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Networks of coupled oscillators are some of the most studied objects in the theory of dynamical
systems. Two important areas of current interest are the study of synchrony in highly disordered
systems and the modeling of systems with adaptive network structures. Here, we present a single
approach to both of these problems in the form of “KuraNet”, a deep-learning-based system of cou-
pled oscillators that can learn to synchronize across a distribution of disordered network conditions.
The key feature of the model is the replacement of the traditionally static couplings with a cou-
pling function which can learn optimal interactions within heterogeneous oscillator populations. We
apply our approach to the eponymous Kuramoto model and demonstrate how KuraNet can learn
data-dependent coupling structures that promote either global or cluster synchrony. For example,
we show how KuraNet can be used to empirically explore the conditions of global synchrony in
analytically impenetrable models with disordered natural frequencies, external field strengths, and
interaction delays. In a sequence of cluster synchrony experiments, we further show how KuraNet
can function as a data classifier by synchronizing into coherent assemblies. In all cases, we show
how KuraNet can generalize to both new data and new network scales, making it easy to work
with small systems and form hypotheses about the thermodynamic limit. Our proposed learning-
based approach is broadly applicable to arbitrary dynamical systems with wide-ranging relevance

to modeling in physics and systems biology.

A central theme in the study of complex systems is
the emergence of order from disorder, and few formalisms
capture this spirit better than networks of coupled oscil-
lators. These systems comprise a set of rotors, each of
which is influenced by both its own intrinsic dynamic
properties and the extrinsic influence of other rotors in
the network. When the intrinsic and extrinsic factors
in the network are appropriately balanced, synchrony
emerges. That is, oscillators assume a common phase
and begin to rotate with a common frequency. The ubig-
uity of synchronization in nature, from the spiking of
neurons [1, 2| to the onset of seasonal diseases [3], from
the entrainment laser arrays [4] to the release of energy
during an earthquake [5], makes oscillatory networks a
topic of major practical and theoretical interest in the
study of nonlinear and complex systems (for a review of
coupled oscillators in complex networks, see [6]).

However, real-world networks are rarely static, and
nature abounds with network topologies that evolve to-
wards particular dynamic goals. These adaptive net-
works add a new wrinkle in the study of oscillatory sys-
tems: if the modeler can learn the conditions giving rise
to synchrony, can networks be trained to do it on their
own? Understanding this more general scenario is cru-
cial to understanding adaptive networks in nature, from
modeling changes in brain connectivity [7], to the evo-
lution of flocking behavior [8], and even the emergence

of consensus in societies [9]. Moreover, a system which
has learned to synchronize provides computational evi-
dence about the conditions which give rise to this col-
lective behavior, lending empirical aid to a theoretically
challenging problem.

This paper proposes a general framework, KuraNet,
for learning in oscillatory systems in the spirit of re-
cent work at the intersection between machine learning
and dynamical systems [10-12]. KuraNet replaces the
standard fixed coupling matrix of the oscillator network
with a coupling function whose input data comprises ran-
dom realizations of intrinsic oscillator features and whose
output consists of data-dependent couplings. KuraNet’s
coupling function takes the form of a deep neural net-
work whose parameters are adjusted by gradient descent.
After training, the coupling function stores information
about the conditions supporting synchrony in general
and not just for a particular sample of disordered fea-
tures. Unlike previous methods for learning the topology
of oscillatory networks [13], our system can generalize to
both new oscillator features and network sizes.

We focus on the Kuramoto model [14, 15|, the
archetypical system of coupled oscillators, though our
method can be equally applied to other types of oscil-
latory (and non-oscillatory) dynamics. After a brief de-
scription of the approach, we apply it to two general types
of collective oscillatory behavior: global synchrony and



cluster synchrony. In the first case, all phases cohere and
oscillators spin at a common frequency. We will show how
this technique can easily discover couplings which encour-
age phase coherence and how these learned functions can
shed light on the conditions for synchrony in even highly
disordered forms of the Kuramoto model. Cluster syn-
chrony, on the other hand, occurs when oscillators split
into separate factions which are internally coherent but
mutually desynchronized. In contrast, earlier work [16—
18] on cluster synchrony has focused on the related but
distinct case in which clusters behave independently of
each other instead of maintaining strict inter-group sep-
aration. We show how the approach can be used to split
populations into separate clusters based on class labels
and how such a method can be used for the segmentation
of high-resolution images. We will conclude with a sum-
mary of key theoretical and practical problems to which
the framework might be applied in the future.

