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Abstract—Mobile cloud computing enables compute-limited
mobile devices to perform real-time intensive computations such
as speech recognition or object detection by leveraging powerful
cloud servers. An important problem in large-scale mobile cloud
computing is computational offloading where each mobile device
decides when and how much computation should be uploaded
to cloud servers by considering the local processing delay and
the cost of using cloud servers. In this paper, we develop a
distributed threshold-based offloading algorithm where it uploads
an incoming computing task to cloud servers if the number of
tasks queued at the device reaches the threshold, and processes it
locally otherwise. The threshold is updated iteratively based on
the computational load and the cost of using cloud servers. We
formulate the problem as a symmetric game, and characterize
the sufficient and necessary conditions for the existence and
uniqueness of the Nash Equilibrium (NE) assuming exponential
service times. Then, we show the convergence of our proposed
distributed algorithm to the NE when the NE exists. Finally, we
perform extensive simulations to validate our theoretical findings
and demonstrate the efficiency of our proposed distributed algo-
rithm under various practical scenarios such as general service
times, imperfect server utilization estimation, and asynchronous
threshold updates.

I. INTRODUCTION

Real-time mobile cloud applications have grown rapidly
over the last few years and have become ubiquitous. For
example, in an international trade show such as Consumer
Electronics Show, people in the same convention center may
need real-time translation services on their mobile devices
at the same time, making it challenging to provide low
latency language translation with a low service cost. On one
hand, computing limited devices may not have the required
capability to process the data locally; and on the other hand,
offloading the computing to a cloud-computing center in-
curs both communication and computing costs. Mobile cloud
computing, which utilizes both mobile and cloud computing
powers, is a vital solution to address this challenge. A central
question in mobile cloud computing is: how much to offload
and when? This paper addresses this important question and
proposes a distributed offloading algorithm where each device
aims at minimizing a cost function including both the local
processing delay and offloading cost at the cloud computing
center.

While mobile cloud computing has received great research
interest in recent years (see [1], [2] for the most recent
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thorough survey), most of the prior work mainly focused on
reducing the average energy consumption (e.g., [3], [4], [5],
[6], [7], [8], [9]), they did not consider users’ cost of using
cloud servers. Some of the prior works studied the distributed
offloading algorithm for mobile cloud computing (e.g., [10],
[11], [12], [13], [14], [15]), where all computing tasks are
available at the beginning of each time slot. However, they
did not address the case with dynamic computing tasks arrival
and service time, which is predominant in practical cloud
computing systems.

In this paper, we consider a system in which computing
tasks dynamically arrive at each device and each device needs
to make a real-time decision on whether to offload an incoming
task or process it locally, with the objective of minimizing
a cost function including local task processing time and the
cost of using the cloud service. We focus on a threshold-
based offloading policy under which an incoming task is
offloaded to the cloud if the number of tasks at the local
device reaches a threshold, and queued at the local device to
be processed otherwise. We choose threshold-based policies
for the following reasons: (i) The optimal offloading shares
the same spirit of the admission control in a single-queue
system, where the optimal solution has a threshold structure
(see [16]), (ii) Optimal policies for many complex Markov
Decision Process (MDP) problems are threshold-based; and
(iii) Threshold policies are low-complexity policies that are
easy to implement in practice. To that end, the following five
fundamental questions naturally arise:

(i) Algorithm Design: How should a device adapt its thresh-
old to minimize its cost?

(ii) Existence: Does there exist an equilibrium point such
that each device will settle on a threshold and have no
incentive to deviate from it?

(iii) Uniqueness: Is the equilibrium point unique?
(iv) Convergence: Does the system converge to the equilib-

rium when each device adapts its threshold to minimize
its own cost?

(v) Efficiency (or Price of Anarchy) How efficient is the
distributed threshold-based policy compared with the
optimal centralized solution?

There are two main challenges to answer the questions
above: (i) Since each user’s offloading decision (i.e., threshold)
is discrete and unbounded, classical fixed point theorems,
which have been used successfully for proving the existence



and uniqueness of Nash Equilibrium in many applications
(e.g. [17], [18], [19], [20], [21], [22]), do not directly apply
in our model; (ii) Since thresholds take integer values, it is
challenging to show that the integer sequences will converge
to the equilibrium point. In fact, it is not clear whether
a distributed threshold-based algorithm, where each device
chooses the optimal threshold given the current state of the
cloud service, converges. However, we are able to show that
an incremental distributed threshold-based policy, where each
device increases/decreases its threshold to move it closer to
the current optimal threshold, converges under some minor
conditions. The main results and contributions of this paper
are listed below:
• Under the exponential service time assumption, we an-

alytically characterize the sufficient and necessary conditions
for the existence and uniqueness of the Nash Equilibrium (see
Theorem 1).
•We develop a distributed implementation of the threshold-

based offloading algorithm (see Section III-A) so that each
user iteratively and incrementally updates its own threshold
based on its own cost function. We prove the convergence of
our proposed algorithm to the Nash Equilibrium offloading
decision if it exists under the exponential service time distri-
bution (See Theorem 2).
• We characterize the efficiency of the Nash Equilibrium

offloading decision via the Price of Anarchy, capturing effi-
ciency loss comparing with the optimal centralized offloading
(cf. Theorem 3).
•We perform extensive simulations (see Section IV) to vali-

date our theoretical findings. Under various practical scenarios
(e.g., general service time distributions, imperfect server uti-
lization estimation, and asynchronous threshold updates), we
also demonstrate the convergence of our proposed distributed
algorithm to the Nash Equilibrium offloading decision, which
is computed via numerical calculations.

