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ABSTRACT
Collecting large annotated datasets in Remote Sensing is often ex-
pensive and thus can become a major obstacle for training advanced
machine learning models. Common techniques of addressing this
issue, based on the underlying idea of pre-training the Deep Neural
Networks (DNN) on freely available large datasets, cannot be used
for Remote Sensing due to the unavailability of such large-scale
labeled datasets and the heterogeneity of data sources caused by
the varying spatial and spectral resolution of different sensors. Self-
supervised learning is an alternative approach that learns feature
representation from unlabeled images without using any human an-
notations. In this paper, we introduce a new method for land cover
mapping by using a clustering based pretext task for self-supervised
learning. We demonstrate the effectiveness of the method on two
societally relevant applications from the aspect of segmentation
performance, discriminative feature representation learning and the
underlying cluster structure. We also show the effectiveness of the
active sampling using the clusters obtained from our method in im-
proving the mapping accuracy given a limited budget of annotating.
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1 INTRODUCTION
Global demand for land resources to support human livelihoods and
well-being through food, fiber, energy and living space will continue
to grow in response to the population expansion and socioeconomic
development. This poses a great challenge to the human society,
given the increasing competition for land from the need to maintain
other essential ecosystem services. Addressing this challenge will
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require timely information on land use and land cover changes,
e.g., the conversion of forest to farmland or plantations, the loss of
productive cropland due to urbanization, and the degradation of soil
due to inappropriate management practices.

Figure 1: (a) Examples of high density Cashew plantations, low
density Cashew plantations and other trees. We also show the
decision boundaries (b) learned by traditional methods and (c)
after the clustering structure is informed.

Recent advances in storing and processing remote sensing data
collected by sensors onboard aircrafts or satellites provide tremen-
dous potential for mapping a variety of land covers, including plan-
tations [9], agricultural facilities [5], roads [35], buildings [19], and
many more [11]. Accurate mapping of these land covers can provide
critical information at desired spatial and temporal scales to assist
in decision making for development investment and sustainable
resource management.

Given the success of machine learning, especially deep learning,
in the domain of computer vision (e.g., image segmentation), re-
searchers have found a lot of promise for using these techniques in
automated land cover mapping at large scale through analysis of
remote sensing data. Existing works have mostly focused on the su-
pervised learning setup which requires ample labeled data. However,
collecting land cover labels is often expensive and requires expert
staff, equipment, and in-field measurements and thus can become a
major obstacle for training advanced machine learning models.

https://doi.org/10.1145/1122445.1122456
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One common approach to deal with limited availability of labeled
datasets is to pre-train an ML model on existing large labels data
sets for a related problem, and then refine it using a small number
of labeled samples for the problem of interest. For example, models
for image recognition are first trained using large-scale datasets like
ImageNet [3] and then are fine-tuned on the limited-size dataset
for the downstream task [7]. However, such approaches cannot be
used for remote sensing due to the difference in the spectral bands
captured by different satellites and such large-scale labeled datasets
for capturing all the data modalities are either unavailable or these
efforts are still in nascent stage, resulting in the need for more
research.

Self-supervised learning is an alternative approach that learns
feature representation from unlabeled images. Numerous methods
have been proposed under this paradigm where the central idea is
to propose various pretext tasks for the network to solve, in the
hope that the network will learn important feature representations
by minimizing the objective function of the pretext task, such as
inpainting patches [24] and image colorization [13, 37]. The repre-
sentation learned by these techniques can be transferred to a classifi-
cation/segmentation model.

However, existing self-supervised learning methods can be less
helpful for remote sensing data since the pretext tasks they create,
e.g., colorization [33], do not make full use of all the spectral bands
of remote sensing data to capture the land cover heterogeneity. For
example, the identification of cashew plantations (Fig. 1 (a)) requires
differentiating other trees from all types of cashew plantations with
varying density. High-density plantations are easily separable with
other trees while low-density plantations are more likely to be con-
fused with other trees. These self-supervised learning methods can
learn similar representation between low-density plantations and
other trees, which can cause potential confusion amongst classes.
This poses a challenge for the segmentation model to learn a de-
cision boundary that can correctly classify all the modes in each
class during the fine-tuning process (Fig. 1 (b)). Intuitively, if we
can detect these modes by leveraging the information from all the
spectral bands and inform the segmentation model of the obtained
clustering structure, the segmentation model can easily learn deci-
sion boundaries to separate different classes as long as we have a
few representative samples from each mode (Fig. 1 (c)).