I. BACKGROUND

An oscillator is a dynamical system with a stable, pe-
riodic limit cycle. Malkin [19], Winfree [20], and others
showed that, under weak coupling conditions, n oscilla-
tors, each associated to a node on the graph G = (N, E),
can be reduced to a system of phases, 6(t) € T™, on the
n-torus. The most famous such “phase-reduced” system
of oscillators is the Kuramoto model, which we consider
in the following form:

9.1‘ = w; + Zn: Kij Sin(ej (t — Tj) — Hl(t)) +b; bln(@l) (1)

j=1

The dynamics of an oscillator, i, are determined by both
intrinsic and extrinsic factors. Here, the intrinsic factors
comprise the node features: natural frequencies, w;, ex-
ternal field strengths, b;, and transmission delays, 7;. The
external influence on an oscillator is determined by inter-
actions with other phases in the rest of the network, 6; for
j # 1, via the matrix of weights or couplings, K € R™*"
associated to G.

Disorder is introduced by placing probability distri-
butions, f,¢ and h, on w;, 7; and b;, respectively. We
write the joint distribution as D and denote its sample
space, the node feature space, by X'. Global synchrony in
the system is typically measured by the so-called global
order parameter,

) R
Re'® = tlggo - Z i) (2)
j=1
so that R ~ 0 when the oscillators are out of phase and
R =1 when oscillators are in phase (i here denotes the
imaginary unit, not an index). Below we will instead
work with the circular variance, V' =1— R.

The case of ¢ = h = §(0) # f with f symmetric
and unimodal has been extensively studied, especially for

mean field couplings, K;; = €/n, for € > 0 (see 21, 22]
for excellent reviews). In this paradigmatic case, there
exists a critical coupling, €., such that V' — 0 only when
€ > €.. The critical coupling is inversely proportional to
the variance of f so that stronger coupling is required
for more heterogeneous intrinsic frequencies. The case of
more general disorder, the focus of the current study, has
received less attention and disordered models are known
to produce esoteric and poorly understood behaviors, like
quasi-glassiness [23, 24|, hysteresis [25] and multistabil-
ity [26].

II. KURANET

Various approaches to optimizing Kuramoto network
topology have been proposed [13, 27, 28|, though these
techniques generally involve the optimization of a single
coupling matrix for a given realization of random node
features. Consequently, anything learned for this sin-
gle instance does not necessarily generalize to networks
with new disordered features or to networks of a differ-
ent size. Such techniques are also limited in their ability
to model adaptive oscillatory systems in the real world,
which must presumably learn to synchronize in the pres-
ence of variable forms of disorder and not just a single
example. Moreover, the pioneering approaches of [13]
and others typically rely on greedy, stochastic methods,
whereby single network edges are turned on or off after
each of many repetitions of the dynamics, making opti-
mization prohibitively slow for large systems.

Inspired by the growing body of research at the
intersection of dynamical systems and machine learn-
ing [11, 12, 29], we propose a new technique called Ku-
raNet for building oscillatory systems which can learn to
synchronize (Figure 1). The key difference between our
approach and earlier techniques lies in our replacement
of the traditional coupling matrix, K, with a differen-
tiable coupling function, K, : X* — R. This function
maps from pairs of intrinsic node features to the coupling
weight between those nodes. The coupling function takes
the form of a deep neural network whose learnable param-
eters, u, are optimized to store knowledge about which
couplings are appropriate for any realization of random
node features. As a result, the coupling function can
easily be transferred to new data. Moreover, since K, is
applied to all pairs of nodes in parallel, the system can
be automatically scaled up to much larger networks than
those observed during training.