The remainder of this paper is organized as follows: We
introduce our system model in Section II. In Section III,
we propose a distributed threshold-based offloading algorithm
and present our main theoretical results. In Section IV-B,
we perform extensive simulations to validate our theoretical
findings as well as the efficiency of our proposed distributed
algorithm. Section V concludes our paper.

II. SYSTEM MODEL

We consider a mobile cloud computing system of N users,
as shown in Fig. 1. Tasks arrive at each user according to a
Poisson process of rate λ > 0. Each user can process a task
either locally or upload it to cloud servers with a total service
rate of Nc, where c > λ ensures that all tasks can be processed
at cloud servers if necessary. The mean service time of a task
at a local device is 1/µ, where µ > 0. We assume that each
user n (n = 1, 2, . . . , N) maintains a queue to hold tasks
awaiting for processing locally and we use qn(t) to denote
the queue-length at time t, i.e., the number of awaiting tasks
of user n at time t.

Fig. 1: System Model

For each incoming task, it experiences both queueing and
processing delays when being processed locally. We assume
the user will be charged with a service cost based on server
utilization at the time if a task is offloaded to the cloud, where
server utilization is the current load of the cloud servers. Here,
we assume that cloud servers are high-capacity servers so that
the delay of offloading to the cloud is negligible compared
with local processing and queueing delays. Under these as-
sumptions, each individual user makes an offloading decision
that determines whether its incoming task is processed by itself
or is uploaded to cloud servers with the goal of minimizing
both its delay and service cost.

Since the offloading problem shares a similar spirit of the
optimal admission control of a single queue whose solution
has a threshold-based structure (see [16]), we focus on the
following Threshold-Based Offloading (TBO) Policy.

Threshold-Based Offloading (TBO) Policy with integer
parameters B , (Bn)

N
n=1: For each user n, an in-

coming computing task will be processed by itself if its
current queue-length qn(t) is less than Bn. Otherwise,
the task is uploaded to cloud servers for computation.

In the TBO policy, Bn is the threshold of user n. If Bn
is set to 0, then user n will upload all its incoming tasks
to cloud servers. If Bn ↑ ∞, then all computing tasks are
processed by user n. Under the TBO policy, the queue-length
of each user only depends on its own threshold Bn when the
threshold is fixed. Therefore, we use Q(Bn) to denote the
average queue-length and π(Bn) to denote probability that an
incoming task is uploaded to cloud servers (also referred to as
offloading probability). For each user n, an incoming task is
processed by itself with probability 1−π(Bn). In such a case,
it experiences the average delay of Q(Bn)

λ(1−π(Bn))
by Little’s Law,

where we use the fact that the average rate of tasks processed
by user n is λ(1−π(Bn)). With offloading probability π(Bn),
an incoming task is uploaded to cloud servers and experiences
a cost depending on the server utilization, i.e., g (β(B)),
where B , (Bn)

N
n=1, β(B) , λ

∑N
n=1 π(Bn)/(Nc) is the

utilization of cloud servers, λ
∑N
n=1 π(Bn) is the average

number of tasks that are uploaded to cloud servers, and g(·) is
some convex, non-decreasing, and non-negative function. This
is motivated by the fact that a large server utilization results
in a high service cost in cloud services (see [23]). In the rest



of the paper, we assume that g(x) = kx2, where k > 0 is
some scaling parameter. Therefore, the average cost of user n
can be expressed as

Q(Bn)

λ
+ kβ2(B)π(Bn). (1)

In this paper, we focus on the large-scale mobile cloud
computing system (i.e., N is large enough). Our goal is
to develop a distributed offloading algorithm under which
each device updates its own threshold, without knowing other
users’ thresholds, to minimize its cost function. The important
questions to answer include whether such an algorithm can
converge? If it does, where does it converges to and how
efficient is the equilibrium point? We study this problem from
a game perspective. In particular, each user n optimizes its
own cost function Q(Bn)/λ+kβ

2π(Bn) given a fixed server
utilization β. B∗ , (B∗n)

N
n=1 is defined to be the Nash

Equilibrium (NE) of the system (when it exists) if

B∗n ∈ argmin
B

Q(B)/λ+ kβ2π(B) (2)

and β = λ
N∑
n=1

π(B∗n)/(Nc).

Note the cost function in (2) is different from (1) because
the N -player game defined by (1) is difficult to solve so
we approach the problem using a mean-field approximation
(or large-system approach) where we assume that each user’s
choice of the threshold has the minimal impact on the server
utilization β, so each user views the server utilization as a fixed
constant when optimizing its threshold. The NE has to satisfy
two conditions: (i) the threshold is optimal given the server
utilization (optimality condition) (ii) the server utilization is
indeed the one under the chosen thresholds from all users
(consistency condition).

We define the Price of Anarchy (PoA) to be the performance
gap between cost under the NE offloading decision and the
global minimum cost, i.e.,

PoA , 1− Global minimum cost
Average cost under NE offloading decision

.

Note that PoA ∈ [0, 1]. The smaller the PoA, the more efficient
the system under the NE offloading decision.

III. ALGORITHM DESIGN AND MAIN RESULTS

In this section, we first propose a distributed offloading
algorithm that incrementally updates the threshold for each
user. Then, we present our main theoretical results on the
performance of the proposed algorithm.

