K and l = 1,⋯ , L: and thus

�−1B′
(

n(j)Wk ,l

)

= �−1
(

n(j)Wk ,l

)

on AW .

From Lemma 1, the bias and variance of the maximum likelihood estimators, d̂j and
(�̂x)i,j are upper-bounded, if those of d̃j and (�̃x)i,j are bounded:

|

|

|

|

bias
(

d̂j
)

|

|

|

|

≤
|

|

|

|

bias
(

d̃j
)

|

|

|

|

+ �j , Var
(

d̂j
)

≤ Var
(

d̃j
)

+ �̃j , (16)

and
|

|

|

|

bias
(

(�̂x)i,j
)

|

|

|

|

≤
|

|

|

|

bias
(

(�̃x)i,j
)

|

|

|

|

+ �i,j , Var
(

(�̂x)i,j
)

≤ Var
(

(�̃x)i,j
)

+ �̃i,j , (17)

where �j , �̃j , �i,j and �̃i,j represent terms that are (�2w) or 
(

1
W

)

. Thus, we seek to derive the

performance bounds of d̃j and (�̃x)i,j .

Bounding the bias of d̂j
Let us first consider d̃j . Note that:

|

|

|

|

bias
(

d̃j
)

|

|

|

|

∶=
|

|

|

|

E
[

d̃j
]

− dj
|

|

|

|

(a)
=
|

|

|

|

E
[

d̃j −
(

d
Oracle

)

j

]

|

|

|

|

(b)
≤ 1
L
∑K

k=1 s
2
Wk

K,L
∑

k,l=1

|

|

|

sWk

|

|

|

E
[

|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− x(j)Wk ,l

|

|

|

|

]

(18)
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where (a) holds since the Oracle estimator,
(

d
Oracle

)

j =
1

L
∑K
k=1 s

2
Wk

∑K,L
k,l=1 sWk

(

x(j)Wk ,l
− �(j)x

)

(i.e.,

observing xt,l directly) is unbiased and (b) follows through the application of Jensen’s inequal-
ity and triangle inequality. To simplify this bound, the triangle inequality yields:

E
[

|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− x(j)Wk ,l

|

|

|

|

]

≤ E
[

|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− �−1B′
(

n(j)Wk ,l

)

|

|

|

|

]

+ E
[

|

|

|

|

�−1B′
(

n(j)Wk ,l

)

− x(j)Wk ,l

|

|

|

|

]

. (19)

Then, to bound each of these terms, we establish a piece-wise linear Lipschitz-type bound on

�−1B′ (z). First, consider the first term E
[

|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− �−1B′
(

n(j)Wk ,l

)

|

|

|

|

]

. We seek to upper-bound

this expectation by bounding
|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− �−1B′
(

n(j)Wk ,l

)

|

|

|

|

via the following technical lemma:.

Lemma 2. Conditioned on event AW , the following bound holds for all j = 1,⋯ , N , k = 1,⋯ , K
and l = 1,⋯ , L:

"
(

ñ(j)Wk ,l
, n(j)Wk ,l

)

∶=
|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− �−1B′
(

n(j)Wk ,l

)

|

|

|

|

≤ g (B) ||
|

ñ(j)Wk ,l
− n(j)Wk ,l

|

|

|

,

where
g (B) = max

{

4 (1 + exp (B))2 , 4 exp (−B) log (2 exp (B) + 1)
(

1 + (2 exp (B) + 1)2
)}

.

Proof of Lemma 2. First, consider the case n(j)Wk ,l
≤ 0.5. We bound the function "

(

ñ(j)Wk ,l
, n(j)Wk ,l

)

in a piece-wise fashion as follows. Note that �−1B′
(

ñ(j)Wk ,l

)

is convex for ñ(j)Wk ,l
≥ 0.5 and concave

for ñ(j)Wk ,l
≤ 0.5. Thus, it immediately follows that for ñ(j)Wk ,l

≤ n(j)Wk ,l
, "

(

ñ(j)Wk ,l
, n(j)Wk ,l

)

is convex and

hence:

"
(

ñ(j)Wk ,l
, n(j)Wk ,l

)

≤

|

|

|

|

B′ + �−1B′
(

n(j)Wk ,l

)

|

|

|

|

|

|

|

n(j)Wk ,l
− 1

1+exp(B′)
|

|

|

(

n(j)Wk ,l
− ñ(j)Wk ,l

)

. (20)

Furthermore, for n(j)Wk ,l
≤ ñ(j)Wk ,l

≤ 0.5, "
(

ñ(j)Wk ,l
, n(j)Wk ,l

)

is concave, and hence is bounded by

the tangent at n(j)Wk ,l
:

"
(

ñ(j)Wk ,l
, n(j)Wk ,l

)

≤ 1
n(j)Wk ,l

(1 − n(j)Wk ,l
)

(

ñ(j)Wk ,l
− n(j)Wk ,l

)

. (21)

Finally, for the case of ñ(j)Wk ,l
≥ 0.5, consider the line,

ℎ
(

ñ(j)Wk ,l
, n(j)Wk ,l

)

∶=

|

|

|

|

B′ − �−1B′
(

n(j)Wk ,l

)

|

|

|

|

|

|

|

1
1+exp(−B′)

− n(j)Wk ,l
|

|

|

(

ñ(j)Wk ,l
− n(j)Wk ,l

)

. (22)

From the convexity of "
(

ñ(j)Wk ,l
, n(j)Wk ,l

)

, ℎ
(

ñ(j)Wk ,l
, n(j)Wk ,l

)

upper bounds "
(

ñ(j)Wk ,l
, n(j)Wk ,l

)

for ñ(j)Wk ,l
≥

0.5, since ℎ
(

0.5, n(j)Wk ,l

)

