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I. ABSTRACT

Image-like data from quantum systems
promises to offer greater insight into the
physics of correlated quantum matter. How-
ever, the traditional framework of condensed
matter physics lacks principled approaches for
analyzing such data. Machine learning models
are a powerful theoretical tool for analyzing
image-like data including many-body snapshots
from quantum simulators. Recently, they have
successfully distinguished between simulated
snapshots that are indistinguishable from one
and two point correlation functions. Thus far,
the complexity of these models has inhibited new
physical insights from such approaches. Here, we
develop a set of nonlinearities for use in a neural
network architecture that discovers features in
the data which are directly interpretable in terms
of physical observables. Applied to simulated
snapshots produced by two candidate theories
approximating the doped Fermi-Hubbard model,
we uncover that the key distinguishing features
are fourth-order spin-charge correlators. Our
approach lends itself well to the construction
of simple, versatile, end-to-end interpretable
architectures, thus paving the way for new
physical insights from machine learning studies
of experimental and numerical data.

II. INTRODUCTION

There have been growing efforts to adopt data science
tools that have proved effective at recognizing every-day
objects for objective analysis of image-like data on quan-
tum matter [1–6]. The key idea is to use the ability of
neural networks to express and model functions to learn
key features found in the image-like data in an objec-
tive manner. However, there are two central challenges
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to this approach. First, the “black box” nature of neural
networks is particularly problematic when it comes to sci-
entific applications, where it is critical that the outcome
of the analysis is based on scientifically correct reasoning
[7]. The second challenge unique to scientific applica-
tion of supervised machine learning (ML) approaches is
the shortage of real training data. Hence the commu-
nity has generally relied on simulated data for training
[1, 3, 8]. However, it has not been clear whether the neu-
ral networks trained on simulated data properly general-
ize to experimental data. The path to surmounting both
of these issues is to obtain some form of interpretabil-
ity in our models. To date, most efforts at interpretable
machine learning on scientific data have relied on man-
ual inspection and translation of learned features from
training standard architectures [9–11]. Instead, here we
propose an approach designed from the ground-up to au-
tomatically learn information that is meaningful within
the framework of physics.

The need for a principled data-centric approach is
particularly great and urgent in the case of synthetic
matter experiments such as quantum gas microscopy
(QGM) [12–14], ion traps [15], and Rydberg atom arrays
[16, 17]. While our technique is generally applicable, in
this work we focus on QGM, which enables researchers
to directly sample from the many-body density matrix
of strongly correlated quantum states that are simulated
using ultra-cold atoms. With the quantum simulation of
the fermionic Hubbard model finally reaching magnetism
[14] and the strange metal regime [18, 19], QGM is poised
to capture a wealth of information on this famous model
that bears many open questions and is closely linked to
quantum materials. However, the real-space snapshots
QGM measures are a fundamentally new form of data re-
sulting from a direct projective measurement of a many-
body density matrix as opposed to a thermal expectation
value of observables. While this means richer information
is present in a full dataset, little is known about how to
efficiently extract all the information. When it comes to
the questions regarding the enigmatic underdoped region
of the fermionic Hubbard model, the challenge is mag-
nified by the fact that fundamentally different theories
can predict QGM data with seemingly subtle differences
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within standard approaches [19, 20].
In this work, we develop Correlator Convolutional Neu-

ral Networks (CCNNs) as an architecture with a set of
nonlinearities which produce features that are directly in-
terpretable in terms of correlation functions in image-like
data (see Fig. 1). Following training of this architecture,
we employ regularization path analysis [21] to rigorously
identify the features that are critical in the CCNN’s per-
formance. We apply this powerful combination of CC-
NNs and regularization path analysis to simulated QGM
data of the under-doped Fermi Hubbard model, as well as
additional pedagogical examples in Supplementary Note
2. Following this, we discuss the new insights we gain re-
garding the hidden signatures of two theories, geometric
string theory [22] and π-flux theory [23, 24].

