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 26 

Abstract  27 

 Phylogenetic reconstruction and species delimitation are often challenging in the 28 

case of recent evolutionary radiations, especially when post-speciation gene flow is 29 

present. Leopardus is a Neotropical cat genus that has a long history of recalcitrant 30 

taxonomic problems, along with both ancient and current episodes of interspecies 31 

admixture. Here we employ genome-wide SNP data from all presently recognized 32 

Leopardus species, including several individuals from the tigrina complex (representing 33 

L. guttulus and two distinct populations of L. tigrinus), to investigate the evolutionary 34 

history of this genus. Our results reveal that the tigrina complex is paraphyletic, 35 

containing at least three distinct species. While one can be assigned to L. guttulus, the 36 

other two remain uncertain regarding their taxonomic assignment. Our findings indicate 37 

that the ‘tigrina’ morphology may be plesiomorphic within this group, which has led to a 38 

longstanding taxonomic trend of lumping these poorly known felids into a single species. 39 

  40 

Main text 41 

Introduction 42 

Genome-wide data hold great potential to address complex evolutionary problems, 43 

such as resolving the phylogenetic relationships and dissecting introgression histories 44 

among closely related species (e.g. Li et al. 2016, 2019; Edelman et al., 2019; Pulido-45 

Santacruz et al., 2020). Within the mammalian order Carnivora, several genera have 46 

undergone recent radiations, leading to complex networks that challenge phylogenetic 47 

resolution using traditional approaches (e.g. Figueiró et al., 2017). In the Neotropics 48 

(encompassing South and Central America, Mexico and Southern USA), at least two 49 

genera (Leopardus in the Felidae and Lycalopex in the Canidae) have diversified recently, 50 

each of them following a single episode of colonization from North America during the 51 

Pliocene or Pleistocene (Eizirik 2012). Accurately resolving the phylogenetic structure of 52 

these clades is critical to stabilize their taxonomy, enable adequate conservation 53 

assessment and actions on behalf of these threatened organisms, and allow a better 54 

understanding of the intricate evolutionary and biogeographic history of Neotropical 55 

biotas. 56 

Leopardus is a Neotropical-endemic clade of small to medium-sized wild cats that 57 

diverged from other felid lineages ca. 10 million years ago (MYA), and underwent a 58 

radiation starting ca. 3-4 MYA (Li et al. 2016). It comprises at least seven extant species 59 
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that have been traditionally recognized by taxonomists since the mid-20th century: ocelot 60 

(L. pardalis), margay (L. wiedii), Andean mountain cat (L. jacobita), pampas cat (L. 61 

colocola), Geoffroy’s cat (L. geoffroyi), huiña (L. guigna), and tigrina (L. tigrinus). The 62 

latter has recently been found to represent at least two distinct species, the northern tigrina 63 

(L. tigrinus) and southern tigrina (L. guttulus), based on the analysis of multiple molecular 64 

markers (Trigo et al. 2013). Subsequent morphological analyses supported the 65 

distinctiveness of L. guttulus, and further proposed the separation of L. emiliae (occurring 66 

in northeastern Brazil) from L. tigrinus, which would be restricted to northern and western 67 

South America, as well as Central America (Nascimento & Feijó 2017) (see species 68 

distribution in supplementary fig. S1). This arrangement has so far not been tested with 69 

molecular data, for the reasons outlined below. 70 

Several molecular studies focusing on this genus have revealed that it has had a 71 

complex evolutionary history, including different episodes of interspecies hybridization. 72 

Previous work has shown that the southern tigrina (L. guttulus) is currently hybridizing 73 

with Geoffroy’s cat in southern Brazil (Trigo et al. 2008, 2013, 2014). In contrast, tigrina 74 

populations from northeastern Brazil (NE tigrina), identified as L. tigrinus or L. emiliae 75 

depending on the assumed classification, bear molecular signatures of ancient 76 

hybridization with pampas cats (Trigo et al. 2013). This ancient interspecies admixture 77 

has resulted in remarkable cyto-nuclear discordance in the NE tigrina, with complete 78 

replacement of its mitochondrial genome with introgressed mtDNA from the pampas cat 79 