In this paper, we develop a self-supervised learning framework,
Clustering-Augmented Segmentation (CAS), which uses clustering
to capture underlying land cover heterogeneity. In particular, our
clustering algorithm is inspired by DEC [34], which is a representa-
tion learning method for image classification. Although optimizing
the clustering at image-patch level improves the classification, it
results in the loss of the fine-level details which severely degrades
segmentation performance. To address this issue, we build an auto-
encoder-based framework which promotes the discriminative repre-
sentation learning by optimizing the clustering structure over image
patches while also preserving the local pixel-wise information for
reconstruction. Here the clustering structure helps better represent
heterogeneous land covers while the pixel-wise information is es-
sential for improving the segmentation accuracy. We define a loss
function that combines the image patch-level clustering loss and
the pixel-level reconstruction loss and then iteratively refine the ob-
tained clustering and learning representations. It is noteworthy that

our proposed method can also incorporate other clustering methods
to capture land cover heterogeneity.

We show the superiority of our method over existing self-supervised
learning methods in two societally relevant applications, cashew
plantation mapping and crop detection. We have demonstrated the
effectiveness of the proposed method in learning both discriminative
feature representation and the underlying clustering structure. We
also conduct active sampling to show the potential of achieving high
mapping accuracy given a limited budget of annotating.

Our contributions can be summarized as follows:

• We develop a self-supervised learning framework that lever-
ages DEC to capture land cover heterogeneity.

• We have demonstrated the effectiveness of the proposed
method in learning with small labeled data in the context
of two applications of great societal relevance.

• We release the code and dataset used in this work to promote
reproducibility 1.

2 RELATED WORK
2.1 Land Use and Land Cover mapping
Mapping land use and land cover (LULC) changes is essential for
managing natural resources and monitoring the impact of changing
climate. Recent works have explored deep learning techniques like
feed forward neural networks (FFNN) [39], CNN [6, 29], LSTM [9]
for LULC mapping. CNNs have been shown to be effective in extract-
ing both spectral and spatial information, whereas RNN and LSTM
make use of the temporal information in modeling land cover transi-
tions and have shown promising performance in sequence labelling.
Land cover mapping can also be framed as a semantic segmentation
problem [28, 30, 31], where each pixel in an aerial/satellite image is
classified as a land cover class. One of the most widely models in
semantic segmentation is Fully Convolutional Network (FCN) [16],
which supplements the output of the deeper layers with that of the
shallower layers to increase the resolution of the prediction. Based
on this idea, several modifications to FCN were proposed in re-
cent years such as SegNet [1], DeconvNet [21] and UNet [27]. In
this work, we adopt the UNet architecture, which consists of two
paths, contraction path (encoder) and symmetric expanding path
(decoder). The encoder consists of a stacked set of convolutional
and max-pooling layers, that captures the context and a semantic
understanding of the image. The decoder involves convolutional
and upconvolutional layers to generate precise label maps from the
output of the encoder.

LULC mapping differs from the standard semantic segmentation
in several ways. First, due to the heterogeneity in the land covers,
the same class can look different in different areas and thus each
class can have multiple modes/subclasses. Many of these land cover
classes/subclasses cannot be easily distinguished using only RGB
channels but require information from other spectral bands provided
in remote sensing datasets. Moreover, existing segmentation methods
require large amount of labeled data, which is often scarce in remote
sensing. Several methods have been proposed to address this issue
via pre-training [20]. Amongst these approaches, self-supervised

1https://drive.google.com/drive/folders/
1Faf7m4eO7y30g9CeyHqlelGaJwms7y9A?usp=sharing
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learning has shown much success in improving the accuracy using
limited annotated satellite images [8, 33].

2.2 Representation Learning
Unsupervised learning and self-supervised learning are commonly
used to generate feature representation without the need for labour-
intensive annotations. Most unsupervised learning methods focus
on reconstructing unlabeled data, such as auto-encoders [15, 26, 32]
and deep belief networks (DBN) [14]. In the self-supervised setting,
the networks learn discriminative representations after training with
pseudo labels created from pretext tasks. The representations learned
from such pretext tasks can then be transferred to the downstream
tasks. Numerous pretext tasks have been explored in previous litera-
ture. For example, image colorization [13, 37] aims to predict the
accurate color version of a photograph, given its gray-scale version
as input. Effectively colorizing an image requires the extraction of
visual features to capture the semantic understanding of the objects
and therefore, visual features can be learned by accomplishing this
task. Several deep-learning approaches have been proposed for deep
image colorization models [12, 13, 37, 38]. Recently this technique
has been adopted in the RS domain [33], where an auto-encoder is
used to predict RGB channels given the input from other channels.