III. RESULTS

The Hubbard model of fermionic particles on a lat-
tice is a famous model that bears many open questions
and is closely linked to quantum materials such as high-
temperature superconductors. The model Hamiltonian
is given by

H = −t
∑
σ=↑,↓

∑
〈i,j〉

(ĉ†i,σ ĉj,σ + h.c.) + U
∑
i

n̂i,↑n̂i,↓ (1)

where the first term describes the kinetic energy asso-
ciated to electrons hopping between lattice sites, and
the second term describes an on-site repulsion between
electrons. At half-filling, and in the limit U � t, the
repulsive Hubbard model maps to the Heisenberg anti-
ferromagnet (AFM) [25]. However, the behavior of the
model as the system is doped away from half-filling is
not as well-understood. Several candidate theories exist
which attempt to describe this regime, including geomet-
ric string theory [22] and π-flux theory [23, 24]. These
theories are conceptually very distinct, but at low dop-
ings measurements in the occupation basis do not differ
enough in simple conventional observables such as stag-
gered magnetization or two-point correlation functions
to fully explain previous ML success [3] in discrimina-
tion (see Supplementary Note 4). Nevertheless, there are
more subtle hidden structures involving more than two
sites [20] which are noticeable. In the “frozen spin ap-
proximation” [26], geometric string theory predicts that
the motion of the holes simply displaces spins backwards
along the path the hole takes. Hence the propagation of
the doped hole will tend to produce a “wake” of paral-
lel line segments of aligned spins in its trail (Fig. 2(a)).
Meanwhile, the π-flux theory describes a spin liquid of
singlet pairs, where it is more difficult to conceive of char-
acteristic structures (Fig. 2(b)).

Current QGM experiments are able to directly sim-
ulate the Fermi-Hubbard model, obtaining one or two-
dimensional occupation snapshots sampled from the ther-
mal density matrix ρ ∼ e−βH prescribed by the model

[14]. However, currently our experiment can only resolve
a single spin species at a time, leaving all other sites
appearing as empty. This is not a fundamental limita-
tion of QGM experiments and complete spin and charge
readout is beginning to become available to select groups
[27, 28]. As we aim to learn true spin correlations, in
this work we use primarily simulated snapshots at doping
δ = 0.09 sampled from the geometric string and π-flux
theories using Monte Carlo sampling techniques under
periodic boundary conditions. In particular, geometric
string snapshots are generated by first sampling snap-
shots from the AFM Heisenberg model, then randomly
inserting strings with lengths drawn from the analytic
distribution [20]. π-flux snapshots are generated by stan-
dard Metropolis sampling from the Gutzwiller projected
thermal density matrix given by the associated mean-
field Hamiltonian. (See Supplementary Note 1 for further
details.)

We point out that in the context of this paper, when
referring to two models as different, we do not imply that
they are fundamentally distinct, in the sense that they
can not be connected smoothly without encountering a
singularity in the partition function. Rather, this is a
practical question: we have two or more mathematical
procedures for generating many-body snapshots based
on variational wavefunctions, Monte-Carlo sampling, or
any other theoretical approach. Our goal is to develop a
ML algorithm that separates snapshots based on which
procedure they are more likely to come from and, most
importantly, the algorithm should provide information
about which correlation functions are most important for
making these assignments.

To learn how to distinguish these two theories we
propose a neural network architecture, Correlator Con-
volutional Neural Networks, schematically shown in
Fig. 1. The input to the network is an image-like
map with 3-channels {Sk(x)|k=1, 2, 3}, where S1(x) =
n↑(x), S2(x) = n↓(x), S3(x) = nhole(x). Since the
models we consider are restricted to the singly-occupied
Hilbert space, this input only takes on values 0 or 1. From
this input, the CCNN constructs nonlinear “correlation
maps” containing information of local spin-hole correla-
tions up to some order N across the snapshot. This op-
eration is parameterized by a set of learnable 3-channel
filters, {fα,k|α=1, · · · ,M} where M is the number of fil-
ters in the model. The maps for the given filter α are
defined as:

C(1)
α (x) =

∑
a,k

fα,k(a)Sk(x + a)

C(2)
α (x) =

∑
(a,k)6=(b,k′)

fα,k(a)fα,k′(b)Sk(x + a)Sk′(x + b)

... (2)

C(N)
α (x) =

∑
(a1,k1)6=... 6=(aN ,kN )