≥ "
(

0.5, n(j)Wk ,l

)

for n(j)Wk ,l
≤ 0.5. Combining the piece-wise bounds in

Equation 20, Equation 21 and Equation 22, we conclude that for n(j)Wk ,l
≤ 0.5:

"
(

ñ(j)Wk ,l
, n(j)Wk ,l

)

≤ g̃
(

n(j)Wk ,l
, B′

)

|

|

|

ñ(j)Wk ,l
− n(j)Wk ,l

|

|

|

, (23)
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where

g̃
(

n(j)Wk ,l
, B′

)

= max

⎧

⎪

⎨

⎪

⎩

1
n(j)Wk ,l

(1 − n(j)Wk ,l
)
,

|

|

|

|

B′ + �−1B′
(

n(j)Wk ,l

)

|

|

|

|

|

|

|

n(j)Wk ,l
− 1

1+exp(B′)
|

|

|

,

|

|

|

|

B′ − �−1B′
(

n(j)Wk ,l

)

|

|

|

|

|

|

|

1
1+exp(−B′)

− n(j)Wk ,l
|

|

|

⎫

⎪

⎬

⎪

⎭

.

Due to the symmetry of "
(

ñ(j)Wk ,l
, n(j)Wk ,l

)

, the same bound in Equation 23 can be established
for n(j)Wk ,l

> 0.5 as well.

Then, using
|

|

|

|

�−1B′
(

n(j)Wk ,l

)

|

|

|

|

≤ B′ and conditioning on event AW , we simplify this bound as:

g̃
(

n(j)Wk ,l
, B′

)

≤ max
{

4 (1 + exp (B))2 ,
4B′ (1 + exp (B′)) (1 + exp (B))
exp (B′) − (2 exp (B) + 1)

}

.

Finally, based on the fact that B′ = 2 log (2 exp (B) + 1), the latter is further upper bounded as:

g̃
(

n(j)Wk ,l
, B′

)

≤ g (B) ,

where

g (B) = max
{

4 (1 + exp (B))2 , 4 exp (−B) log (2 exp (B) + 1)
(

1 + (2 exp (B) + 1)2
)}

.

This concludes the proof of Lemma 2.

Following Lemma 2, by conditioning on the event AW we have:

EAW

[

|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− �−1B′
(

n(j)Wk ,l

)

|

|

|

|

]

≤ g (B)EAW

[

|

|

|

ñ(j)Wk ,l
− n(j)Wk ,l

|

|

|

]

. (24)

Then, we note that:

E
[

|

|

|

ñ(j)Wk ,l
− n(j)Wk ,l

|

|

|

] (c)
≤

√

E
[

|

|

|

ñ(j)Wk ,l
− n(j)Wk ,l

|

|

|

2
]

(d)
=
�w

√

1 + �2
√

W
, (25)

where in (c) we have used the Cauchy-Schwarz inequality, and in (d) we have used the fact
that the observation noise across theW time instances is i.i.d. and white. From the bounds

in Equation 24 and Equation 25, we conclude that the first expectation in Equation 19,
conditioned on event AW is bounded as:

EAW

[

|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− �−1B′
(

n(j)Wk ,l

)

|

|

|

|

]

≤ g (B)EAW

[

|

|

|

ñ(j)Wk ,l
− n(j)Wk ,l

|

|

|

]

≤ g (B)
�w

√

1 + �2
√

W ℙ
(

AW
)

. (26)

The foregoing sequence of reasoning similarly follows for E
[

|

|

|

|

�−1B′
(

n(j)Wk ,l

)

− x(j)Wk ,l

|

|

|

|

]

, since

1
1+exp (B)

≤ �
(

x(j)Wk ,l

)

≤ 1− 1
1+exp (B)

for k = 1,⋯ , K , l = 1,⋯ , L and j = 1,⋯ , N (as a consequence

of |x(j)Wk ,l
| < B for k = 1,⋯ , K , l = 1,⋯ , L and j = 1,⋯ , N , conditioned on AW ). Accordingly,
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we derive the upper bound on the second term in Equation 19, conditioned on event AW :

EAW

[

|

|

|

|

�−1B′
(

n(j)Wk ,l

)

− x(j)Wk ,l

|

|

|

|

]

≤ g (B)EAW

[

|

|

|

|

n(j)Wk ,l
− �

(

x(j)Wk ,l

)

|

|

|

|

]

(e)
≤ g (B)
W ℙ

(

AW
)

√

√

√

√

√E
⎡

⎢

⎢

⎣

(

W
∑

w=1
n(j)(k−1)W +w,l −W �

(

x(j)Wk ,l

)

)2
⎤

⎥

⎥

⎦

(f )
=

g (B)
W ℙ

(

AW
)

√

E
[

W�
(

x(j)Wk ,l

)(

1 − �
(

x(j)Wk ,l

))]

(g)
≤ g (B)

2
√

W ℙ
(

AW
)

, (27)

where (e) follows from the application of Jensen’s inequality, (f ) follows from the formula
for the variance of a Binomial random variable, and (g) follows from the inequality �

(

x(j)Wk ,l

)

×
(

1 − �
(

x(j)Wk ,l

))

≤ 1∕4, for �
(

x(j)Wk ,l

)

∈ [0, 1]. Combining the results in Equation 26 and
Equation 27, the overall expectation in Equation 19, conditioned on the event AW is upper-

bounded by:

EAW

[

|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− x(j)Wk ,l

|

|

|

|

]

≤ 2g (B)
√

W

(

�w
√

1 + �2 + 1
2

)

, (28)

where we have lower bounded the probability of the event AW by 1∕2 (that is, ℙ
(

AW
)

> 1∕2).
Thus, from Equation 18 and Equation 28 we derive:

|

|

|

|

biasAW

(

d̃j
)

|

|

|

|

≤ 2g (B)
√

W

(

�w
√

1 + �2 + 1
2

)