A. Algorithm Description

In this subsection, we introduce an Iterative Threshold
Update (ITU) algorithm that constantly updates each user’s
threshold. Let B(m)

n be the threshold of user n in the mth

iteration. Motivated by the fact that the server utilization
asymptotically equal to β(B(m)) as N →∞ at the beginning
of the (m+1)th iteration, we define the approximate average

cost of user n given the server utility β(B(m)) in the mth

iteration as

Tn

(
Bn;B

(m)
)
,
Q(Bn)

λ
+ kβ2

(
B(m)

)
π(Bn),

where B(m) ,
(
B

(m)
n

)N
n=1

.

Algorithm 1 Iterative Threshold Update (ITU) Algorithm

1: Each user starts from some random threshold B(0)
n , where

n = 1, 2, · · · , N ;
2: for m = 0, 1, 2 · · · , do
3: for n = 1, 2, · · · , N do
4:

B̂(m+1)
n ∈ argmin

Bn

Tn

(
Bn;B

(m)
)
. (3)

5: if m = 0 then
6: B

(m)
n ← B̂

(m+1)
n

7: else
8: if B̂(m+1)

n < B
(m)
n then

9: B
(m+1)
n ← B

(m)
n − 1;

10: else if B̂(m+1)
n > B

(m)
n then

11: B
(m+1)
n ← B

(m)
n + 1;

12: else
13: B

(m+1)
n ← B

(m)
n .

14: end if
15: end if
16: end for
17: end for

We describe our proposed ITU algorithm in Algorithm 1,
where each user greedily optimizes its own decision in the first
iteration step to speed up the convergence of the ITU algorithm
and then gradually adjusts its threshold. Here, the optimal
solution to (3) requires the knowledge of the server utilization,
which relies on all users’ offloading decisions and thus is typ-
ically unavailable beforehand. However, the server utilization
can be estimated via the ratio of the average offloading rate
(i.e., the ratio of the total number of offloaded tasks and the
total amount of time) to the total service rate of cloud servers.
Moreover, users in the system may update their offloading
decisions asynchronously. In Section IV, we demonstrate via
simulations that our proposed ITU algorithm still performs
well in the presence of imperfect server utilization estimation
and asynchronous threshold updates.

We are interested in whether the proposed ITU algorithm
converges and which offloading decisions it converges to if it
does converge. We analytically answer these two questions
when the service time of each task is independently and
identically distributed (i.i.d) and exponentially distributed with
mean 1/µ. In such a case, when the threshold Bn of user
n is fixed, the queue at a device is an M/M/1/Bn queue
(see [24]), which has a Poisson arrival process with the
rate λ, exponentially distributed service time with mean 1/µ,
and a finite buffer size Bn. Therefore, the average queue-
length Q(Bn) and probability π(Bn) that an incoming task



is uploaded to cloud servers (also referred to as offloading
probability) have the following closed-forms:

Q(Bn) =

{
Bn+1

ρBn+1−1 +Bn + 1
1−ρ , ρ 6= 1,

Bn

2 , ρ = 1,
(4)

and π(Bn) =

{
ρBn−ρBn+1

1−ρBn+1 , ρ 6= 1,
1

Bn+1 , ρ = 1,
(5)

respectively, where ρ , λ/µ > 0.

B. Main Results

In this subsection, we analyze the performance of our
proposed ITU algorithm under the exponential service time
distribution assumption. We first characterize the sufficient and
necessary conditions for the existence and uniqueness of the
NE. Then, we show that the proposed ITU algorithm converges
to the unique NE within a finite time when it exists. Finally,
we characterize the efficiency of NE offloading decision via
the PoA performance metric in some scenarios.

Theorem 1: If W (0) < kλ2/c2 and V1(bx̃c) < kλ2/c2 <
V2(dx̃e), then there is no NE. Otherwise, there exists a unique
NE, in particular,
(i) if W (0) ≥ kλ2/c2, then the unique NE is (0)N×1;

(ii) if W (0) < kλ2/c2 and W (bx̃c) < kλ2/c2 ≤ V1(bx̃c),
then the unique NE is (bx̃c)N×1;

(iii) if W (0) < kλ2/c2 and V2(dx̃e) ≤ kλ2/c2 < W (dx̃e),
then the unique NE is (dx̃e)N×1.

In the statement above, x̃ is the unique solution to W (x̃) =
kλ2/c2 when W (0) < kλ2/c2, and W (x), V1(x), and V2(x)
are defined as follows:

W (x) =


(1−ρx+1)2

λ(1−ρ)3ρ2x−1

(
x+ 1− ρx+1−1

log(ρ)

)
, ρ 6= 1,

(x+1)4

2λ , ρ = 1.
(6)

V1(x) ,
kλ2

c2

∣∣∣∣ CL(x+ 1)− CL(x)
CE(x+ 1;x)− CE(x;x)

∣∣∣∣ (7)

and V2(x) ,
kλ2

c2

∣∣∣∣ CL(x)− CL(x− 1)

CE(x;x)− CE(x− 1;x)

∣∣∣∣, (8)

where CL(x) , Q(x)/λ denotes the average local computa-
tion cost and CE(x; y) , k (λπ(y)/c)

2 · π(x) represents the
average service cost.1

Proof: The proof is available in Appendix A.
To apply Theorem 1, we only need to examine the value of

kλ2/c2 to check whether the NE exists or not given the system
parameters. Note that the term kλ2/c2 denotes the cost of
using cloud servers when all the computing tasks are uploaded
to cloud servers. Therefore, if kλ2/c2 ≤ W (0), then the cost
of using cloud servers is small and thus it is better to upload
all the tasks to cloud servers (i.e., x̃ = 0). Otherwise, each user
partially uploads computing traffic to the cloud servers with

1In this paper, byc and dye denote the maximum integer that is not greater
than y and the minimum integer that is not less than y, respectively, (y)N×1

denotes N− dimensional vector with all y values.

the goal of minimizing its own cost (i.e., x̃ > 0). In addition,
when the NE exists, we can further quantify the NE. The next
theorem shows that the proposed ITU algorithm converges to
the unique NE over a finite number of iterations when the NE
exists.

