2021 IEEE 37th International Conference on Data Engineering (ICDE) | 978-1-7281-9184-3/20/$31.00 ©2021 IEEE | DOI: 10.1109/ICDE51399.2021.00162

2021 IEEE 37th International Conference on Data Engineering (ICDE)

Performance Characterization of HTAP Workloads

Utku Sirin Sandhya Dwarkadas Anastasia Ailamaki
EPFL University of Rochester EPFL
utku.sirin@epfl.ch sandhya@cs.rochester.edu anastasia.ailamaki@epfl.ch

Abstract—Hybrid Transactional and Analytical Processing
(HTAP) systems have become popular in the past decade. HTAP
systems allow running transactional and analytical processing
workloads on the same data and hardware. As a result, they
suffer from workload interference. Despite the large body of
existing work in HTAP systems and architectures, none of the
existing work has systematically analyzed workload interference
for HTAP systems.

In this work, we characterize workload interference for HTAP
systems. We show that the OLTP throughput drops by up to
42% due to sharing the hardware resources. Partitioning the
last-level cache (LLC) among the OLTP and OLAP workloads
can significantly improve the OLTP throughput without hurting
the OLAP throughput. The OLAP throughput is significantly
reduced due to sharing the data. The OLAP execution time is
exponentially increased if the OLTP workload generates fresh
tuples faster than the HTAP system propagates them. Therefore,
in order to minimize the workload interference, HTAP systems
should isolate the OLTP and OLAP workloads in the shared
hardware resources and should allocate enough resources to fresh
tuple propagation to propagate the fresh tuples faster than they
are generated.

Index Terms—Hybrid transactional and analytical process-
ing, hybrid workloads, HTAP, real-time analytics, workload
characterization, micro-architectural analysis, modern hardware,
hardware-software co-design.

I. INTRODUCTION

Hybrid Transactional and Analytical Processing (HTAP)
systems have gained significant attention in the past decade.
HTAP systems combine Online Transactional Processing
(OLTP) and Online Analytical Processing (OLAP) systems
into a single, unified system providing real-time analytical
query processing over fresh, transactional data. Numerous
applications benefit from real-time analytical query processing
such as fraud detection, risk analysis, and IoT applications [1].

There is a significant amount of work on HTAP systems and
architectures. [2]-[4] propose two-copy HTAP architectures,
where the OLTP and OLAP workloads run on their private
copies of the data. [5]-[11] propose single-copy HTAP archi-
tectures, where the OLTP and OLAP workloads run on the
same copy of the data. The OLTP and OLAP workloads share
data and hardware resources both for the two- and single-
copy architectures. As a result, they suffer from workload
interference in the shared data and hardware resources.

Despite the large body of existing work on HTAP systems,
the existing work falls short in systematically analyzing work-
load interference for HTAP systems. In this work, we fill this
gap and highlight a research direction to mitigate workload
interference for HTAP systems. We demonstrate the following:

e OLTP and OLAP workloads interfere with each other in
the last-level cache and memory bandwidth. While the
OLAP throughput drops only by a small amount (by less
than 10%), the OLTP throughput drops by a significant
amount (by up to 42%). Partitioning the last-level cache
among the concurrently running OLTP and OLAP work-
loads can significantly improve the OLTP throughput
without reducing the OLAP throughput. While OLTP al-
ways benefits from a larger amount of caches, OLAP does
not benefit from more than a few megabytes of caches.
Therefore, HTAP systems should isolate the OLTP and
OLAP workloads in the shared last-level cache and adopt
resource management algorithms based on the needs of
the OLTP and OLAP workloads.

e OLTP and OLAP workloads interfere with each other
in the shared data. While the OLTP throughput remains
the same whether the data is shared or not, the OLAP
throughput significantly drops when the data is shared.
In particular, the OLAP query execution time is expo-
nentially increased when the OLTP side generates fresh
tuples faster than the HTAP system can propagate them
from the OLTP to the OLAP side. Therefore, HTAP
systems should allocate enough resources to fresh-tuple
propagation to make sure that fresh tuples are propagated
faster than they are generated to prevent an exponentially
increased query execution time.

