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Abstract

The development of deep convolutional neural networks (CNNs) has recently led to great successes in com-
puter vision, and CNNs have become de facto computational models of vision. However, a growing body of
work suggests that they exhibit critical limitations on tasks beyond image categorization. Here, we study one
such fundamental limitation, concerning the judgment of whether two simultaneously presented items are the
same or different (SD) compared with a baseline assessment of their spatial relationship (SR). In both human
subjects and artificial neural networks, we test the prediction that SD tasks recruit additional cortical mecha-
nisms which underlie critical aspects of visual cognition that are not explained by current computational mod-
els. We thus recorded electroencephalography (EEG) signals from human participants engaged in the same
tasks as the computational models. Importantly, in humans the two tasks were matched in terms of difficulty
by an adaptive psychometric procedure; yet, on top of a modulation of evoked potentials (EPs), our results re-
vealed higher activity in the low B (16-24 Hz) band in the SD compared with the SR conditions. We surmise
that these oscillations reflect the crucial involvement of additional mechanisms, such as working memory and
attention, which are missing in current feed-forward CNNs.
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(s )

Convolutional neural networks (CNNs) are currently the best computational models of primate vision. Here,
we independently confirm prior results suggesting that CNNs can learn to solve visual reasoning problems
involving spatial relations much more easily than problems involving sameness judgments. We hypothesize
that these results reflect different computational demands between the two tasks and conducted a human
electroencephalography (EEG) experiment to test this hypothesis. Our results suggest a significant differ-
ence, both in evoked potentials (EPs) and in the oscillatory dynamics, of the EEG signals measured from
human participants performing these two tasks. We interpret this difference as the signature for the funda-
mental involvement of recurrent mechanisms implementing cognitive functions such as working memory

\and attention. /
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Introduction

The field of artificial vision witnessed an impressive
boost in the last few years, driven by the striking results
of deep convolutional neural networks (CNNs). Such hi-
erarchical neural networks process information se-
quentially, through a feedforward cascade of filtering,
rectification, and normalization operations. The accu-
racy of these architectures is now approaching, some-
times exceeding, that of human observers on key visual
recognition tasks including object (He et al., 2016) and
face recognition (Phillips et al., 2018). These advances
suggest that purely feedforward mechanisms suffice to
accomplish remarkable results in object categoriza-
tion, in line with previous experimental studies on hu-
mans (VanRullen and Thorpe, 2001) and animals
(Hollard and Delius, 1982; Vogels, 1999). However, de-
spite the remarkable accuracy reached in these recog-
nition tasks, the limitations of CNNs are becoming
increasingly evident (for recent review, see Serre, 2019).
Beyond image categorization tasks, CNNs appear to
struggle to learn to solve relatively simple visual reasoning
tasks otherwise trivial for the human brain (Stabinger et
al.,, 2016; Kim et al., 2018). A recent study (Kim et al.,
2018) thoroughly investigated the ability of CNN architec-
tures to learn to solve various visual reasoning tasks, and
found an apparent dichotomy between two sorts of prob-
lems: on the one hand, tasks that require judging the spa-
tial relations between items [spatial relationship (SR)]; on
the other, those that require comparing items [same-dif-
ferent (SD)]. Importantly, Kim and colleagues demon-
strated that CNNs can more easily learn the first class of
problems compared with the second one.