Theorem 2: If the unique NE exists, then the proposed ITU
algorithm converges to it over a finite number of iterations.

Proof: The proof relies on the following key property:
after each iteration of the ITU algorithm, each user’s threshold
will get closer and closer to the NE, as it is shown in Fig. 2.
Fig. 2 illustrates the convergence of each user’s threshold in
the case when bx̃c is the NE and the case when dx̃e is the
NE, respectively, where we recall that x̃ is the solution to (9)
if it exists.

Fig. 2: Convergence of the nth user’s thresholds.

Then, in both cases, the updated threshold of each user
exhibits bisection property, i.e., if B

(m)
n < x̃, then the

threshold will increase by one in each iteration until it reaches
the NE. If B(m)

n > x̃, then the threshold will decrease by one
in each iteration until it converges to the NE. Therefore, we
either increase or decrease the current threshold by one in each
iteration to ensure the convergence of ITU algorithm. Please
see Appendix B for the detailed proof.

Finally, we characterize PoA of the NE when it exists, which
captures the efficiency of our proposed ITU algorithm when
it converges. In particular, we provide conditions under which
the proposed ITU algorithm is optimal, i.e. the PoA is zero.

Theorem 3: When the NE exists, PoA is zero when W (0) ≥
kλ2/c2, and converges to zero as k → ∞ when W (0) <
kλ2/c2 and 0 < ρ < 1.

Proof: The proof consists of the following two cases:
(i) If W (0) ≥ kλ2/c2, according to Theorem 1, the unique

NE is (0)N×1 and thus it is optimal to offload all the tasks
to the cloud server. We can also show that in such a case,
the thresholds of the global optimal solution for all users are
0 using a similar argument and is omitted here due to space
limitations. Therefore, PoA = 0 in this case.

(ii) If W (0) < kλ2/c2 and 0 < ρ < 1, we first obtain the
following upper bound on PoA using its definition:

PoA ≤ 1− (1− ρ) log(ρ)
3(ρ log(ρ) + ρx̃+2(1− ρ))

·
(

2x∗ + 2

ρx∗+1 − 1
+ 2x∗ +

2 + ρ

1− ρ
+
ρx

∗+1

log(ρ)

)
,

where x∗ is the unique solution to the equation kλ2/c2 =
W (x∗)/3. In Appendix C, we further show that this upper



bound converges to 0 as k →∞. This, together with the fact
that PoA ≥ 0, implies the desired result. The detailed proof
is in Appendix C.

Note that these theoretical results are obtained under the
assumption that the service time follows an exponential distri-
bution. In the next section, we perform simulations to validate
our theoretical results and to demonstrate the efficiency of
our proposed ITU algorithm under various practical scenarios,
such as general service time distribution, imperfect server
utilization estimations, and asynchronous threshold updates.

IV. SIMULATIONS

In this section, we perform simulations to validate our
theoretical findings, especially conditions for the existence and
uniqueness of the NE (cf. Theorem 1) and the convergence
of our proposed ITU algorithm (cf. Theorem 2) under the
exponential service time distribution with µ = 4. We also
demonstrate the convergence property of the proposed ITU
algorithm when the service time follows a hyperexponential
distribution, i.e., it follows an exponential distribution with a
rate of 8p with probability p and another exponential distri-
bution with a rate of 8(1− p) otherwise. Note that the mean
of the hyperexponential distribution is 1/4 and the variance
is 1/(8p(1 − p)) − 1/16. Finally, we evaluate the efficiency
of the NE via the PoA performance that characterizes the gap
between the cost under the NE and the global minimum cost.
In our simulations, we consider N = 1000 users, each of
which has the Poisson arrival process with the rate of λ = 6,
and c = 4 unless we explicitly mention it.

A. Existence of the NE

In this subsection, we perform numerical simulations to
validate the conditions such that the NE exists under the ex-
ponential service time distribution. We consider three different
values of k, i.e., k = 22, k = 30, and k = 40. These
corresponds to the case with W (bx̃c) < kλ2/c2 ≤ V1(bx̃c),
V1(bx̃c) < kλ2/c2 ≤ V2(bx̃c), and V2(dx̃e) < kλ2/c2 ≤
V1(dx̃e), respectively, under which the unique NE is (2)N×1,
NE does not exist, and the unique NE is (3)N×1, according to
Theorem 1. Fig. 3 shows the optimal threshold value of one
user assuming users adopt the same threshold under above
three different cases. From Fig. 3a, and Fig. 3c, we can see
that there exists a unique NE (2)N×1 when k = 22, and NE
(3)N×1 when k = 40, which means that the optimal threshold
of one user is the same as all other users’ threshold. However,
we can observe from Fig. 3b that there does not exist a NE
when k = 30. This validates the conditions for the existence
and uniqueness of the NE, as shown in Theorem 1.

