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Abstract

The existence of simple, uncoupled no-regret dynamics that converge to correlated
equilibria in normal-form games is a celebrated result in the theory of multi-agent
systems. Specifically, it has been known for more than 20 years that when all
players seek to minimize their internal regret in a repeated normal-form game,
the empirical frequency of play converges to a normal-form correlated equilib-
rium. Extensive-form (that is, tree-form) games generalize normal-form games by
modeling both sequential and simultaneous moves, as well as private information.
Because of the sequential nature and presence of partial information in the game,
extensive-form correlation has significantly different properties than the normal-
form counterpart, many of which are still open research directions. Extensive-form
correlated equilibrium (EFCE) has been proposed as the natural extensive-form
counterpart to normal-form correlated equilibrium. However, it was currently
unknown whether EFCE emerges as the result of uncoupled agent dynamics. In
this paper, we give the first uncoupled no-regret dynamics that converge to the set
of EFCEs in n-player general-sum extensive-form games with perfect recall. First,
we introduce a notion of trigger regret in extensive-form games, which extends that
of internal regret in normal-form games. When each player has low trigger regret,
the empirical frequency of play is close to an EFCE. Then, we give an efficient
no-trigger-regret algorithm. Our algorithm decomposes trigger regret into local
subproblems at each decision point for the player, and constructs a global strategy
of the player from the local solutions at each decision point.

1 Introduction

The Nash equilibrium (NE) [25] is the most common notion of rationality in game theory, and its
computation in two-player, zero-sum games has been the flagship computational challenge in the
area at the interplay between computer science and game theory (see, e.g., the landmark results in
heads-up no-limit poker by Brown and Sandholm [3] and Morav¢ik et al. [23]). The assumption
underpinning NE is that the interaction among players is fully decentralized. Therefore, an NE is a
distribution on the uncorrelated strategy space (i.e., a product of independent distributions, one per
player). A competing notion of rationality is the correlated equilibrium (CE) proposed by Aumann
[1]. A correlated strategy is a general distribution over joint action profiles and it is customarily
modeled via a trusted external mediator that draws an action profile from this distribution, and

*Equal contribution.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



privately recommends to each player her component. A correlated strategy is a CE if no player has
an incentive to choose an action different from the mediator’s recommendation, because, assuming
that all other players also obey, the suggested strategy is the best in expectation.

Many real-world strategic interactions involve more than two players with arbitrary (i.e., general-sum)
utilities. In these settings, the notion of NE presents some weaknesses which render the CE a natural
solution concept: (i) computing an NE is an intractable problem, being PPAD-complete even in
two-player games [7, 8]; (ii) the NE is prone to equilibrium selection issues; and (iii) the social
welfare that can be attained via an NE may be significantly lower than what can be achieved via a
CE [21, 28]. Moreover, in normal-form games, the notion of CE arises from simple learning dynamics
in senses that NE does not [18, 6].

The notion of extensive-form correlated equilibrium (EFCE) by von Stengel and Forges [32] is a
natural extension of the CE to the case of sequential strategic interactions. In an EFCE, the mediator
draws, before the beginning of the sequential interaction, a recommended action for each of the
possible decision points (i.e., information sets) that players may encounter in the game, but she
does not immediately reveal recommendations to each player. Instead, the mediator incrementally
reveals relevant individual moves as players reach new information sets. At any decision point, the
acting player is free to defect from the recommended action, but doing so comes at the cost of future
recommendations, which are no longer issued if the player deviates.

Original contributions We focus on general-sum extensive-form games with an arbitrary number
of players (including the chance player). In this setting, the problem of computing a feasible EFCE
can be solved in polynomial time in the size of the game tree [19] via a variation of the Ellipsoid
Against Hope algorithm [26, 20]. However, in practice, this approach cannot scale beyond toy
problems. Therefore, the following question remains open: is it possible to devise simple dynamics
leading to a feasible EFCE? In this paper, we show that the answer is positive. To do so, we define
an EFCE via the notion of trigger agent [17, 9]. Then, we define the notion of trigger regret, i.e.,
a notion of internal regret suitable for extensive-form games. We provide an algorithm, which we
call ICFR, that minimizes trigger agent regrets via the decomposition of these regrets locally at
each information set. In order to do so, ICFR instantiates an internal regret minimizer and multiple
external regret minimizers for each information set. We show that it is possible to orchestrate the
learning procedure so that, for each information set, employing one regret minimizer per round does
not compromise the overall convergence of the algorithm. The empirical frequency of play generated
by ICFR converges to an EFCE almost surely in the limit. These results generalize the seminal work
by Hart and Mas-Colell [18] to the sequential case via a simple and natural framework.