This prompts the question of how biological visual sys-
tems handle such tasks so efficiently. Kim et al. (2018)
suggest that SR and SD tasks tap into distinct computa-
tional mechanisms, thus leading to the prediction that
different cortical processes are also involved when hu-
mans perform the two tasks: SR tasks can be success-
fully solved by feedforward processes, whereas SD
tasks seem to require additional computations, such as
working memory and attention. Here, we tested this hy-
pothesis in two steps: first, we confirmed and extended
Kim’s results by comparing the performance of CNNs on
an experiment in which we directly contrasted SD and
SR tasks on the same stimulus set. Second, we re-
corded electrophysiological responses [electroencepha-
lography (EEG)] in healthy human participants for the
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same experiment, after having matched the difficulty level
via an adaptive psychometric procedure. We hypothe-
sized that the additional computations required by the SD
task, as compared with SR tasks, would elicit differences
in evoked potentials (EPs; e.g., P300 modulations, which
have been related to attentional mechanisms; Nash and
Fernandez, 1996) and brain rhythms related to working
memory (such as B band oscillations; Benchenane et al.,
2011; Lundqvist et al., 2018). We found indeed that, in ad-
dition to a variation in EPs, the SD task elicited higher ac-
tivity in specific B band oscillatory components in the
occipital-parietal areas, which are typically associated
with attention-related and memory-related processes. We
emphasize that the goal of the present study was not to
identify the precise neural computations involved in the two
tasks (which would naturally require a broader experimental
set-up than a single EEG study), but rather to validate the
hypothesis that SD involves additional computations relative
to SR (even when the two tasks are equally difficult). We
hope that this demonstration can be a first step toward
characterizing the processes taking place in visual cortex
during visual reasoning tasks, and designing more reliable
and more human-like computational models.

Materials and Methods

Participants and pilot experiment

Twenty-eight participants (aged 21-34 years old with a
mean age of 26.6 = 3.7, 11 women, five left-handed), vol-
unteered to join the experiment. All subjects reported nor-
mal or corrected to normal vision and had no history of
epileptic seizures or neurologic disorders. Participants
were pooled in two groups of 14 each: one group per-
formed a pilot experiment, while the second one was
tested on a final version of the task. The only difference
between the pilot and the main study was the QUEST
adaptive procedure used to match the difficulty level be-
tween conditions, which was not implemented in the pilot
experiment. However, in both studies we found the very
same result (see below, Figs. 3, 4 and 5). In the main ex-
periment, we kept the same number of participants to
replicate the effect, after having removed the behavioral
difference in task difficulty via the QUEST algorithm. This
study complies with the guidelines of the research center
where it was conducted, and the protocol was approved
by an external committee (ethics approval number N°
2016-A01937-44). All participants gave written informed
consent before starting the experiment, in accordance
with the Declaration of Helsinki, and received monetary
compensation for their participation.

Experimental design

The experiment was composed of 16 experimental
blocks of 70 trials each, with a total duration of ~1 h.
Each trial lasted ~2 s (Fig. 1A): 350 ms after the onset of a
black fixation cross (0.6° width), two shapes were dis-
played for 30 ms on opposite sides of the screen, distant
2*p from each other with an angle of +(45° + 0) with re-
spect to the horizontal midline (p being the distance from
the center of the screen, and 6 the angular difference with
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Figure 1. Stimuli and simulation results. A, The stimuli were the same in the simulations and in the human experiments. The items
were displayed at opposite sides of the screen (either 45° and 225° or —45° and —225°). Both item positions were jittered by a ran-
dom amount in both the x- and y-axes (Ax and Ay in the picture) to make the task non-trivial for human participants (i.e., preventing
participants from performing the SR task considering only the position of one item, thus ignoring the SR between the two items).
The items used are hexominoes (right panel). Minimum and maximum item height and width are 1.2-3.6° and 1.2-2.7° of visual
angle, respectively, and 2-5 pixels used for the simulations (image size was 50 x 80 pixels). B, Example of stimuli position for the
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continued

SD task (left column) and spatial relation task (SR, right column). For the sake of illustration, the ratio between the screen and hexo-
minoes size has been modified (stimuli here look bigger than in the real experiment). C, D, Accuracy of the CNN network on the SD
(light red) and SR (blue) tasks, and of a Siamese network trained on the SD task (dark red). The Siamese network mimics segmenta-
tion in a feedforward network, by separating the items in two distinct channels of the network (see D). The left panel shows the train-
ing curves for each network (accuracy over epochs during training); we stopped the training when the validation accuracy reached
90%. In the right panel, we show the training accuracy at the last epoch and the test accuracy. The latter was evaluated using novel
items never used for training, and it reveals that the CNN seems to only learn the required rule for the SR but not for the SD task, as
shown in a previous study. Conversely, the Siamese network (CNN with segmentation) can solve the SD task, demonstrating that
segmentation can allow the CNN to successfully accomplish this task. In both panels we show average values = SE over 10 repeti-

tions using different random initializations.