B. Convergence under the ITU Algorithm

In this subsection, we perform simulations to validate the
convergence of the ITU algorithm. We randomly select 5 users
to study their convergences. Fig. 4 shows the convergence
property of the ITU algorithm when the calculation of the
server utilization uses the exact offloading probability (cf. (5)).
We can see from Fig. 4a and Fig. 4c that our proposed ITU

algorithm can quickly converge to the corresponding NE. The
NE does not exist in the setup for Fig. 4b, in which case the
updated threshold under the ITU algorithm oscillates between
2 and 3. This indicates the bisection property of the updated
threshold of ITU. This validates the convergence property of
the ITU algorithm, as revealed in Theorem 2.

In practice, the service time may not follow the exponential
distribution. In addition, the knowledge of the server utilization
is not available beforehand and requires to estimate over time.
As such, we use the ratio between the average offloading
rate (i.e., the ratio of the total number of offloaded tasks and
the total amount of time) and the total service rate of cloud
servers. Moreover, each user may not synchronously update
its threshold.

To this end, we consider a hyperexponential distribution
service time distribution with p = 1/8. Each user updates its
threshold asynchronously (i.e., updates with a fixed probabil-
ity) to optimize its cost function in the presence of imperfect
server utilization estimation. Note that we do not know the
theoretical NE and thus we first perform numerical simulations
to find the NE by plotting the optimal threshold value with re-
spect to other users’ threshold, as shown in Fig. 5. From Fig. 5,
we can observe that the NE is (3)N×1 when k = 40, while the
NE does not exist when k = 30. Fig. 6 shows the convergence
of the ITU algorithm under the hyperexponential distribution
service time distribution together with asynchronous threshold
update and imperfect server utilization estimation. From Fig.
6, we can observe that the updated threshold converges to the
corresponding NE when the NE exists, and oscillates between
2 and 3 otherwise.

C. Price of Anarchy

In this subsection, we perform simulations to evaluate the
efficiency of the NE via the PoA performance under three
different cases: ρ = 0.75 (i.e., λ = 3), ρ = 1 (i.e., λ = 4),
and ρ = 1.25 (i.e., λ = 5). We consider both exponential
service time distribution and hyperexponential distribution
service time distribution with p ∈ {1/4, 1/8, 1/16}. In Fig.
7, we plot PoA performance with respect to k varying from 0
to 100. Here, we ignore the trivial case with kλ2/c2 ≤W (0),
where PoA is always equal to zero. We can see from Fig. 7
that both the PoA under different service time distributions
share the similar properties. In addition, PoA only exists in
certain range of k since system parameters have a significant
impact on the existence of the NE (see Theorem 1). From Fig.
7, we can also observe that PoA < 0.3 in all of our simulation
scenarios, which implies that our proposed ITU algorithm is
at least 70% efficient compared to the global optimal solution.

V. CONCLUSION

In this paper, we proposed a distributed threshold-based
offloading algorithm so that each user gradually updates its
own threshold with the goal of minimizing its own cost
function consisting of average processing delay and the cost
of using the cloud services depending on the server utilization
in large-scale mobile cloud computing. We then characterized



(a) k = 22

(i.e., W (bx̃c) < kλ2

c2
≤ V1(bx̃c))

(b) k = 30

(i.e., V1(bx̃c) < kλ2

c2
< V2(dx̃e))

(c) k = 40

(i.e., V2(dx̃e) ≤ kλ2

c2
< W (dx̃e))

Fig. 3: Conditions for the existence and uniqueness of NE.

(a) k = 22

(i.e., W (bx̃c) < kλ2

c2
≤ V1(bx̃c))

(b) k = 30

(i.e., V1(bx̃c) < kλ2

c2
< V2(dx̃e))

(c) k = 40

(i.e., V2(dx̃e) ≤ kλ2

c2
< W (dx̃e))

Fig. 4: Convergence of the ITU algorithm under exponential service time.

(a) k = 30 (b) k = 40

Fig. 5: The best response threshold under the hyperexponential
distribution service time distribution.

(a) k = 30 (b) k = 40

Fig. 6: The convergence of the ITU algorithm under the
hyperexponential distribution service time distribution.

the sufficient and necessary conditions for the existence and
uniqueness of the Nash Equilibrium offloading decision under
the exponential service time distribution. Furthermore, we
showed the convergence of our proposed distributed algorithm
to Nash Equilibrium when it exists. Finally, we perform exten-
sive simulations to confirm our theoretical findings and exhibit
the efficiency of our proposed algorithm under various practice

scenarios such as general service time distributions, imperfect
server utilization estimation, and asynchronous threshold up-
dates.

APPENDIX A
PROOF OF THEOREM 1

We first consider the cases when the NE exists and then
the case when NE does not exist. Hence, we first consider the
following three cases:

Case (i) W (0) ≥ kλ2/c2: In such a case, given all other
users threshold y, the best response is 0. This can be verified
by monotonic increasing property of cost function T (x; y)
when W (0) ≥ kλ2/c2. The proof follows from the basic
calculus and thus is omitted due to the lack of space.

Then, we need two lemmas to prove the second case, whose
proofs are available at the end of this section.

Lemma 1: If W (0) < kλ2/c2 and given all other user’s
offloading decisions x̃ , then the best response is also x̃, where
x̃ is the unique solution to

W (x̃) = kλ2/c2. (9)

Lemma 2: W (x), V1(x) and V2(x) satisfy the following
relationship:

W (x) < V1(x) < V2(x+ 1) < W (x+ 1), ∀x ≥ 0.

Lemma 3: Functions CL(x) and CE(x; y) (their definitions
are defined in Theorem 1) are strictly increasing and strictly
decreasing on the interval [0,∞) independently of all other
users’ offloading decisions y, respectively.



(a) ρ = 0.75 (b) ρ = 1 (c) ρ = 1.25

Fig. 7: PoA performance.

