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Abstract

Phylogenetic reconstruction and species delimitation are often challenging in the
case of recent evolutionary radiations, especially when post-speciation gene flow is
present. Leopardus is a Neotropical cat genus that has a long history of recalcitrant
taxonomic problems, along with both ancient and current episodes of interspecies
admixture. Here we employ genome-wide SNP data from all presently recognized
Leopardus species, including several individuals from the tigrina complex (representing
L. guttulus and two distinct populations of L. tigrinus), to investigate the evolutionary
history of this genus. Our results reveal that the tigrina complex is paraphyletic,
containing at least three distinct species. While one can be assigned to L. guttulus, the
other two remain uncertain regarding their taxonomic assignment. Our findings indicate
that the ‘tigrina’ morphology may be plesiomorphic within this group, which has led to a

longstanding taxonomic trend of lumping these poorly known felids into a single species.

Main text
Introduction

Genome-wide data hold great potential to address complex evolutionary problems,
such as resolving the phylogenetic relationships and dissecting introgression histories
among closely related species (e.g. Li et al. 2016, 2019; Edelman et al., 2019; Pulido-
Santacruz et al., 2020). Within the mammalian order Carnivora, several genera have
undergone recent radiations, leading to complex networks that challenge phylogenetic
resolution using traditional approaches (e.g. Figueird et al., 2017). In the Neotropics
(encompassing South and Central America, Mexico and Southern USA), at least two
genera (Leopardus in the Felidae and Lycalopex in the Canidae) have diversified recently,
each of them following a single episode of colonization from North America during the
Pliocene or Pleistocene (Eizirik 2012). Accurately resolving the phylogenetic structure of
these clades is critical to stabilize their taxonomy, enable adequate conservation
assessment and actions on behalf of these threatened organisms, and allow a better
understanding of the intricate evolutionary and biogeographic history of Neotropical
biotas.

Leopardus is a Neotropical-endemic clade of small to medium-sized wild cats that
diverged from other felid lineages ca. 10 million years ago (MY A), and underwent a

radiation starting ca. 3-4 MY A (Li et al. 2016). It comprises at least seven extant species
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that have been traditionally recognized by taxonomists since the mid-20th century: ocelot
(L. pardalis), margay (L. wiedii), Andean mountain cat (L. jacobita), pampas cat (L.
colocola), Geoffroy’s cat (L. geoffroyi), huifia (L. guigna), and tigrina (L. tigrinus). The
latter has recently been found to represent at least two distinct species, the northern tigrina
(L. tigrinus) and southern tigrina (L. guttulus), based on the analysis of multiple molecular
markers (Trigo et al. 2013). Subsequent morphological analyses supported the
distinctiveness of L. guttulus, and further proposed the separation of L. emiliae (occurring
in northeastern Brazil) from L. tigrinus, which would be restricted to northern and western
South America, as well as Central America (Nascimento & Feijo 2017) (see species
distribution in supplementary fig. S1). This arrangement has so far not been tested with
molecular data, for the reasons outlined below.

Several molecular studies focusing on this genus have revealed that it has had a
complex evolutionary history, including different episodes of interspecies hybridization.
Previous work has shown that the southern tigrina (L. guttulus) is currently hybridizing
with Geoffroy’s cat in southern Brazil (Trigo et al. 2008, 2013, 2014). In contrast, tigrina
populations from northeastern Brazil (NE tigrina), identified as L. tigrinus or L. emiliae
depending on the assumed classification, bear molecular signatures of ancient
hybridization with pampas cats (Trigo et al. 2013). This ancient interspecies admixture
has resulted in remarkable cyto-nuclear discordance in the NE tigrina, with complete
replacement of its mitochondrial genome with introgressed mtDNA from the pampas cat
(Trigo et al. 2013; Santos et al. 2018). The latter taxon (L. colocola) has recently been
proposed to actually comprise five distinct species (Nascimento et al. 2021); under this
scheme, the hybridization of NE tigrina would have occurred with the
central/northeastern Brazilian pampas cat (L. braccatus), based on mtDNA
phylogeographic analyses (Santos et al. 2018). Importantly, this mitochondrial
replacement has precluded any mtDNA-based phylogenetic analysis comparing NE
tigrinas with other members of the tigrina complex. At the same time, the nuclear markers
analyzed so far (Trigo et al. 2013) did not contain enough phylogenetic signal to reliably
resolve their relationships, suggesting that NE tigrinas and L. guttulus could be sister-
species (based on Y-chromosome markers) or that the former was in fact more closely
related to Geoffroy’s cat (based on X-chromosome markers).