∑K,L
k,l=1

|

|

|

sWk

|

|

|

L
∑K

k=1 s
2
Wk

(ℎ)
≤ 2g (B)

�s
√

W

(

�w
√

1 + �2 + 1
2

)

,

where in (ℎ) we have used the Cauchy-Schwarz inequality
∑K

k=1
|

|

|

sWk

|

|

|

≤
√

K
√

∑K
k=1 s

2
Wk
while

defining �2s ∶=
1
K

∑K
k=1 s

2
Wk
.

Then, for B ≥ 2.5, we have g (B) = 4(1 + exp (B))2 and B′ = 2 log(2 exp (B) + 1) ≤ 3B. Let
B ∶= �m

√

8q logW for some q > 1
64
. Further, for some � < 1∕2, suppose that:

logW ≥ max
⎧

⎪

⎨

⎪

⎩

log(8KLN∕�)
q

,
32�2mq
�2

,
2 log(64q)
1 − 2�

,
max

{

6.25, 4
(

‖�x‖∞ + maxk,j
{

|sWk
dj|

})2
}

8q�2m
, log 2

⎫

⎪

⎬

⎪

⎭

.

(29)

Under these conditions,

g (B) ≤ 4
(

1 + exp(�m
√

8q logW )
)2

(i)
≤ 16 exp

(

2�m
√

8q logW
)

≤ 16W � , (30)

where in (i) we have used the fact that ex ≥ 1 for x ≥ 0. Thus, under the conditions in
Equation 29, we have:

|

|

|

|

biasAW

(

d̃j
)

|

|

|

|

≤ 32

�s
√

W 1−2�

(

�w
√

1 + �2 + 1
2

)

. (31)
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Finally, from Equation 16 and Equation 31, we conclude that:
|

|

|

|

biasAW

(

d̂j
)

|

|

|

|

≤ 1
√

W 1−2�
C1

(

2�w
√

1 + �2 + 1
)

+ 
(

�2w
)

+ 
( 1
W

)

,

where C1 ∶=
16
�s
.

Bounding the variance of d̂j
Next, we prove the upper bound on the variance of the maximum likelihood estimator, d̂j .
To that end, we upper-bound the variance of d̃j . First, using the Cauchy-Schwarz inequality,
we have:

Var
(

d̃j
)

∶= E
[

|

|

|

|

d̃j − E
[

d̃j
]

|

|

|

|

2]

≤
⎧

⎪

⎨

⎪

⎩

√

E
[

|

|

|

d̃j − (dOracle)j
|

|

|

2
]

+
√

Var
(

(

d
Oracle

)

j

)

⎫

⎪

⎬

⎪

⎭

2

. (32)

Then, we upper-bound the conditional second moment of
|

|

|

d̃j − (dOracle)j
|

|

|

using the same

techniques as we used in bounding the first moment. Accordingly, we get:

EAW

[

|

|

|

d̃j − (dOracle)j
|

|

|

2
]

= 1
(

L
∑K

k=1 s
2
Wk

)2
EAW

⎡

⎢

⎢

⎣

|

|

|

|

|

|

K,L
∑

k,l=1
sWk

(

�−1B′
(

ñ(j)Wk ,l

)

− x(j)Wk ,l

)

|

|

|

|

|

|

2
⎤

⎥

⎥

⎦

(k)
≤ 1

(

L
∑K

k=1 s
2
Wk

)2

⎧

⎪

⎨

⎪

⎩

K,L
∑

k,l=1

|

|

|

sWk

|

|

|

√

EAW

[

|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− x(j)Wk ,l

|

|

|

|

2]
⎫

⎪

⎬

⎪

⎭

2

(l)
≤

{
√

2g (B)

�s
√

W

(

�w
√

1 + �2 + 1
2

)

}2

(33)

where in (k) we have used the Cauchy-Schwarz inequality and (l) follows from

EAW

[

|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− x(j)Wk ,l

|

|

|

|

2]

≤ 2(g(B))2

W

(

�w
√

1 + �2 + 1
2

)2
, which can be proven by the same

techniques as before.

Next, we note that the variance of the Oracle estimator (d
Oracle

)j :

Var
(

(d
Oracle

)j
)

= 1
(

L
∑K

k=1 s
2
Wk

)2

K,L
∑

k,l=1
s2Wk

Var
((

x(j)Wk ,l
− �(j)x

))

=
(�x)j,j

L
∑K

k=1 s
2
Wk

=
(�x)j,j
LK�2s

(34)

Combining Equation 32, Equation 33 and Equation 34, we can upper-bound the conditional
variance of d̃j as:, following Equation 32:

√

VarAW

(

d̃j
)

≤

√

(�x)j,j
KL�2s (1 − �)

+

√

2g (B)

�s
√

W

(

�w
√

1 + �2 + 1
2

)

Then, following Equation 16, under the conditions for W in Equation 29, we conclude the
proof of the conditional variance of d̂j :

√

VarAW

(

d̂j
)

≤

√

(�x)j,j
KL�2s (1 − �)

+ 1
√

W 1−2�
C2

(

2�w
√

1 + �2 + 1
)

+ (�2w) + 
( 1
W

)

,

(35)
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where C2 ∶=
8
√

2
�s
.