Lemma 4: Given all other users’ offloading decisions B̃, if
B̃ /∈ {bx̃c, dx̃e}, then NE does not exist.

From Lemma 1, we can see that if W (0) < kλ2/c2, there
exists the unique solution x̃ to equation (9), i.e., kλ2/c2 =
W (x̃). Therefore, according to the monotonic increasing prop-
erty of W (x) (cf. Lemma 2), we have W (bx̃c) < kλ2/c2 <
W (dx̃e) when x̃ is not an integer. Next, we characterize
the conditions for the existence and uniqueness of the NE
by considering a partition of the interval (W (bx̃c),W (dx̃e)).
Therefore, we consider the following cases under the condition
W (0) < kλ2/c2.

Case (ii) W (bxc) < kλ2/c2 ≤ V1(bx̃c): In such a case,
we would like to show that (bx̃c)N×1 is the unique NE.
From Lemma 4, we know that the NE must be either
(bx̃c)N×1 or (dx̃e)N×1. Therefore, it is sufficient to show that
T (bx̃c; bx̃c) ≤ T (dx̃e; bx̃c), i.e., the best response of an indi-
vidual user is bx̃c given all other users’ offloading decisions
bx̃c. Indeed, according to the condition kλ2/c2 ≤ V1(bx̃c)
and the definition of V1(x) (cf. (7)), we have

kλ2

c2
≤ kλ2

c2

∣∣∣∣ CL(dx̃e)− CL(bx̃c)
CE(dx̃e; bx̃c)− CE(bx̃c; bx̃c)

∣∣∣∣,
By using Lemma 3, this immediately implies that

CE(bx̃c; bx̃c)− CE(dx̃e; bx̃c) ≤ CL(dx̃e)− CL(bx̃c).

By rearranging items of the above inequality, we have

CL(bx̃c) + CE(bx̃c; bx̃c) ≤ CL(dx̃e) + CE(dx̃e; bx̃c),

i.e., T (bx̃c; bx̃c) ≤ T (dx̃e; bx̃c).
Case (iii) V2(dx̃e) ≤ kλ2/c2 < W (dx̃e): In such a case, we

would like to show that (dx̃e)N×1 is the unique NE. Again
following Lemma 4, the NE is either (bx̃c)N×1 or (dx̃e)N×1.
Therefore, it is sufficient to show that T (dx̃e; dx̃e) ≤
T (bx̃c; dx̃e), i.e., the best response of an individual user is
dx̃e given all other users’ offloading decisions dx̃e. Indeed,
according to the condition V2(dx̃e) ≤ kλ2/c2 and the defini-
tion of V2(x) (cf. (8)), we have

kλ2

c2

∣∣∣∣ CL(dx̃e)− CL(bx̃c)
CE(dx̃e; dx̃e)− CE(bx̃c; dx̃e)

∣∣∣∣ ≤ kλ2

c2
.

By using Lemma 3 again, we have

CL(dx̃e)− CL(bx̃c) ≤ CE(bx̃c; dx̃e)− CE(dx̃e; dx̃e),

which immediately implies the desired result.
Finally, we will show the case when NE does not exist. In

this case, we have V1(bx̃c) < kλ2/c2 < V2(dx̃e). Indeed, by
following the same arguments in the previous two cases, we
are able to show that the best response of an individual user
is dx̃e and bx̃c given all other users’ offloading decisions bx̃c
and dx̃e, respectively.

Fig. 8: Conditions for the existence and uniqueness of NE.
Fig. 8 summarizes the sufficient and necessary conditions

of the existence and uniqueness of the NE.
The proofs of Lemma 2 and Lemma 3 follow from basic

calculus and thus are omitted due to space limit. Next, we
prove Lemma 1 and Lemma 4 to complete the proof.

Proof of Lemma 1: Here, we only provide the proof when
ρ > 1 and omit the other cases for brevity since they share a
similar proving procedure.

From the definition of W (x) (cf. (6)), we have:

T (x; x̃) =
1

λ

(
x+ 1

ρx+1 − 1
+ x+

1

1− ρ

)
+
kλ2

c2

(
ρx̃ − ρx̃+1

1− ρx̃+1

)2

· ρ
x − ρx+1

1− ρx+1
. (10)

Taking derivative of T (x; x̃) with respect to x, then set x =
x̃ and let dT (x; x̃)/dx = 0, we have

kλ3(1− ρ)3

c2ρ3

(
ρx̃+1

ρx̃+1 − 1

)2

+
ρx̃+1 − 1

log(ρ)
= x̃+ 1, (11)

where log(·) is the logarithm with the natural base e.
Next, we will find the condition such that the equation (11)

has one unique solution. To simply the notations, we let a =
kλ3(1 − ρ)3/(c2ρ3), b = 1/ log(ρ) and u = ρx+1 − 1. Then
we rewrite (11) as follows.

h1(u) = h2(u),



where

h1(u) , a

(
1 +

1

u

)2

+ bu, u > −1

and h2(u) , logρ(u+ 1), u > −1.

Let hd(u) denote the difference between h1(u) and h2(u),
i.e.,

hd(u) , h1(u)− h2(u).

By taking derivative of hd(u) we can show that hd(u) is
strictly increasing when u ∈ [ρ− 1,∞).