Another direction for pretext task, which is commonly used in
Natural Language Processing, is the representation learning based on
context-similarity [18, 25], where the central the idea is that words
that appear in similar contexts should have similar representations.
By redefining context as spatial neighborhoods, Tile2Vec [8] used
this idea in the RS domain where it promotes nearby tiles to have
similar representations than the tiles that are far apart. Other popular
pretext tasks used in computer vision include image inpainting [24],
solving image-jigsaw [22], learning by counting [23], predicting rota-
tions [4], etc. For a comprehensive understanding of Self-supervised
representation learning, we would like to redirect the reader to this
survey [10].

Clustering has also been used used for representation learning.
In [36], the authors propose a recurrent framework for clustering
and optimises a triplet loss for joint representation learning and
clustering. DEC [34] starts with an initial feature representation and
cluster assignment, and then iteratively refines both based on the
confident samples based on the Kullback-Leibler (KL) divergence
loss. One major drawback of these approaches is its tendency to
map arbitrary data samples into the same cluster due to the lack
of a criteria which respect the local information in image patches.
We introduce a reconstruction loss that helps preserve the local
information which is essential for semantic-segmentation.

3 PROBLEM DEFINITION AND
PRELIMINARIES

In this section, we will introduce the available data and our ob-
jective. We will also briefly describe the general structure of the
segmentation network.

3.1 Problem setting
We consider the task of land cover mapping and frame it as a seman-
tic segmentation problem, with the goal of predicting the land cover
class of each pixel using the multi-spectral satellite/aerial imagery.
In particular, we aim to predict the land cover class 𝒍 ∈ {1, ..., 𝐿} of

each pixel in an image. During the training process, we have access
to limited labeled data and sufficient unlabeled data, which can be
described as follows:

1. Limited labeled dataset with features and ground truth la-
bels given as Xl = [𝑋 𝑙1, . . . , 𝑋

𝑙
𝑁𝑙
] where 𝑋 𝑙

𝑖
∈ R𝐻×𝑊 ×𝐶 is

an aerial/satellite image of size (𝐻,𝑊 ) and having 𝐶 multi-
spectral channels, and Yl = [𝑌 1

𝑙
, . . . , 𝑌 𝑙

𝑁𝑙
] where𝑌 𝑙

𝑖
∈ R𝐻×𝑊 ×𝐿

and 𝐿 is the number of land-cover classes.
2. Unlabeled dataset with features given as Xu = [𝑋𝑢1 , . . . , 𝑋

𝑢
𝑁𝑢

]
where, 𝑋𝑢

𝑖
∈ R𝐻×𝑊 ×𝐶 . Due to the relatively high cost in-

volved in labeling, it is more likely that 𝑁𝑢 >> 𝑁𝑙 .

3.2 Segmentation network
A segmentation network 𝑓 (𝑋𝑖 ;𝜃 ) aims to predict the label of each
pixel for an image 𝑋𝑖 . The parameter 𝜃 is estimated through a train-
ing process on a fully labeled dataset by minimizing an objective
function of empirical risk, such as the pixel-wise cross entropy, as
follows:

L(𝜽 |Xl,Yl) = − 1
𝑁𝐻𝑊

∑
𝑖

∑
(ℎ,𝑤)

∑
𝑐

(𝑌𝑖 )𝑐ℎ,𝑤 log 𝑓 (𝑋𝑖 ;𝜃 )𝑐ℎ,𝑤 (1)

where, 𝑓 (𝑋𝑖 ;𝜃 )𝑐ℎ,𝑤 is the likelihood of the (ℎ,𝑤)’th pixel belong-
ing to class 𝑐 as predicted by the fully-convolutional network and
(𝑌𝑖 )𝑐ℎ,𝑤 = 1 if the (ℎ,𝑤)’th pixel of image 𝑖 belongs to the class 𝑐.

4 METHOD
In this section, we will describe our proposed method CAS. Annotat-
ing the multi-spectral images is a labour intensive process and often
the labelled dataset do not capture the heterogeneity of the earth
due to differences in atmospheric conditions, geography and season
when the image was captured. As a result the DNN model learned
fail to generalize over the earth’s surface. We start with describ-
ing the proposed self-supervised learning method CAS using large
scale unlabeled data. We then discuss fine-tuning the pre-trained net-
work using limited labeled dataset and the applications in few-shots
learning and active learning.