the diagonal; see Fig. 1B). Each shape was selected from
a subset of 36 hexominoes, a geometric figure composed
of six contiguous squares (Fig. 1B) One second after the
onset of the hexominoes, the fixation cross turned blue,
cuing participants to respond. In half of the blocks, partic-
ipants had to report whether the two shapes were the
same or different (SD condition); in the remaining blocks
participants had to judge whether the two stimuli were
aligned more horizontally or vertically (SR condition).
Shapes were displayed at opposite sides of the screen
along two main possible orientation axes sampled at ran-
dom for every trial (either 45° and 225° or —45° and
—225°). Both stimuli positions were jittered by a random
offset Ax and Ay in both the x and y-axis and a rotation 6
from the main axis. The same offsets were applied to both
shapes, so they did not affect the angle between stimuli.
The aim of such offsets was to prevent participants in the
SR condition from determining the configuration of the
two stimuli (orientation task) by merely judging the posi-
tion of a single stimulus: without the random offsets, con-
sidering for example the top-right corner position, if the
item were below/above the (imaginary) screen diagonal
line, the overall orientation would be horizontal/vertical,
without the need to consider the position of the corre-
sponding bottom-left item. The offset then compelled
participants to consider the relative position of both hexo-
minoes at once. Importantly, in the main experiment
(compared with the pilot experiment) the difficulty of the
two tasks was controlled by an adaptive psychometric
procedure (QUEST method; Watson and Pelli, 1983),
which varied the eccentricity of the two stimuli p (in the
SD blocks) or 6 (in the SR blocks) to maintain an overall
accuracy level of 80% throughout the whole experiment.
In fact, larger (smaller) values of p made the stimuli more
(less) eccentric and the task more (less) difficult; similarly,
smaller (larger) values of 6 set the stimuli closer to (farther
from) the 45° diagonal line, making the task more (less)
difficult. We modified one parameter per condition (i.e.,
per block), while the other was kept constant (using the
same value as in the preceding block). After participants
responded, they received feedback on their performance:
the fixation cross turned green (red) in case of a correct
(incorrect) answer. Throughout the experiment the condi-
tion blocks were alternated, the first block being the SD
condition for all participants. Before starting the first
block, participants performed one training block per condi-
tion. The purpose of this training was (1) to familiarize par-
ticipants with the experimental conditions, (2) to initialize
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the p and # parameters in the QUEST method for the first
experimental block (initial values were respectively p = 5.4°
of visual angle and 6 = 6° of rotation). All experiments were
performed on a cathode ray monitor, positioned 57 cm from
the subject, with a refresh rate of 160 Hz and a resolution of
1280 x 1024 pixels. The experiment was coded in MATLAB
using the Psychophysics Toolbox (Brainard, 1997). The
stimuli were presented in black on a gray background.
Throughout the experiment we recorded EEG signals.

EEG recording and preprocessing

We recorded brain activity using a 64-channel active
BioSemi EEG system (1024-Hz digitizing rate, three addi-
tional ocular electrodes). The preprocessing was per-
formed in MATLAB using the EEGlab toolbox (Delorme
and Makeig, 2004). First, the data were downsampled to
256 Hz. A notch filter (47-53 Hz) was then applied to re-
move power line artifacts. We applied an average-refer-
encing and removed slow drifts by applying a high-pass
filter (>1Hz). We created the data epochs aligning the
data to the onset of the fixation cross. Finally, we per-
formed an ICA decomposition to remove components re-
lated to eye movements and blink artifacts: we visually
inspected the data and removed from two to five compo-
nents per subject with a conservative approach (we re-
moved only components in the frontal regions clearly
related to eye movements’ activity).