Fig. 9: Relations between h1(u) and h2(u): ρ > 1 and
kλ2/c2 > W (0)

If kλ2/c2 > W (0), then we have h1(ρ−1) < h2(ρ−1), as
shown in Fig. 9. Thus, we have hd(ρ − 1) < 0. Since hd(u)
is strictly increasing in u ∈ [ρ− 1,∞), then there must exist
a unique ũ > ρ − 1 satisfying hd(ũ) = 0. Therefore, there
exists some x̃ = log(ũ+ 1)− 1, which is the solution to

dT (x; x̃)

dx
=
u+ 1

bλu2
hd(ũ) = 0.

Next, we will show that such x̃ is the unique best response
of T (x; x̃) given all other users’ offloading decisions x̃.
Indeed, if x ∈ [0, x̃), then we have u ∈ [ρ − 1, ũ). Hence,
we have

dT (x; x̃)

dx
=
u+ 1

bλu2

(
a

(
1 +

1

ũ

)2

+ bu− h2(u)

)
(a)
<

u+ 1

bλu2
hd(u)

(b)
< 0,

where step (a) follows from the fact that b = 1/ log(ρ) > 0
implies (u + 1)/(bλu2) > 0 and (1 + 1/ũ)2 < (1 + 1/u)2;
step (b) follows from the fact that hd(u) < 0 for all u ∈
[ρ−1, ũ), which follows from the fact that hd(u) is increasing
in [ρ− 1,∞) and the fact that hd(ũ) = 0.

Similarly, we can show that dT (x; x̃)/dx > 0, ∀x ∈ [x̃,∞).
Thus, T (x; x̃) is decreasing in x ∈ [0, x̃) and is increasing in
x ∈ [x̃,∞). Therefore, x̃ is the unique solution to kλ2/c2 =
W (x̃).

Proof of Lemma 4: Here, we show the case when ρ 6= 1.
The case when ρ = 1 follows from the similar arguments and
thus omits here.

We want to show that (B̃)N×1 is not the NE when B̃ /∈
{bx̃c, dx̃e}. To that end, we consider the best response of
an individual user given all other users’ integer offloading
decisions B̃, denoted by xB̃ , where xB̃ is real number and

satisfies the following equation.

ρ
(
ρxB̃+1 − 1

)
− (xB̃ + 1)ρ log(ρ) =

kλ3(ρ− 1)3 log(ρ)

c2
·

(
ρB̃

ρB̃+1 − 1

)2

, (12)

where ρ 6= 1, which is obtained by setting dT (xB̃ ; B̃)/dxB̃ =
0. It can be shown shortly that the best response xB̃ is
decreasing with respect to B̃. Since B̃ /∈ {bx̃c, dx̃e}, we have
B̃ < bx̃c or B̃ > dx̃e. Then, we have the following two
different cases:
• If B̃ < bx̃c < x̃, then according to the monotonic

decreasing property of the best response xB̃ , we have xB̃ > x̃,
where we use the fact that the best response of an individual
user is x̃ given all other users’ offloading decisions x̃. This
implies that bxB̃c ≥ bx̃c > B̃ and hence (B̃)N×1 is not a
NE.
• If B̃ > dx̃e > x̃, then following the same arguments as

in the case of B̃ < bx̃c < x̃, we again can show that (B̃)N×1
is not a NE.

Next, we show the monotonic decreasing property of xB̃
with respect to B̃ when ρ 6= 1 to complete the proof.

We first rearrange terms in (12),

f(xB̃) = g(B̃), (13)

where

f(x) , ρx+1 − 1− (x+ 1) log(ρ),

and g(x) ,
kλ3(ρ− 1)3 log(ρ)

c2ρ

(
ρx

ρx+1 − 1

)2

,

for all x ≥ 0. It can be easily shown by calculus that f(x)
and g(x) are strictly decreasing and increasing, respectively.
The proofs are omitted due to the lack of space. Then, from
(13), we have

f
(
xB̃+1

)
− f

(
xB̃
)
= g2

(
B̃ + 1

)
− g

(
B̃
)
< 0,

where the last step follows from the monotonic decreasing and
increasing property of f(x) and g(x), respectively. Hence, we
have xB̃+1 < xB̃ holds for any non-negative integer B̃.

APPENDIX B
PROOF OF THEOREM 2

From Theorem 1, we know that if the NE exists, it is either
(0)N×1, (bx̃c)N×1 or (dx̃e)N×1. Hence, We will consider
these three cases, respectively.

(i) (0)N×1 is the NE: In this case, we have kλ2/c2 ≤
W (0). (cf. Theorem 1) and T (x; x̃) is increasing with respect
to x, which can be easily verified by taking derivative with
respect to x. Therefore, we have B̂(m+1)

n = 0. Then, for any
B

(1)
n > 0, the threshold will decrease by one in each iteration

and goes to zero within B(1)
n + 1 steps .

In order to prove the convergence in the other two cases, we
need the following lemma that shows the bisection property
of the updated threshold under the ITU algorithm.



Lemma 5: If kλ2/c2 > W (0), then for any x̃ > 0, where x̃
satisfies kλ2/c2 =W (x̃), and m ≥ 1, we have:

(i) If B(m)
n < bx̃c or B(m)

n = bx̃c but (bx̃c)N×1 is not NE,
then B̂(m+1)

n ≥ B(m)
n ;

(ii) If B(m)
n > dx̃e or B(m)

n = dx̃e but (dx̃e)N×1 is not NE,
then B̂(m+1)

n ≤ B(m)
n .