Bounding the bias of (�̂x)i,j
Next, following the foregoing techniques, we upper-bound the bias and variance of the noise

covariance estimator (�̂x)i,j . To that end, we first note:

|

|

|

|

bias
(

(�̃x)i,j
)

|

|

|

|

∶=
|

|

|

|

E
[

(�̃x)i,j
]

− (�x)i,j
|

|

|

|

(m)
≤

|

|

|

|

E
[

(�̃x)i,j −
(

�
Oracle

)

i,j

]

|

|

|

|

+
|

|

|

|

bias
(

(

�
Oracle

)

i,j

)

|

|

|

|

(36)

where (m) follows from the triangle inequality, with the Oracle noise covariance estimator
(i.e., observing xt,l directly), being defined as:

(

�
Oracle

)

i,j =
1
KL

∑K,L
k,l=1

(

x(i)Wk ,l
− �(i)x − sWk

(d
Oracle

)i
)

×
(

x(j)Wk ,l
− �(j)x − sWk

(d
Oracle

)j
)

. Then, to simplify the first term in Equation 36, we use similar
techniques as before. Accordingly,

|

|

|

|

E
[

(�̃x)i,j −
(

�
Oracle

)

i,j

]

|

|

|

|

= |

|

|

|

E
[

1
KL

∑KL
k,l=1

(

�−1B′
(

ñ(i)Wk ,l

)

− �(i)x − sWk
d̃i

)(

�−1B′
(

ñ(j)Wk ,l

)

− �(j)x − sWk
d̃j

)

− 1
T

∑T
t=1

(

x(i)Wk ,l
− �(i)x − sWk

(d
Oracle

)i
)(

x(j)Wk ,l
− �(j)x − sWk

(d
Oracle

)j
)]

|

|

|

|

(n)
≤ 1
KL

K,L
∑

k,l=1
E
[

|

|

|

|

(

�−1B′
(

ñ(i)Wk ,l

)

− �(i)x
)(

�−1B′
(

ñ(j)Wk ,l

)

− �(j)x
)

−
(

x(i)Wk ,l
− �(i)x

)(

x(j)Wk ,l
− �(j)x

)

|

|

|

|

]

+ 1
KL2

∑K
k=1 s

2
Wk

E
[

|

|

|

|

∑K,L
k,l=1 sWk

(

�−1B′
(

ñ(i)Wk ,l

)

− �(i)x
)

∑K,L
k′ ,l′=1 sWk′

(

�−1B′
(

ñ(i)Wk′ ,l′

)

− �(j)x
)

−
∑K,L

k,l=1 sWk

(

x(i)Wk ,l
− �(i)x

)

∑K,L
k′ ,l′=1 sWk′

(

x(j)Wk′ ,l′
− �(j)x

)

|

|

|

|

]

,

(37)

where (n) follows through the application of Jensen’s inequality and triangle inequality. Next,
we have:

EAW

[

|

|

|

|

(

�−1B′
(

ñ(i)Wk ,l

)

− �(i)x
)(

�−1B′
(

ñ(j)Wk ,l

)

− �(j)x
)

−
(

x(i)Wk ,l
− �(i)x

)(

x(j)Wk ,l
− �(j)x

)

|

|

|

|

]

≤ EAW

[

|

|

|

|

�−1B′
(

ñ(i)Wk ,l

)

�−1B′
(

ñ(j)Wk ,l

)

− x(i)Wk ,l
x(j)Wk ,l

|

|

|

|

]

+ �(j)x EAW

[

|

|

|

|

�−1B′
(

ñ(i)Wk ,l

)

− x(i)Wk ,l

|

|

|

|

]

+ �(i)x EAW

[

|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− x(j)Wk ,l

|

|

|

|

]

≤ EAW

[

|

|

|

|

�−1B′
(

ñ(i)Wk ,l

)

�−1B′
(

ñ(j)Wk ,l

)

− �−1B′
(

n(i)Wk ,l

)

�−1B′
(

n(j)Wk ,l

)

|

|

|

|

]

+ EAW

[

|

|

|

|

�−1B′
(

n(i)Wk ,l

)

�−1B′
(

n(j)Wk ,l

)

− x(i)Wk ,l
x(j)Wk ,l

|

|

|

|

]

+ 2�mEAW

[

|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− x(j)Wk ,l

|

|

|

|

]

≤ 2g (B)
�w

√

1 + �2
√

W

(

g (B)
�w

√

1 + �2
√

W
+ 4 log (2 exp (B) + 1)

)

+
2g (B)
√

W

{

g (B)

4
√

W
+ B

}

+
4�mg (B)
√

W

(

�w
√

1 + �2 + 1
2

)

, (38)
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where �m = ‖�x‖∞ and we have used B′ = 2 log (2 exp (B) + 1). Similarly, the second term in
Equation 37 can be bounded as:
EAW

[

|

|

|

|

∑K,L
k,l=1 sWk

(

�−1B′
(

ñ(i)Wk ,l

)

− �(i)x
)

∑K,L
k′ ,l′=1 sWk′

(

�−1B′
(

ñ(i)Wk′ ,l′

)

− �(j)x
)

−
∑K,L

k,l=1 sWk

(

x(i)Wk ,l
− �(i)x

)

∑K,L
k′ ,l′=1 sWk′

(

x(j)Wk′ ,l′
− �(j)x

)

|

|

|

|

]

≤
K,K,L,L
∑

k,k′ ,l,l′=1

|

|

|

sWk
sWk′

|

|

|

EAW

[

|

|

|

|

�−1B′
(

ñ(i)Wk ,l

)

�−1B′
(

ñ(j)Wk′ ,l′

)

− x(i)Wk ,l
x(j)Wk′ ,l′

|

|

|

|

]

+ �(i)x
K,K,L,L
∑

k,k′ ,l,l′=1

|

|

|

sWk
sWk′

|

|

|

EAW

[

|

|

|

|

�−1B′
(

ñ(j)Wk′ ,l′

)

− x(j)Wk′ ,l′
|

|

|

|

]

+ �(j)x
K,K,L,L
∑

k,k′ ,l,l′=1

|

|

|

sWk
sWk′

|

|

|

EAW

[

|

|

|

|

�−1B′
(

ñ(i)Wk ,l

)