(Trigo et al. 2013; Santos et al. 2018). The latter taxon (L. colocola) has recently been 80 

proposed to actually comprise five distinct species (Nascimento et al. 2021); under this 81 

scheme, the hybridization of NE tigrina would have occurred with the 82 

central/northeastern Brazilian pampas cat (L. braccatus), based on mtDNA 83 

phylogeographic analyses (Santos et al. 2018). Importantly, this mitochondrial 84 

replacement has precluded any mtDNA-based phylogenetic analysis comparing NE 85 

tigrinas with other members of the tigrina complex. At the same time, the nuclear markers 86 

analyzed so far (Trigo et al. 2013) did not contain enough phylogenetic signal to reliably 87 

resolve their relationships, suggesting that NE tigrinas and L. guttulus could be sister-88 

species (based on Y-chromosome markers) or that the former was in fact more closely 89 

related to Geoffroy’s cat (based on X-chromosome markers). 90 

Furthermore, these earlier studies did not include representatives of additional, 91 

geographically distant, tigrina populations. This is especially relevant since early mtDNA 92 

data (Johnson et al. 1999; Trigo et al. 2008) had indicated that Central American tigrinas 93 
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(presently recognized as L. tiginus oncilla [Kitchener et al. 2017]) were very divergent 94 

from southern South American populations (now recognized as L. guttulus). Genome-95 

wide SNP data supported this deep divergence (Li et al. 2016), but that study included 96 

only the Central American lineage and the NE tigrina, with no representation of L. 97 

guttulus. Therefore, no phylogenetic assessment thus far has included all three tigrina 98 

units. 99 

Here we expand on the genome-wide SNP dataset reported by Li et al. (2016) by 100 

including several L. guttulus individuals as well as additional Geoffroy’s cat specimens. 101 

We also genotyped previously identified hybrids between these two species, as well as a 102 

captive-bred hybrid between L. guttulus and the pampas cat, aiming to assess the effects 103 

of including admixed individuals in genome-wide assessments of species-level 104 

monophyly and phylogenetic relationships. Our results indicate that this impact can be 105 

quite relevant in phylogenetic analyses of recent radiations, and robustly demonstrate that 106 

the tigrina complex comprises at least three different species. 107 

 108 

Results and Discussion 109 

We performed multiple sets of analyses to investigate the impacts of varying taxon 110 

sampling, filtering schemes for missing data, treatment of heterozygous sites and 111 

inclusion of hybrid individuals (see Materials and Methods and Supplementary 112 

Information for details). Principal Component Analyses (PCAs) revealed a clear 113 

separation among the recognized species, and indicated that the three sampled tigrina 114 

units (southern (S) tigrina [L. guttulus], NE tigrina and Central American tigrina) were 115 

very distinct from each other (fig. 1A, supplementary fig. S2). This finding was 116 

corroborated by the Admixture analyses, regardless of the taxon sampling scheme 117 

(supplementary fig. S3-S5). In the PCA plots, S tigrina and NE tigrina were at least as 118 

distinct from each other as Geoffroy’s cats vs. huiñas. In the Admixture plots, S tigrina 119 

and NE tigrina exhibited completely different ancestry assignments from K=3 (taxon 120 

subgroups 2 and 3) or K=4 (subgroup 1) upwards, much below the optimal K inferred for 121 

each dataset. In addition to the separation between the two South American tigrina units, 122 

the PCA and Admixture results also supported the distinctiveness of the Central American 123 

tigrina (e.g. it was the most distinct unit in PC1 for the focal taxonomic group). 124 

In addition to assessing the distinctiveness among the three tigrina units, we also 125 

investigated inter-species hybridization. Our data supported the inference of admixed 126 

ancestry in one field-collected individual (bLti135) that had been previously reported to 127 
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be a hybrid between S tigrina and Geoffroy’s cat using traditional molecular markers 128 

(Trigo et al. 2013). We also found that another individual (LCO.2), previously suspected 129 

to derive from admixture in captivity between S tigrina and pampas cat (Trigo et al. 2008), 130 

was indeed a hybrid (likely F1) between these species. Importantly, we did not find any 131 

evidence of nuclear introgression from pampas cat into NE tigrina (supplementary fig. 132 

S3), in striking contrast to the complete substitution of the latter’s mtDNA with that of 133 

the former (Trigo et al. 2013; Santos et al. 2018). This indicates that signatures from the 134 

ancient hybridization episode between these species may have been erased from the 135 

nuclear genome by cumulative backcrossing, and highlights the remarkable cyto-nuclear 136 

discordance present in NE tigrinas.  137 

We performed extensive phylogenetic analyses with our SNP dataset using several 138 

combinations of individuals, filters for missing data and treatments of heterozygous sites 139 