In this paper, we use the UNet architecture [27] which consists
of an encoder and a decoder, thus, formulating the segmentation
function 𝑓 (𝑋𝑖 ;𝜃 ) as a composition of two functions as follows:

𝑓 (𝑋𝑖 ;𝜃 ) = 𝑔(ℎ(𝑋𝑖 ;𝜃ℎ);𝜃𝑔 ) (2)

where, ℎ(𝑋𝑖 ;𝜃ℎ) is the encoder function with parameters 𝜃ℎ which
map the input image 𝑋𝑖 to an embedding space and, 𝑔( · ;𝜃𝑔 ) is the
decoder functions with parameters 𝜃𝑔 which maps the embeddings
back to the image domain.

4.1 Clustering-Augmented Self-supervised
Learning (CAS)

The UNet model trained from scratch using limited labeled samples
can easily overfit the training data. Hence, the learned embeddings
become less informative which leads to a poor generalizability of the
UNet model. We propose to use a clustering-based pretext learning
task to help extract meaningful representation that helps address the
land cover heterogeneity. In particular, we adapt DEC as the clus-
tering method, which uses the clustering structure obtained at the
image-patch level to naturally separate different land cover modes.
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Figure 2: Illustration of the self-supervised pre-trained architecture(best viewed in color). The components that are specifically
present during the Pre-training and Fine-tuning stage are drawn in blue and red respectively, while the common components of
these two stages are drawn in black. During the self-supervised pre-training step, the skip connections are removed and the classifi-
cation layer is replaced by a reconstruction layer. These components, highlighted in red, are added back while fine-tuning using the
limited labeled samples.
We also use additional reconstruction loss to preserve fine-level im-
age details and avoid degenerate solutions (e.g., collapsed clusters)
resulting from the standard DEC. Both the DEC and the reconstruc-
tion objective are optimized during the self-supervised learning (i.e.,
model pre-training). In the following, we will describe the details of
these involved components.

4.1.1 Representation Learning with Clustering. The objective
of self-supervised training is to pre-train the segmentation model
to extract embeddings that naturally separate image patches with
different land cover distributions. In CAS, such representation learn-
ing is conducted using large unlabeled dataset in two steps: Phase
1 - model initialization and Phase 2 - representation learning with
clustering objective. In the first phase, we use the encoder-decoder
from our UNet model and modify it by removing the skip connec-
tions and replacing the last classification layer by a reconstruction
layer. This modified UNet model is tasked to reconstruct input im-
ages. By removing the skip connections, we handicap the use of
input information in the reconstruction process, which forces the
encoder-decoder model to extract better quality embeddings that
fully capture representative features to reconstruct the image with-
out the additional help from the skip connections. In this phase the
model is trained by minimizing the following loss function:

min
1
𝑁𝑡

𝑁𝑡∑
𝑖=1

∥𝑔(ℎ(𝑋𝑖 ;𝜃ℎ);𝜃𝑔 ) − 𝑋𝑖 ∥22 , (3)

where 𝑋𝑖 ∈ 𝑋 𝑙 ∪ 𝑋𝑢 and 𝑁𝑡 = (𝑁𝑙 + 𝑁𝑢 ). Given the obtained
embeddings, we conduct KMeans clustering in the embedding space
by minimizing the following loss function:

min
1
𝑁𝑡

𝑁𝑡∑
𝑖=1

∥𝑔(ℎ(𝑋𝑖 ;𝜃ℎ);𝜃𝑔 ) −𝑀𝑠𝑖 ∥22

𝑠 .𝑡 . 𝑠𝑖 ∈ {0, 1}𝐾 , 1𝑇 𝑠𝑖 = 1∀𝑖,

(4)

where 𝑠𝑖 is the assignment vector for the 𝑖’th data point, 𝐾 is the
number of clusters, and the 𝑘’th column of 𝑀 is the centroid of the
𝑘’th cluster. The pre-trained autoencoder along with the cluster cen-
troids provide a good initialization point for the encoder parameters
𝜃ℎ and cluster centroids 𝑀 .

In the second phase, the encoder parameters and the centroids
are refined by learning from the high confidence assignments using
an Expectation-Maximisation (EM) style algorithm inspired by the
previous work [34]. In the E step the cluster assignment and the target
assignment are computed while keeping the encoder parameters and
cluster centroids fixed. Specifically, we use a soft-assignment based
on the similarity of the embedded data point with the cluster centroid,
measured using the Student’s t-distribution [17]. Specifically, the
soft-assignment of data 𝑖 to cluster 𝑗 is computed as follows:

𝑞𝑖 𝑗 =
(1 + ∥ℎ(𝑋𝑖 ;𝜃ℎ) −𝑀𝑗 ∥2/𝛼)