Computational modeling and code accessibility

We extended a previous computational study (Kim et
al., 2018) from which we chose the parameters of the con-
volutional feedforward network trained on the SD and SR
tasks. Each task was run 10 times, randomly initializing
the networks’ parameters and the stimuli used in the train-
ing and test set. The network was fed with 50 x 80 pixel
images. Two hexominoes (width and height of two to five
pixels) were placed at opposite sides of the screen (Fig.
1A; see above, Experimental design). The dictionary of
hexominoes was composed of 35 items, which were ran-
domly split between a training (30 items) and a test set
(five items) at each iteration. Both the training, validation
and test sets were composed of 1000 stimuli (i.e., differ-
ent combinations of the hexominoes, with slightly differ-
ent eccentricity and/or offset relative to the diagonal). The
network consisted of six convolutional layers. Each layer
contained four channels of size 2 x 2, with stride of 1. All
convolutional layers used a RelLu activation function with
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stride of 1 and were followed by pooling layers with 2 x 2
kernels and a stride of 1. Eventually, two fully connected
layers with 128 units preceded a two-dimensional classifi-
cation layer with a sigmoid activation function. As a regu-
larizer we set a dropout rate of 0.3 in each layer of
the network. We used binary cross-entropy as a loss
function, the adaptive moment estimation (Adam) optimiz-
er (Kingma and Ba, 2015) and a learning rate of 10e-4.
Each simulation was run over 70 epochs with batch
size of 50. All simulations were run in TensorFlow
(GoogleResearch, 2016). The Siamese network had the
same exact convolutional architecture as described
above; additionally, the difference between features-vec-
tors of each separate item (computed on an input image
where this item was shown alone) was fed to the classifier
to perform the SD task. All networks count ~7e06 param-
eters. All the code and data required to replicate the simu-
lations are available at a GitHub repository (https://github.
com/artipago/SD-SR). The code has been run on a
Window PC on Python using the “Tensorflow,” “Keras,”
“Scipy,” and “Numpy” libraries.

Statistical analysis, behavior

We analyzed both accuracy and reaction times (RTs) by
means of Bayesian ANOVA, considering the block condi-
tion (SR and SD, see above) as independent variables and
the trial condition (whether the stimuli were same or differ-
ent, or more horizontally or vertically aligned). The result of
such analysis provides a Bayes factors (BF), which quanti-
fies the ratio between statistical models given the data.
Throughout the paper, all BFs reported correspond to the
probability of the alternative hypothesis over the null hypoth-
esis (indicated as BF;q). Practically, a large BF (~BF > 5)
provides evidence in favor of the alternative hypothesis (the
larger the BF the stronger the evidence), whereas low BF
(~BF < 0.5) suggests a lack of effect (Bernardo and Smith,
2009; Masson, 2011). We performed all Bayesian analyses
in JASP (Love et al., 2015; JASP Team, 2018).

Statistical analysis, electrophysiology

Regarding the EEG recording we performed two analy-
ses: one in the time domain measuring evoked related po-
tentials, ERPs, and the other one in the frequency domain
using a time-frequency transform. In the first case, we
considered the ERPs recorded from seven midline elec-
trodes (i.e., Oz, POz, Pz, CPz, Cz, FCz, and Fz). After sub-
tracting the baseline activity recorded during the 350 ms
before stimuli onset, we averaged the signals from the SD
and SR blocks respectively (i.e., eight blocks for each
condition). Finally, we tested whether the difference be-
tween these signals differed from 0 by means of a point-
by-point two-tailed t test with a false discovery rate (FDR)
correction for multiple comparisons (Hochberg, 1995).
Regarding the time-frequency analysis, we computed the
power spectra by means of a wavelet transform (1-50 Hz
in log-space frequency steps with 1-20 cycles). After
baseline correction (i.e., dividing by the averaged activity
of the 350 ms before the onset of the fixation cross), for
each participant, we computed the difference in decibel
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of the two conditions point by point, averaging over all
electrodes. As in the ERP analysis, we performed a point-
by-point two-tailed t test to identify the time-frequency re-
gions which were significantly different. We applied a
cluster-based permutation to correct for multiple compar-
isons (Maris and Oostenveld, 2007). First, we identified
clusters composed of t values t>3.5 (p <0.01), and for
each one we computed the respective global sum. In order
to estimate the null distribution over the combined t values,
we performed the same procedure 500 times after shuffling
the subject by subject SD-SR assignment. Eventually, we
obtained the p values for each non-shuffled cluster given
the null distribution. All EEG analyses were performed in
MATLAB; the wavelet transform was performed using the
EEGlab toolbox (Delorme and Makeig, 2004).