(see Supplementary Information). We also employed different phylogenetic approaches: 140 

Maximum Likelihood (ML) on a supermatrix comprising the concatenation of all sites 141 

(including both variable and invariant positions), and SNP-based phylogenetic 142 

reconstructions. All analyses converged on the conclusion that the tigrina complex is 143 

paraphyletic (fig. 1B; supplementary fig. S6-S10). ML trees reconstructed the NE tigrina 144 

and S tigrina as sister-groups, but strongly supported the placement of the Central 145 

American tigrina at a more external position, outside of the clade that also included two 146 

other, well-recognized Leopardus species (Geoffroy’s cat and huiña). Coalescent-based 147 

trees also strongly supported this inference, and further indicated paraphyly of NE tigrinas 148 

and S tigrinas relative to Geoffroy’s cat (supplementary figs. S9, S10C). 149 

In addition to dissecting tigrina relationships, our analyses also helped understand the 150 

effects of including hybrid individuals in SNP-based phylogenetic inference 151 

(supplementary fig. S6). In the case of the pampas cat vs. S tigrina hybrid (LCO.2), its 152 

inclusion rendered the pampas cat paraphyletic, as it was drawn with high support towards 153 

the focal clade comprising the tigrina complex, Geoffroy’s cat and huiña. The other 154 

individual detected as a hybrid with our SNP data (bLti135) also led to distortions in the 155 

topology, as it was drawn to the Geoffroy’s cat clade, disrupting S tigrina monophyly, 156 

altering the position of the huiña, and lowering support for the affected nodes. Inclusion 157 

of another putative hybrid (bLge094) between Geoffroy’s cat and S tigrina (previously 158 

inferred with traditional markers, but not with this SNP dataset) also led to a distortion in 159 

the huiña’s position. In this case, the distortion may also have been induced by the 160 

extensive amount of missing data for bLge094. The presence of missing data also seems 161 
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to affect the position of the Andean mountain cat, as previously noted by Li et al. (2016) 162 

when using these same SNP data (relative to a larger dataset employed in that study). 163 

Regardless of its local instability, the Andean mountain cat was strongly supported as 164 

being more closely related to the ocelot and margay than to our focal clade comprising 165 

the tigrina complex, Geoffroy’s cat and huiña (supplementary fig. S6-S9), so that its local 166 

instability does not affect our conclusions. 167 

Our final phylogenetic analyses (excluding putative hybrids and individuals with 168 

extensive missing data) provided robust support for all nodes pertaining to the focal clade 169 

(fig. 1B; see Supplementary Information for additional analyses). Molecular dating 170 

analyses indicated that genus Leopardus began its diversification ca. 4.6 MYA, and that 171 

the pampas cat diverged from the focal clade >4 MYA (see fig. 1B). The Central 172 

American tigrina diverged from the inner group ca. 2.4 MYA, and clearly represents a 173 

distinct, species-level lineage. Within the inner group, the divergence between NE tigrina 174 

and L. guttulus was estimated at ca. 1.5 MYA, similar to the depth between the huiña and 175 

Geoffroy’s cat (ca. 1.8 MYA). This result adds weight to the recognition of these two 176 

tigrina units as distinct species, corroborating previous genetic data indicating lack of 177 

gene flow between them (Trigo et al. 2013) and morphological analyses that support this 178 

taxonomic separation (Nascimento and Feijó 2017). Therefore, we conclude that the 179 

tigrina complex comprises at least three different species, one of which (S tigrina) has 180 

already been formally recognized as L. guttulus. The taxonomic assignment of NE 181 

tigrinas and Central American tigrinas will depend on additional geographic sampling of 182 

the complex, especially in the Guiana shield, which includes the type locality for L. 183 

tigrinus (Kitchener et al. 2017; Nascimento and Feijó 2017). This region remains 184 

unsampled for molecular data, and holds the key for resolving the taxonomy of this 185 

complex. Moreover, tigrinas from other regions in northern South America (e.g. 186 

Colombia, Peru) must also be analyzed to assess their affinities with the groups identified 187 

here. Interestingly, our results suggest that the ‘tigrina’ morphology may be 188 

plesiomorphic in this felid clade, leading to the existence of cryptic species that have 189 

remained undetected for decades. More broadly, our results illustrate how genomic data 190 

can be used to dissect complex histories of speciation and hybridization, uncover cryptic 191 

diversity, and inform the design of phylogenetic analyses in the face of potentially 192 

challenging confounding factors. 193 

 194 

 195 
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Material and Methods 196 