𝛼+1
2∑𝐾

𝑗 ′=1 (1 + ∥ℎ(𝑋𝑖 ;𝜃ℎ) −𝑀𝑗 ′ ∥2/𝛼)
𝛼+1
2

(5)

where ℎ(𝑋𝑖 ;𝜃ℎ) is the embedded data point, 𝛼 is the degree of free-
dom which is set as 1 in our experiments, and 𝑞𝑖 𝑗 is the probability
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of assigning the 𝑖’th data point to the 𝑗’th cluster. To strengthen pre-
diction and to promote learning from data-points which are assigned
with high confidence, the target assignment is computed as:

𝑝𝑖 𝑗 =
𝑞2
𝑖 𝑗
/∑𝑖 𝑞𝑖 𝑗∑𝐾

𝑗 ′=1 (𝑞
2
𝑖 𝑗 ′/

∑
𝑖 𝑞𝑖 𝑗 ′)

(6)

Once cluster assignment and the target assignment are computed,
in the M step we estimate the encoder parameters and the cluster
centroids using gradient descent while keeping the cluster and the
target assignment fixed. The objective is defined as the KL diver-
gence loss between the soft assignments and the target assignment
as follows:

min𝐾𝐿(𝑃 ∥𝑄) = min
1
𝑁𝑡

𝑁𝑡∑
𝑖=1

𝐾∑
𝑗=1

𝑝𝑖 𝑗 log
𝑝𝑖 𝑗

𝑞𝑖 𝑗
(7)

The proposed method faces a number of issues for their use in the
semantic-segmentation problem setting. First, there is no provision to
avoid degenerate solutions, where the model parameters learned for
cluster centroids lead to a trivial solution with the clusters collapsed
to a single entity and the representations being zeroed. Second, this
approach cannot handle the special scenario where arbitrary data
samples are mapped to tight clusters. Finally, since this approach is
only to optimize the clustering performance, it forces the embeddings
of the data points in the same cluster to be very similar, where
we start to lose the finer details of original input images. This is
evident from the similar reconstruction of the embedding vectors
from two different images from the same class as shown in figure 3
(a). This loss of fine-level image details becomes a serious issue in
the semantic segmentation problem since we aim to assign a label
to each pixel in the image instead of assigning a single label to the
entire image as in the image classification setting.

4.1.2 Preserving fine-level details. To enable learning from
the confident samples while also preserving the finer details and
overcome the issues mentioned in the previous subsection, CAS
augments the KL Divergence based clustering loss with the recon-
struction loss. Specifically, we add a decoder that reconstructs the
data-point using the embeddings while the clustering task is per-
formed at the bottle-neck layer. The encoder parameters, decoder
parameters and the cluster centroids are refined according to the
objective:

L =
1
𝑁𝑡

𝑁𝑡∑
𝑖=1

©­«
𝐾∑
𝑗=1

𝑝𝑖 𝑗 log
𝑝𝑖 𝑗

𝑞𝑖 𝑗
+ 𝜆∥𝑔(ℎ(𝑋𝑖 ;𝜃ℎ);𝜃𝑔 ) − 𝑋𝑖 ∥22

ª®¬ , (8)

where 𝜆 is a hyper-parameter to balance the clustering loss and the
reconstruction loss.

The proposed modifications provides a number of benefits. First,
reconstruction loss prevents the model to collapse to a degenerate
solution by ensuring that the decoder can reconstruct the data point
using the embeddings. Second, since the decoder has to reconstruct
the images from the embeddings, it prevents the embeddings to lose
the fine-level details thus helping in the segmentation. Finally, the
trained decoder provides as a good initialization for the decoder of
the segmentation network.
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(a) Top 10 images from a cluster formed using DEC [34]. Top: Input
image. Bottom: Reconstructed Image. Note the similar reconstructed
images for different input images, which shows the loss of fine-level de-
tails.
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(b) Top 10 images from a cluster obtained by CAS. Top: Input image.
Bottom: Reconstructed Image. Here we see that the reconstructed im-
ages preserve fine-level details.

Figure 3: The reconstructed images for the same class using the
embeddings learned by (a) DEC and (b) CAS.

4.2 Downstream applications
After obtaining the pre-trained model through self-supervised learn-
ing, we describe two downstream applications where we use labeled
data to fine-tune the model.

4.2.1 Few-shots segmentation. After training the encoder-decoder
model, we feed the learned weight parameters to the U-Net segmen-
tation model with skip connections (see Fig. 2). This model can be
fine-tuned using pixel-wise labels by minimizing the cross-entropy
loss using labeled data (see Eq. 1).