Furthermore, these earlier studies did not include representatives of additional,
geographically distant, tigrina populations. This is especially relevant since early mtDNA

data (Johnson et al. 1999; Trigo et al. 2008) had indicated that Central American tigrinas
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(presently recognized as L. tiginus oncilla [Kitchener et al. 2017]) were very divergent
from southern South American populations (now recognized as L. guttulus). Genome-
wide SNP data supported this deep divergence (Li et al. 2016), but that study included
only the Central American lineage and the NE tigrina, with no representation of L.
guttulus. Therefore, no phylogenetic assessment thus far has included all three tigrina
units.

Here we expand on the genome-wide SNP dataset reported by Li et al. (2016) by
including several L. guttulus individuals as well as additional Geoffroy’s cat specimens.
We also genotyped previously identified hybrids between these two species, as well as a
captive-bred hybrid between L. guttulus and the pampas cat, aiming to assess the effects
of including admixed individuals in genome-wide assessments of species-level
monophyly and phylogenetic relationships. Our results indicate that this impact can be
quite relevant in phylogenetic analyses of recent radiations, and robustly demonstrate that

the tigrina complex comprises at least three different species.

Results and Discussion

We performed multiple sets of analyses to investigate the impacts of varying taxon
sampling, filtering schemes for missing data, treatment of heterozygous sites and
inclusion of hybrid individuals (see Materials and Methods and Supplementary
Information for details). Principal Component Analyses (PCAs) revealed a clear
separation among the recognized species, and indicated that the three sampled tigrina
units (southern (S) tigrina [L. guttulus], NE tigrina and Central American tigrina) were
very distinct from each other (fig. 1A, supplementary fig. S2). This finding was
corroborated by the Admixture analyses, regardless of the taxon sampling scheme
(supplementary fig. S3-S5). In the PCA plots, S tigrina and NE tigrina were at least as
distinct from each other as Geoffroy’s cats vs. huifias. In the Admixture plots, S tigrina
and NE tigrina exhibited completely different ancestry assignments from K=3 (taxon
subgroups 2 and 3) or K=4 (subgroup 1) upwards, much below the optimal K inferred for
each dataset. In addition to the separation between the two South American tigrina units,
the PCA and Admixture results also supported the distinctiveness of the Central American
tigrina (e.g. it was the most distinct unit in PC1 for the focal taxonomic group).

In addition to assessing the distinctiveness among the three tigrina units, we also
investigated inter-species hybridization. Our data supported the inference of admixed

ancestry in one field-collected individual (bLti135) that had been previously reported to
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be a hybrid between S tigrina and Geoffroy’s cat using traditional molecular markers
(Trigo et al. 2013). We also found that another individual (LCO.2), previously suspected
to derive from admixture in captivity between S tigrina and pampas cat (Trigo et al. 2008),
was indeed a hybrid (likely F1) between these species. Importantly, we did not find any
evidence of nuclear introgression from pampas cat into NE tigrina (supplementary fig.
S3), in striking contrast to the complete substitution of the latter’s mtDNA with that of
the former (Trigo et al. 2013; Santos et al. 2018). This indicates that signatures from the
ancient hybridization episode between these species may have been erased from the
nuclear genome by cumulative backcrossing, and highlights the remarkable cyto-nuclear
discordance present in NE tigrinas.

