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Exact Equivocation Expressions for Wiretap
Coding over Erasure Channel Models

Willie K. Harrison, Senior Member, IEEE

Abstract—Traditional security analysis of wiretap codes re-
quires evaluation of equivocation in the asymptote as the code
blocklength tends to infinity. Finite blocklength codes, however,
require exact expressions for equivocation so as to allow for
comparison of parameterized codes across different code con-
structions or within the same construction. In this paper, we
present two exact equivocation expressions for coset coding over
the wiretap channel model with binary erasure channels (BECs)
for both the main channel and the eavesdropper’s channel. The
expressions are functions of the algebraic structure of the binary
wiretap codes, and they also hold for the special case when the
main channel is noiseless.

Index Terms—Information theoretic security, wiretap codes,
finite blocklength analysis, binary erasure channels.

I. INTRODUCTION

Security efforts at the physical-layer of a communication
system are known to be capable of providing a standalone
layer of protection against eavesdropping [1], [2] that can also
enhance security at other layers in the protocol stack [3], [4].
Recent results have further shown the potential for physical-
layer security techniques in real-world environments. Achiev-
ing secure communication over real wireless channels requires
strategic antenna placement, precise control of the transmit
power, and appropriate application of wiretap coding [5].

Analysis of the security gained through wiretap coding
has traditionally been accomplished with either weak, strong,
or semantic secrecy metrics (see [6], [7] and references).
Each of these metrics is information theoretic in nature;
however, each metric lends itself to security analysis only in
the asymptotic blocklength regime. Real-world application of
secrecy coding, especially when smaller blocklength codes are
deployed, requires the security analysis to be applied over the
finite blocklength regime. A few works have provided bounds
for security measures at finite blocklength [8], [9], but these
bounds are quite loose for small blocklength codes, and do not
directly take into account the algebraic structure of the code.
Exact expressions of security for specific wiretap codes can
be used to identify best codes [10], [11], and thereby discover
the ultimate achievable limits of wiretap coding in practice.
If these expressions can be linked to the algebraic structure
of the code, their value increases, as the results can guide
overarching design principles for constructing better codes.

In this paper, we provide two expressions for measuring the
exact amount of information theoretic security for binary coset
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codes designed to operate over networks with binary erasure
channels (BECs) connecting the transmitter and legitimate
receiver as well as the transmitter and an eavesdropper. These
expressions are functions of the algebraic structure of the
wiretap code constructions, and are generalized forms of the
expressions that apply when the intended receiver has a noise-
less channel. High-level design principles to find better/best
codes are then inferred from the expressions.

II. PRELIMINARIES

A. Channel Model
Let M be a secret message chosen uniformly at random

over the alphabet M = {1, 2, . . . , 2k}. Alice wishes to
communicate M to Bob while leaking as little information as
possible to an eavesdropper named Eve. Alice encodes M into
a length-n codeword X

n, which is transmitted. Bob observes
Y

n through the main channel of communication and decodes
the message to form M̂ , while Eve observes Z

n through
the eavesdropper’s channel of communication. This channel
model is known as the wiretap channel model, and the first
version of this model was published in [1]. For this work, both
the main channel and the eavesdropper’s channel are BECs,
where input bits are erased independently with probabilities
✏m and ✏e over the respective channels.

Communication over the wiretap channel model is done
with two goals in mind:

1) reliability for Bob, i.e., Pr(M̂ 6= M) < �m, and
2) security against Eve, i.e., H(M)�H(M |Zn) < �e,

where �m and �e are small and chosen by the code designer,
H(·) is the usual average entropy function [12], and H(M)�
H(M |Zn) is the exact average leakage to the eavesdropper
rather than a weaker asymptotic metric. The security metric

� = H(M |Zn) =
X

zn2Zn

p(zn)H(M |Zn = z
n) (1)

is termed the average equivocation, where z
n is a realization

of Zn, p(zn) is the probability mass function of Zn, and Zn

is the range of Zn. Clearly, the security constraint is satisfied
to a greater degree as � is made closer to H(M). This paper
provides two expressions for calculating the exact equivocation
H(M |Zn = z

n) based only on algebraic properties of a coset-
style wiretap code, which can be used to obtain � in (1). Such
expressions are valuable, since they yield insights into good
finite blocklength code design, and are easy to compute [2].
For small codes, our expressions can be used to calculate �
exactly by summing over all possible z

n 2 Zn. For larger
codes the expressions can be used, along with Monte Carlo
simulations, to estimate H(M |Zn) as outlined in [13]. Further
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note that our techniques may also be used to evaluate the worst
case exact equivocation as is done for wiretap channels of type
II (e.g., see [14], [15]).