N∏
j=1

fα,kj (aj)Skj (x + aj).
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FIG. 1. Correlator Convolutional Neural Network Architecture. The construction of our Correlator Convolutional
Neural Network, shown here with two learnable filters (M = 2). The input is a three-channel image: S1(x) = n↑(x), S2(x) =
n↓(x), S3(x) = nhole(x) = 1−S1(x)−S2(x). Note that S3 is redundant information, but is provided for improved performance

and interpretability. The image is first convolved with learned filters fα to produce a set of convolutional maps C
(1)
α (x). Maps

containing information about higher-order local correlations can then be recursively constructed using the lower-order maps,

truncating at some order N . Spatially averaging these maps produces features c
(n)
α which in expectation are equal to weighted

sums of correlators found as subpatterns of the corresponding convolutional filter. These features are normalized to zero mean

and unit variance by a BatchNorm layer, then used by a logistic classifier with coefficients β
(n)
α to produce the final output ŷ.
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FIG. 2. Model effective theories of the 2D Fermi-
Hubbard model. A cartoon depicting the features of two
candidate theories approximating the low-T , low-doping limit
of the Fermi-Hubbard model. Red, blue sites are spin-up,
spin-down electrons respectively, while green circles represent
holes. (a) Geometric string theory, showing two geometric
strings in the presence of an antiferromagnetic background.
Note that the propagation of the doped holes creates parallel
line segments of aligned spins, perpendicular to the direction
of the hole propagation. (b) π-flux theory, which describes a
spin liquid of singlet pairs.

Here a runs over the convolutional window of the fil-
ter α. Traditional convolutional neural networks employ
only the first of these operations, alternating with some
nonlinear activation function such as tanh or ReLU(x) =

max(0, x). The issue with these typical nonlinear func-
tions is that they mix all orders of correlations into the
output features, making it difficult to disentangle what
exactly traditional networks measure. In contrast, each

order of our nonlinear convolutions C
(n)
α (x) are specif-

ically designed to learn n-site semi-local correlations in
the vicinity of the site x, which appear as patterns in the
convolutional filters fα. Note that the sums in Eq. 2 ex-
clude any self-correlations to aid interpretability. During
training, a CCNN tunes the filters fα,k(a) such that cor-
relators characteristic of the labeled theory are amplified
while others are suppressed. To aid interpretation, we
force all filters to be positive fα,k(a) ≥ 0 by taking the
absolute value before use on each forward pass. We note
that a multi-site kernel used in a support vector machine,
as introduced in Refs. [29, 30], could also learn higher or-
der correlators. However, CCNNs allow high-order cor-
relations to be efficiently parameterized and discovered
by leveraging automatic differentiation and the structure
of convolutions.

A direct computation of the nonlinear convolutions fol-
lowing Eq. 2 up to order N requires O((KP )N ) opera-
tions per site, where P is the number of pixels in the
window of the filter and K is the number of species of
particles. However, we can use the following recursive
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formula which we prove in Supplementary Note 3:

C(n)
α (x) =

1

n

n∑
l=1

(−1)l−1

∑
a,k

fα,k(a)lSk(x + a)l

C(n−l)
α (x),

(3)

where all powers are done pixelwise, and we define

C
(0)
α (x) = 1. This improves the computational complex-

ity to O(N2KP ) while also allowing us to leverage exist-
ing highly-optimized GPU convolution implementations.
Use of this formula leads to a “cascading” structure to
our model similar to [31], as seen in Fig. 1. First, the
input S is convolved with filters fα to produce the first-

order maps C
(1)
α . Using Eq. 3, these first order maps

can be used to construct second order maps C
(2)
α , and

onwards until the model is truncated at some order N .
Since the Hamiltonians being studied are translation-
invariant, we then obtain estimates of correlators from
these correlation maps by simple spatial averages to pro-

duce c
(n)
α = 1

Nsites

∑
x C

(n)
α (x). Additionally, we employ

an explicit symmetrization procedure to enforce that the
model’s predictions are invariant to arbitrary rotations
and flips of the input, detailed in Supplementary Note
1. Concatenating these correlator estimates results in an

NM -dimensional feature vector c = {c(n)α }.
In the back portion of a CCNN (see Fig. 1), the fea-

ture vector c is normalized using a BatchNorm layer [32],
then used by a logistic classifier which produces the clas-
sification output ŷ(c;β, ε) = [1+exp(−β ·c+ε)]−1 where

β = {β(n)
α } and ε are trainable parameters. If ŷ < 0.5,

the snapshot is classified as π-flux, and otherwise it is

classified as geometric string theory. The β
(n)
α coefficients

are central to the interpretation of the final architecture,
as they directly couple the normalized correlator features

c
(n)
α to the output. For training, we use L1 loss in addi-

tion to the standard cross-entropy loss, i.e.