− x(i)Wk ,l

|

|

|

|

]

(39)

≤

(

L
K
∑

k=1

|

|

|

sWk

|

|

|

)2{

2g (B)
�w

√

1 + �2
√

W

(

g (B)
�w

√

1 + �2
√

W
+ 4 log (2 exp (B) + 1)

)

+
2g (B)
√

W

{

g (B)

4
√

W
+ B

}

+
4�mg (B)
√

W

(

�w
√

1 + �2 + 1
2

)

}

. (40)

Then, by combining the bounds in Equation 38 and Equation 40 and using an instance of
Cauchy-Schwarz inequality

(

∑K
k=1

|

|

|

sWk

|

|

|

)2
≤ K

∑K
k=1 s

2
Wk
, we see that the bound in Equation 37

can be expressed as:

|

|

|

|

EAW

[

(�̃x)i,j −
(

�
Oracle

)

i,j

]

|

|

|

|

≤ 4g (B) �w
√

1+�2
√

W

(

g (B) �w
√

1+�2
√

W
+ 4 log (2 exp (B) + 1) + 2�m

)

+ 4g(B)
√

W

{

g(B)
4
√

W
+ B + �m

}

.

(41)

Next, we see that the oracle estimator follows an Inverse Wishart distribution, that is

KL�
Oracle

∼ InvWishN(�x, KL − 1). Therefore, we get:

E
[

�
Oracle

]

=
(KL − 1)
KL

�x.

Thus, the bias of the oracle estimator is given by:

|

|

|

|

bias
(

(

�
Oracle

)

i,j

)

|

|

|

|

= 1
KL

|

|

|

(

�x
)

i,j
|

|

|

. (42)

Combining the results in Equation 41 and Equation 42, the bias of (�̃x)i,j can be bounded as:

|

|

|

|

biasAW

(

(�̃x)i,j
)

|

|

|

|

≤
|

|

|

(

�x
)

i,j
|

|

|

KL(1 − �)
+ 4g (B)

�w
√

1 + �2
√

W

(

4 log (2 exp (B) + 1) + 2�m
)

+
4g (B)
√

W

(

B + �m
)

+ 
(

g (B)2

W

)

. (43)

Finally, under the conditions forW in Equation 29, the latter inequality simplifies to:

|

|

|

|

biasAW

(

(�̃x)i,j
)

|

|

|

|

(p)
≤

|

|

|

(

�x
)

i,j
|

|

|

KL(1 − �)
+
Bg (B)
√

W

(

28�w
√

1 + �2 + 6
)

+ 
(

g (B)2

W

)

(q)
≤

|

|

|

(

�x
)

i,j
|

|

|

KL(1 − �)
+ 64�m

√

2q logW
W 1−2�

(

14�w
√

1 + �2 + 3
)

+ 
( 1
W 1−2�

)

(44)

where in (p) we have used 2 log(2 exp (B) + 1) ≤ 3B and B > 2�m and in (q) we have used
Bg(B) ≤ 16L��m

√

8q logL, which follows from Equation 30. Thus, following Equation 17 we
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derive the bound on the bias of the maximum likelihood estimator:

|

|

|

|

biasAW

(

(�̂x)i,j
)

|

|

|

|

≤
|

|

|

(

�x
)

i,j
|

|

|

KL(1 − �)
+
√

logW
W 1−2�

C3
(

14�w
√

1 + �2 + 3
)

+ 
(

�2w
)

+ 
( 1
W 1−2�

)

,

where C3 ∶= 64�m
√

2q.

Bounding the variance of (�̂x)i,j
Next, we establish an upper bound on the variance of the maximum likelihood estimator of

the noise covariance. To that end, we upper-bound the variance of (�̃x)i,j . First, using the
Cauchy-Schwarz inequality, we get:

Var
(

(�̃x)i,j
)

∶= E
[

|

|

|

|

(�̃x)i,j − E
[

(�̃x)i,j
]

|

|

|

|

2]
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{
√

E
[

|

|

|
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|

|

2
]
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√
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(

�
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)

i,j

)

}2

.

(45)

Then, we upper-bound the conditional second moment of
|

|

|

(�̃x)i,j − (�Oracle)i,j
|

|

|

using the same

techniques used in bounding its first moment. Accordingly, we derive:
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|
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)
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(
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)(
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ñ(i)Wk ,l

)
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�−1B′
(
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1
2
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(46)

where the last bound follows from the Cauchy-Schwarz inequality. Then, we derive:
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ñ(j)Wk′′ ,l′′

)

− �(j)x
)

)

−
(

x(i)Wk ,l
− �(i)x − sWk

1
L
∑K
k′=1 sWk′

2

∑K,L
k′ ,l′=1 sWk′

(

x(i)Wk′ ,l′
− �(i)x

)

)(

x(j)Wk ,l
− �(j)x − sWk

1
L
∑K
k′′=1 sWk′′

2

∑K,L
k′′ ,l′′=1 sWk′′

(

x(j)Wk′′ ,l′′
− �(j)x

)

)
}2]

= EAW

[{((

�−1B′
(
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ñ(j)Wk ,l

)

− �(j)x
)

−
(

x(i)Wk ,l
− �(i)x

)(

x(j)Wk ,l
− �(j)x

))

− sWk
L
∑K
k′′=1 sWk′′

2

∑K,L
k′′ ,l′′=1 sWk′′

((

�−1B′
(
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Using the final bound of Equation 47 in Equation 46, we get:
√
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where the last inequality follows from an instance of the Cauchy-Schwarz inequality, i.e.,
(

∑K
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|

|

|

sWk

|

|

|

)2
≤ K

∑K
k=1 s

2
Wk
.

Then, following the observation KL �
Oracle

∼ InvWishN(�x, KL − 1), we derive the variance
of

(

�
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)

i,j :
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(

(

�
Oracle

)
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)

= �2i,j =
(KL − 1)

(

(�x)2i,j + (�x)i,i(�x)j,j
)

K2L2
. (49)

Combining Equation 45, Equation 48 and Equation 49, we express the upper bound on the
conditional variance of (�̃x)i,j as:

√
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2
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(

g (B)2

W

)

.