2 Preliminaries

In this section, we provide some groundings on sequential games and regret minimization (see the
books by Shoham and Leyton-Brown [29] and Cesa-Bianchi and Lugosi [6], for additional details).

2.1 Extensive-form games

We focus on extensive-form games (EFGs) with imperfect information. We denote the set of players
as P U {c}, where c is a chance player that selects actions according to fixed known probability
distributions, representing exogenous stochasticity. An EFG is usually defined by means of a game
tree, where H is the set of nodes of the tree, and a node h € H is identified by the ordered sequence
of actions from the root to the node. Z C H is the set of terminal nodes, which are the leaves of the
tree. For every h € H \ Z, we let P(h) € P U {c} be the unique player who acts at h and A(h) be
the set of actions she has available. For each player < € P, we let u; : Z — R be her payoff function.
Moreover, we denote by p. : Z — (0, 1) the function assigning each terminal node z € Z to the
product of probabilities of chance moves encountered on the path from the root of the game tree to z.

Imperfect information is encoded by using information sets (infosets). Given ¢ € P, a player ¢’s
infoset I groups nodes belonging to player ¢ that are indistinguishable for her, i.e., A(h) = A(k)
for any pair of nodes h,k € I. Z; denotes the set of all player ¢’s infosets. Moreover, we let
A(I) be the set of actions available at infoset I € Z;. As customary, we assume that the game has
perfect recall, i.e., the infosets are such that no player forgets information once acquired. In EFGs
with perfect recall, the infosets Z; of each player ¢ € P are partially ordered. We write I < J



whenever infoset I € Z; precedes J € I, according to such ordering, i.e., formally, there exists a
path in the game tree connecting a node i € I to some node k£ € .J. For the ease of notation, given
I € 7,, we let C*(I) be the set of player ¢’s infosets that follow infoset I (this included), defined as
C*(I)={J €Z;| I < J}. Moreover, given I € Z; and a € A(I), welet C(I,a) C Z; be the set of
player i’s infosets that immediately follow I by playing action a, i.e., those reachable from at least
one node /i € I by following a path that includes a and does not pass through another infoset of 4.

Normal-form plans and strategies A normal-form plan for player ¢ € P is a tuple m; € II; =
Xier, A(TI) which specifies an action for each player ¢’s infoset, where 7;(I) represents the action

selected by m; at infoset I € Z;. We denote with 7 € II = X, P II; a joint normal-form plan,
defining a plan 7; € II; for each player ¢ € P. Moreover, a tuple defining normal-form plans for
the opponents of player ¢ € P is denoted as m_; € II_; = ><j LieP IT;. A normal-form strategy

i € Ap, is a probability distribution over II;, where p;[7;] denotes the probability of selecting a
plan 7; € II; according to u;. Moreover, . € Ay is a joint probability distribution defined over 11,
with p[n] being the probability that the players end up playing the plans prescribed by 7 € II.

Sequences For any player ¢ € P, given an infoset I € Z; and an action a € A(I), we denote
with o = (I, a) the sequence of player i’s actions reaching infoset / and terminating with a.
Notice that, in EFGs with perfect recall, such sequence is uniquely determined, as paths that reach
nodes belonging to the same infoset identify the same sequence of player ¢’s actions. We let
Y, ={{,a) | I €Z;,a € A(I)} U{@,} be the set of player i’s sequences, where &; is the empty
sequence of player ¢ (representing the case in which she never plays). Additionally, given an infoset
I €Z;,weleto(I) € ¥; be the sequence of player i’s actions that identify infoset 1.

Subsets of (joint) normal-form plans We now define a few useful subsets of II;. The reader is
encouraged to refer to Figure 1 for a simple example. For every player ¢ € P and infoset I € Z;,
we let I;(I) C II; be the set of player ¢’s normal-form plans that prescribe to play so as to reach
infoset I whenever possible (depending on the opponents’ actions up to that point) and any action
whenever reaching [ is not possible anymore. Moreover, for every sequence o = (I, a) € ¥;, we let
II;(0) C II;(I) C II; be the set of player ¢’s plans that reach infoset I and recommend action a at I.
Similarly, given a terminal node z € Z, we denote with I1;(z) C II; the set of normal-form plans by

which player i plays so as to reach z, while II(z) :== X, 5 II;(z) and II_;(z) := X ziep L (2).
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Figure 1: (Left) Sample game tree. Black round nodes belong to Player 1, white round nodes belong to Player 2,
and white square nodes are leaves. Rounded, gray lines denote information sets. (Center) Set II; of normal-form
plans for Player 1. Each plan identifies an action at each information set. (Right) Examples of certain subsets of
II; defined in this subsection.