KuraNet is trained by stochastic gradient descent
on random batches of node features, X € X" (Fig-
ure 1A). All n(n — 1) distinct pairs, (z®,20)), from a
batch are passed in parallel through the coupling func-
tion, K, : X — R (Figure 1B). The result is a data-
dependent coupling matrix with elements K, (z(*), 2(7))
which then participates in a Kuramoto dynamics (Fig-
ure 1C) in which the i*" oscillator inherits the random
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FIG. 1: KuraNet. (A). First, a batch, X € R™*™, of random intrinsic oscillator features is sampled from the node feature space,
X. Here, we show a batch of n = 10 oscillators each with feature, =z e R2, distributed according to a two-component gaussian
mixture. Two oscillator features, z") and z?, are shaded in pink and followed throughout KuraNet processing. (B). Then,
all pairs (Cli'(i), #9) are passed in parallel (only one pair shown) through the coupling function, K u, which takes the form of a
deep neural network whose parameters, u, comprise synaptic weights and biases. (C). The output of the function on the pair
of samples (x(i), x(j)) becomes the coupling strength K, (:E(i), :E(j)) in a Kuramoto model, each of whose ¢ = 1,...,n oscillators
inherits the intrinsic feature z(¥. A dynamics is simulated for the resulting Kuramoto model and evaluated according to a loss

function whose output is used to adjust the parameters, p, of the coupling function.

feature 29 (e.g., 2 = (w;, b;,7;)). Given an initial con-
dition, 6y, Eq. 1 is then solved with any off-the-shelf nu-
merical method, and the solution 6(t; 6y, K,) is evaluated
by

LOXw) = [ 06560, K,(X)) dt.  (3)

to

where ¢ : T" — R is a differentiable instantaneous loss
function, o is a burn-in time, and K,(X) is shorthand
for the data-dependent matrix of couplings. It will some-
times be desirable to constrain this matrix to lie in some
feasible set by restricting 1 € M. The coupling function,
the equation of motion for  and the instantaneous loss
function, ¢, are all differentiable in p so we may approx-
imate

* in Ex.pn [L(X; 4
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by gradient descent, where D™ denotes the joint distri-
bution over the batch of node features.

Depending on which type of dynamics we wish to en-
courage, we will employ two different loss functions. To
encourage global synchrony (see Section Results IITA),
we can simply minimize the circular variance, £(6) =
V(0). To encourage cluster synchrony, we must first as-
sume there exists a function Y : X — {1,...,k}, map-
ping from the node feature space to a set of discrete la-
bels. This labeling associates to the i*" oscillator a target
cluster via the label of its feature, I = Y (). Our goal
is then to ensure the phases of all oscillators within a

cluster are synchronized and all phases between clusters
are maximally desynchronized. We therefore use an in-
stantaneous loss function of the form

k
(=3 (,ﬁ S Vo) + s<6>) , (5)
=1

where V] is the circular variance of the I*" group, and S
is another loss designed to encourage splayness [4] among
target groups in the sense that the mean phases within
the groups equidistribute the unit circle. Let (6); be the
average phase of oscillators having features x; such that
Y (z;) =1 . Then, we set

[k/2] 2

S = Z zk: et
g=1 =1

which is minimized exactly when {(#);}_, are splay [30].
The sum in Eq. 6 is a generalization of the global order
parameter, R, to higher circular moments. These mo-
ments pluralize the notion of synchrony so that phases
are considered synchronous and maximize the ¢! mo-
ment as long as they all point in the same direction mod-
ulo 27/g. Conversely, the sum is minimized when the
phases are out of phase modulo 27/g; i.e., they are splay.
More details can be found in [30, 31]. Note that all losses
reported below are all normalized to be between 0 and 1.
For the cluster synchrony experiments, the node feature
space, X, only controls the labels of oscillators and we
assume that f = g = h = 4(0), so that the oscillators are
equivalent to XY spins [21, Section IV.B.1].