II. BACKGROUND AND RELATED WORK

HTAP architectures: Three main HTAP architectures have
been proposed [1]. The first is two-copy, mixed-format
(TCMF) architecture [2]-[4], [12]. TCMF keeps two copies
of the data, one for the OLTP side in row format and one for
the OLAP component in columnar format. To keep the data
consistent across the OLTP and OLAP components, TCMF
uses an intermediate data structure, delfa, that keeps track
of the recently modified, fresh tuples. Periodically, TCMF
propagates the fresh tuples from the OLTP side to the OLAP
side by scanning the delta.

The second is single-copy, mixed-format (SCMF) architec-
ture [5], [6]. SCMF keeps a single copy of the data and uses
the intermediate data structure delta as the OLTP store. OLTP
transactions only modify the delta, whereas the OLAP queries
read both the delta and the main copy of the data. The delta
is in row format, whereas the main copy of the data is in
columnar format.

978-1-7281-9184-3/21/$31.00 ©2021 IEEE 1829
DOI 10.1109/ICDE51399.2021.00162

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 15,2021 at 21:46:04 UTC from IEEE Xplore. Restrictions apply.

Lastly, single-copy, single-format (SCSF) architecture keeps
a single copy of the data and uses a single format, i.e., only
row or columnar, both for OLTP and OLAP workloads [7]-
[9]. It relies on copy-on-write snapshotting or multi-version
concurrency control mechanisms to keep multiple versions of
the data, through which analytical queries can access the most
recent transactional data.

In all the three architectures, the data is logically shared

among the OLTP and OLAP components. When we refer to
sharing the data, we refer to sharing the logical data throughout
the paper.
Workload characterization: There is a large body of work
on database workload characterization. Ailamaki et al. [13]
and Hardavellas et al. [14] characterize OLTP and OLAP
workloads. Tozun et al. [15], [16] and Sirin et al. [17] dive
deep into OLTP workloads and characterize disk-based and
in-memory OLTP workloads.

Sirin et al. [18] characterize a wide range of OLAP work-
loads with a particular focus on column stores. Kersten et
al. [19] characterize OLAP workloads with a particular focus
on vectorized versus compiled engines. Sompolski et al. [20]
also compare vectorized and compiled engines with a focus
on predication and SIMD.

The existing work on HTAP systems falls short in analyzing
workload interference for HTAP systems. The existing work in
database workloads characterization examines either the OLTP
or the OLAP workloads. In this work, we take the next step
and examine HTAP workloads with a focus on interference.

III. SETUP AND METHODOLOGY

Benchmarks: We use two micro-benchmarks and the
CH-benchmark [21]. The micro-benchmarks use the CH-
benchmark schema. The first micro-benchmark contains a pro-
jection query and an OLTP transaction. The projection query
does a SUM() over the ol_amount column of the orderline
table. The OLTP transaction continuously updates the same
ol_amount column. The second micro-benchmark contains a
join query and the same OLTP transaction as the first micro-
benchmark. The join query joins the orderline and orders
tables and does a SUM() over the ol_amount column. The
joins use the hash-join algorithm. We chose a projection- and
join-based query as they represent the two main data access
patterns for OLAP workloads: sequential-scan and random-
access [18].

We use Q3 and Q6 of the CH-benchmark, as they represent
the two main categories of analytical queries: (i) non-join and
(ii) join-intensive queries [18]. We use the New-Order trans-
action of the CH-benchmark, as it is the heaviest transaction
in the CH-benchmark.

Hardware: We use a commodity Intel server with the Broad-
well micro-architecture. Table I presents the server parame-
ters. We use Intel’s Memory Latency Checker (MLC) [22]
to measure the cache-miss latencies and maximum memory
bandwidth.

HTAP systems: We examine (i) HTAP engine of a traditional,
commercial system, DBMS A, (ii) a popular, new-generation,

TABLE I
SERVER PARAMETERS.

Intel(R) Xeon(R) CPU

Processor E5-2680 v4 (Broadwell)
#sockets 2
#cores per socket 14
Hyper-threading Off
Turbo-boost Off

Clock speed

Per-socket bandwidth

2.40GHz
66GB/s (sequential)
60GB/s (random)
32KB / 32KB
16-cycle miss latency
256KB
26-cycle miss latency
(inclusive) 35MB
160-cycle miss latency
256GB

L1I/ L1D (per core)

L2 (per core)

L3 (shared)

Memory

commercial HTAP system, DBMS B, (iii) and an academic
prototype that we built based on an existing open-source OLTP
system, Silo [23], and an existing open-source OLAP system,
Typer [19]. We name our system Siper, which combines the
initial letters of Silo and final letters of Typer.