Additional notation Forevery: € PandI € Z;, welet Z(I) C Z be the set of terminal nodes that
are reachable from infoset I € Z; of player i. Moreover, Z(I,a) C Z(I) C Z is the set of terminal
nodes reachable by playing action a € A([) at infoset I, whereas Z¢(I,a) := Z(I) \ Z(I,a) is the
set of terminal nodes which are reachable by playing an action different from a at /. For any player
i € P, normal-form plan 7; € II;, infoset I € Z;, and terminal node z € Z, we define p’l”_>z as a
function equal to 1 if z is reachable from I when player ¢ plays according to m;, and 0 otherwise.
Finally, we define a notion of reach such that, for each normal-form plan 7 = (m;, 7—;) € II, infoset

I € 7;, and terminal node z € Z, we have pgﬁ_w”‘) = p7,, - Ln_; e I_(2)].



2.2 External and internal regret minimization

In the regret minimization framework [33], each player ¢ € P plays repeatedly against the others
by making a series of decisions from a set X;. A regret minimizer for player ¢ € P is a device that,
at each iteration t = 1, ..., T, supports two operations: (i) RECOMMEND, which provides the next
decision x?l € X; on the basis of the past history of play and the observed utilities up to iteration ¢;
and (ii) OBSERVE, which receives a utility function u! : X; — R that is used to evaluate decision .
A regret minimizer is evaluated in terms of its cumulative regret. Two types of regret minimizers are

commonly studied, depending on the adopted notion of regret, either external or internal regret.

External regret An external-regret minimizer R¥*" for player ¢ € P is a device minimizing the
cumulative external regret of player ¢ up to iteration 7', which is defined as:

T T

RY represents how much player i would have gained by always taking the best decision in hindsight,
given the history of utilities observed up to iteration 7.

Internal regret An internal-regret minimizer R™" for player ¢ € P is a device minimizing the
cumulative internal regret of player ¢ up to iteration 7', which is defined as:

T
T . et tray ot .

Intuitively, player 4 has small internal regret if, for each pair of decisions (x;, 4;), she does not regret
of not having played &, each time she selected ;. The notion of internal regret is strictly stronger
than the notion of external regret: any algorithm with small internal regret also has small external
regret, but the converse does not hold (see Stoltz and Lugosi [31] for an example).

Regret minimizers show an interesting connection with games when the decision sets X; are the sets
of normal-form plans II; and the observed utilities u} are obtained by playing the game according to
the selected plans 7}. Letting 7* := (7});cp be the joint normal-form plan resulting at each iteration
t=1,...,T, we denote with {7’}1_, the overall sequence of plays made by the players. Then, the
empirical frequency of play i7 € Ay generated by {m'}1_ is such that for every 7 € II:

1<t<T|nt=
ﬂT(ﬂ') — ‘{ = _T|7T 7T}| (3)

If all the players play according to some external-regret minimizers, then i7" approaches the set
of (normal-form) coarse correlated equilibria, even in EFGs (see Cesa-Bianchi and Lugosi [6]
and Celli et al. [5] for further details). Moreover, Foster and Vohra [16] and Hart and Mas-Colell
[18] established that the empirical frequency of play generated by any no-internal-regret algorithm
(see Cesa-Bianchi and Lugosi [6] and Blum and Mansour [2] for some examples) converges to the
set of correlated equilibria in repeated games with simultaneous moves (i.e., normal-form games).

3 Extensive-form correlated equilibria

The definition of EFCE requires the following notion of trigger agent, which, intuitively, is associated
to each player and each of her sequences of action recommendations.

Definition 1 (Trigger agent for EFCE). Given a player i € P, a sequence 0 = (I,a) € ¥, , and a
probability distribution fi; € A, (r), an (o, fi;)-trigger agent for player 4 is an agent that takes on
the role of player v and commits to following all recommendations unless she reaches I and gets
recommended to play a. If this happens, the player stops committing to the recommendations and
plays according to a plan sampled from [i; until the game ends.

It follows that joint probability distribution ;1 € Ay is an EFCE if, for every i € P, player i’s
expected utility when following the recommendations is at least as large as the expected utility that
any (o, [i;)-trigger agent for player i can achieve (assuming the opponents’ do not deviate).