: (6)

1
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Disorder Data Size Data + Size

CaseI (w)  0.0667 (0.7412) 0.0681 (0.9172) 0.0682 (0.9144)
Case II (w,b) 0.1527 (0.7370) 0.1823 (0.8969) 0.1890 (0.9378)
Case III (w,7) 0.3800 (0.8920) 0.7026 (0.9707) 0.6855 (0.9753)

TABLE I: Global synchrony test results measured in circular
variance, 0 < V < 1, where V = 0 implies global synchrony
and V = 1 represents complete desynchrony. Control values
in parentheses.

III. RESULTS
A. Global synchrony

Here, we learn coupling functions, K, which mini-
mize the circular variance, V', of Kuramoto phases for
three standard forms of Eq. 1 depending on which pa-
rameters are disordered: Case I, f = U([-1,1]),g=h=
5(0); Case II, f = g = U([-1,1]), h = §(0); and Case
I, f = U([2,4]), g = §(0), h = NB(.5,15), where U
and N B are the uniform and negative binomial distribu-
tions, respectively. The discrete samples from the nega-
tive binomial distribution were used to index the time-
steps of an Euler update used to solve Eq. 1. Note that
Case III uses a decentered natural frequency distribution
since the presence of time delays introduces a nontriv-
ial dependence between system behavior and the natural
frequency mean [32]. In all cases, we forced K, (X) to be
symmetric and positive.

To make the optimization non-trivial, we follow ear-
lier work by [13] by restricting the underlying weighted
graph associated with K,,(X) to have a fixed, small av-
erage degree, in this case (d) = £ >, K, (), 20)) = 1.
This forces KuraNet to be judicious about its limited
coupling resources: only those oscillators whose intrin-
sic parameters are crucial for synchrony deserve to be
strongly coupled.

To emphasize KuraNet’s ability to generalize across
both data and scale, we trained the system on rela-
tively small networks (n = 100) and then generalized
to both new data and larger network sizes (n = 10, 000).
This gives rise to three testing regimes: Data Testing,
where the model is exposed to new node features from
the testing set for networks of size n = 100; Size Test-
ing, where the system is exposed to a single network of
size n. = 10,000 comprising the whole training set; and
Data-+Size Testing, where the model is exposed to a sin-
gle network of size n = 10,000 comprising the whole
testing set. These testing regimes measure the degree to
which KuraNet can abstract beyond the observed train-
ing data and beyond finite-size effects. Each case was
optimized for 10 random seeds and the best values are
shown here. Further training details are found in the SI
Methods section.

The circular variance, V, achieved in various test-
ing regimes are collected in Table I. Parenthetical values

show the corresponding results for an untrained control
system, which nevertheless has the same average degree
(d) as the trained one. For all three cases and in all three
testing regimes, the optimized model performs substan-
tially better than the control model. The most striking
results are achieved in Case I, where the optimized sys-
tem achieves nearly perfect synchrony in all three testing
regimes (Figure 2 A).

To help explain the results of our optimization, we
introduce a generalized version of the graph-induced au-
tocorrelation function proposed by [13],

> K, (2@, 20)) (2@ — (2), 20) — (z))
T Ty K0 = @)

where (z) = 23" 20 € X. Eq. 7 measures the
correlation between random node features with respect
to the couplings, K, (z(¥,z()). Plotting V versus C,
for each of the three optimizations reveals that graph-
induced anti-correlation between nodes is strongly asso-
ciated with synchrony (linear at r? = 0.81,7% = 0.64)
in Case I and Case II, but not Case III (r? = 0.14).
Hence, synchrony in the former cases is promoted when
the limited coupling resource is spent between nodes with
disparate features, effectively reducing the heterogeneity
of the system. A similar result was found by [13], but
only for the equivalent of our Case L.