DBMS A uses the two-copy, mixed-format (TCMF) HTAP
architecture. DBMS B uses the single-copy, mixed-format
(SCMF) HTAP architecture. Siper also uses the TCMF ar-
chitecture. We did not study the single-copy, single-format
(SCSF) architecture. However, we believe our conclusions
apply to SCSF. SCSF suffers from traversing version-chains,
whereas TCMF and SCMF suffer from processing the delta
structure. Both challenges are random-accesses-intensive. Both
challenges depend on how fast the OLTP side produces fresh
tuples and how fast the HTAP system can merge the fresh
tuples into the main copy of the data.

OS & Compiler: We use Ubuntu 16.04.6 LTS and gcc 5.4.0.

VTune: We use Intel VTune 2020. We use VTune’s built-in
memory-access analysis to measure memory bandwidth con-
sumption. As we use a single socket for all of our experiments,
we report the average per-socket bandwidth values.

Measurements: We first populate the database and generate
statistics. Lastly, we perform a three-minute warmup period,
followed by a ten-minute throughput-measurement or VTune-
profiling period. We disable hyper-threading and turbo-boost,
as they jeopardize VTune counter values [24], except in
Section V-B where we examine hyper-thread-sharing.

We use only a single socket for all of our experiments,
except in Section VI. We disable the cores in the other socket
and use the relevant OS interface to make sure memory is
always locally allocated. We do single- and multi-threaded
experiments. We choose a scaling factor of 350 (a database of
30GB) for all the experiments.

We disable compression for DBMS A. DBMS B does not
expose a parameter to enable/disable the compression. It uses
an internally-decided compression scheme whose details are
not revealed. Siper does not rely on any compression scheme.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 15,2021 at 21:46:04 UTC from IEEE Xplore. Restrictions apply.

Fresh tuples

Fresh tuples

Aol 0] |4, 4,
Propapate
C, o C, C,
(Step 0) (Step 1) (Step 2) (Step 3)

Fig. 1. The OLAP side of Siper. The OLTP side continuously produces fresh tuples. The active column and delta combination at each step is colored by

blue and marked by left-striped lines.

IV. SIPER

In this section, we present Siper. Siper relies on the TCMF
architecture (see Section II). Furthermore, it keeps two copies
of the modified columns at the OLAP side. One of the copies
is used for propagating the fresh tuples, the other copy is used
for query processing. Figure 1 presents how the OLAP side
of Siper works.

At step 0, the query is executed on the base column over the
first copy of the column, i.e., Cj (colored by blue and marked
by left-stripes). During step O, the fresh tuples are tracked
by Ap. At step 1, the query is executed on C; and Ay, and
Ay is propagated to Cy. At step 2, Cy (which now has A
propagated) and A; are used to serve the query, during which
Ag and A; are propagated to C';. We keep the fresh tuples
both in Ay and A,. At step 3, and onwards the system starts
iterating itself. At step ¢, the system concurrently executes the
following:

e Processes A(i_l)%;; and C;go (for OLAP queries)

o Propagates the A¢;_1)%3, Aii—2)%3

o Keeps track of the fresh tuples by A;os, A(i,l)%g

We keep track of the fresh tuples in Ajy3 and Ag_1y%s3
rather than only in A;y3 in order to be able to alternate
between the two column copies while also keeping them
within two deltas of each other.

V. INTERFERENCE IN SHARED HARDWARE RESOURCES

In this section, we examine interference in the shared
hardware resources. We examine the interference in the last-
level cache (LLC), memory bandwidth and hyper-threads by
using the micro-benchmark and the CH-benchmark. Our goal
is to answer the following questions:

« How much do the OLTP and OLAP throughput drop due

to the interference?

e Do the OLTP and OLAP throughput drop by the same

level?

o Does the OLAP throughput drop by the same level for
all the queries and transactions?

o Does the OLTP throughput drop by the same level for all
the queries and transactions?

