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Abstract—Hybrid Transactional and Analytical Processing
(HTAP) systems have become popular in the past decade. HTAP
systems allow running transactional and analytical processing
workloads on the same data and hardware. As a result, they
suffer from workload interference. Despite the large body of
existing work in HTAP systems and architectures, none of the
existing work has systematically analyzed workload interference
for HTAP systems.

In this work, we characterize workload interference for HTAP
systems. We show that the OLTP throughput drops by up to
42% due to sharing the hardware resources. Partitioning the
last-level cache (LLC) among the OLTP and OLAP workloads
can significantly improve the OLTP throughput without hurting
the OLAP throughput. The OLAP throughput is significantly
reduced due to sharing the data. The OLAP execution time is
exponentially increased if the OLTP workload generates fresh
tuples faster than the HTAP system propagates them. Therefore,
in order to minimize the workload interference, HTAP systems
should isolate the OLTP and OLAP workloads in the shared
hardware resources and should allocate enough resources to fresh
tuple propagation to propagate the fresh tuples faster than they
are generated.

Index Terms—Hybrid transactional and analytical process-
ing, hybrid workloads, HTAP, real-time analytics, workload
characterization, micro-architectural analysis, modern hardware,
hardware-software co-design.

I. INTRODUCTION

Hybrid Transactional and Analytical Processing (HTAP)

systems have gained significant attention in the past decade.

HTAP systems combine Online Transactional Processing

(OLTP) and Online Analytical Processing (OLAP) systems

into a single, unified system providing real-time analytical

query processing over fresh, transactional data. Numerous

applications benefit from real-time analytical query processing

such as fraud detection, risk analysis, and IoT applications [1].

There is a significant amount of work on HTAP systems and

architectures. [2]–[4] propose two-copy HTAP architectures,

where the OLTP and OLAP workloads run on their private

copies of the data. [5]–[11] propose single-copy HTAP archi-

tectures, where the OLTP and OLAP workloads run on the

same copy of the data. The OLTP and OLAP workloads share

data and hardware resources both for the two- and single-

copy architectures. As a result, they suffer from workload

interference in the shared data and hardware resources.

Despite the large body of existing work on HTAP systems,

the existing work falls short in systematically analyzing work-

load interference for HTAP systems. In this work, we fill this

gap and highlight a research direction to mitigate workload

interference for HTAP systems. We demonstrate the following:

• OLTP and OLAP workloads interfere with each other in

the last-level cache and memory bandwidth. While the

OLAP throughput drops only by a small amount (by less

than 10%), the OLTP throughput drops by a significant

amount (by up to 42%). Partitioning the last-level cache

among the concurrently running OLTP and OLAP work-

loads can significantly improve the OLTP throughput

without reducing the OLAP throughput. While OLTP al-

ways benefits from a larger amount of caches, OLAP does

not benefit from more than a few megabytes of caches.

Therefore, HTAP systems should isolate the OLTP and

OLAP workloads in the shared last-level cache and adopt

resource management algorithms based on the needs of

the OLTP and OLAP workloads.

• OLTP and OLAP workloads interfere with each other

in the shared data. While the OLTP throughput remains

the same whether the data is shared or not, the OLAP

throughput significantly drops when the data is shared.

In particular, the OLAP query execution time is expo-

nentially increased when the OLTP side generates fresh

tuples faster than the HTAP system can propagate them

from the OLTP to the OLAP side. Therefore, HTAP

systems should allocate enough resources to fresh-tuple

propagation to make sure that fresh tuples are propagated

faster than they are generated to prevent an exponentially

increased query execution time.

II. BACKGROUND AND RELATED WORK

HTAP architectures: Three main HTAP architectures have

been proposed [1]. The first is two-copy, mixed-format

(TCMF) architecture [2]–[4], [12]. TCMF keeps two copies

of the data, one for the OLTP side in row format and one for

the OLAP component in columnar format. To keep the data

consistent across the OLTP and OLAP components, TCMF

uses an intermediate data structure, delta, that keeps track

of the recently modified, fresh tuples. Periodically, TCMF

propagates the fresh tuples from the OLTP side to the OLAP

side by scanning the delta.