C, (7)

Case IIl is evidently rather different, but we can
gain some insight by plotting the learned coupling
function. Discretizing the sample space of w and 7
into 30 bins and plotting the average fan-in weight
(kjy =130, K, (29, 2()) associated to each bin over 100
batches shows a marked peak at (w*,7*) = (2.00, 21.00).
Notably, the peak occurs at the lowest intrinsic frequency
and at a time delay slightly to the right of the mode of h
(7 = 15). This was consistent for all of the best random
seeds for this case. The mean of the intrinsic frequency
distribution sets an effective time-scale for the network
and it is known that delays which are long compared to
this time-scale tend to impede synchrony [32]. Our re-
sult suggests that this impediment can be overcome when
weights simultaneously emphasize the longest time-scale
(i.e. lowest intrinsic frequencies) and those delays which
are as long as possible without being too far from the
mode of h. We simply take the results from Case III
as a computational hypothesis about disordered time de-
lays in the Kuramoto model, which we leave for future
investigation.

B. Cluster synchrony

Next, we turn to the case of cluster synchrony, in
which oscillators split into internally coherent factions.
Cluster synchrony has attracted a great deal of recent
interest and has been observed, for example, in flocking
animals [8], models of visual processing [33], and power
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FIG. 2: KuraNet learns to synchronize three types of Kuramoto models. (A). The procession 10,000 of phases through time in
the Size+Data Testing regime for a trained (red) versus an untrained (blue) system sharing the same average weighted network
degree. Case I is shown. The untrained system desynchronizes quickly, while the optimized model remains tightly synchronized.
(B). For Case I (green) and Case IT (blue), anti-correlation of network features strongly predicts (linear at r* = 0.81, r? = 0.64)
low circular variance, V. No strong relationship was found for Case III (purple). (C). Instead the system prioritized units
with low intrinsic frequencies (long period) and time-delays on the right tail of h, presumably to provide a longer time-scale
for potential synchronization for a larger number of strongly delayed oscillators.

Dist. Data Size Data + Size

Moons 0.0154 (0.5000) 0.0012 (0.5000) 0.0011 (0.5000)
Circles 0.0257 (0.5000) 0.0015 (0.5000) 0.0021 (0.5000)
Spirals 0.0182 (0.5000) 0.0096 (0.5000) 0.0094 (0.5000)
GMMk£k (avg.) 0.0144 (0.4904) 0.0069 (0.5424) 0.0073 (0.5711)
Images (avg.) 0.0376 (0.7464) 0.0088 (0.8363) 0.0093 (0.8360)

TABLE II: Cluster synchrony test results, measured in the
averaged synchrony and splay losses, 0 < L <1, where L =0
implies full intra-group synchrony and inter-group splayness
and L = 1 implies the opposite. Control values in parentheses.
Full Gaussian mixture and image results are found in the SI
Detailed Clustering Results.

grids [34]. Here, we are interested in the stronger condi-
tion in which oscillators not only synchronize into clus-
ters but also where these clusters are maximally sepa-
rated in the sense that the cluster phase averages, (8);,
are equally spread out across the unit circle. We in-
vestigated optimized cluster synchrony for two types of
data: simple mixture distributions on the plane, and
images taken from the Berkeley Segmentation Data Set
(BSDS) [35].

For simple mixture distributions, we used several
standard distributions from Python’s sklearn software:
two interlinked crescent moons (“Moons”), two concen-
tric circles (“Circles”), two interlinked spirals (“Spirals”),
as well as nine Gaussian mixture models (GMME) with
between k£ = 2, ..., 10 means spaced evenly around a ring
of radius 10 (results here only show k = 5, but more are
available in the SI Detailed Clustering Results). Node
features were the coordinates (p, q) of the corresponding
datum and labels came from the labels of mixture com-
ponents.

As before, we are interested in both generalization to
new data and to larger networks, resulting in the three
testing regimes described above. Mixture distributions
used training and testing network sizes of n = 100 and
n = 10,000 as before. The coupling function architecture
was identical to that of Section III B, except that we now
permit negative couplings. The coupling matrix was still
normalized so that each unit had an (absolute) in-degree
of 1.0 before being symmetrized by K + .5(K + KT).
For details, see SI Methods.