A. LLC and Memory Bandwidth Interference

In this section, we examine the interference in the LLC
and memory bandwidth. We examine three configurations:
1 OLTP thread concurrently running with 13 OLAP threads
(1T+13A), 7 OLTP thread with 7 OLAP threads (7T+7A),
13 OLTP thread with 1 OLAP threads (13T+1A). For each
configuration, we measure the OLTP and OLAP throughput.
Then, we divide this throughput by the OLTP (or OLAP)
throughput measured when running the OLTP (or OLAP)
alone on the same server with the same number of threads.
For example, we measure the OLTP and OLAP throughput
for the 1T+13A configuration. Then, we measure the OLTP
throughput when running the same OLTP workload alone
on the same hardware with 1 OLTP thread. We divide the
OLTP throughput for the 1T+13A configuration by the OLTP
throughput when running the OLTP alone and report this
number as the interference at the OLTP side. We do the same
to report the interference at the OLAP side. Workloads are
always on a single socket using locally allocated memory. For
Siper, we use 1 thread for delta propagation. We use 12 instead
of 13 OLAP threads for the 1T+13A configuration.

Table II presents the results. DBMS A and B lightly suffer
from the interference. Both the OLTP and OLAP throughput
drop by 1-12%. Siper significantly suffers from the interfer-
ence at the OLTP side. The OLTP throughput drops by 11-
42%. The larger the number of OLAP threads is, the more
significant the interference at the OLTP side is. Siper lightly
suffers from the interference at the OLAP side. The OLAP
throughput drops only by 1-5%.

In Table III, we examine the consumed memory bandwidth.
We examine the OLTP-alone and OLAP-alone configurations

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 15,2021 at 21:46:04 UTC from IEEE Xplore. Restrictions apply.

TABLE II
INTERFERENCE IN THE LLC AND MEMORY BANDWIDTH. 1T+13A REFERS
TO THE CONFIGURATION RUNNING 1 OLTP AND 13 OLAP THREADS. THE
CELLS ARE COLOR-CODED. THE DARKER A CELL IS, THE MORE
SIGNIFICANT THE INTERFERENCE IS.

TT+13A | 7T+7A | 13T+IA
Proj. |_OLTP 0.99 0.98 0.97
bench OLAP | 098 0.99 1.00
< " [Jom |_OLTP 0.96 0.99 0.97
“ OLAP | 094 0.92 1.00
= 06 | OLTP 0.99 0.99 0.96
2 OLAP 1.04 1.01 1.00
[g3 [OLP 1.05 0.88 0.96
OLAP 1.01 0.94 0.96
Proj. |_OLTP 0.97 001 0.97
-bench “ [TOLAP | 098 0.97 1.00
m " [o |_OLTP 0.94 0.89 0.98
I OLAP 1.02 0.98 0.95
2 06 |_OLTP 1.01 0.88 0.97
2 | chibench OLAP 1.04 0.98 1.01
[qs |OLP 0.99 091 0.98
OLAP 1.02 0.97 1.01
Proj. |_OLTP 073 0.80
2 | bench - [OLAP | 098 0.99 0.95
B " [Jom L_OLTP 0.78 0.82 0.89
OLAP | 0.99 0.98 0.98

TABLE III

CONSUMED MEMORY BANDWIDTH IN GB/S. THE CELLS ARE
COLOR-CODED. THE DARKER A CELL IS, THE HIGHER THE BANDWIDTH
CONSUMPTION IS. THE MAXIMUM AVAILABLE BANDWIDTH IS 66 GB/s.

1 thread | 7 threads | 13 threads

< | Update-only xact. 0.05 0.90 2.49
2 Projection 0 1.90 3.37
=) Join 0.09 2.80 3.30
m | Update-only xact. 0.02 0.23 0.47
4 Projection 0.04 5 7.18
A Join 0.07 2.40 4.36
.. | Update-only xact. 0.10 4.10 8.30
& Projection 5.4 31.65

« Join 1.19 12.10 21.71

for varying number of threads. We observe that the larger
the amount of bandwidth the OLAP (or OLTP) side of a
system consumes, the more the OLTP (or OLAP) side of
the system suffers from the interference. Both the OLTP and
OLAP sides of DBMS A and B consume a small amount of
memory bandwidth (0.02 to 7.18 GB/s), and both the OLTP
and OLAP sides of DBMS A and B lightly suffer from the
interference. The OLTP side of Siper consumes a small amount
of bandwidth (0.10 to 8.30 GB/s), and the OLAP side of Siper
lightly suffers from the interference. The OLAP side of Siper
consumes a significant amount of bandwidth (5.40 to 58.55
GB/s), and the OLTP side of Siper significantly suffers from
the interference.