B. Coding for Secrecy
In this paper, we consider a coset-coding structure that is

capable of keeping secrets and correcting errors over BECs.
The basic code structure was first presented in [16] and
two-edge type low-density parity-check (LDPC) codes were
applied to the structure later in [17] (see also [6], [18]). Let

H =


H1

H2

�
(2)

be an n(1�R)⇥n parity check matrix, and H1 be an n(1�
R1) ⇥ n parity check matrix, where R1 > R. H defines the
code C with generator matrix G, and H1 defines the code C1
with generator matrix

G1 =


G

0

G

�
. (3)

Here G
0 is an n(R1�R)⇥n matrix, which must have linearly

independent rows not in C so as to form a full-rank generator
G1. Of course GH

T = 0 and G1H
T
1 = 0, as expected.

The encoding of an n(R1 � R) = k bit message is
accomplished by

x
n =

⇥
m v

⇤
G1 =

⇥
m v

⇤ G0

G

�
= mG

0 + vG, (4)

where v is an auxiliary message comprised of nR bits chosen
uniformly at random from F

nR
2 . Effectively, the rows of G

form a basis of a linear block code C, and G
0 allows one to

map onto a subset of the cosets of C using (4). The portion
of x

n that is mG
0 chooses the coset, while the portion vG

randomizes the codeword within the prescribed coset.
If G1 is n ⇥ n, then the code allows no error correction

since R1 = 1, and every n-tuple in F
n
2 is a valid codeword;

thus, H1 has zero rows. This forms a special case that is often
used when the main channel is noiseless. Assuming R1 < 1,
the decoder first corrects errors using H1 as the parity check
matrix to form an estimate x̂

n of the transmitted codeword
x
n. For a BEC, this can be accomplished efficiently using

message passing over a Tanner graph corresponding to H1 [4].
Let us assume for now that x̂n = x

n (note that this is always
true when the main channel is noiseless). The decoder next
calculates the syndrome

s = xH
T
2 =

⇥
m v

⇤ G0

G

�
H

T
2 = mG

0
H

T
2 + vGH

T
2 . (5)

Since the rows of H2 are a subset of a basis for the dual space
of G, the second term is zero, and

s = mG
0
H

T
2 . (6)

If G
0 and H2 are chosen such that G

0
H

T
2 = Ik (the k ⇥ k

identity), then s = m [13]. Either way, the matrix G
0
H

T
2 forms

a bijective mapping between s and m. If the set of erasures
over the BEC cannot be corrected, then multiple messages
may be consistent with the observation, although all consistent
codewords may still map to the same message.

TABLE I
CODE TABLE FOR COSET CODE DEFINED BY (8).

v = 0 v = 1
m = [0 0] [0 0 0 0] [1 1 1 1]
m = [0 1] [0 1 0 1] [1 0 1 0]
m = [1 0] [0 0 1 1] [1 1 0 0]
m = [1 1] [0 1 1 0] [1 0 0 1]

By way of example, consider a specific code with n = 4,
R = 0.25, and R1 = 0.75. Messages are of size k = n(R1 �
R) = 2 bits. This example code is fully defined by

H =


H1

H2

�
=

2

4
1 1 1 1
0 1 0 1
0 0 1 1

3

5 , (7)

and

G1 =


G

0

G

�
=

2

4
0 0 1 1
0 1 0 1
1 1 1 1

3

5 . (8)

The codewords associated with each (m, v) pair are specified
in Table I. For this particular code, the message to syndrome
mapping is m = s. Since G1 is 3⇥4, the code design allocates
4 � 3 = 1 coded bit for error correction. Furthermore, since
G is comprised of only one row, then exactly one coded bit is
allocated towards secrecy. The remaining two coded bits are
information bits for the message.

III. EQUIVOCATION EXPRESSIONS

This section presents the main results of the paper: two exact
expressions for H(M |Zn = z

n) when the coding procedure
in Section II-B is used over the channel model specified
in Section II-A. Each expression is followed by a proof,
and both expressions are shown to be generalizations that
cover the noiseless main channel as a special case. Examples
are provided, and a discussion of the implications of these
expressions on coset-style wiretap code design is given.