Results

Computational modeling

We first extended the results by Kim et al. (2018) for our
novel stimulus set: we trained two separate CNNs archi-
tectures to solve an SD and an SR task using a single
stimulus set (Materials and Methods). The input to these
networks was an image (50 x 80 pixels) in which two hex-
ominoes (width and height of two to five pixels) were dis-
played at opposite sides of the screen (Fig. 1A). The
networks were trained to classify whether the two hexo-
minoes were the same or not (SD task) or whether they
were aligned more vertically or more horizontally with re-
spect to the midline (SR task).

We trained and tested the network on different sets of
items (a training and test set, respectively) to assess the
networks’ ability to generalize beyond training data. We
trained and tested the networks 10 times, randomly initial-
izing networks, parameters as well as the training and test
set split each time. We report the mean accuracy and
standard deviation over these 10 repetitions in Figure 1B.
Our results are consistent with those from Kim et al.
(2018): a CNN appears to be able to learn the abstract
rule (as measured by the network’s ability to generalize
beyond the shapes used for training) for SR tasks much
more easily than SD tasks. The effortless ability of humans
and other animals (Wasserman et al., 2012; Daniel et al.,
2015) to learn SD tasks suggest the possible involvement
of additional computations that are lacking in CNNs, pos-
sibly achieving items identification or segmentation (e.g.,
via attention and working memory). In order to verify that
segmentation could be a missing ingredient for the SD
task, we implemented a variant of the CNN with built-in
segmentation properties, and tested it on the SD task (it is
not necessary to test it on the SR task, because general-
ization performance is already at ceiling). The new net-
work used a Siamese architecture (Bromley et al., 1993) in
which each item is processed separately and eventually
combined before being passed to a classifier. Therefore,
this model mimics the effect of selective attention and
item segregation by feeding to the network each item sep-
arately. The Siamese network could achieve the same
training performance on the SD task as the standard CNN
(although the training took more epochs); however, the
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over blocks of p (the distance between the stimuli, left panel) and 6 (the angle between the stimuli and the meridian, right panel) as

adjusted by the QUEST algorithm.

network was able to generalize to the test set, while the
standard CNN test accuracy was at chance. This supports
the idea that item segmentation or individuation abilities
are needed to achieve the SD task Next, we test the pre-
diction that SD tasks in humans also require additional
computational mechanisms than SR tasks by recording
EEG signals from a pool of 28 participants (14 of which
were tested on a pilot experiment; Fig. 5) performing the
same SD and SR tasks.

Human behavior

A first pilot group of 14 participants performed the SD and
SR tasks as described in Figure 2A, but without any proce-
dure for adjusting task difficulty (i.e., the QUEST method).
The same EEG oscillatory differences between the two
tasks as in the main experiment were observed (Fig. 5);
however, concomitant differences in behavioral task per-
formance left open the possibility that the oscillatory effects
were caused by differences in task difficulty (Fig. 5A).
Therefore, we replicated the experiment on another group of
14 subjects, this time with an adaptive procedure to equate
behavioral performance between the SD and SR tasks.