4.2.2 Active learning. The clustering structure extracted by the
proposed method also enables actively select query image patches
so as to reduce the manual efforts in data labeling. The objective is
to select a small number of query image patches to ask for labeling
so that the performance of segmentation model is optimized after
it is trained with these labeled patches. In particular, we uniformly
select image patches from different clusters that are closest to cluster
centroids. Since the clustering structure automatically divides the
whole data space into𝐾 disjoint set of data points, uniformly selected
patches are representative samples that cover different types of data
in the entire data space.

Furthermore, we can extend this approach to handle the scenario
where the budget (i.e., the number of query samples) is not divisible
by the number of clusters. In this case, we aim to take more samples
from clusters of higher uncertainty. Intuitively, each cluster contains
images with similar data distribution and thus the labels predicted
by a well-trained segmentation model should be similar for all the
images within a cluster. Specifically, we first predict pixel-wise
labels for all the images and then estimate the majority class for each
image. We measure the uncertainty of each cluster 𝑘 as the entropy
of these obtained majority classes.

5 EXPERIMENTAL RESULTS
We evaluate our proposed strategy for semantic segmentation on two
real-world applications of great societal impacts. In the first example,
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Table 1: Comparison with baselines in terms of Mean F1 Score (and standard deviation) with increasing number of samples. The last
row (All Data) shows the performance of using all the available data for supervised training (without pre-training).

D1: Cashew Plantation Mapping D2: Crop Mapping
Method 10 20 40 120 160 200 10 20 50 100 150 200

OnlyLabeled 0.402
(0.098)

0.572
(0.059)

0.609
(0.050)

0.704
(0.021)

0.712
(0.018)

0.724
(0.017)

0.426
(0.121)

0.634
(0.073)

0.700
(0.047)

0.788
(0.016)

0.809
(0.015)

0.837
(0.014)

AutoEncoder 0.481
(0.098)

0.629
(0.053)

0.663
(0.035)

0.717
(0.026)

0.737
(0.018)

0.743
(0.016)

0.508
(0.139)

0.666
(0.054)

0.722
(0.051)

0.798
(0.016)

0.814
(0.013)

0.839
(0.007)

Tile2Vec 0.507
(0.048)

0.632
(0.021)

0.686
(0.024)

0.739
(0.008)

0.740
(0.008)

0.745
(0.008)

0.566
(0.057)

0.688
(0.026)

0.757
(0.026)

0.800
(0.017)

0.825
(0.014)

0.841
(0.004)

Colorization 0.609
(0.044)

0.660
(0.037)

0.710
(0.013)

0.756
(0.008)

0.762
(0.004)

0.776
(0.004)

0.543
(0.055)

0.678
(0.046)

0.729
(0.039)

0.789
(0.014)

0.823
(0.011)

0.837
(0.007)

DEC 0.628
(0.024)

0.688
(0.016)

0.709
(0.016)

0.747
(0.008)

0.751
(0.008)

0.756
(0.007)

0.600
(0.043)

0.723
(0.023)

0.763
(0.019)

0.814
(0.008)

0.837
(0.007)

0.843
(0.007)

CAS(ours) 0.674
(0.030)

0.721
(0.020)

0.736
(0.008)

0.767
(0.007)

0.774
(0.008)

0.783
(0.002)

0.656
(0.058)

0.759
(0.024)

0.792
(0.010)

0.831
(0.007)

0.845
(0.004)

0.847
(0.002)

All Data 0.795 (1500 patches) 0.87 (700 patches)

we aim to map cashew plantation in Benin, which contribute nearly
10% of the country’s export income. Benin government is actively
looking for inventory information of cashew to assist the distribution
of their recent $100 million loan from World Bank, aiming at further
developing the cashew industry. In the second example, we inves-
tigate crop mapping in the US Midwest, the world’s bread basket.
Mapping crops is a key step towards many applications, such as
forecasting yield, guiding sustainable management practices and
evaluating progress in conservation efforts.

5.1 Datasets
D1: Cashew Plantation Mapping We use the multi-spectral im-

ages captured by AIRBUS in 2018 to study an area in Africa.
The images have 4 spectral bands namely red, green, blue
and NIR (near infrared) at a spatial resolution of 0.5 metres.
For our experiment, we divide our study region into patches
of size 68 × 68 and each pixel within this patch is assigned a
class label 𝑙 ∈ { Cashew, Forest, Urban, Background }. The
ground truth was created using manual annotation over the
entire study region provided by our collaborators in Benin,
Africa 2.