For any 1 € Ap, sequence o = (I,a) € %;, and (o, fi;)-trigger agent, we define the probability of
the game ending in a terminal node z € Z(I) as:

Do (2) = E (i, ™) E fui () | pe(2), “4)
7T1‘€Hi(0‘) irleﬂl(z)
T, €Il_;(z)

which accounts for the fact that the agent follows recommendations until she receives the recommen-
dation of playing a at I, and, thus, she ‘gets triggered’” and plays according to 7; sampled from fi;
from I onwards. Moreover, the probability of reaching a terminal node z € Z(I, a) when following
the recommendations is defined as follows:

0u(z)=| > wm) | pe(2). ©)

m€ell(z)

The definition of EFCE reads as follows (see Appendix A or the work by Farina et al. [13] for details):

Definition 2 (Extensive-form correlated equilibrium). An EFCE of an EFG is a joint probability
distribution 1 € Ay such that, for every i € P and (o, fi;)-trigger agent for player i, with o =

(I,a) € 3, it holds:
> a@uiz) = > P (Ruiz). (6)

z€Z(1,a) z€Z(I)

A joint probability distribution 1 € Ay is said to be an e-EFCE when the maximum deviation 6(u)
under  is such that:

6(p) := max max max p? - (2)ui(z) p — qu(2)ui(z) p <e. (7)
R E TSR D OF IENEL S R AEE

4 Trigger regret and relationships with EFCE

In this section, we introduce the notion of trigger regret. Intuitively, it measures the regret that each
trigger agent has for not having played the best-in-hindsight strategy. As we will show, when each
trigger agent has low trigger regret, then the empirical frequency of play is close to being an EFCE.

Given a sequence {r'}]_,, the vector of immediate utilities ut observed by player i € P after any
iteration t = 1,..., T is defined as follows. For every infoset I € Z; and action a € A(I) we have:

utll,a] == Z 1[rt, € TT_i(2)] pe(2)ui(2),
2€Z(I,a)\U jec(1,a) Z(J)

which represents the utility experienced by player ¢ if the game ends after playing action a at
infoset I, without going through other player ¢’s infosets and assuming that the other players play
as prescribed by the plans 7* ; € II_; at iteration ¢. Notice that the summation is over the terminal
nodes immediately reachable from I by playing a and the payoff of each terminal node is multiplied
by the probability of reaching it given chance probabilities.

For 7 € P, the following recursive formula defines player ¢’s utility attainable at infoset / € Z; when
a normal-form plan 7; € II; is selected:

Vi(m) =dlll,m(D]+ > Vi(m). (8)
Jec(I,mi(I))

Definition 3 (Trigger regret). For every player i € P and sequence o = (I,a) € %;, we let RL be
the trigger regret for sequence o, which we define as follows:

’ﬁ',,EHl(I) o

RT = max {iﬂ[wfeﬂi(a)] (V}(ﬁi)—W(wf))}.



The trigger regret for c = (I, a) represents the regret experienced by the trigger agent that gets
triggered on sequence o, i.e., when infoset [ is reached and action a is recommended. Notice that R
only accounts for those iterations in which 7r§ € II;(0), i.e., intuitively, when the actions prescribed
by the normal-form plan 7! trigger the agent associated to sequence o.

The following theorem shows that minimizing the trigger regrets for each player 7+ € P and sequence
o € X; allows to approach the set of EFCEs.

Theorem 1. At all times T, the empirical frequency of play ii” (Equation 3) is an e-EFCE, where

RT
€ := max max —-
i€EP oc€X; T
RT
Corollary 1. Iflim sup max max —= < 0, then limsup 6( ) <0, that is, for any € > 0, eventu-
T—oo €P 0€L; T—o0

ally the empirical frequency of play iT becomes an e-EFCE.

5 Laminar regret decomposition for trigger regret

In order to design an algorithm minimizing trigger regrets, we first develop a new regret decomposition
that extends the laminar regret decomposition framework introduced by Farina et al. [12]. Our
decomposition exploits the structure of the EFG to show that trigger regrets can be minimized by
minimizing other suitably defined regret terms which are local at each infoset.

First, for each player ¢ € P, sequence 0 = (J,a) € %;, and infoset I € C*(J) (i.e., any infoset
following from J, this included), we define the notion of subtree regret as follows:

Rpp= mox, {Zn ()] (Vi () - Vf(wf))}.

Each term RY 1 represents the regret at infoset / experienced by the trigger agent that gets triggered
on sequence o = (J, a). Differently from the trigger regret R, which is defined only for the infoset
J of o, the subtree regrets RZ, ; are defined for all the infosets I € Z; such that J < I.

Remark 1. Given playeri € P, it is immediate to see that, lfRZ’I =o(T) foreacho = (J,a) € %;

and I € C*(J), then RY = o(T) for every o € %.;. Therefore, we can safely focus on the problem of
minimizing subtree regrets, as this will automatically guarantee convergence to an EFCE.