Then, following Equation 17 and the conditions in Equation 29, we conclude the proof of the
upper bound on the conditional variance of (�̂x)i,j :

√

VarAW

(

(�̂x)i,j
)

≤ 1
√

1 − �
�i,j +

√

logW
W 1−2�

C4
(

2�w
√

1 + �2 + 1
)

+ 
(

�2w
)

+ 
( 1
W 1−2�

)

,

where C4 ∶= 384�m
√

q.
Finally, it only remains to prove that the event AW occurs with high probability for

sufficiently largeW :

Lemma 3. The probability of occurrence of the eventAW =
{

|

|

|

x(j)Wk ,l
|

|

|

≤ B and 1
2(1+exp (B))

≤ n(j)Wk ,l
≤

1 − 1
2(1+exp (B))

for j = 1,⋯ , N, k = 1,⋯ , K and l = 1,⋯ , L
}

is upper-bounded as follows:

ℙ
(

AW
)

≥ 1 − �,

for some constant 0 < � ≤ 1∕2 satisfying the conditions of Eq. (29).
Proof of Lemma 3. First, using the union bound, we have:

ℙ
(

AW
)

≥ 1 −
∑K,L,N

k,l,j=1

{

ℙ
(

|

|

|

x(j)Wk ,l
|

|

|

> B
)

+ ℙ
(

n(j)Wk ,l
< 1

2(1+exp (B))

)

+ ℙ
(

n(j)Wk ,l
> 1 − 1

2(1+exp (B))

)}

.

(50)
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Next, we bound the probabilities on the right hand side using Chernoff ’s inequality (Boucheron
et al., 2013). First, note that:

ℙ
(

x(j)Wk ,l
> B

)

= ℙ
(

x(j)Wk ,l
− �(j)x − sWk

dj > B − �(j)x − sWk
dj
)

(r)
≤ ℙ

(

x(j)Wk ,l
− �(j)x − sWk

dj >
B
2

)

(s)
≤ exp

(

− B2

8�2m

)

,

where (r) follows if B > 2
(

‖�x‖∞ + maxk,j
{

|sWk
dj|

})

(which will hold under the conditions in

Equation 29) and (s) has been derived by applying the Chernoff ’s bound on the Gaussian
random variable x(j)Wk ,l

. From the same reasoning we see that ℙ
(

x(j)Wk ,l
< −B

)

≤ exp
(

− B2

8�2m

)

.

Combining these two results, we get the upper bound:

ℙ
(

|

|

|

x(j)Wk ,l
|

|

|

> B
)

≤ 2 exp
(

− B2

8�2m

)

. (51)

Next, note that:

ℙ
(

n(j)Wk ,l
< 1
2(1 + exp (B))

)

(u)
≤ ℙ

(

n(j)Wk ,l
− �

(

x(j)Wk ,l

)

< −1
2(1 + exp (B))

)

(v)
≤ exp

(

− W
16(1 + exp (B))2

)

, (52)

where (u) follows from the observation 1
1+exp (B)

< �
(

x(j)Wk ,l

)

(which is a consequence of |x(j)Wk ,l
| <

B). Then, we note that the zero-mean random variable n(j)Wk ,l
− �

(

x(j)Wk ,l

)

is sub-Gaussian with

variance factor
2
W
. Thus, using the Chernoff ’s inequality on sub-Gaussian random variables

(Boucheron et al., 2013), we derive the upper-bound (v) in Equation 52. In a similar fashion,
based on the observation �

(

x(j)Wk ,l

)

< 1 − 1
1+exp (B)

, we conclude the bound:

ℙ
(

n(j)Wk ,l
> 1 − 1

2(1 + exp (B))

)

≤ exp
(

− W
16(1 + exp (B))2

)

. (53)

By combining the bounds in Equation 51, Equation 52 and Equation 53, the upper bound
on ℙ

(

AW
)

in Equation 50 takes the form:

ℙ
(

AW
)

≥ 1 − 2KLN exp
(

− W
16(1 + exp(B))2

)

− 2KLN exp
(

− B2

8�2m

)

.

Finally, under the assumptions in Equation 29, we further simplify this bound as:

ℙ
(

AW
)

≥ 1 − 2KLN exp
(

−W
1−�

64

)

− 2KLN
W q ≥ 1 − 4KLN

W q ,

where we have used W ≥ 2 (which gives logW ≥ 2 log logW ) and logW ≥ 2 log(64q)
1−2�

to show

that
W 1−�

64
≥ q logW . Thus, logW ≥ log(8KLN∕�)

q
ensures that ℙ

(

AW
)

≥ 1 − �, for 0 < � ≤ 1
2
.