LLC vs. memory bandwidth: We further study how much
of the interference is due to LLC and how much of the
interference is due to memory bandwidth for Siper. We use
Intel’s Cache Allocation Technology (CAT) to isolate LLC
among the OLTP and OLAP workloads [25], [26]. For 1
OLTP and 12 OLAP threads, we increase the amount of LLC
allocated to OLTP from 1.75MB to 33.25MB. We reserve
the remainder of the LLC for OLAP. We run the fresh tuple

TABLE IV
LLC PARTITIONING EXPERIMENTS FOR SIPER USING 1 OLTP, 1 DELTA
PROPAGATION AND 12 OLAP THREADS. THE CELLS ARE COLOR-CODED.
THE DARKER A CELL IS, THE MORE SIGNIFICANT THE INTERFERENCE IS.

[LLC partition size for OLTP in MBs
1.75 8.75 17.5 31.5] 3325
OLTP 0.73 0.77 0.83 0.86

Projection 525100 | 1.00 | 1.00 | 0.98
o OLTP [077 | 081 | 083 | 086
OLAP | 1.00 | 099 | 098 | 090

propagation thread pinned to a separate physical core.

Table IV presents the OLTP and OLAP throughput normal-
ized to running on the server alone. The table shows that the
projection throughput does not increase for more than 3.5MB
LLC. Hence, the sequential-scan-heavy query requires only
a certain amount of LLC, after which the increased cache
partition size does not increase the throughput. A similar
conclusion applies to the join query. More than 3.5MB of
LLC improves join query throughput by only 10% more.

When LLC is not partitioned, the OLTP throughput drops
by 42% when running with the projection query (see Table
II). Allocating 1.75MB of LLC to the OLTP and the rest to
the OLAP, the OLTP throughput drops by 32%. Hence, parti-
tioning LLC among OLTP and OLAP is always beneficial for
OLTP when running with the projection query, even though the
allocated LLC size is minimal. Having increased the OLTP’s
LLC partition size to 33.25MB, the OLTP’s throughput-drop
is reduced to 14%. We can surmise that out of the 42%
throughput-drop due to the interference in the shared LLC
and memory bandwidth, 14% is likely due to contention for
memory bandwidth, whereas, 42 — 14 = 28% is due to
interference in the LLC.

The interference in the LLC and memory bandwidth is
22% for OLTP when running with the join query. By splitting
LLC equally among the OLTP and OLAP workloads (17.5MB
to each), the interference at the OLTP side is reduced to
17% without hurting the OLAP performance. If we allocate
33.25MB to OLTP, the interference is further reduced to
~15%. This shows that the 15% interference out of the
22% is likely due to contention for memory bandwidth, with
22 — 15 = 7% due to interference in the LLC.

Based on our evaluation, we conclude that LLC partitioning
can be significantly useful to isolate the LLC accesses of
sequential-scan-heavy OLAP queries from that of the OLTP
transactions. Thanks to the LLC partitioning, the interference
at the OLTP side can be reduced from 42% to 14%, without
hurting the OLAP performance.

B. Hyper-threads

In this section, we examine the interference in the shared
hyper-thread resources. We run 2 OLTP threads on two sep-
arate physical cores. We then add 2 OLAP threads such that
each OLTP thread shares its core with an OLAP thread, and we
examine how much the newly added OLAP threads decrease
the throughput of the already running OLTP threads. We do
the same by starting with 2 OLAP threads, adding 2 OLTP

1832

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 15,2021 at 21:46:04 UTC from IEEE Xplore. Restrictions apply.

TABLE V
INTERFERENCE IN THE SHARED HYPER-THREADS. 2T+2A REFERS TO THE
CONFIGURATION RUNNING 2 OLTP AND 2 OLAP THREADS. THERE IS
ALWAYS | DELTA PROPAGATION THREAD. THE CELLS ARE COLOR-CODED.
THE DARKER A CELL IS, THE MORE SIGNIFICANT THE INTERFERENCE IS.