D2: Crop Mapping We used publicly available multi-spectral im-
ages observed by the Sentinel-2 Constellation. The Sentinel-2
data product has 13 spectral bands 3 at three different spatial
resolutions of 10, 20 and 60 metres. For consistency, bands
with 20 and 60 metres resolution are resampled by using the
nearest neighbour method to 10 metres. For our experiment,
we consider the region of southwestern Minnesota,US, where
we aim to classify each pixel to a class label 𝑙 ∈ { Corn,
Soybean, Sugarbeats, Water, Urban }. Our data is taken in
August 8, 2019. The labels are obtained from the USDA Crop
Data Layer product [2].

5.2 Baselines
We use the UNet architecture as the base model for semantic seg-
mentation and compare our representation learning strategy against

2Given the proprietary nature of the Planet Lab composite and the Airbus imagery, we
do not have permission to make this data publicly available.
3https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_
SR#bands

the following baselines. Here all the representation learning methods
are trained on the entire training set (labeled + unlabeled data).

(1) OnlyLabeled This method considers training a UNet from
scratch, only using the labeled dataset.

(2) AutoEncoder We pre-train the UNet model by transforming
it into an autoencoder structure by removing the skip connec-
tions and conduct reconstruction in the final layer (described
in Section 4).

(3) Tile2Vec We adopt this method [8] to learn representation
by leveraging spatial contextual similarities. To prevent the
model from collapsing and providing degenerate solution,
we initialize the model using the AutoEncoder baseline. The
model is optimized using a triplet loss among the achor, neigh-
bors and distant patches.

(4) Colorization [33] The segmentation model has two indepen-
dent branches which takes in the spectral bands and the RGB
channels, respectively. The first branch is pre-trained using
the colorization task and the second branch is pre-trained
on ImageNet [3]. As proposed by the authors, both of the
branches are fine-tuned separately on the limited labeled sam-
ples and we average their predictions as final outputs.

(5) DEC We adopt the method presented in [34] to learn rep-
resentations that optimizes a clustering-based loss. This op-
timisation is performed at the image patch-level and thus
disregards the fine-level image details.

5.3 Few-Shot Learning
Here we evaluate the methods for few-shot learning setting where we
progressively increase the number of labelled samples for training.
The average accuracy and standard deviation of 5 runs for all the algo-
rithms are reported in Table 1. The model trained from scratch using
only labelled instances (OnlyLabeled) performs the worst. AutoEn-
coder takes advantage of the larger unlabelled dataset in learning
the representations and thus shows an increase in performance than
OnlyLabeled. The representations learned by OnlyLabeled and Au-
toEncoder do not capture discriminative information of land covers
and thus they do not perform as well as DEC. The next baselines of
Tile2Vec and Colorization makes use of alternate ways of representa-
tion learning on the unlabelled data as described in section 5.2. Each
of these provide limited improvement over AutoEncoder. Tile2Vec

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR##bands
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR##bands
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Figure 4: Examples of land cover mapping made by different methods. The first column shows the reference RGB images and the
second column shows the manually-created ground-truth data.
uses assumptions that the nearby spatial tiles are similar and far
away are different which can sometimes be inaccurate. Colorization
learns representations by learning to colorize the images which can
sometimes be ineffective in distinguishing the regions where the
color is not distinctive. Next, we see that our adaptation of DEC
(that captures information about different types of land covers via
clustering) is able to do nearly as well or better (especially for small
number of samples) than the schemes such as Colorization that are
able to explicitly preserve fine levels details. Finally, our proposed
scheme CAS outperforms all these baselines.

In Fig. 4, we show the mapping results of different methods in
several example regions from D1. The segmentation results shown
are obtained from the models trained using 40 labeled samples. We
can see the detection results produced by CAS are more consistent
to the ground truth and the satellite images. In contrast, other self-
supervised learning methods (DEC and Colorization) often cannot
precisely delineate land cover boundaries. This is because the plan-
tations that are close the boundary commonly have lower density
and thus are more likely to be confused with other land covers.

5.3.1 Effect of more labeled training samples: Due to the
limited number of labeled samples in the downstream task, the
performance of the models trained from scratch depend on the rep-
resentability of those small subset of data points. The limited data
samples do not capture the whole data domain and thus the represen-
tations learned using them are not robust. Self-supervised learning
aims to decouple the representation learning phase and the classi-
fication phase. CAS tries to leverage the unlabeled data to capture
the representations and then learn the classification rules using the

(a) (b)

Figure 5: Average entropy of the clusters obtained by different
methods on Dataset (a) D1 and (b) D2.
limited dataset. With the increase in the number of labeled instances,
the representations learned using them become increasingly more
robust. This results in a reduction in the gain obtained by using the
unlabeled data in the representation learning manner. This is evident
from the result shown in Table 1, where we increase the number of
labeled patches for both the datasets. We observe that the accuracy
of all methods increase with the increase in the number of labeled
patches.