Next, we need to introduce, for every player ¢+ € P and infoset [ € Z;, the following parameterized
utility function defined at each iterationt = 1,...,7"

ut,-A(J)aaHuIa > Vi 9)
JeC(I,a)

which represents the utility that player ¢ gets, at iteration ¢, by playing action a at I and following
the actions prescribed by 7! at the subsequent infosets. Then, for each sequence o = (J,a’) € 3;,
infoset I € C*(J), and action a € A( ), the laminar subtree regret of action a is defined as:

an € 1(0)] (a}(a) — i (x!(1)) ). (10)

while, foro = (J,a') € ¥;and I € C*( ), the laminar subtree regret is:

RZJ = aglf()}) R?;La. (11)

The following two lemmas show that the subtree regrets can be minimized by minimizing the laminar
subtree regrets at all the infosets of the game.

Lemma 1. The subtree regret for each player i € P, sequence o = (J,a') € ¥;, and infoset
I € C*(J) can be decomposed as:

RZI_ max ola+ Z RU[’
acAlD) I'ec(I,a)



The lemma is proved by recursively applying the definitions of RUT’ ; and V{(#;), and by exploit-
ing Equation (9). Then, Lemma 1 is used to show the following.

Lemma 2. For every player i € P, sequence o = (J,a’) € X, and infoset I € C*(J), it holds:

RT < 17 e (I RY . 12
o, ] = frqrenl'?;)zl) Z [7T ( )] o,l ( )
I'ec*(I)

6 Internal counterfactual regret minimization

We propose the internal counterfactual regret minimization algorithm (ICFR) as a way to minimize
the laminar subtree regrets described in the previous section. At each iteration ¢, ICFR builds a
normal-form plan 7} in a top-down fashion by sampling an action locally at each infoset, following a
simple rule: if the current infoset can be reached through 7!, then an action is sampled according to
an internal-regret minimizer; otherwise, an external-regret minimizer is employed.

In order to minimize the laminar subtree regrets,

ICFR needs to instantiate different regret minimiz-

ers for each infoset. For every infoset I € Z;, the Algorithm 1 ICFR (for Player 7)

algorithm instantiates an internal-regret minimizer
'NT employing an arbitrary no-internal-regret al-

gorithm. Moreover, let X5(I) C ¥; be the set of fe 1

sequences of player ¢ that do not allow to reach while ¢ < T do

1:
2
3
4
I and whose last action is played at an infoset 21 m; <= SAMPLEINTERNAL
7
8

function ICFR(7)
Initialize the regret minimizers

: Observe u! (i.e., ut[I, a] for each pair (I, a))
preceding I. Formally, UPDATEINTERNAL(#?, u!)
() ={(J,a) eX; | J 2 1,a¢ o(I)}. : )
9: function SAMPLEINTERNAL

t—t+1
ICFR instantiates an additional external-regret 10: for I € T, in a top-down order do

minimizer REX[ for each sequence o € 3¢(I). 1L if 7! € IT;(1) then
? . INT
The internal-regret minimizer R’ is responsible g dlse (7} + R7".RECOMMEND()
for the minimization of the laminar subtree regrets 4. ot S N (L (T) | T < T}
RT | associated to trigger sequences o = (I,a) € 15 mi(I) + R ;-RECOMMEND()

Y, for each a € A(T). Instead, the external-regret  16: function UPDATEINTERNAL(r!, u)

minimizers REX[ are responsible for the laminar ~ 17:  for I € Z; do

. INT t . Lot
subtree regrets of sequences o € X¢([). }gj Zﬁ; (;%B;E?I\/)Eg [m: € IL(D)] - 1)
20: X .OBSERVE(L[n} € IL;(0)] - 4})

Algorithm 1 provides a description of the proce-
dures adopted by ICFR. At iteration ¢ and for each
I € Z;, an action is sampled as follows: if the (possibly partial) normal-form plan 7! sampled
up to this point allows I to be reached (i.e., it is still possible that ! € II;(I)), then an action is
selected according to the internal-regret minimizer RT'" (Line 12). Otherwise, if I cannot be reached
through the (possibly partial) plan 7!, then we let 0% be the unique sequence in X¢(I) whose actions
are prescribed by 7! (Line 14). In this case, the player follows the strategy recommended by the

external-regret minimizer R}", (Line 15). In the update procedure, the regret minimizers are fed
I

with the vectors ﬁ} which, with an abuse of notation, denote the vectors whose components are
defined by the values of the corresponding parameterized utility functions 4% in Equation (9). In
particular, for each I € Z;, the internal-regret minimizer R'N" observes the utility vector i} only if the

sampled plan 7! allows to reach infoset 7, while each external-regret minimizer RyY7 is updated only

if w! prescribes all the actions in the corresponding sequence o (Line 18 and Line 20, respectively).
The crucial insight is that for each infoset I € Z;, no matter the action selected at I, only one of the
regret minimizers will receive a non-zero utility. Consequently, only one of the regret minimizers can
cumulate regret at time ¢, and that is the regret whose recommendation we follow. Therefore, it is

possible to show that the empirical frequency of play i” obtained via ICFR converges almost surely
to an EFCE. We start with the following auxiliary result.