Participants (N=14) in this main experimental task com-
pleted 16 blocks using the same stimuli as those used to train
CNNs (Fig. 1): in half of the blocks they were asked to report
whether the two hexominoes were the same or not (SD con-
ditions), in the other half whether the hexominoes were more
vertically or horizontally aligned (SR conditions). The two con-
ditions were interleaved in a block design. Participants were

Januray/February 2021, 8(1) ENEURO.0267-20.2020

required to answer after one second from stimulus onset to
disentangle motor from visual components in the EEG re-
cordings (Fig. 2A). The QUEST algorithm was used to assure
that participants’ accuracy was matched between the two
tasks and remained constant throughout the whole experi-
ment. This was done by adjusting two experimental parame-
ters trial by trial (i.e., the hexominoes eccentricity in SD
blocks, p, and the angle from the diagonal in SR blocks, 6;
see Figs. 1A, 2C). Maintaining a comparable accuracy be-
tween the two tasks reduces the potential for confounds in
the electrophysiological analysis because of differences in
performance, vigilance, or motivation. We confirmed the ab-
sence of any substantial behavioral difference between the
SD and SR tasks (Fig. 2B) with a Bayesian ANOVA on both
accuracy (BFio = 0.361, error<0.001%) and RT (BFqo =
0.317, error < 0.89%). In addition, we also investigated each
condition separately (Fig. 28), comparing the difference be-
tween “same” and “different” trials (in SD blocks) and “verti-
cal” and “horizontal” trials (in SR blocks) in both RT and
accuracy. All comparisons revealed overall no differences be-
tween tasks, except for the accuracy of vertical and horizontal
trials in the SR condition, in which the BF proved inconclusive
(accuracy: SD, BF1g = 0.39, error < 0.012%; SR, BF4, = 1.80,
error < 0.001%; RT: SD, BF;o = 0.333, error<0.01%; SR,
BF4o=0.34, error < 0.01%).

Human electrophysiology: EPs
After having confirmed that performance was equal in
the two tasks, we characterized the EPs in each task.
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line electrodes (average = SE). Shown in red are the points for which a significant difference was found against zero. The results re-
veal a significant difference from 250 ms after stimuli onset until the response cue (at 1000 ms) in central parietal regions, and an
opposite effect after 750 ms in frontal regions. In the bottom-right panel, the topography, computed over the 250- to 1000-ms inter-
val, confirmed a larger activity in the SD than in the SR condition (positive difference, warmer colors) in the central-parietal regions,
and an opposite effect (negative difference, colder colors) in the frontal regions (which, although not significantly, also included occi-

pital regions).

First, we estimated the difference between SR and SD
conditions considering 7 midline electrodes (Fig. 3). The
results of a point-by-point t test corrected for multiple
comparisons revealed a significant difference in central
and posterior electrodes (mostly Pz and CPz) between
250 ms after the onset of the stimuli and the response
cue, and the opposite effect in frontal electrodes (FCz and
Fz) from 750 to 1000 ms, as confirmed by the topography
(Fig. 3). Overall, these results indicate larger potentials in
visual areas during the SD task than in the SR. Previous
studies have shown a relation between EP amplitude (par-
ticularly P300 and late components) with attention (Van
Voorhis and Hillyard, 1977; Krusemark et al., 2016;
Itthipuripat et al., 2017, 2018) and visual working memory
(Fabiani et al., 1986; McEvoy et al., 1998; Kok, 2001). Our
results are thus consistent with a larger involvement of
executive functions in the SD versus SR task. In the
following, we investigated whether this hypothesis is cor-
roborated by corresponding oscillatory effects in the
time-frequency domain in the main experiment.