Ltrain(y, ŷ) ≡ −y log ŷ−(1−y) log(1− ŷ)+γ
∑
α,k,a

fα,k(a),

(4)
where y = {0, 1} is the label of the snapshot, and γ is
the L1 regularization strength. The role of the L1 loss is
to promote sparsity in the filter patterns by turning off
pixels which are unnecessary [10, 11].

We fix the number of filters M and the maximum or-
der of the non-linear convolutions N , a hyper-parameter
specific to CCNN, by systematically observing the train-
ing performance. We found that two filters gives suffi-
cient performance while allowing for simple interpreta-
tion. Hence we consider two filters, i.e., M = 2 in the
rest of the paper. For the maximum order of non-linear
convolution N we found the performance to rapidly in-
crease with increase in N up to N = 4, past which per-
formance plateaus. Hence we fix N = 4 in the rest of the
paper. Additionally, we limit our investigation to 3 × 3

convolutional filters. With the architecture of the CCNN
so-fixed we found the performance of this minimalistic
model to be comparable with a more complex traditional
CNN architecture [3] (see Supplementary Note 1 for these
performance results).

After a CCNN is trained, we fix the convolutional fil-
ters fα and move on to a second phase to interpret what
it has learned. We first determine which features are the
most relevant to the model’s performance by construct-
ing and analyzing regularization paths [33] to examine

the role of the logistic coefficients β
(n)
α . We apply an

L1 regularization loss to these β
(n)
α and re-train the back

portion of the model (see Fig. 1) using a new loss func-
tion:

Lpath(y, ŷ) ≡ −y log ŷ − (1− y) log(1− ŷ) + λ
∑
α,n

|β(n)
α |,

(5)
where λ is the regularization strength. Again, the L1 loss
plays a special role in promoting sparsity in the model
parameters, but we are now penalizing the use of coef-

ficients β
(n)
α and hence the corresponding features c

(n)
α .

This results in an optimization trade-off between mini-

mizing the classification loss and attempting to keep β
(n)
α

at zero, where the relative importance of these terms is
tuned by λ. At large λ, the loss is minimized by keeping

all β
(n)
α at zero, resulting in a 50% classification accuracy

due to the model always predicting a single class. As λ
is slowly ramped down, eventually the “most important”

coefficient β
(n)
α will begin to activate, due to the decrease

in classification loss surpassing the increase in the acti-
vation loss. As these coefficients couple the correlator

features c
(n)
α to the prediction output, this process offers

clear insight into which features are the most relevant.
We show a typical regularization path analysis in

Fig. 3, where the filters fα of a trained model are shown

in the inset. The activation of each coefficient β
(n)
α is

tracked while tuning down the regularization strength λ
(increasing 1/λ). The resulting trajectories in Fig. 3(a)

show that the 4th order correlator features, c
(4)
1 and

c
(4)
2 are most significant for the CCNN’s decision mak-

ing since β
(4)
1 and β

(4)
2 are the two first coefficients to

activate. Furthermore, parallel tracking of the accu-
racy in Fig. 3(b) shows that the activation of these fea-
tures results in large jumps in the classification accuracy,
comprising almost all of the network’s predictive power.
While the details of the paths vary between training runs,
we find robust dominance of fourth-order correlations as
the first features to be activated to give the majority of
the network’s performance.

The regularization path distinguishing the geometric
string and π-flux ansatzes shown in Fig. 3 is in stark
contrast to what happens when the identical architec-
ture is trained to discriminate between a thermally ex-
cited antiferromagnetic Heisenberg state and a state with
purely random spins (see Supplementary Note 2). In that
scenario, the network learns that two-point correlations
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FIG. 3. Regularization path analysis of a learned

fourth-order model. (a) The regularization path of β
(n)
α

coefficient values traced out by two learned filters as a func-
tion of the inverse regularization strength 1/λ. Positive and

negative signs of β
(n)
α are associated with geometric string and

π-flux labels respectively. (b) The accuracies of the model at
each point of the regularization path in (a) on both the train-
ing dataset, as well a validation dataset unseen by the model
during training, and a test dataset unseen by us until final
evaluation. We use the standard definition of accuracy as the
fraction of the snapshots correctly assigned.

c
(2)
α carry the key information for near-perfect classifica-

tion. In Supplementary Fig. 5, the regularization path

shows only c
(2)
1 activating to achieve full performance,

and the learned filter obviously resembles the AFM pat-
tern. Meanwhile, the behavior seen in Fig. 3 evidences
that the subtle differences between π-flux and geometric
string theory instead hinges on fourth-order correlations.