Lemma 3. ForanyI,J € T;: 1 < J,if RL ; = o(T) forall o = (I,a) € ¥; then R, ;, ; = o(T).

Then, our main result reads as follows:
Theorem 2. When all the players play according to ICFR, i7" converges almost surely to an EFCE.



Example We provide a simple example illustrating I

the key ideas of ICFR. Figure 2-Left describes an EFG /)'\ Trigger sequence
with two infosets I, J of the same player (player 7). J N b\j (I,a) (1,b) (J,c) (J,d)
Even in such a simple setting ICFR has to ensure that /( I BT ORT. % x
six laminar subtree regrets are properly minimized (see E/” d\J ; ﬁ;’l z??l AT BT

b ‘a,J b, J ‘c,J “d,J

Figure 2-Right). To simplify the notation, throughout
the example we write 12 ; in place of R{; , ; (the Figure 2: (Left) EFG with two infosets I and .J
remaining regrets are treated analogously). ICFR in- of player ¢. (Right) The laminar subtree regrets.
stantiates one internal-regret minimizer for each infoset

of player i. We denote them by R'" and R}"", respec-

tively. Then, we observe that X¢(J) = {(I,b)}, because b is the only action of player ¢ satisfying
the following conditions: (i) it departs from an infoset which is on the path from the root node to
J and (ii) if player ¢ selected b at infoset I, she would no longer be able to reach J. Therefore,
ICFR instantiates the external-regret minimizer R;%;.

Suppose to be at iteration ¢ of ICFR. The sampling procedure starts from infoset I. Being the
root of the EFG, [ is always reached by player i. Therefore, an action is selected following the
recommendation of the internal-regret minimizer R'N". During the update procedure, RN is provided
with the utility resulting from the normal-form plan 7! obtained from the sampling procedure.

Intuitively, this ensures that Rf ; and RbT 1 are small. Now, there are two possibilities:

Case wf(] ) = a. The partial plan wf allows J to be reached. Therefore, at J, an action is chosen
according to the strategy recommended by R'}'". Then, in the update procedure, the internal-regret
minimizer R'}'" is provided with the observed utility, while the external-regret minimizer is not

updated. This ensures that RPT s and ]%dT ; are managed properly. By Equation 11, the choice at ¢ does
not impact R;;F ; since w} ¢ TI;(I,b), while RaT ; is affected by the choice at J because a € o(J).
The internal-regret minimizer R'J'" guarantees that RCT’J = o(T) and f%g ; = o(T). Then, by using
Lemma 3, we have that RaT 7 = o(T') holds as well.

Case 7! (I) = b. We have that o/, = (I, b). An action at .J is sampled according to the external-regret

minimizer R;*}, which is then provided with the observed utility (the internal-regret minimizer

R} is not updated). This ensures that the increase in RbT s 1s small. The other regret terms are not
impacted by the choice at ¢.

7 Experimental evaluation

We evaluate the convergence of ICFR on the standard benchmark games for the computation of
correlated equilibria. We use parametric instances from four different multi-player games: Kuhn
poker [22], Leduc poker [30], Goofspiel [27], and Battleship [13]. Instances of the Kuhn, Leduc,
and Goofspiel games are parametric in the number of players p and in the number of card ranks r.
To increase the readability, we denote by Kp.r the Kuhn poker instance with p players and r ranks
(the other instances are treated analogously). Our Battleship instance (denoted by BS) has a grid
of size 2 x 2 and maximum number of rounds per player equal to 3. A detailed description of the
games is provided in Appendix C.1. We use Regret matching [18] for external-regret minimizers,
and the no-internal-regret algorithm by Blum and Mansour [2] for internal-regret minimizers. All
experiments are run on a 64-core machine with 512 GB of RAM.