2T+2A

0.73

Projection

Join

threads, and measuring how much the OLAP throughput is
decreased. Table V presents the results.

We first examine the projection query. The OLAP threads
cause 27% throughput-drop for the OLTP threads, whereas
the OLTP threads cause 45% throughput-drop for the OLAP
threads. This shows that the sequential-scan-heavy projection
query is sensitive to hyper-thread sharing. The speed of
sequential data-scan depends on successfully streaming the
read requests. If the stream is intervened, e.g., due to a micro-
architectural resource being occupied by the sibling hyper-
thread, its speed is significantly decreased.

The join query is modestly affected by the sibling OLTP
threads. Similarly, the OLTP threads are modestly affected
by the sibling join threads. These show that the random-
access-heavy OLTP-workload and join-query are more robust
to hyper-thread sharing.

VI. INTERFERENCE IN SHARED DATA

In this section, we examine interference in the shared data.
We only use Siper, as we do not have control over core
and data affinity for DBMS A and B. We place the OLTP
and OLAP threads and data in two separate sockets, so that
OLTP and OLAP do not share any hardware resources. We
place the delta propagation threads and the delta itself in the
OLAP socket. We use the projection query and the update-only
transaction. Our goal is to answer the following questions:

« How much do the OLTP and OLAP throughput drop due
to the interference?

e Do the OLTP and OLAP throughput drop by the same
level?

e Does the OLAP throughput drop by the same level for
different number of OLTP and OLAP threads?

e Does the OLTP throughput drop by the same level for
different number of OLTP and OLAP threads?

First, we examine the interference at the OLTP side. The
OLTP throughput is not affected by the interference. The
OLTP component we use, i.e., Silo, relies on multi-versioning
to keep consistent snapshots of the data. Therefore, the readers
do not block the writers, and the OLTP throughput is not
affected by the OLAP workload.

Next, we examine the interference at the OLAP side. We
use 1 fresh-tuple-propagation thread and examine how much
the query execution time is increased at the OLAP side. Table
VI presents the results for the projection query and the update-
only transaction. The query execution time is increased by a

TABLE VI
INTERFERENCE IN THE SHARED DATA AT THE OLAP SIDE. THERE IS
ALWAYS 1 DELTA PROPAGATION THREAD. NORMALIZED QUERY
EXECUTION TIMES. THE CELLS ARE COLOR-CODED. THE DARKER A CELL
IS, THE MORE SIGNIFICANT THE INTERFERENCE IS.

Number of OLTP threads |

Number 1 1.0 1.2 4.2
of OLAP 10 1.0 1.1 4.0
threads 26 1.0 1.1 2.4

900
c 341 OLTP Thds
S 800
g 700 7 OLTPThds
S 600 14 OLTP Thds
g @500 21 OLTPThds
2 E400
s —t—28 OLTPThds
g 300
E}' 200
5 100
z 0 o amg—— ST S0 S

1 6 1116212631 364146 5156 61 66 71 76 81 86 91 96

Query submission order

Fig. 2. Interference in the shared data for 10 OLAP threads and 1 delta
propagation thread. Normalized query execution times.

small amount for 1 and 7 OLTP threads and by a large amount
for 14 and more OLTP threads.

For 10 OLAP threads and 1 fresh-tuple-propagation thread,
we examine the individual query execution times. We submit
the queries one-after-the-other. We measure the execution time
of each query. Then, we normalize the query execution times
of the series of submitted queries based on the execution time
of the first submitted query. We plot the normalized query
execution time numbers in Figure 2 with increasing numbers
of OLTP threads. The query execution time is stable for 1 and
7 OLTP threads, whereas it is exponentially increased for 14
and more OLTP threads.

We examine two parameters to understand the behavior. We
examine: (i) fresh tuple generation throughput, which we call
A, and (ii) fresh tuple propagation throughput, which we call
p. A is approximately the OLTP throughput in our micro-
benchmark, as the OLTP transaction we use generates 1 fresh
tuple per transaction.