Human electrophysiology: time-frequency analysis
We performed a time-frequency analysis to try to identify
differences between conditions observed in specific fre-
quency bands commonly related to executive functions
(e.g., visual working memory). For this purpose, we computed

Januray/February 2021, 8(1) ENEURO.0267-20.2020

a baseline-corrected log-scale ratio between the two condi-
tions (as shown in Fig. 4A), averaging over all electrodes.
Remarkably, a point-by-point two-tailed t test corrected with
cluster-based permutation test (Maris and Oostenveld, 2007)
revealed a significantly larger activity in the low g band (16—
24 Hz) in the SD condition between 250 and 950 ms after
stimuli onset (Fig. 4B). We further quantify the magnitude of
the effect by computing the effect size of a one sample t test
against zero averaging per each participant the values within
the significant region (t43 = 2.571, p=0.023, Cohen’s
d=0.687). The topography of the effect spread mostly over
parietal and occipital regions (Fig. 4C), mimicking the topog-
raphy of the EPs analysis. As previously, these results confirm
the prediction that the SD task may involve additional compu-
tational mechanisms beyond feedforward computations,
possibly indexed by the 8 band oscillatory processes identi-
fied here. As previously, these results confirmed those from
the pilot experiment (Fig. 5D,E), confirming the robustness of
the effect also in the oscillatory domain. Below, we contextu-
alize and substantiate our results in light of the relevant
literature.

Discussion

In this study, we confirmed in a series of two experi-
ments a prediction from the computational study by Kim
et al. (2018) that there exists an important dichotomy
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Figure 4. Time-frequency results. A, The difference between SD and SR power spectra is shown in the first panel. White lines indi-
cate the onset of the fixation cross, the stimuli and the response cue. B, The second panel shows the corresponding t values (when
testing the difference against zero). We observed a significant region in the low B band (16-24 Hz), between 250 and 950 ms after
stimulus onset. C, The topography of the significant time-frequency window reveals the involvement of occipital-parietal regions.

between visual reasoning tasks: While SR tasks can be
solved by modern deep CNNs, SD tasks pose a signifi-
cant challenge for these architectures, suggesting the
need for additional computations beyond a feedforward
cascade of filtering, rectification and normalization opera-
tions. Importantly, the result of these simulations does not
allow us to formulate any prediction about the specific corti-
cal processes involved in the two tasks. Nonetheless, it
demonstrates a fundamental computational difference,
which can be tracked in terms of its human brain neural cor-
relates while subjects solve SD versus SR tasks (with diffi-
culty objectively matched by an adaptive psychometric

Januray/February 2021, 8(1) ENEURO.0267-20.2020

procedure). Remarkably, in both the pilot and the main ex-
periment we found higher activity in the former task, in both
EPs and oscillatory components. We interpret these differ-
ences as reflecting additional computations required by the
SD task. We can speculate that these additional computa-
tions involve working memory and attention processes,
which are lacking in feedforward architectures such as
CNNs.

Additionally, it is possible to interpret our results in a
broader context, by considering other tasks supposed to
involve spatial attention, such as visual search. Previous
experimental work suggested the need for re-entrant
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Figure 5. Pilot experiment results. A, Behavioral results of the pilot experiment: left and right panel show accuracy and RTs for SD
(red) and SR (blue) tasks. Differently than in the main task, in the pilot experiment participants performed significantly better in the

SD than in the SR task (compare the accuracy between A and Fig. 2B).

*kki

indicates Bayes Factor > 100. B, Difference between SD

and SR EPs. Red asterisk indicates time window significantly different from zero. C, Difference between SD and SR power spectra: white
lines indicate the stimulus onset and the response cue. D, Testing the SD-SR difference against zero reveals a significant region in the
low B band (13-21 Hz), before the response cue, in agreement with the results of the main experiment (Fig. 4). We reported a large effect
size for this effect (one sample t test against zero averaging per each participant the values within the significant region, t3 = 7.049,
p < 0.001, Cohen’s d=1.820). E, As in the main experiment, the SD-SR difference mostly involves occipital-parietal regions.

processes (Treisman and Gelade, 1980; Wolfe et al.,
1989), and how increased activity in specific oscillatory
components [i.e., low (22-34 Hz) and high (36-56 Hz) y
bands] are characteristic of these processes (Buschman
and Miller, 2007; Phillips and Takeda, 2009). Accordingly,
state-of-the-art computational models performing visual
search and related tasks (e.g., instance segmentation)
also employ attentional or recurrent mechanisms (Linsley
et al., 2020), supporting the hypothesis that convolutional
feedforward networks can benefit from recurrent mecha-
nisms in solving visual reasoning tasks (Kreiman and
Serre, 2020).