Convergence of ICFR Figure 3—Center displays the maximum deviation §(zi”") as a function
of the number of rounds 7. According to Equation (7), the strategy 17 is guaranteed to be a
) (ﬁT)-EFCE. We set a maximum number of 10% iterations and, for each instance, we provide
the average and the standard deviation computed over 50 different seeds. First, we notice that
ICFR attains roughly an empirical convergence rate of O(1/T'). The performance over the Battleship
instance suggests that equilibria with large support size are significantly more challenging to be
computed. Second, we remark that, unlike recent algorithms for computing EFCEs by Farina et al.
[13, 14], ICFR can be applied to games with more than two players including chance. Moreover,
since EFCE C EFCCE C NFCCE, ICFR also provides a flexible way to compute e-EFCCEs and
€-NFCCEs. In the former case, the only known algorithm can only handle games with two players
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Figure 3: (Left) Dimension of the game instances in terms of number of players and infosets/sequences for
each player. (Center) Convergence of ICFR. (Right) Social welfare attained at different e-EFCEs computed
via ICFR (black dots corresponds to different seeds).

and no chance [15]. In the latter case, the recent algorithms by Celli et al. [5] are significantly
outperformed. For example, previous algorithms cannot reach a 0.1-NFCCE in less than 24h on a
Leduc instance with 1200 total infosets and a one-bet maximum per bidding round. ICFR reaches
€ = 0.1 in around 9h on an arguably more complex Leduc instance (i.e., more than 9k total infosets
and a two-bet maximum per round). Further details on the computation of EFCCEs and NFCCEs are
provided in Appendix C.2, together with the plots of the decoupled EFCE deviations of each player.

Social Welfare Figure 3—Right provides a visual depiction of the guality of the solutions attained
by ICFR in terms of their social welfare. The figure displays the payoffs obtained for 100 different
seeds in a two-player Goofspiel instance without chance (i.e., the prize deck is sorted).

Broader Impact

Correlated equilibria provide an appropriate solution concept for coordination problems in which
agents have arbitrary utilities, and may work towards different objectives. The study of uncoupled
dynamics converging to correlated equilibria in problems with sequential actions and hidden informa-
tion lays new theoretical foundations for multi-agent reinforcement learning problems. Most of the
work in the multi-agent reinforcement learning community either studies fully competitive settings,
where agents play selfishly to reach a Nash equilibrium, or fully cooperative scenarios in which
agents have the exact same goals. Our work could enable techniques that are in-between these two
extremes: agents have arbitrary objectives, but coordinate their actions towards an equilibrium with
some desired properties.

As we argued in the paper, the social welfare that can be attained via a Nash equilibrium (that is, by
playing selfishly) may be significantly lower than what can be achieved via a correlated equilibrium.
We provided some empirical evidences that ICFR computes equilibria which attain a social welfare
‘not too far’ from the optimal one. This could have an arguably positive societal impact when
applied to real economic problems. However, further research in this direction is required to prevent
‘winner-takes-all’ scenarios in problems with an unbalanced reward structure where equilibria with
high social welfare may just award players with the largest utilities at the expense of the others. This
could provide a way to reach fair equilibria both in theory and in practice.

Acknowledgments and Disclosure of Funding

This work is based on work supported by the Italian MIUR PRIN 2017 Project ALGADIMAR
“Algorithms, Games, and Digital Market”, the National Science Foundation under grants I1IS-1718457,
1IS-1617590, 11S-1901403, and CCF-1733556, and the ARO under awards W91 1NF-17-1-0082 and
WO11NF2010081. Gabriele Farina is supported by a Facebook fellowship.



References

[1] Robert J Aumann. Subjectivity and correlation in randomized strategies. Journal of mathemati-
cal Economics, 1(1):67-96, 1974.

[2] Avrim Blum and Yishay Mansour. From external to internal regret. Journal of Machine Learning
Research, 8(Jun):1307-1324, 2007.

[3] Noam Brown and Tuomas Sandholm. Superhuman Al for heads-up no-limit poker: Libratus
beats top professionals. Science, page eaaol733, 2017.

[4] Andrea Celli, Stefano Coniglio, and Nicola Gatti. Computing optimal ex ante correlated
equilibria in two-player sequential games. In Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems (AAMAS), pages 909-917, 2019.

[5] Andrea Celli, Alberto Marchesi, Tommaso Bianchi, and Nicola Gatti. Learning to correlate

in multi-player general-sum sequential games. In Advances in Neural Information Processing
Systems, pages 13055-13065, 2019.

[6] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

[7] Xi Chen and Xiaotie Deng. Settling the complexity of two-player nash equilibrium. In 2006
47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pages 261-272.
IEEE, 2006.

[8] C. Daskalakis, P.W. Goldberg, and C.H. Papadimitriou. The complexity of computing a Nash
equilibrium. SIAM Journal on Computing, 39(1):195-259, 2009.