We examine A/p. The A/p metric represents how fast the
fresh tuples are generated compared to how fast the fresh
tuples can be propagated. If the A/p value is less than 1,
it means the OLTP side generates fresh tuples slower than
the fresh tuple propagation thread propagates the fresh tuples.
If the A/p value is greater than 1, it means the OLTP side
generates fresh tuples faster than the fresh tuple propagation
thread propagates the fresh tuples.

Table VII presents the A\/p values for 10 OLAP, 1 fresh
tuple propagation, and increasing number of OLTP threads.
The OLTP component generates fresh tuples slower than they
are propagated for 1 and 7 OLTP threads, whereas the OLTP

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 15,2021 at 21:46:04 UTC from IEEE Xplore. Restrictions apply.

TABLE VII
FRESH TUPLE GENERATION THROUGHPUT () VS. FRESH TUPLE
PROPAGATION THROUGHPUT ().

Number of OLTP threads
I 17 14] 21] 28
0.1 [0.62 [0.96 [1.26 [1.7

[Mu

side generates fresh tuples almost as fast as or even faster than
the fresh tuples are propagated for 14 and more OLTP threads.
Therefore, the query execution time is exponentially increased
if the OLTP component generates the fresh tuples as fast as or
faster than the fresh tuple propagation thread propagates them.
HTAP systems should allocate enough resources to fresh tuple
propagation such that the fresh tuples can be propagated faster
than they are generated by the OLTP component.

VII. CONCLUSIONS

HTAP systems combine OLTP and OLAP workloads into
a single workload, where the OLTP and OLAP workloads
share both data and hardware resources. In this work, we
characterize workload interference for HTAP workloads. We
examine the interference both in the shared hardware resources
and in the shared data.

We show that interference in the last-level cache (LLC)
and contention for memory bandwidth can reduce OLTP
throughput by up to 42%. Partitioning the LLC among the
OLTP and OLAP workloads can significantly improve OLTP
throughput. The interference in the shared data results in an
exponentially increased OLAP query execution time if the
OLTP workload generates fresh tuples faster than the HTAP
system can propagate them. Therefore, in order to minimize
workload interference for HTAP systems, HTAP systems
should isolate the OLTP and OLAP workloads in their shared-
resource accesses and should adopt resource management
algorithms that allow fresh tuple propagation at a rate faster
than they are generated.

VIII. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers and the
member of DIAS laboratory for their feedback. This project
has received funding from the US National Science Founda-
tion (NSF) Award CNS1900803, the European Union Sev-
enth Framework Programme (ERC-2013-CoG), under grant
agreement no 617508 (ViDa), and Swiss National Science
Foundation, Project No.: 200021 146407/1 (Workload- and
hardware-aware transaction processing).

REFERENCES

[1] E Ozcan, Y. Tian, and P. Téziin, “Hybrid Transactional/Analytical
Processing: A Survey,” in SIGMOD, 2017, pp. 1771-1775.

[2] P. Larson, A. Birka, E. N. Hanson, W. Huang, M. Nowakiewicz, and
V. Papadimos, “Real-Time Analytical Processing with SQL Server,”
Proc. VLDB Endow., vol. 8, no. 12, pp. 1740-1751, 2015.

[3] T. Lahiri, S. Chavan, M. Colgan, D. Das, A. Ganesh, M. Gleeson,
S. Hase, A. Holloway, J. Kamp, T. Lee, J. Loaiza, N. Macnaughton,
V. Marwah, N. Mukherjee, A. Mullick, S. Muthulingam, V. Raja,
M. Roth, E. Soylemez, and M. Zait, “Oracle Database In-Memory: A
Dual Format In-memory Database,” in /CDE, 2015, pp. 1253-1258.

1834

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

D. Makreshanski, J. Giceva, C. Barthels, and G. Alonso, ‘“BatchDB:
Efficient Isolated Execution of Hybrid OLTP+OLAP Workloads for
Interactive Applications,” in SIGMOD, 2017, pp. 37-50.

V. Sikka, F. Farber, W. Lehner, S. K. Cha, T. Peh, and C. Bornhovd,
“Efficient Transaction Processing in SAP HANA Database: The End of
A Column Store Myth,” in SIGMOD, 2012, pp. 731-742.