We performed extensive phylogenetic analyses with our SNP dataset using several
combinations of individuals, filters for missing data and treatments of heterozygous sites
(see Supplementary Information). We also employed different phylogenetic approaches:
Maximum Likelihood (ML) on a supermatrix comprising the concatenation of all sites
(including both variable and invariant positions), and SNP-based phylogenetic
reconstructions. All analyses converged on the conclusion that the tigrina complex is
paraphyletic (fig. 1B; supplementary fig. S6-S10). ML trees reconstructed the NE tigrina
and S tigrina as sister-groups, but strongly supported the placement of the Central
American tigrina at a more external position, outside of the clade that also included two
other, well-recognized Leopardus species (Geoffroy’s cat and huifia). Coalescent-based
trees also strongly supported this inference, and further indicated paraphyly of NE tigrinas
and S tigrinas relative to Geoffroy’s cat (supplementary figs. S9, S10C).

In addition to dissecting tigrina relationships, our analyses also helped understand the
effects of including hybrid individuals in SNP-based phylogenetic inference
(supplementary fig. S6). In the case of the pampas cat vs. S tigrina hybrid (LCO.2), its
inclusion rendered the pampas cat paraphyletic, as it was drawn with high support towards
the focal clade comprising the tigrina complex, Geoffroy’s cat and huifia. The other
individual detected as a hybrid with our SNP data (bLti135) also led to distortions in the
topology, as it was drawn to the Geoffroy’s cat clade, disrupting S tigrina monophyly,
altering the position of the huifia, and lowering support for the affected nodes. Inclusion
of another putative hybrid (bLge094) between Geoffroy’s cat and S tigrina (previously
inferred with traditional markers, but not with this SNP dataset) also led to a distortion in
the huifia’s position. In this case, the distortion may also have been induced by the

extensive amount of missing data for bLge094. The presence of missing data also seems
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to affect the position of the Andean mountain cat, as previously noted by Li et al. (2016)
when using these same SNP data (relative to a larger dataset employed in that study).
Regardless of its local instability, the Andean mountain cat was strongly supported as
being more closely related to the ocelot and margay than to our focal clade comprising
the tigrina complex, Geoffroy’s cat and huifia (supplementary fig. S6-S9), so that its local
instability does not affect our conclusions.

Our final phylogenetic analyses (excluding putative hybrids and individuals with
extensive missing data) provided robust support for all nodes pertaining to the focal clade
(fig. 1B; see Supplementary Information for additional analyses). Molecular dating
analyses indicated that genus Leopardus began its diversification ca. 4.6 MYA, and that
the pampas cat diverged from the focal clade >4 MYA (see fig. 1B). The Central
American tigrina diverged from the inner group ca. 2.4 MYA, and clearly represents a
distinct, species-level lineage. Within the inner group, the divergence between NE tigrina
and L. guttulus was estimated at ca. 1.5 MYA, similar to the depth between the huifia and
Geoffroy’s cat (ca. 1.8 MYA). This result adds weight to the recognition of these two
tigrina units as distinct species, corroborating previous genetic data indicating lack of
gene flow between them (Trigo et al. 2013) and morphological analyses that support this
taxonomic separation (Nascimento and Feij6 2017). Therefore, we conclude that the
tigrina complex comprises at least three different species, one of which (S tigrina) has
already been formally recognized as L. guttulus. The taxonomic assignment of NE
tigrinas and Central American tigrinas will depend on additional geographic sampling of
the complex, especially in the Guiana shield, which includes the type locality for L.
tigrinus (Kitchener et al. 2017; Nascimento and Feijo6 2017). This region remains
unsampled for molecular data, and holds the key for resolving the taxonomy of this
complex. Moreover, tigrinas from other regions in northern South America (e.g.
Colombia, Peru) must also be analyzed to assess their affinities with the groups identified
here. Interestingly, our results suggest that the ‘tigrina’ morphology may be
plesiomorphic in this felid clade, leading to the existence of cryptic species that have
remained undetected for decades. More broadly, our results illustrate how genomic data
can be used to dissect complex histories of speciation and hybridization, uncover cryptic
diversity, and inform the design of phylogenetic analyses in the face of potentially

challenging confounding factors.
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Material and Methods