Our initial dataset comprised all Leopardus individuals sampled by Li et al. 197 

(2016), which were genotyped with an Illumina array targeting genome-wide SNPs 198 

identified in the domestic cat (Mullikin et al. 2010). We complemented this dataset by 199 

genotyping the same markers in five additional L. geoffroyi individuals, two of which had 200 

suggestive evidence of admixture with L. tigrinus from the Brazilian northeast (Trigo et 201 

al. 2013) and six additional L. guttulus individuals (a species that had not been included 202 

in Li et al.’s [2016] study) with known geographic origin. This represents the most 203 

complete dataset assembled so far for this genus, including 22 individuals from all 204 

currently recognized species (supplementary table S1). Beginning from the 62,771 sites 205 

surveyed by this array, we applied filters using PLINK (Purcell et al. 2007), excluding 206 

individuals with more than 10% of missing data, and sites with 10% missing genotypes. 207 

Although the sites were originally selected in the domestic cat as SNPs, in our Leopardus 208 

datasets most of them (>90%) were invariant, which fits the goal of randomly surveying 209 

genomic sites, while still allowing the recovery of substantial evolutionary information. 210 

From the full genotype matrix, we constructed several different datasets that varied in the 211 

inclusion of putative hybrids and in the treatment of heterozygous and invariant sites (see 212 

Supplementary Information for details). 213 

To characterize genetic structure, we conducted a Principal Component Analysis 214 

(PCA) using SmartPCA within the EIGEINSOFT package (Patterson et al. 2006). PCA 215 

plots (for PCs 1-10) were then generated in R. Unsupervised analyses with Admixture 216 

(Alexander et al. 2009) were performed with three taxon subgroups: subgroup 1 included 217 

the focal clade (tigrina complex, Geoffroy’s cat and huiña) and the pampas cat; subgroup 218 

2 included the tigrina complex and Geoffroy’s cat; and subgroup 3 included S tigrina, NE 219 

tigrina, Geoffroy’s cat and huiña. To reduce bias, we implemented the penalized 220 

estimation using the best-fit lambda for each subgroup. All Admixture analyses were 221 

performed with a 5-fold cross-validation; the cross-validation error was calculated to 222 

determine the best-fitting K value. 223 

For the phylogenetic analyses, we used two different approaches: (i) a 224 

concatenation of all sites (both variable and invariant) into a single supermatrix, followed 225 

by Maximum likelihood (ML) analyses with both RAxML v.8.2.5 (Stamatakis 2006) and 226 

IQ-TREE V2.1.2 (Nguyen et al., 2015); and (ii) two coalescent-based methods that allow 227 

SNP sites to evolve independently: the Bayesian approach implemented in SNAPP 228 

(Bryant et al. 2012), and the quartet-based inference implemented in SVDquartets v4.0 229 
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(Chifman and Kubatko, 2014). Finally, we used mcmctree, included in the PAML 4.9 230 

package (Yang 2007), to date the inferred divergences, using a correlated rates model and 231 

a conservative molecular calibration for the root node (base of Leopardus), which was 232 

derived from the lower and upper boundaries (1.64 MYA and 5.03 MYA, respectively) 233 

reported by Li et al. (2016) for the age of this split. 234 
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Figure Legend 370 

 371 

Figure 1. Population genetic and phylogenetic analyses of Leopardus based on genome-372 
wide SNP data (see text and Supplementary Information for details). (A) Principal 373 
Component Analysis for the focal taxonomic group, comprising the tigrina complex, 374 
Geoffroy’s cat and huiña; PCs 1-4 are shown, along with their respective variance 375 
explanatory power. (B) Maximum likelihood phylogeny of Leopardus based on a 376 
supermatrix comprising 60,931 SNPs (including 4708 variable sites); hybrid individuals 377 
and those with extensive missing data were excluded (see Supplementary Information 378 
for details). Bootstrap support values are shown next to nodes (nodes with no values 379 
indicate support below 60%). Numbers above branches are indicate divergence times (in 380 
Million years ago) for the adjacent node, with credibility intervals shown below the 381 
respective branch (see supplementary fig. S11 for true branch heights). 382 
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