The second is single-copy, mixed-format (SCMF) architec-

ture [5], [6]. SCMF keeps a single copy of the data and uses

the intermediate data structure delta as the OLTP store. OLTP

transactions only modify the delta, whereas the OLAP queries

read both the delta and the main copy of the data. The delta

is in row format, whereas the main copy of the data is in

columnar format.
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Lastly, single-copy, single-format (SCSF) architecture keeps

a single copy of the data and uses a single format, i.e., only

row or columnar, both for OLTP and OLAP workloads [7]–

[9]. It relies on copy-on-write snapshotting or multi-version

concurrency control mechanisms to keep multiple versions of

the data, through which analytical queries can access the most

recent transactional data.

In all the three architectures, the data is logically shared

among the OLTP and OLAP components. When we refer to

sharing the data, we refer to sharing the logical data throughout

the paper.

Workload characterization: There is a large body of work

on database workload characterization. Ailamaki et al. [13]

and Hardavellas et al. [14] characterize OLTP and OLAP

workloads. Tozun et al. [15], [16] and Sirin et al. [17] dive

deep into OLTP workloads and characterize disk-based and

in-memory OLTP workloads.

Sirin et al. [18] characterize a wide range of OLAP work-

loads with a particular focus on column stores. Kersten et

al. [19] characterize OLAP workloads with a particular focus

on vectorized versus compiled engines. Sompolski et al. [20]

also compare vectorized and compiled engines with a focus

on predication and SIMD.

The existing work on HTAP systems falls short in analyzing

workload interference for HTAP systems. The existing work in

database workloads characterization examines either the OLTP

or the OLAP workloads. In this work, we take the next step

and examine HTAP workloads with a focus on interference.

III. SETUP AND METHODOLOGY

Benchmarks: We use two micro-benchmarks and the

CH-benchmark [21]. The micro-benchmarks use the CH-

benchmark schema. The first micro-benchmark contains a pro-

jection query and an OLTP transaction. The projection query

does a SUM() over the ol amount column of the orderline

table. The OLTP transaction continuously updates the same

ol amount column. The second micro-benchmark contains a

join query and the same OLTP transaction as the first micro-

benchmark. The join query joins the orderline and orders

tables and does a SUM() over the ol amount column. The

joins use the hash-join algorithm. We chose a projection- and

join-based query as they represent the two main data access

patterns for OLAP workloads: sequential-scan and random-

access [18].

We use Q3 and Q6 of the CH-benchmark, as they represent

the two main categories of analytical queries: (i) non-join and

(ii) join-intensive queries [18]. We use the New-Order trans-

action of the CH-benchmark, as it is the heaviest transaction

in the CH-benchmark.

Hardware: We use a commodity Intel server with the Broad-

well micro-architecture. Table I presents the server parame-

ters. We use Intel’s Memory Latency Checker (MLC) [22]

to measure the cache-miss latencies and maximum memory

bandwidth.

HTAP systems: We examine (i) HTAP engine of a traditional,

commercial system, DBMS A, (ii) a popular, new-generation,

TABLE I
SERVER PARAMETERS.

Processor
Intel(R) Xeon(R) CPU

E5-2680 v4 (Broadwell)

#sockets 2

#cores per socket 14

Hyper-threading Off

Turbo-boost Off

Clock speed 2.40GHz

Per-socket bandwidth
66GB/s (sequential)
60GB/s (random)

L1I / L1D (per core)
32KB / 32KB

16-cycle miss latency

L2 (per core)
256KB

26-cycle miss latency

L3 (shared)
(inclusive) 35MB

160-cycle miss latency

Memory 256GB

commercial HTAP system, DBMS B, (iii) and an academic

prototype that we built based on an existing open-source OLTP

system, Silo [23], and an existing open-source OLAP system,

Typer [19]. We name our system Siper, which combines the

initial letters of Silo and final letters of Typer.

DBMS A uses the two-copy, mixed-format (TCMF) HTAP

architecture. DBMS B uses the single-copy, mixed-format

(SCMF) HTAP architecture. Siper also uses the TCMF ar-

chitecture. We did not study the single-copy, single-format

(SCSF) architecture. However, we believe our conclusions

apply to SCSF. SCSF suffers from traversing version-chains,

whereas TCMF and SCMF suffer from processing the delta

structure. Both challenges are random-accesses-intensive. Both

challenges depend on how fast the OLTP side produces fresh

tuples and how fast the HTAP system can merge the fresh

tuples into the main copy of the data.

OS & Compiler: We use Ubuntu 16.04.6 LTS and gcc 5.4.0.

VTune: We use Intel VTune 2020. We use VTune’s built-in

memory-access analysis to measure memory bandwidth con-

sumption. As we use a single socket for all of our experiments,

we report the average per-socket bandwidth values.