From Lemma 5 we have that for any B
(m)
n < x̃, then in

the next iteration, B(m+1)
n will move closer to x̃. Similarly,

for any B
(m)
n > x̃, B(m+1)

n will also move closer to x̃. In
either cases, in each iteration, the threshold will get closer
and closer to x̃, as shown in Fig. 2. Note that in the first
iteration (i.e., m = 0), all users in the system solve the same
optimization problem and obtain the same threshold, since the
server utilization is the same for all users. Then, after the first
iteration (i.e., m > 1), all users will adjust their threshold in
the same way and thus we just need to focus on a particular
user n. Now, we are ready to prove the convergence of the
ITU algorithm when the NE is not (0)N×1.

(ii) (bx̃c)N×1 is the NE: In this case , for any B
(1)
n <

bx̃c < x̃, the threshold will increase by one in each iteration
until reaching to bx̃c. For any B(1)

n > x̃ > bx̃c, the threshold
will decrease by one in each iteration until reaching to bx̃c.
Thus, it will take at most

∣∣∣bx̃c −B(1)
n

∣∣∣+ 1 iterations for user
n’s threshold to converge to bx̃c.

(iii) (dx̃e)N×1 is the NE: In this case , for any B(1)
n < x̃ <

dx̃e, the threshold will increase in each iteration until reaching
to dx̃e. For any B(1)

n > dx̃e > x̃, the threshold will decrease
by one in each iteration until reaching to dx̃e. Thus, it will
take at most

∣∣∣dx̃e −B(1)
n

∣∣∣+1 iterations for user n’s threshold
to converge to dx̃e.

Next, we prove Lemma 5 to complete the proof.
Proof of Lemma 5: We first define the following two func-

tions:

U1(x) ,

{
x, ρ = 1,

ρx+2 − (x+ 1)ρ log ρ− ρ, ρ 6= 1.

and U2(x) ,


√
2kλλ

c(x+1) − 1, ρ = 1,

kλ3(ρ−1)3 log ρ
c2 ·

(
ρx

1−ρx+1

)2
, ρ 6= 1.

It can be easily showed that function U1(x) is strictly
increasing on [0,∞) and U2(x) is strictly decreasing on
[0,∞). Therefore, U2(x) − U1(x) is strictly decreasing. The
detailed proofs are omitted due to space limit. Now we are
ready to prove Lemma 5.

In the ITU algorithm, all users will solve the same optimiza-
tion problem in the first iteration. Thus, all users will have the
same threshold when m = 1. Then, for any m ≥ 1, we can
simplify the cost function in (3) as

T
(
x;B(m)

n

)
=
Q(x)

λ
+ k

π
(
B

(m)
n

)
c

2

π(x), (14)

where x ≥ 0 is some real number and B(m)
n is the threshold

of user n in the mth iteration.

Since we have shown that cost function T (x; x̃) is decreas-
ing and increasing in [0, x̃) and [x̃,∞) when kλ2/c2 > W (0),
respectively (cf. Proof of Lemma 1). We notice that T (x; x̃)
(cf. (10)) and T (x;B

(m)
n ) share the similar form. Therefore,

we take derivative of T (x;B(m)
n ) with respect to x and set to

zero. Then, we have U1 (x̂) = U2

(
B

(m)
n

)
, where x̂ is a real

number such thatdT
(
x;B

(m)
n

)
dx

∣∣∣∣∣
x=x̂

= 0.

Therefore, we have

B̂(m+1)
n ∈ {bx̂c , dx̂e} . (15)

Note that x̃ satisfies equation W (x̃) = kλ2/c2 and through
simple algebraic operations, we have U1(x̃) = U2(x̃). Next,
we consider the following two different cases:

(i) If B(m)
n < bx̃c or B(m)

n = bx̃c but is not NE, then we
have B(m)

n < x̃. Then we have

U1 (x̂)− U1

(
B(m)
n

)
=U2

(
B(m)
n

)
− U1

(
B(m)
n

)
(a)
>U2 (x̃)− U1 (x̃) = 0,

where step (a) follows from the fact U2(x)−U1(x) is strictly
decreasing. Therefore, we have U1 (x̂) > U1

(
B

(m)
n

)
. Since

U1(x) is strictly increasing, we have x̂ > B
(m)
n . Thus, by (15),

we have B̂(m+1)
n ≥ B(m)

n .
(ii) If B(m)

n > dx̃e or B(m)
n = dx̃e but is not NE, then we

have B(m)
n > x̃. Then we have

U1 (x̂)− U1

(
B(m)
n

)
=U2

(
B(m)
n

)
− U1

(
B(m)
n

)
(a)
<U2 (x̃)− U1 (x̃) = 0,

where step (a) follows from the fact that U2(x) − U1(x) is
strictly decreasing. Therefore, we have U1 (x̂) < U1

(
B

(m)
n

)
.

Since U1(x) is strictly increasing, we have x̂ < B
(m)
n .

Therefore, by (15), we have B̂(m+1)
n ≤ B(m)

n .

APPENDIX C
PROOF OF THEOREM 3

Here, we show that the PoA converges to zero as k →
∞. First, we will show that as k → ∞, both x̃ → ∞ and
x∗ →∞. By Theorem 1 and 3, we have kλ2/c2 =W (x̃) and
3kλ2/c2 = W (x∗). As k → ∞, we have both W (x̃) → ∞
and W (x∗)→∞. By Lemma 1 we know that W (x) is strictly
increasing on [0,∞). Therefore, both x̃→∞ and x∗ →∞ as
k →∞. Hence, we have ρx̃ → 0 and ρx

∗ → 0. This combines
with the upper bound on PoA, yielding

PoA ≤ 1− (1− ρ) log(ρ)
3(ρ log(ρ))

(
−2x∗ − 2 + 2x∗ +

2 + ρ

1− ρ

)
= 0.
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