This concludes the proof of Theorem 1.
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Appendix 3
Adapting the proposed signal and noise correlation estimates to spik-
ing observations
While Algorithm 1 takes two-photon fluorescence observations as input and produces

estimates of signal and noise correlation as output, it is possible to adapt it to spiking

observations obtained by electrophysiology recordings. The resulting algorithm is obtained

by simplifying the variational inference procedure in Algorithm 1 and is given below for

completeness:

Algorithm 2 Estimation of �x and D from spiking observations
Inputs: Ensemble of spiking observations {nt,l}T ,Lt,l=1, constant �x, hyper-parameters  x and

�x, tolerance at convergence � and the external stimulus stOutputs: �̂x and D̂Initialization: Initial choice of Px, 
̃t, �̂x and D̂, residual = 10 �, 
x = �x + LT

1: while residual ≥ � do
Update variational parameters

2: for t = 1,⋯ , T and l = 1,⋯ , L do
3: Qxt,l = (
̃t,l + 
xP−1x )

−1

4: mxt,l = Qxt,l
(

nt,l −
1
2
1 − 
̃t,l D̂⊤st + 
xP−1x �x

)

5: for j = 1,⋯ , N do
6: c(j)t,l =

√

(

Qxt,l
)

j,j
+
(

m(j)xt,l + d̂
⊤
j st

)2

7: (
̃t,l)j,j ∶=
1

2c(j)t,l
tanh

( c(j)t,l
2

)

8: end for
9: end for
10: Px ∶=  x +

T ,L
∑

t,l=1

{

Qxt,l +mxt,lm
⊤
xt,l
− �xm⊤

xt,l
−mxt,l�

⊤
x + �x�

⊤
x

}

Update outputs and the convergence criterion
11: for j = 1,⋯ , N do
12: d̂j =

( T ,L
∑

t,l=1

(

(
̃t,l)j,jstst⊤
)

)−1( T ,L
∑

t,l=1

{

(

n(j)t,l −
1
2

)

st − (
̃t,l)j,jm(j)xt,l st
})

13: end for
14: (D̂)prev = D̂, D̂ =

[

d̂1, d̂2,⋯ , d̂N
]

15: (�̂x)prev = �̂x, �̂x =
Px


x+N+1

16: residual = ‖(�̂x)prev − �̂x‖2∕‖(�̂x)prev‖2 + ‖(D̂)prev − D̂‖2∕‖(D̂)prev‖2

17: end while
18: Return �̂x and D̂
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Figure 2–Figure supplement 1. A) Noise (first row) and signal (second row) correlations corre-
sponding to the ground truth (first column), estimated by the two-stage Pearson method using

the FCSS (Kazemipour et al., 2018) (second column) and constrained f-oopsi (Pnevmatikakis et al.,
2016) (third column) spike deconvolution techniques, for the simulation study in Figure 2. The
NMSE and leakage ratios of the estimates are indicated below each panel. While the correlation

estimates based on these two methods are comparable, there exist notable differences between

them, as a result of the slight discrepancies in the deconvolved spikes. This demonstrates that the

two-stage estimates are sensitive to minor differences in the estimated spikes obtained by different

deconvolution techniques. In addition, both two-stage Pearson estimates fail to capture the ground

truth correlations (as is also evident from the high NMSE and leakage values). B) Simulated obser-

vations (black, re-scaled for ease of visual comparison) and ground truth spikes (blue), as well as

the estimated calcium concentrations (purple) and putative spikes (green) for the 1st trial of neuron
1 in the simulation study of Figure 2, using the FCSS (Kazemipour et al., 2018) (second row) and
constrained f-oopsi (Pnevmatikakis et al., 2016) (third row) spike deconvolution methods.
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Figure 2–Figure supplement 2. Performance of two stage estimates based on ground truth spikes.
Noise (first row) and signal (second row) correlations corresponding to the ground truth (first

column) are repeated from Figure 2. The second and third columns show the results of two-stage
GPFA and two-stage Pearson methods using L = 20 trials, respectively. The fourth column shows
the results of the two-stage Pearsonmethod using L = 1000 trials. All estimates were obtained using
the ground truth spikes, as opposed to extracting the spikes via a deconvolution technique. Thus,

these results isolate the effect of the non-linearities involved in spike generation on the estimation

performance. The NMSE and leakage ratios of the estimates are indicated below each panel. Even

though the ground truth spikes are used, the NMSE and leakage ratios indicated in the second and

third columns are remarkably high. This further shows that the usage of conventional definitions

and GPFA estimates is not optimal for the recovery of signal and noise correlations. In accordance

with our theoretical analysis in Appendix 1, the performance of the two-stage Pearson method
significantly improves as the number of trials is increased to L = 1000, a number that is unrealistic
in the context of typical two-photon imaging experiments. However, our proposed method shown

in Figure 2 achieves comparable performance with number of trials as low as L = 20. In summary,
these results suggest that the two-stage methods produce highly biased estimates under limited

number of trials, even if the ground truth spikes were ideally deconvolved from the two-photon

data.
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Figure 2–Figure supplement 3. Estimated noise and signal correlation matrices from different
methods based on data generated with non-linear stimulus integration. Spikes were generated by

replacing the linear receptive field model d⊤j st with a non-linear one given by d
⊤
j st + (d̃

⊤
j,1st)

2 + (d̃⊤j,2st)
2,

but a linear stimulus model was used for estimation (i.e., d̃j,1 = d̃j,2 = 0). Rows from left to right:
ground truth, proposed method, Pearson correlations from two-photon recordings, two-stage

Pearson estimates and two-stage GPFA estimates. The normalized mean squared error (NMSE)

of each estimate with respect to the ground truth and the leakage effect quantified by the ratio

between out-of-network and in-network power (leakage) are indicated below each panel. While

the NMSE in our proposed signal correlation estimates under this setting is greater than that in

Figure 2 with no model mismatch, our proposed estimates still outperform existing methods. In
addition, model mismatch in the stimulus integration component does not affect the accuracy of

noise correlations estimated by our method.
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Figure 2–Figure supplement 4. A) Proposed noise and signal correlation estimates for data
simulated at lower SNR than the setting of Figure 2 and model mismatch introduced by using a
second-order autoregressive model for the calcium decay. The ground truth correlations are the

same as those in Figure 2. The NMSE and leakage ratio are given at the bottom. B) putative spikes
(green) and estimated calcium concentrations (purple). The model mismatch and lower SNR result

in slight performance degradation compared to Figure 2 (in terms of NMSE and leakage), and our
method is capable of recovering the underlying correlations faithfully.
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Figure 2–Figure supplement 5. Performance comparison with respect to varying SNR levels and
average firing rates. A) NMSE (top) and leakage ratios (bottom) for the noise (left) and signal