Measurements: We first populate the database and generate

statistics. Lastly, we perform a three-minute warmup period,

followed by a ten-minute throughput-measurement or VTune-

profiling period. We disable hyper-threading and turbo-boost,

as they jeopardize VTune counter values [24], except in

Section V-B where we examine hyper-thread-sharing.

We use only a single socket for all of our experiments,

except in Section VI. We disable the cores in the other socket

and use the relevant OS interface to make sure memory is

always locally allocated. We do single- and multi-threaded

experiments. We choose a scaling factor of 350 (a database of

30GB) for all the experiments.

We disable compression for DBMS A. DBMS B does not

expose a parameter to enable/disable the compression. It uses

an internally-decided compression scheme whose details are

not revealed. Siper does not rely on any compression scheme.
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Fig. 1. The OLAP side of Siper. The OLTP side continuously produces fresh tuples. The active column and delta combination at each step is colored by
blue and marked by left-striped lines.

IV. SIPER

In this section, we present Siper. Siper relies on the TCMF

architecture (see Section II). Furthermore, it keeps two copies

of the modified columns at the OLAP side. One of the copies

is used for propagating the fresh tuples, the other copy is used

for query processing. Figure 1 presents how the OLAP side

of Siper works.

At step 0, the query is executed on the base column over the

first copy of the column, i.e., C0 (colored by blue and marked

by left-stripes). During step 0, the fresh tuples are tracked

by ∆0. At step 1, the query is executed on C1 and ∆0, and

∆0 is propagated to C0. At step 2, C0 (which now has ∆0

propagated) and ∆1 are used to serve the query, during which

∆0 and ∆1 are propagated to C1. We keep the fresh tuples

both in ∆1 and ∆2. At step 3, and onwards the system starts

iterating itself. At step i, the system concurrently executes the

following:

• Processes ∆(i−1)%3 and Ci%2 (for OLAP queries)

• Propagates the ∆(i−1)%3,∆(i−2)%3

• Keeps track of the fresh tuples by ∆i%3,∆(i−1)%3

We keep track of the fresh tuples in ∆i%3 and ∆(i−1)%3

rather than only in ∆i%3 in order to be able to alternate

between the two column copies while also keeping them

within two deltas of each other.

V. INTERFERENCE IN SHARED HARDWARE RESOURCES

In this section, we examine interference in the shared

hardware resources. We examine the interference in the last-

level cache (LLC), memory bandwidth and hyper-threads by

using the micro-benchmark and the CH-benchmark. Our goal

is to answer the following questions:

• How much do the OLTP and OLAP throughput drop due

to the interference?

• Do the OLTP and OLAP throughput drop by the same

level?

• Does the OLAP throughput drop by the same level for

all the queries and transactions?

• Does the OLTP throughput drop by the same level for all

the queries and transactions?

A. LLC and Memory Bandwidth Interference

In this section, we examine the interference in the LLC

and memory bandwidth. We examine three configurations:

1 OLTP thread concurrently running with 13 OLAP threads

(1T+13A), 7 OLTP thread with 7 OLAP threads (7T+7A),

13 OLTP thread with 1 OLAP threads (13T+1A). For each

configuration, we measure the OLTP and OLAP throughput.

Then, we divide this throughput by the OLTP (or OLAP)

throughput measured when running the OLTP (or OLAP)

alone on the same server with the same number of threads.

For example, we measure the OLTP and OLAP throughput

for the 1T+13A configuration. Then, we measure the OLTP

throughput when running the same OLTP workload alone

on the same hardware with 1 OLTP thread. We divide the

OLTP throughput for the 1T+13A configuration by the OLTP

throughput when running the OLTP alone and report this

number as the interference at the OLTP side. We do the same

to report the interference at the OLAP side. Workloads are

always on a single socket using locally allocated memory. For

Siper, we use 1 thread for delta propagation. We use 12 instead

of 13 OLAP threads for the 1T+13A configuration.

Table II presents the results. DBMS A and B lightly suffer

from the interference. Both the OLTP and OLAP throughput

drop by 1-12%. Siper significantly suffers from the interfer-

ence at the OLTP side. The OLTP throughput drops by 11-

42%. The larger the number of OLAP threads is, the more

significant the interference at the OLTP side is. Siper lightly

suffers from the interference at the OLAP side. The OLAP

throughput drops only by 1-5%.