Computational evidence for the hypothesis that the SD
task requires additional computational mechanisms be-
yond those needed to solve the SR task is provided by
the results of the Siamese network simulations (Bromley
et al.,, 1993). This feedforward network processes each
stimulus item in a separate (CNN) channel and then
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passes the processed items to a single classifier network.
Since each item is processed separately (the network is
fed two images with only one item represented in each),
this “oracle” architecture performs the task with item-seg-
mentation processes automatically provided. Our results
(as previously shown on another dataset by Kim and col-
leagues (Kim et al., 2018) demonstrate that such a feed-
forward network, once endowed with object individuation
using the Siamese architecture, can easily learn to solve
the SD task. In other words, this model simulates the ben-
eficial effects of attentional selection, individuation and
working memory by segregating the representations of each
item. Our EEG results are compatible with this interpretation,
with higher activity in the SD compared with the SR task,
visible in both EPs and oscillatory frequency bands that
have been previously related to attention and working mem-
ory (Nash and Fernandez, 1996; Benchenane et al., 2011;
Lundqvist et al., 2018).
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Previous work has shown that modulations of g8 band
oscillations can be related to selective attention mecha-
nisms (Buschman and Miller, 2007; Benchenane et al.,
2011; Lee et al., 2013; Richter et al., 2018). Different at-
tentional mechanisms may indeed be involved in the two
tasks: the SR task could be solved by first grouping items
and then determining the orientation of the group
(Franconeri et al., 2012), whereas the SD task requires the
individuation of the two items before comparison. In addi-
tion, our results are also consistent with differences in
memory processes between the two tasks (de Fockert et
al., 2001). One common assumption is that items that are
grouped together (as in the SR task) occupy only one
working memory slot (Franconeri et al., 2013; Clevenger
and Hummel, 2014), whereas non-grouped items would
each hold one slot, resulting in a larger working memory
load. Previous literature showed that working memory
can also be characterized by neuronal oscillatory signa-
tures. Recent studies, for example, have demonstrated an
interplay between 8 and vy band frequencies during work-
ing memory tasks (Lundqvist et al., 2016, 2018). Similarly,
a and low B bands, not only increase with working mem-
ory load (Pesonen et al., 2007; Babiloni et al., 2004), but
also in conjunction with the inhibition of competing visual
memories in selective memory retrieval (Park et al., 2010;
Waldhauser et al., 2012). Besides, previous studies have
reported that increased oscillatory activity in the a band is
a signature of attentional processes, and it can predict the
likelihood of successful trials in many tasks (Handel et al.,
2011; Klimesch, 2012; Nelli et al., 2017); however, in our
current study we did not investigate differences between
correct and incorrect trials, but between different types of
tasks (involving SR or sameness judgment), after controlling
for task difficulty . This could explain why « band amplitude
differences were less prominent in our study. All considered,
several lines of evidence point toward B oscillations as cru-
cially involved in both attention and working memory related
processes. These processes, therefore, might be part of the
additional computational mechanisms required for SD tasks
compared with SR tasks. Future work could more directly
compare the attention and memory dependence of each
task in human subjects.

That feedforward neural networks are limited in their abil-
ity to solve simple visual reasoning tasks is already being
recognized by the computer vision and neuroscience com-
munities (Yamins et al., 2013; Rajalingham et al., 2018; Kar
et al., 2019). Current CNN extensions include modules for
integrating local and global features (Chen et al., 2018) as
well as recurrent neural architectures (Yang et al., 2018). Our
results suggest that the human visual system also deploys
additional computations beyond feedforward processes to
successfully solve visual reasoning tasks. Rhythmic cortical
oscillations in the B band represent the signatures of these
additional computations, which may involve selective atten-
tion and working memory.
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