5.4 Clustering-based Evaluation of
Representations

Here we evaluate the quality of representation produced by differ-
ent approaches using the quality of clustering produced using them.
Specifically, we measure the clustering performance using aggre-
gated labels of image patches. For each image patch, we define the
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Figure 6: First three columns are seperate clusters formed by
CAS which clearly show a clusters of high, medium and low
density. The last two columns are one of the clusters formed by
AutoEncoder and Colorization respectively.

aggregated label as the majority label from all the pixels of this
image patch. Intuitively, we expect image patches within a cluster
to have have the same aggregated labels. Hence, we estimate the
clustering performance using the weighted entropy of aggregated
labels. Specifically, given a clustering structure, we first compute
the entropy of aggregated labels for each cluster. Then we compute
the weighted average of entropy values over all the clusters based on
their cluster sizes. The lower value of the average entropy indicates
better clustering performance.

We compare the clusters extracted by the baselines with our pro-
posed method (Fig. 5). In AutoEncoder and Colorization, KMeans
clustering is conducted on the obtained embeddings. It can be seen
that the proposed method significantly outperforms Autoencoder
and Colorization in both datasets. DEC and our proposed method
CAS achieve very pure clusters even using no more than five clusters.
Besides, our method achieves similar performance with DEC even
though we simultaneously optimize the clustering performance and
the reconstruction error. Although, DEC achieves good clusters, it
is plagued with the issues highlighted in Fig. 3, which hampers its
segmentation performance.

An example of the clusters formed by the methods are shown
in Fig. 6. We observe that the clusters formed by CAS capture the
intra-class heterogenity and form pure clusters, while the other clus-
ter formed by the other methods highlight several issues which we
motivated in the introduction. As shown in Fig. 6, one of the clusters
formed by AutoEncoder has a mixture of high, medium and low
density clusters which points towards the intra-class confusion. The
images of the cluster formed by Colorization are covered by other
trees, low-density cashew and mixture of other trees and cashew
respectively. This highlights the inter-class confusion due to planta-
tions being confused with other trees.

5.5 Using Clusters for Active Sampling
Here we show the effectiveness of the active learning strategy. In
particular, we use obtained clusters to query patches rather than ran-
domly sampling patches for labeling. Fig. 7 shows the segmentation

(a) (b)

Figure 7: Our method is compared with the next best method
while using active learning on Dataset (a) D1 and (b) D2.
CAS_CLUSTER represents the method to actively sample from
clusters obtained from CAS.

performance when we label different amount of samples either using
our active learning approach or by using random sampling. We also
show the performance of random sampling both for CAS model and
the best-performing baseline in each dataset (Colorization in D1 and
DEC in D2).

According to the segmentation performance, we can observe that
the active learning method leads to better performance, especially
when we only label small amount of samples. This demonstrate the
effectiveness of using the clustering structure obtained from CAS to
select most representative samples given a limited budget. When we
label sufficient amount of samples (>200 samples), all the methods
achieve similar performance.

6 CONCLUSION
In this paper we propose the use of clustering based self-supervised
learning to pre-train the model for few-shot segmentation. This
method is able to preserve fine-level details while also extracting a
clustering structure to naturally separate heterogeneous land cover
modes. The obtained clustering structure can also be used in an active
learning setting. We conduct experiments on two real world datasets
related to land-cover mapping to show the benefits brought by using
the abundant unlabeled data. Further, we compare our method with
other forms of self-supervised learning strategies adopted in the
Remote Sensing domain, namely Colorization and Tile2Vec, to show
the effectiveness of our proposed strategy.

Given the effectiveness of our proposed method in mapping het-
erogeneous land covers using limited labels, our framework has
the potential for creating large-scale (e.g., global) land-cover maps
using satellite imagery and small amount of manually-created labels.
Moreover, our proposed framework can be generally applied to a
variety of spatial datasets (e.g., traffic and crime data) which exhibits
strong heterogeneity.

Although our proposed method has produced improved accuracy
in land cover mapping, it remains limited in discovering temporal
patterns from multi-temporal satellite data which is often available in
public satellite datasets. Another important direction is to combine
the pretext task of clustering with pretext tasks that is defined to
reflect land cover distinctions based on domain knowledge.
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