In Table III, we examine the consumed memory bandwidth.

We examine the OLTP-alone and OLAP-alone configurations
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TABLE II
INTERFERENCE IN THE LLC AND MEMORY BANDWIDTH. 1T+13A REFERS

TO THE CONFIGURATION RUNNING 1 OLTP AND 13 OLAP THREADS. THE

CELLS ARE COLOR-CODED. THE DARKER A CELL IS, THE MORE

SIGNIFICANT THE INTERFERENCE IS.

1T+13A 7T+7A 13T+1A

D
B

M
S

A

µ-bench.
Proj.

OLTP 0.99 0.98 0.97
OLAP 0.98 0.99 1.00

Join
OLTP 0.96 0.99 0.97
OLAP 0.94 0.92 1.00

CH-bench.
Q6

OLTP 0.99 0.99 0.96
OLAP 1.04 1.01 1.00

Q3
OLTP 1.05 0.88 0.96
OLAP 1.01 0.94 0.96

D
B

M
S

B

µ-bench.
Proj.

OLTP 0.97 0.91 0.97
OLAP 0.98 0.97 1.00

Join
OLTP 0.94 0.89 0.98
OLAP 1.02 0.98 0.95

CH-bench.
Q6

OLTP 1.01 0.88 0.97
OLAP 1.04 0.98 1.01

Q3
OLTP 0.99 0.91 0.98
OLAP 1.02 0.97 1.01

S
ip

er

µ-bench.
Proj.

OLTP 0.58 0.73 0.80
OLAP 0.98 0.99 0.95

Join
OLTP 0.78 0.82 0.89
OLAP 0.99 0.98 0.98

TABLE III
CONSUMED MEMORY BANDWIDTH IN GB/S. THE CELLS ARE

COLOR-CODED. THE DARKER A CELL IS, THE HIGHER THE BANDWIDTH

CONSUMPTION IS. THE MAXIMUM AVAILABLE BANDWIDTH IS 66 GB/S.

1 thread 7 threads 13 threads

D
B

S
A Update-only xact. 0.05 0.90 2.49

Projection 0 1.90 3.37
Join 0.09 2.80 3.30

D
B

S
B Update-only xact. 0.02 0.23 0.47

Projection 0.04 5 7.18
Join 0.07 2.40 4.36

S
ip

er

Update-only xact. 0.10 4.10 8.30
Projection 5.4 31.65 58.55

Join 1.19 12.10 21.71

for varying number of threads. We observe that the larger

the amount of bandwidth the OLAP (or OLTP) side of a

system consumes, the more the OLTP (or OLAP) side of

the system suffers from the interference. Both the OLTP and

OLAP sides of DBMS A and B consume a small amount of

memory bandwidth (0.02 to 7.18 GB/s), and both the OLTP

and OLAP sides of DBMS A and B lightly suffer from the

interference. The OLTP side of Siper consumes a small amount

of bandwidth (0.10 to 8.30 GB/s), and the OLAP side of Siper

lightly suffers from the interference. The OLAP side of Siper

consumes a significant amount of bandwidth (5.40 to 58.55

GB/s), and the OLTP side of Siper significantly suffers from

the interference.

LLC vs. memory bandwidth: We further study how much

of the interference is due to LLC and how much of the

interference is due to memory bandwidth for Siper. We use

Intel’s Cache Allocation Technology (CAT) to isolate LLC

among the OLTP and OLAP workloads [25], [26]. For 1

OLTP and 12 OLAP threads, we increase the amount of LLC

allocated to OLTP from 1.75MB to 33.25MB. We reserve

the remainder of the LLC for OLAP. We run the fresh tuple

TABLE IV
LLC PARTITIONING EXPERIMENTS FOR SIPER USING 1 OLTP, 1 DELTA

PROPAGATION AND 12 OLAP THREADS. THE CELLS ARE COLOR-CODED.
THE DARKER A CELL IS, THE MORE SIGNIFICANT THE INTERFERENCE IS.

LLC partition size for OLTP in MBs
1.75 8.75 17.5 31.5 33.25

Projection
OLTP 0.68 0.73 0.77 0.83 0.86
OLAP 1.00 1.00 1.00 0.98 0.47

Join
OLTP 0.77 0.81 0.83 0.86 0.84
OLAP 1.00 0.99 0.98 0.90 0.68

propagation thread pinned to a separate physical core.