After training, we found that the model was able to
generalize to correct splay dynamics across all testing
regimes far better than an untrained model with ran-
dom parameters but with the same degree normalization
(Table II). A fuller picture of the trained system is pro-
vided by plotting the limiting phase of a single oscilla-
tor (five-class Gaussian mixture shown in Figure 3A) as
its feature vector is varied across a grid of values. For
two cluster data (Moouns, Circles, Spirals), the random-
ized model tended to synchronize globally for a loss of
.5, while the optimized model achieves a loss of nearly 0.
The optimized system also achieved nearly perfect cluster
synchrony in the multi-class cases (e.g. GMMS5), where
the random model’s partial synchrony only produced a
loss of about an order of magnitude worse. Videos of the
dynamics can be found in the SI.

Plotting couplings sorted by cluster index for a sam-
ple of 1,000 training oscillators revealed that the system
had learned in all cases a distinctive mixture of block and
diffusive connectivity (Figure 3B). Couplings between os-
cillators in different groups were uniform as a function of
the group indices, and these couplings grew weaker and
more negative as the group features grew more distant
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FIG. 3: Cluster synchrony for a 5-component gaussian mizture model. (A) The phase landscape in X = R? is plotted by
recording the asymptotic phase of a single oscillator, 4, in a fixed batch (small circles) as its 2-D feature was varied over a grid
of 100 x 100 values. (B) The trained system learns to produce coupling matrices with a clear block-diffusive structure whose
cells correspond to the true labeling function on X. (C) However, not just any block coupling structure can produce this effect,
since the optimized model (right bars) achieves a lower total loss than both a randomized model (left bars) and a block control
model (middle bars) with positive intra-cluster couplings and negative inter-cluster couplings. (D,E,F) The differences among
these models is all the clearer when plotting terminal phases (small dots) and cluster mean fields (colored arrows). Here, phases
and mean fields are colored according to ground truth clusters, not angle. While the control model can easily exhibit strong
intra-group synchrony (E, only the balance of positive and negative weights in the learned diffusive couplings of the optimized

model (F) can also produce reliable splay configurations.

in the plane. Earlier work [16-18] has implicated one
of these properties, block coupling, in the emergence of
cluster synchrony, although these studies did not include
our extra condition of mutual desynchrony among clus-
ters. To compare our optimized couplings to coupling
strategies in this earlier work, we examined an additional
control model with block couplings normalized exactly
as in the optimized case but with a fixed intra-group
(inter-group) coupling of b > 0 (b < 0). The value of b
was chosen to such that the optimized and control set-
tings would have the same maximum absolute coupling
strength, max |Kj;/, so that attraction and repulsion be-
i

tween groups would be on roughly the same scale in both
cases. We found the block control could successfully syn-
chronize each cluster far better than the random setting
(Figure 3C), although the independence of clusters pre-
vented any rigid splay behavior, particularly for £ > 2.
This is especially evident when the mean fields (Figure 3
D-F) are plotted for the true clusters in each condition.
This result suggests that the learned diffusivity in the op-
timized system enforces cluster separation by tuning the
balance between the relatively few intra-group interac-
tions and relatively many inter-group interactions which
prevail in the case of k > 2.

For the image experiments, we chose eight images
from BSDS. Here, KuraNet functions as a form of im-
age segmentation (Fig. 4). Various other oscillator-

based models of image segmentation have been proposed
[36, 37], though, to our knowledge, the current work is
the first end-to-end differentiable model trainable by gra-
dient descent. Similar to the mixture distribution case,
node features include the pixel location location (p,q),
although we now also include the the RGB channel in-
tensities I,., I,, I, € [0,255] at the location (p,q). Labels
came from the ground truth segments of the BSDS data
set. Training was identical to the mixture distribution
case except that training and test sets were considerably
larger owing to the image sizes (~ 150, 000 pixels). Note
that KuraNet learns to segment one image at a time (as
opposed to multiple images). We speculate on ways to
achieve this larger goal in Section IV.