A. Skidanov, A. J. Papito, and A. Prout, “A Column Store Engine for
Real-time Streaming Analytics,” in ICDE, 2016, pp. 1287-1297.

T. Neumann, T. Miihlbauer, and A. Kemper, “Fast serializable multi-
version concurrency control for main-memory database systems,” in
SIGMOD, 2015, pp. 677-689.

R. Appuswamy, M. Karpathiotakis, D. Porobic, and A. Ailamaki, “The
Case For Heterogeneous HTAP,” in CIDR, 2017.

A. Raza, P. Chrysogelos, A. G. Anadiotis, and A. Ailamaki, “Adaptive
HTAP through Elastic Resource Scheduling,” in SIGMOD, 2020, pp.
2043-2054.

M. Athanassoulis, K. S. Bggh, and S. Idreos, “Optimal Column Layout
for Hybrid Workloads,” Proc. VLDB Endow., vol. 12, no. 13, pp. 2393—
2407, 2019.

J. Arulraj, A. Pavlo, and P. Menon, “Bridging the Archipelago between
Row-Stores and Column-Stores for Hybrid Workloads,” in SIGMOD,
2016, pp. 583-598.

L. Li, G. Wu, G. Wang, and Y. Yuan, “Accelerating Hybrid Trans-
actional/Analytical Processing Using Consistent Dual-Snapshot,” in
Database Systems for Advanced Applications, 2019, pp. 52-69.

A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “DBMSs on
a Modern Processor: Where Does Time Go?” in VLDB, 1999, pp. 266—
2717.

N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril, A. Ailamaki, and
B. Falsafi, “Database Servers on Chip Multiprocessors: Limitations and
Opportunities,” in CIDR, 2007, pp. 79-87.

P. Toziin, B. Gold, and A. Ailamaki, “OLTP in Wonderland: Where Do
Cache Misses Come From in Major OLTP Components?” in Damon,
2013, p. 8.

P. Toziin, I. Pandis, C. Kaynak, D. Jevdjic, and A. Ailamaki, “From A to
E: Analyzing TPC’s OLTP Benchmarks: The Obsolete, The Ubiquitous,
The Unexplored,” in EDBT, 2013, pp. 17-28.

U. Sirin, P. Toziin, D. Porobic, and A. Ailamaki, ‘“Micro-architectural
Analysis of In-memory OLTP,” in SIGMOD, 2016, pp. 387-402.

U. Sirin and A. Ailamaki, “Micro-architectural Analysis of OLAP:
Limitations and Opportunities,” Proc. VLDB Endow., vol. 13, no. 6,
pp. 840-853, 2020.

T. Kersten, V. Leis, A. Kemper, T. Neumann, A. Pavlo, and P. Boncz,
“Everything You Always Wanted to Know About Compiled and Vec-
torized Queries but Were Afraid to Ask,” Proc. VLDB Endow., vol. 11,
no. 13, pp. 2209-2222, 2018.

J. Sompolski, M. Zukowski, and P. A. Boncz, “Vectorization vs. Com-
pilation in Query Execution,” in Damon, 2011, pp. 33-40.

R. Cole, F. Funke, L. Giakoumakis, W. Guy, A. Kemper, S. Krompass,
H. Kuno, R. Nambiar, T. Neumann, M. Poess, K.-U. Sattler, M. Seibold,
E. Simon, and F. Waas, “The Mixed Workload CH-BenCHmark,” in
DBTest, 2011.

Intel, “Intel Memory Latency Checker,” 2020,
https://software.intel.com/en-us/articles/intelr-memory-latency-checker.
S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, “Speedy
Transactions in Multicore In-memory Databases,” in SOSP, 2013, pp.
18-32.

Intel, “Understanding How General Exploration Works in
Intel VTune Amplifier,” 2018, https:/software.intel.com/en-
us/articles/understanding-how-general-exploration-works-in-intel-
vtune-amplifier-xe.

——, “Introduction to Intel Cache Allocation Technology.” 2016,
https://software.intel.com/content/www/us/en/develop/articles/introduction-
to-cache-allocation-technology.html.

D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving resource efficiency at scale,” in ISCA, 2015, pp.
450-462.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 15,2021 at 21:46:04 UTC from IEEE Xplore. Restrictions apply.