Our initial dataset comprised all Leopardus individuals sampled by Li et al.
(2016), which were genotyped with an Illumina array targeting genome-wide SNPs
identified in the domestic cat (Mullikin et al. 2010). We complemented this dataset by
genotyping the same markers in five additional L. geoffroyi individuals, two of which had
suggestive evidence of admixture with L. tigrinus from the Brazilian northeast (Trigo et
al. 2013) and six additional L. guttulus individuals (a species that had not been included
in Li et al.’s [2016] study) with known geographic origin. This represents the most
complete dataset assembled so far for this genus, including 22 individuals from all
currently recognized species (supplementary table S1). Beginning from the 62,771 sites
surveyed by this array, we applied filters using PLINK (Purcell et al. 2007), excluding
individuals with more than 10% of missing data, and sites with 10% missing genotypes.
Although the sites were originally selected in the domestic cat as SNPs, in our Leopardus
datasets most of them (>90%) were invariant, which fits the goal of randomly surveying
genomic sites, while still allowing the recovery of substantial evolutionary information.
From the full genotype matrix, we constructed several different datasets that varied in the
inclusion of putative hybrids and in the treatment of heterozygous and invariant sites (see
Supplementary Information for details).

To characterize genetic structure, we conducted a Principal Component Analysis
(PCA) using SmartPCA within the EIGEINSOFT package (Patterson et al. 2006). PCA
plots (for PCs 1-10) were then generated in R. Unsupervised analyses with Admixture
(Alexander et al. 2009) were performed with three taxon subgroups: subgroup 1 included
the focal clade (tigrina complex, Geoffroy’s cat and huifia) and the pampas cat; subgroup
2 included the tigrina complex and Geoffroy’s cat; and subgroup 3 included S tigrina, NE
tigrina, Geoffroy’s cat and huifa. To reduce bias, we implemented the penalized
estimation using the best-fit lambda for each subgroup. All Admixture analyses were
performed with a 5-fold cross-validation; the cross-validation error was calculated to
determine the best-fitting K value.

For the phylogenetic analyses, we used two different approaches: (i) a
concatenation of all sites (both variable and invariant) into a single supermatrix, followed
by Maximum likelihood (ML) analyses with both RAXML v.8.2.5 (Stamatakis 2006) and
IQ-TREE V2.1.2 (Nguyen et al., 2015); and (ii) two coalescent-based methods that allow
SNP sites to evolve independently: the Bayesian approach implemented in SNAPP
(Bryant et al. 2012), and the quartet-based inference implemented in SVDquartets v4.0
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(Chifman and Kubatko, 2014). Finally, we used mcmctree, included in the PAML 4.9
package (Yang 2007), to date the inferred divergences, using a correlated rates model and
a conservative molecular calibration for the root node (base of Leopardus), which was
derived from the lower and upper boundaries (1.64 MYA and 5.03 MY A, respectively)
reported by Li et al. (2016) for the age of this split.
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Figure Legend

Figure 1. Population genetic and phylogenetic analyses of Leopardus based on genome-
wide SNP data (see text and Supplementary Information for details). (A) Principal
Component Analysis for the focal taxonomic group, comprising the tigrina complex,
Geoffroy’s cat and huina; PCs 1-4 are shown, along with their respective variance
explanatory power. (B) Maximum likelihood phylogeny of Leopardus based on a
supermatrix comprising 60,931 SNPs (including 4708 variable sites); hybrid individuals
and those with extensive missing data were excluded (see Supplementary Information
for details). Bootstrap support values are shown next to nodes (nodes with no values
indicate support below 60%). Numbers above branches are indicate divergence times (in
Million years ago) for the adjacent node, with credibility intervals shown below the
respective branch (see supplementary fig. S11 for true branch heights).
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