[9] Miroslav Dudik and Geoffrey J Gordon. A sampling-based approach to computing equilibria in
succinct extensive-form games. In Proceedings of the Twenty-Fifth Conference on Uncertainty
in Artificial Intelligence, pages 151-160, 2009.

[10] Gabriele Farina and Tuomas Sandholm. Polynomial-time computation of optimal correlated
equilibria in two-player extensive-form games with public chance moves and beyond. In
Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS),
2020.

[11] Gabriele Farina, Andrea Celli, Nicola Gatti, and Tuomas Sandholm. Ex ante coordination and
collusion in zero-sum multi-player extensive-form games. In Advances in Neural Information
Processing Systems (NeurlIPS), 2018.

[12] Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Online convex optimization for
sequential decision processes and extensive-form games. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), volume 33, pages 1917-1925, 2019.

[13] Gabriele Farina, Chun Kai Ling, Fei Fang, and Tuomas Sandholm. Correlation in extensive-
form games: Saddle-point formulation and benchmarks. In Advances in Neural Information
Processing Systems, pages 9229-9239, 2019.

[14] Gabriele Farina, Chun Kai Ling, Fei Fang, and Tuomas Sandholm. Efficient regret minimization
algorithm for extensive-form correlated equilibrium. In Advances in Neural Information
Processing Systems, pages 5187-5197, 2019.

[15] Gabriele Farina, Tommaso Bianchi, and Tuomas Sandholm. Coarse correlation in extensive-
form games. In The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20),
2020.

[16] Dean P Foster and Rakesh V Vohra. Calibrated learning and correlated equilibrium. Games and
Economic Behavior, 21(1-2):40, 1997.

[17] Geoffrey J Gordon, Amy Greenwald, and Casey Marks. No-regret learning in convex games. In
International Conference on Machine learning (ICML), pages 360-367, 2008.

[18] Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to correlated equilib-
rium. Econometrica, 68(5):1127-1150, 2000.

[19] Wan Huang and Bernhard von Stengel. Computing an extensive-form correlated equilibrium
in polynomial time. In International Workshop on Internet and Network Economics, pages
506-513. Springer, 2008.

10



[20] Albert Xin Jiang and Kevin Leyton-Brown. Polynomial-time computation of exact correlated
equilibrium in compact games. Games and Economic Behavior, 91:347-359, 2015.

[21] Elias Koutsoupias and Christos Papadimitriou. Worst-case equilibria. In Annual Symposium on
Theoretical Aspects of Computer Science, pages 404—413. Springer, 1999.

[22] Harold W Kuhn. A simplified two-person poker. Contributions to the Theory of Games, 1:
97-103, 1950.

[23] Matej Moravcik, Martin Schmid, Neil Burch, Viliam Lisy, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level
artificial intelligence in heads-up no-limit poker. Science, 356(6337):508-513, 2017.

[24] H. Moulin and J-P Vial. Strategically zero-sum games: the class of games whose completely
mixed equilibria cannot be improved upon. International Journal of Game Theory, 7(3):
201-221, 1978.

[25] John F Nash. Equilibrium points in n-person games. Proceedings of the national academy of
sciences, 36(1):48-49, 1950.

[26] Christos H Papadimitriou and Tim Roughgarden. Computing correlated equilibria in multi-
player games. Journal of the ACM (JACM), 55(3):14, 2008.

[27] Sheldon M Ross. Goofspiel—the game of pure strategy. Journal of Applied Probability, 8(3):
621-625, 1971.

[28] Tim Roughgarden and Eva Tardos. How bad is selfish routing? Journal of the ACM (JACM),
49(2):236-259, 2002.

[29] Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic, and
logical foundations. Cambridge University Press, 2008.

[30] Finnegan Southey, Michael H. Bowling, Bryce Larson, Carmelo Piccione, Neil Burch, Darse
Billings, and D. Chris Rayner. Bayes’ bluff: Opponent modelling in poker. In Conference on
Uncertainty in Artificial Intelligence (UAI), pages 550-558, 2005.

[31] Gilles Stoltz and Gébor Lugosi. Internal regret in on-line portfolio selection. Machine Learning,
59(1-2):125-159, 2005.

[32] Bernhard von Stengel and Frangoise Forges. Extensive-form correlated equilibrium: Definition
and computational complexity. Mathematics of Operations Research, 33(4):1002—-1022, 2008.

[33] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In International Conference on Machine Learning (ICML), pages 928-936, 2003.

[34] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret mini-
mization in games with incomplete information. In Advances in Neural Information Processing
Systems (NeurIPS), pages 1729-1736, 2008.

11