A. Rank Method
Consider a matrix B = [b1 b2 · · · bn], where bi is the ith

column of B. For S ✓ {1, 2, . . . , n}, BS is a submatrix of
B formed by concatenating together only the columns of B

specified in the index set S. Furthermore, let r(zn) = {i :
zi 6= ?}, where zi is the observation of xi (the ith coded bit)
through a BEC, and the symbol ‘?’ indicates an erased bit.

Theorem 1. The exact equivocation for the observation z
n

over a BEC, given the coding scheme from Section II-B is

H(M |Zn = z
n) = H(M)� rank[(G1)r(zn)] + rank[Gr(zn)]

= k � rank[(G1)r(zn)] + rank[Gr(zn)]. (9)

Proof. First, note that there are 2rank[(G1)r(zn)] unique tuples
in the code table for the bit locations specified by the index
set r(zn), and there are 2rank[Gr(zn)] unique tuples in these bit
locations for any specific row of the code table. These tuples
may be repeated throughout the table, but these ranks still
specify the unique entries as stated. Now, there are 2k rows
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(cosets) in the code table, meaning there are 2k+rank[Gr(zn)]

total tuples if we don’t count duplicates across rows.
Recognize that each unique tuple must be in the same

number of cosets. To see this, consider the cosets that have
a consistent entry with an arbitrarily chosen z

n. Since cosets
are offsets from C, all consistent cosets with z

n have the same
list of unique tuples in the revealed bit locations. Since C
and C1 are vector subspaces in F

n
2 , the number of consistent

codewords to z
n is a power of two, which is the same power

of two regardless of the specific bit values in the revealed bits
of z

n. Thus, every unique tuple in the code table must be in
the same number of cosets.

Now we calculate the number of consistent cosets with the
observation z

n as the number of rows that contain the tuple
consistent with z

n. This is the simple ratio of total tuples
(discounting duplicates across rows, but allowing duplicates
in separate rows) over the total number of unique tuples in
the code table, which is calculated as

2k+rank[Gr(zn)]

2rank[(G1)r(zn)]
. (10)

Since all messages are assumed to be equally likely, then all
cosets are a priori equally likely, and

H(M |Zn = z
n) = log2

✓
2k+rank[Gr(zn)]

2rank[(G1)r(zn)]

◆
(11)

= k + rank[Gr(zn)]� rank[(G1)r(zn)].
(12)

An alternative proof of this theorem was given in [18].

Consider the example code given by (7) and (8), with code
table as in Table I. Suppose z

n = [0 ? ? 1]; then r(zn) =
{1, 4}. Clearly rank[(G1)r(zn)] = 2, and rank[Gr(zn)] = 1.
The difference in ranks is the reduction in equivocation from
k = 2, resulting in H(M |Zn = z

n) = 1 bit. Further notice
that the ratio (10) perfectly counts the number of consistent
cosets to z

n as two cosets, and that Table I confirms this with
consistent codewords in the second and third rows, verifying
the result of one bit of equivocation.

B. Zero Patterns Method
Consider the code C with blocklength n. For S ✓

{1, 2, . . . , n}, let N [S] be the number of codewords in C with
zeros for all bit locations in the index set S. If S = ;, then
N [S] = |C|, since all codewords satisfy the requirement to
be counted. (Note that we will use this expression to count
codewords that are consistent to a channel observation, and
clearly this interpretation for the empty set is the proper
interpretation for counting consistent codewords when no bits
have been revealed.) Further let N1[S] be the number of
codewords in C1 with zeros for all bit locations in the index
set S. The expression r(zn) = {i : zi 6= ?}, as before.

Theorem 2. The exact equivocation for the observation z
n

over a BEC, given the coding scheme from Section II-B is

H(M |Zn = z
n) = log2 N1[r(z

n)]� log2 N [r(zn)]. (13)

Proof. Note from Theorem 1, that H(M |Zn = z
n) is not

a function of the specific message to be transmitted nor the

specific codeword chosen by the encoder; thus, without loss of
generality in the expression of the exact equivocation, we may
assume that the encoder chooses the all-zero codeword (which
always corresponds to the all-zero message). Since all cosets in
the code table are simply offsets of C, then all cosets consistent
with the observation z

n over the erasure channel have the same
number of consistent codewords. One of the consistent cosets
is the code C, which carries the all-zero codeword.