(right) correlation estimates vs. SNR (in dB), for the proposed method, Pearson correlations from

two-photon data and Two-stage Pearson method. The SNR setting corresponding to Figure 2
is indicated by a dashed vertical line. The mean and standard deviation (std) of the normalized

performance gain of the proposed method in comparison to the two existing methods are indicates

as insets in each panel. B) Same organization as panel A, but with respect to varying firing rates

(in Hz). C) Sample simulated white observation noise (red), two-photon observations (black, re-

scaled for ease of visual comparison) and ground truth spikes (blue), as well as the estimated

calcium concentrations (purple) and putative spikes (green) for the 1st trial of neuron 1. While
the performance of all methods degrade at low SNR levels or firing rates (SNR < 10 dB, firing rate
< 0.5 Hz), our proposed method outperforms the existing methods for almost all SNR and firing
rate settings considered.
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Figure 2–Figure supplement 6. Performance comparison with respect to varying SNR levels and
average firing rates, with additional observation noise model mismatch. A) NMSE (top) and leakage

ratios (bottom) for the noise (left) and signal (right) correlation estimates vs. SNR (in dB), for the

proposed method, Pearson correlations from two-photon data and Two-stage Pearson method.

The observation noise is generated by a white noise signal with an additive drift component from a

low frequency auto-regressive process. The mean and standard deviation (std) of the normalized

performance gain of the proposed method in comparison to the two existing methods are indicates

as insets in each panel. B) Same organization as panel A, but with respect to varying firing rates

(in Hz). C) Sample simulated observation noise (red), two-photon observations (black, re-scaled

for ease of visual comparison) and ground truth spikes (blue), as well as the estimated calcium

concentrations (purple) and putative spikes (green) for the 1st trial of neuron 1. Panels (D), (E), and
(F) are respectively in the same organization as panels (A), (B), and (C), but the observation noise

is generated by a pink noise process. Our proposed method outperforms the existing methods

for a wide range of SNR and firing rate values and under both observation noise model mismatch

conditions.



0.2

0

-0.2

0.2

0

-0.2

A

R = 1

5

15

10

5

15

10

B

5 1510

P
ro
b
a
b
il
it
y

0

0.04

0 10.8725

p < 10⁻⁴

0

0.04

0 10.8025

p = 0.1

0

0.04

0 10.8725

p =  8 ×10⁻⁴

0

0.04

0 10.8925

p < 10⁻⁴

R = 10 R = 25 R = 50

Proposed estimates under different settings of the stimulus lag (R)

5 10 15 5 10 15 5 10 15 5 10 15

Figure 4–Figure supplement 1. Proposed noise and signal correlation estimates under different
settings of the stimulus integration window length (R). A) Proposed noise correlation (top) and
signal correlation (bottom) estimates under different settings of R, from left to right: R = 1, R = 10,
R = 25 and R = 50. B) Null distributions of dissimilarities between proposed signal and noise
correlation estimates corresponding to different choice of R. The observed test statistic in each
case is indicated by a dashed vertical line, and the p-values are indicated above each panel. These

results show that small values of R = 1 and R = 10 are not adequate to capture stimulus effect.
However, both signal and noise correlation estimates exhibit consistency for R = 25 and R = 50.
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Figure 4–Figure supplement 2. The fluorescence observations (black), inferred calcium concentra-
tions (purple) and putative spikes (green) by our proposed method, for a sample data segment with

high fluorescence activity due to successive closely-spaced spikes. The rise onset of the fluores-

cence activity is marked by the vertical dashed line and spiking magnitude level of 1 is indicated
by the horizontal dashed line. The proposed method favorably recovers the underlying calcium

concentrations by predicting putative spikes in successive windows following the rapid rise of the

fluorescence and with magnitudes possibly larger than 1.
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estimates. These results show that the only statistically significant outcomes (with p ≤ 0.05) are the
similarities and dissimilarities obtained by our proposed method.
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Figure 7–Figure supplement 1. Comparison of marginal distributions of signal and noise correla-
tions. A) Cumulative marginal probability distributions of signal (blue) and noise (red) correlations

along the rostrocaudal (top) and dorsoventral (bottom) directions, as estimated by the proposed

method (left) and Pearson correlations from two-photon data (right), in layer 2/3 neurons. The

Kolmogorov–Smirnov (KS) test statistic along with the corresponding p-values are indicated as insets

in each panel. Panel B shows the results for layer 4 in the same organization as panel A. These

results show that along both directions and in both layers, the signal correlation distributions are

significantly different from the corresponding noise correlation distributions, consistently for both

methods. However, the KS statistics (i.e., effect sizes) for the proposed estimate are remarkably

larger than those obtained from the Pearson estimates.
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Figure 7–Figure supplement 2. Polar plots of the angular marginal distributions of correlations.
A) Polar histograms indicating the distribution of signal (top) and noise (bottom) correlations as a

function of relative angle (in the dorsoventral-rostrocaudal coordinate system) between pairs of

neurons in layer 2/3, as estimated by the proposed method (left) and Pearson correlations from

two-photon data (right). The KS test statistic comparing each polar distribution with a uniform

distribution (shown in magenta), along with the corresponding p-values are indicated below each

polar plot. The mode of each probability distribution is also indicated in blue fonts. Panel B shows

the results for layer 4 in the same organization as panel A. All distributions are significantly non-

uniform, and particularly indicate a rostrocaudal directionality in layer 4 (as indicated by the mode

angles in panel B).
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