Performance on images was favorable (Table II, last
row; full results, SI Detailed Clustering Results), and Fig.
4 shows the results on the full images (training plus test
sets). Note that the images in Figure 4 represent the dy-
namics on very large networks (again, ~ 150,000 nodes)
even though KuraNet was only ever exposed to dynam-
ics on networks three orders of magnitude smaller. Dis-
cretizing the limiting phase configuration (Fig. 4, second
column) using k-means clustering (Fig. 4, third column)
and measuring performance using the standard symmet-
ric best dice score 0 < SBD < 1 [38] shows that KuraNet
achieves an accuracy of .7001 vs a value of .3719 (slightly
above chance level) attained by k-means on raw pixel in-
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FIG. 4: Image segmentation results. KuraNet is trained on ground truth segmentation masks and pixel features (locations and
channel intensities) from half the pixels in an image. Here, we show the learned segmentation ability on the whole image (train
and test; test only results averaged in the last row of Table II). (First column) Original image. (Second column) Limiting phase
of KuraNet on these images after training (hue represents phase). (Third column) k-means clustering is used to discretize the
phase into segments. (Fourth column) Corresponding k-means segmentations using raw pixels as data instead of KuraNet-
produced phases. (Fifth column) Ground truth segmentation. Note that the correspondence between predicted segments and
ground truth segments does not rely on the absolute labeling of either segmentation (here, the color), but rather the existence
of a bijection between the two sets of labels which preserves the relationship between any two pixels’ labels (i.e., same vs.
different) (see SI Methods.)

tensities (fourth column). These results cast KuraNet as IV. DISCUSSION

an interesting new direction for image processing using

complex systems. Recent work at the intersection of machine learning
and dynamical systems has typically taken a somewhat
model-free approach, estimating couplings [29] or learn-



ing dynamics [10] while assuming little about the un-
derlying equation of motion. Here, we demonstrate the
value of the model-based setting, whereby the param-
eter space of a given dynamics of interest, Kuramoto
flows expressible by Eq. 1, is systematically explored. We
believe this type of model-based statistical approach to
studying specific physical or biological models holds great
promise.

The ability of KuraNet to generate computational hy-
potheses about collective motion in particularly compli-
cated dynamical systems (Sec. Results IITA) and to
learn data-driven cluster synchrony patterns (Sec. Re-
sults IITB), represents only the early steps of this model-
based approach. For example, note that our pairwise
parallel processing of nodes relies on the fact that node
features are statistically independent. Future work could
relax this assumption and introduce more sophisticated
coupling functions capable of learning more complicated
relations among nodes in line with current work on com-
plex network generation [39]. Similarly, future image
segmentation work could use more hierarchical network
structures like those in the standard convolutional neu-
ral networks [40] and in earlier oscillatory models [36].
Hierarchical networks whose couplings represent invari-
ant features of natural images are likely necessary for
training an oscillatory model to synchronize multiple im-
ages across a data set (as opposed to one at a time).
Furthermore, our method could be applied to dynami-

cal regimes beyond synchrony, for example the elusive
glassiness speculated to appear in some oscillator net-
works [23, 24].

Importantly, the framework we have called “KuraNet”
can be easily applied beyond its namesake if Eq. 1 is re-
placed with another dynamics of interest. In that light,
the proposed method becomes a way of casting the more
general problem of understanding collective motion un-
der conditions of quenched disorder in the framework of
statistical learning. For example, the outlined technique
could be used to learn coupling functions in neural sys-
tems or epidemiological networks, where disorder takes
the form of heterogeneous cell biophysics [41] and infec-
tion properties [42], respectively. These applications will
have to adapt the basic KuraNet approach to domain id-
iosyncracies, and we are intrigued by how this adaptation
may give rise to insights in both the natural sciences and
machine learning.
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