The number of consistent codewords to z
n in any consis-

tent coset is N [r(zn)], and the total number of consistent
codewords in C1 is N1[r(zn)]. Thus, the number of consistent
cosets to z

n is simply the ratio

N1[r(zn)]

N [r(zn)]
. (14)

Since all messages are assumed to be equally likely, then all
cosets are a priori equally likely, and

H(M |Zn = z
n) = log2

✓
N1[r(zn)]

N [r(zn)]

◆
(15)

= log2 N1[r(z
n)]� log2 N [r(zn)]. (16)

Consider again the example code given by (7) and (8), with
code table as in Table I. Suppose z

n = [0 ? ? 1] and r(zn) =
{1, 4}, as before. Note from Table I that N [r(zn)] = 1 because
one codeword from C (the top row in the code table) has zeros
in both the first and fourth bit locations. Also, N1[r(zn)] =
2 because two codewords from C1 (the entire collection of
codewords in the code table) have zeros in the first and fourth
bit locations. Thus, Theorems 1 and 2 consistently calculate
the equivocation for this example to be one bit.

C. Noiseless Main Channel Special Case
When coding for a noiseless main channel, no error cor-

rection for Bob is needed, and the entire coding overhead
is allocated to keeping the message secure. As mentioned in
Section II-B, this results in a square n ⇥ n matrix G1. The
matrix G is then (n� k)⇥ n, H1 is an empty matrix, and v

is (n � k) bits long. Since G1 is square, and full rank, then
C1 = F

n
2 .

Corollary 1. When the coding scheme from Section II-B is
such that G1 is n⇥ n, then the exact equivocation is

H(M |Zn = z
n) = H(M)� |r(zn)|+ rank[Gr(zn)]. (17)

The proof only requires one to note that if G1 is n ⇥ n,
then it must have full column rank as well as row rank, and
rank[(G1)r(zn)] = |r(zn)| in (9). An alternative proof of this
Corollary was given in [13].

Corollary 2. When the coding scheme from Section II-B is
such that G1 is n⇥ n, then the exact equivocation is

H(M |Zn = z
n) = n� |r(zn)|� log2 N [r(zn)]. (18)

This corollary is proved by noting that a full-rank square
matrix G1 implies that N1[r(zn)] = 2n�|r(zn)| because
C1 = F

n
2 . This substitution into (13) gives the result.
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Fig. 1. All (n = 8, k = 4) binary coset codes for the noiseless main channel.
The best code’s equivocation curve is the dark line, and the generator for the
code is defined by (19).

D. Examples
This section considers two codes, and highlights the applica-

tion of the new expressions for H(M |Zn = z
n) in calculating

�. The expressions allow the codes to be compared side by
side. Let n = 8, R1 = 0.75, and R = 0.5. The number of
information bits is then k = n(R1 �R) = 2 bits. Let

G =

2

664

1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

3

775 (19)

for both codes. Coincidently, G is an equivalent generator to
that of the Reed Muller code with order one and blocklength
eight [19]. This generator also defines the best wiretap code for
all possible erasure probabilities in the eavesdropper’s channel
✏e when n = 8, R1 = 1, and R = 0.5, which is suitable
for the noiseless main channel case with k = 4. Fig. 1 shows
H(M |Zn) for all such codes (enumerated ignoring isomorphic
generators) when the main channel is error free, with the black
line giving the equivocation curve for the code defined by (19).

Now, consider two different G0 options that can be coupled
with G in (19) as shown in Section II-B to form codes for the
erasure main channel case, where Code A has

G
0
A =


0 0 1 1 0 1 1 1
1 1 1 1 0 1 0 0

�
, (20)

and Code B has

G
0
B =


0 0 1 1 0 1 1 0
1 1 1 1 0 1 0 1

�
. (21)

The algebraic properties for Codes A and B are detailed in
Table II, and the average equivocation curves for both codes
are plotted in two ways in Fig. 2. In the figure, the average
equivocation is plotted versus the eavesdropper’s erasure prob-
ability ✏e, and then also plotted versus the number of revealed
bits |r(zn)|. These curves are average functions of the exact
equivocation expressions calculated over all possible revealed-
bit patterns using the data tabulated in Table II. Notice that
the differences between the codes occur when |r(zn)| is high
(or equivalently when ✏e is low). Code A exhibits higher
equivocation than Code B, but Code B also allows all erasure
patterns of size one to be corrected, which may be useful for
Bob. Finally, we see that the wiretap II case is easily solved
for both codes given the data in Table II.
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Fig. 2. Average equivocation � = H(M |Zn) for Codes A and B.