Table IV presents the OLTP and OLAP throughput normal-

ized to running on the server alone. The table shows that the

projection throughput does not increase for more than 3.5MB

LLC. Hence, the sequential-scan-heavy query requires only

a certain amount of LLC, after which the increased cache

partition size does not increase the throughput. A similar

conclusion applies to the join query. More than 3.5MB of

LLC improves join query throughput by only 10% more.

When LLC is not partitioned, the OLTP throughput drops

by 42% when running with the projection query (see Table

II). Allocating 1.75MB of LLC to the OLTP and the rest to

the OLAP, the OLTP throughput drops by 32%. Hence, parti-

tioning LLC among OLTP and OLAP is always beneficial for

OLTP when running with the projection query, even though the

allocated LLC size is minimal. Having increased the OLTP’s

LLC partition size to 33.25MB, the OLTP’s throughput-drop

is reduced to 14%. We can surmise that out of the 42%

throughput-drop due to the interference in the shared LLC

and memory bandwidth, 14% is likely due to contention for

memory bandwidth, whereas, 42 − 14 = 28% is due to

interference in the LLC.

The interference in the LLC and memory bandwidth is

22% for OLTP when running with the join query. By splitting

LLC equally among the OLTP and OLAP workloads (17.5MB

to each), the interference at the OLTP side is reduced to

17% without hurting the OLAP performance. If we allocate

33.25MB to OLTP, the interference is further reduced to

∼15%. This shows that the 15% interference out of the

22% is likely due to contention for memory bandwidth, with

22− 15 = 7% due to interference in the LLC.

Based on our evaluation, we conclude that LLC partitioning

can be significantly useful to isolate the LLC accesses of

sequential-scan-heavy OLAP queries from that of the OLTP

transactions. Thanks to the LLC partitioning, the interference

at the OLTP side can be reduced from 42% to 14%, without

hurting the OLAP performance.

B. Hyper-threads

In this section, we examine the interference in the shared

hyper-thread resources. We run 2 OLTP threads on two sep-

arate physical cores. We then add 2 OLAP threads such that

each OLTP thread shares its core with an OLAP thread, and we

examine how much the newly added OLAP threads decrease

the throughput of the already running OLTP threads. We do

the same by starting with 2 OLAP threads, adding 2 OLTP
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TABLE V
INTERFERENCE IN THE SHARED HYPER-THREADS. 2T+2A REFERS TO THE

CONFIGURATION RUNNING 2 OLTP AND 2 OLAP THREADS. THERE IS

ALWAYS 1 DELTA PROPAGATION THREAD. THE CELLS ARE COLOR-CODED.
THE DARKER A CELL IS, THE MORE SIGNIFICANT THE INTERFERENCE IS.

2T+2A

Projection
OLTP 0.73
OLAP 0.55

Join
OLTP 0.77
OLAP 0.69

threads, and measuring how much the OLAP throughput is

decreased. Table V presents the results.

We first examine the projection query. The OLAP threads

cause 27% throughput-drop for the OLTP threads, whereas

the OLTP threads cause 45% throughput-drop for the OLAP

threads. This shows that the sequential-scan-heavy projection

query is sensitive to hyper-thread sharing. The speed of

sequential data-scan depends on successfully streaming the

read requests. If the stream is intervened, e.g., due to a micro-

architectural resource being occupied by the sibling hyper-

thread, its speed is significantly decreased.

The join query is modestly affected by the sibling OLTP

threads. Similarly, the OLTP threads are modestly affected

by the sibling join threads. These show that the random-

access-heavy OLTP-workload and join-query are more robust

to hyper-thread sharing.

VI. INTERFERENCE IN SHARED DATA

In this section, we examine interference in the shared data.

We only use Siper, as we do not have control over core

and data affinity for DBMS A and B. We place the OLTP

and OLAP threads and data in two separate sockets, so that

OLTP and OLAP do not share any hardware resources. We

place the delta propagation threads and the delta itself in the

OLAP socket. We use the projection query and the update-only

transaction. Our goal is to answer the following questions:

• How much do the OLTP and OLAP throughput drop due

to the interference?

• Do the OLTP and OLAP throughput drop by the same

level?

• Does the OLAP throughput drop by the same level for

different number of OLTP and OLAP threads?

• Does the OLTP throughput drop by the same level for

different number of OLTP and OLAP threads?

First, we examine the interference at the OLTP side. The

OLTP throughput is not affected by the interference. The

OLTP component we use, i.e., Silo, relies on multi-versioning

to keep consistent snapshots of the data. Therefore, the readers

do not block the writers, and the OLTP throughput is not

affected by the OLAP workload.

Next, we examine the interference at the OLAP side. We

use 1 fresh-tuple-propagation thread and examine how much

the query execution time is increased at the OLAP side. Table

VI presents the results for the projection query and the update-

only transaction. The query execution time is increased by a

TABLE VI
INTERFERENCE IN THE SHARED DATA AT THE OLAP SIDE. THERE IS

ALWAYS 1 DELTA PROPAGATION THREAD. NORMALIZED QUERY

EXECUTION TIMES. THE CELLS ARE COLOR-CODED. THE DARKER A CELL

IS, THE MORE SIGNIFICANT THE INTERFERENCE IS.

Number of OLTP threads
1 7 14 21 28

Number
of OLAP
threads

1 1.0 1.2 4.2 11.2 19.6
10 1.0 1.1 4.0 8.9 13.9
26 1.0 1.1 2.4 4.9 10.8
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Fig. 2. Interference in the shared data for 10 OLAP threads and 1 delta
propagation thread. Normalized query execution times.

small amount for 1 and 7 OLTP threads and by a large amount

for 14 and more OLTP threads.

For 10 OLAP threads and 1 fresh-tuple-propagation thread,

we examine the individual query execution times. We submit

the queries one-after-the-other. We measure the execution time

of each query. Then, we normalize the query execution times

of the series of submitted queries based on the execution time

of the first submitted query. We plot the normalized query

execution time numbers in Figure 2 with increasing numbers

of OLTP threads. The query execution time is stable for 1 and

7 OLTP threads, whereas it is exponentially increased for 14

and more OLTP threads.

We examine two parameters to understand the behavior. We

examine: (i) fresh tuple generation throughput, which we call

λ, and (ii) fresh tuple propagation throughput, which we call

µ. λ is approximately the OLTP throughput in our micro-

benchmark, as the OLTP transaction we use generates 1 fresh

tuple per transaction.

We examine λ/µ. The λ/µ metric represents how fast the

fresh tuples are generated compared to how fast the fresh

tuples can be propagated. If the λ/µ value is less than 1,

it means the OLTP side generates fresh tuples slower than

the fresh tuple propagation thread propagates the fresh tuples.

If the λ/µ value is greater than 1, it means the OLTP side

generates fresh tuples faster than the fresh tuple propagation

thread propagates the fresh tuples.

Table VII presents the λ/µ values for 10 OLAP, 1 fresh

tuple propagation, and increasing number of OLTP threads.

The OLTP component generates fresh tuples slower than they

are propagated for 1 and 7 OLTP threads, whereas the OLTP

1833

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 15,2021 at 21:46:04 UTC from IEEE Xplore.  Restrictions apply. 



TABLE VII
FRESH TUPLE GENERATION THROUGHPUT (λ) VS. FRESH TUPLE

PROPAGATION THROUGHPUT (µ).

Number of OLTP threads
1 7 14 21 28

λ/µ 0.1 0.62 0.96 1.26 1.7

side generates fresh tuples almost as fast as or even faster than

the fresh tuples are propagated for 14 and more OLTP threads.

Therefore, the query execution time is exponentially increased

if the OLTP component generates the fresh tuples as fast as or

faster than the fresh tuple propagation thread propagates them.

HTAP systems should allocate enough resources to fresh tuple

propagation such that the fresh tuples can be propagated faster

than they are generated by the OLTP component.

VII. CONCLUSIONS

HTAP systems combine OLTP and OLAP workloads into

a single workload, where the OLTP and OLAP workloads

share both data and hardware resources. In this work, we

characterize workload interference for HTAP workloads. We

examine the interference both in the shared hardware resources

and in the shared data.

We show that interference in the last-level cache (LLC)

and contention for memory bandwidth can reduce OLTP

throughput by up to 42%. Partitioning the LLC among the

OLTP and OLAP workloads can significantly improve OLTP

throughput. The interference in the shared data results in an

exponentially increased OLAP query execution time if the

OLTP workload generates fresh tuples faster than the HTAP

system can propagate them. Therefore, in order to minimize

workload interference for HTAP systems, HTAP systems

should isolate the OLTP and OLAP workloads in their shared-

resource accesses and should adopt resource management

algorithms that allow fresh tuple propagation at a rate faster

than they are generated.
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