E. Implications on Wiretap Code Design

The elegance and simplicity of the theorems in this paper
make them particularly useful. The explicit linking of equivo-
cation to structural code parameters for erasure channel vari-
ants of the wiretap channel model has only been accomplished
to date for the rank method, where these results are restated as
Theorem 1 and Corollary 1 with simplified proofs from those
given in [18], [13].

In this paper, we make a nice extension for the noiseless
main channel case to zero patterns in codewords using Corol-
lary 2. This new insight shows that codeword coverage is
important in ensuring that revealed-bit patterns do not leak
information. Consider the structure of Corollary 2, where we
see that a revealed-bit pattern r(zn) is secure if and only
if n � |r(zn)| � log2 N [r(zn)] = k, which implies that for
|r(zn)| = (n � k), the bits of r(zn) can be all-zero only
once in the codewords of C. Since the all-zero codeword
is in C, this implies that all non-zero codewords must have
at least a single one in the revealed-bit pattern to make it
secure. This insight allows code designers to link secure code
design to a covering problem of ones in codewords. Although
some notion of the need to “spread the ones around in the
codewords,” has been suspected for good code design [10],
[11], now the idea has a specific mathematical meaning. Notice
also that every revealed-bit pattern where |r(zn)| > (n � k)
must leak at least |r(zn)| � (n � k) bits due to the presence
of the all-zero codeword in C. This notion has already been
shown in [11] using a different approach, but here we see that
additional appearances of these larger zero patterns likewise
ensures the additional appearances of smaller zero patterns that
are subsets of the larger one. This implies the optimality of
codes wherein all codewords have identical weight, such as
the simplex code, which has been conjectured to be optimal
but not yet proven [10].

Regarding code design for the noisy main channel, Theo-
rem 1 implies that a revealed-bit pattern r(zn) is secure if



5

TABLE II
ALGEBRAIC PROPERTIES FOR CODES A AND B.

Code A Code B
|r(zn)| rank[Gr(zn)] rank[(G1)r(zn)] N [r(zn)] N1[r(z

n)] H(M |Zn = zn) Occurrences Occurrences
0 0 0 16 64 2 1 1
1 1 1 8 32 2 8 8
2 2 2 4 16 2 28 28
3 3 3 2 8 2 56 56
4 3 3 2 8 2 3 2

3 4 2 4 1 11 12
4 4 1 4 2 56 56

5 4 4 1 4 2 12 8
4 5 1 2 1 44 48

6 4 4 1 4 2 1 0
4 5 1 2 1 15 12
4 6 1 1 0 12 16

7 4 5 1 2 1 2 0
4 6 1 1 0 6 8

8 4 6 1 1 0 1 1

and only if rank[Gr(zn)] = rank[(G1)r(zn)] (see also [18]).
Theorem 2 implies that r(zn) is secure if and only if
N1[r(zn)]/N [r(zn)] = 2k, which implies that the zero pat-
terns consistent with z

n are evenly spread throughout the
cosets (as required in the noiseless main channel case). For
reliability, note that the theorems imply that the information
about the message is revealed if and only if rank[(G1)r(zn)]�
rank[Gr(zn)] = k, or equivalently N1[r(zn)] = N [r(zn)].
Consider again the example code given by (7) and (8), with
code table as in Table I. This code is designed so that all
revealed-bit patterns of size one leak no information, while all
revealed-bit patterns of size three reveal the message exactly.
Coincidently, every revealed-bit pattern of size two must leak
exactly one bit to make this possible [11]. Code B in Table II
can also correct all singly-occurring erasures, and can provide
perfect secrecy if no more than three coded bits are observed
by an eavesdropper. Design principles from the theorems of
this paper can be used to search for yet larger codes offering
similar properties.

IV. CONCLUSION

This paper presents two expressions for quantifying the
exact equivocation when coset coding is used over the erasure
wiretap channel model with a noisy main channel. The expres-
sions were shown to be generalizations that cover the noiseless
main channel as a special case. These expressions are the
first of their kind for noisy main channels, and they explicitly
link structural parameters in the code design to security and
reliability for finite blocklength codes. Insights gained from
these expressions may soon lead to breakthroughs in finite
blocklength code design over noisy erasure main channels.
In particular, the true limits of the coset coding approach
may be identified (in terms of security and reliability) for
finite blocklength codes, with specific code constructions that
achieve those limits.
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