Now that we know fourth-order correlations are the
important features, we look at which physical correla-

tors are being measured by the features c
(4)
α by simply

inspecting 4-pixel patterns made from high-intensity pix-
els from each channel of the learned filters, as we show
in Fig. 4. Comparing these patterns with the depiction
of the two candidate theories, we can understand why
these correlators measured by the two filters are indeed
prominent motifs. Specifically, the 2 × 2 correlators in
the fourth-order feature of the filter associated to the ge-
ometric string theory (Fig. 4(a)) are easily recognizable
in the “wake” and the termination of a string. These
discovered correlations are in agreement with those ex-
amined in Ref. [28], which found pronounced spin anti-
correlations induced on the spins located on the diagonal
adjacent to a mobile chargon. Meanwhile, the 2× 2 mo-
tifs in the filter learned to represent the π-flux theory
(Fig. 4(b)) are either a single spin-flip or a simple place-
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FIG. 4. Extracting four-point correlators from learned
filters. The highest-weight terms of Eq. 2 when constructing

correlator features c
(4)
1 , c

(4)
2 from the discovered convolutional

filter patterns f1, f2. We ignore correlators with two or more
holes, since these motifs are exceedingly rare in the low-doping

regime. Each feature c
(4)
α measures a weighted sum of the bare

correlators drawn on the right-hand side, obtained by select-
ing all four-pixel subpatterns from the learned filters. Due
to the symmetrization procedure, the model measures all cor-
relations which are symmetry-equivalent under rotations and
flips to those drawn. Weights shown above each correlator are
obtained as the product of the component filter pixel weights,
normalized such that the largest correlator from each filter has
weight 1.0.

ment of a hole into an AFM background. It is evident
that this CCNN is learning the fingerprint correlations
of geometric string theory, recognizing the π-flux theory
instead from fluctuations which are uncharacteristic of
the string picture. Furthermore, a subset of learned pat-
terns that are not obvious from the simple cartoons can
be used as additional markers to detect the states born
out of the two theoretical hypotheses in experiment (see
Supplementary Note 4 for more detail).

It is important to note that the above insights relied
on the fact that our CCNN’s structure can be under-
stood as measuring collections of correlators. Although
the regularization path analysis can be applied to any
architecture, the typical non-linear structures of off-the-
shelf CNNs inhibit direct connections between the dom-
inant filters and physically meaningful information [34].
In Supplementary Note 5 we present how interpretation
of the architecture of Ref. [3] can be attempted following
similar steps as above. Since the fully connected layer
contains tens of thousands of parameters, after training
we show that we can reduce this layer to a simple spatial
averaging to attempt interpretation, with no loss in per-
formance. The reduced architecture with a single “fea-
ture” per convolutional filter, similar to the architecture
of Ref. [34], is trained, after which we fix the filters for
the regularization path analysis. We can clearly deter-
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mine which filters produce the important features, but
it is unclear what these features are actually measuring
due to the ReLU nonlinearity. However, without any
nonlinearity the architecture only achieves close to 50%
performance. This failure to enforce simplicity on tra-
ditional architectures shows the importance of designing
an architecture which measures physically meaningful in-
formation from the outset.

The ML method presented in this paper considers
short-range multi-point correlation functions (up to 3 lat-
tice sites in both x and y directions), but does not in-
clude long-range two-point correlations needed for iden-
tifying spontaneous symmetry breaking. Two considera-
tions motivate this choice: i) Current experiments with
the Fermi-Hubbard model are done in the regime where
correlations involving charge degrees of freedom are not
expected to exceed a few lattice constants due to thermal
fluctuations. ii) The energy of systems with local inter-
actions, such as the Fermi-Hubbard model, is primarily
determined by short-range correlations. We note, how-
ever, that the current method can be extended to include
longer range correlations either by expanding the size of
the filters used in Eq. 2, or by using dilated convolutions.

To summarize, we proposed a neural network architec-
ture that discovers most relevant multi-site correlators as
key discriminative features of the state of interest. We
then applied this architecture to the supervised learning
problem of distinguishing two theoretical hypotheses for
the doped Hubbard model: π-flux theory and geometric
string theory. Employing a regularization path analysis
technique on these trained CCNN architectures, we found
that four-site correlators deriving from the learned filters
hold the key fingerprints of geometric string theory. A
subset of these four-site motifs fit into what is expected
from the wake of a propagating hole in an antiferromag-
netic background. The remaining four-site motifs which
go beyond our existing intuition can be used as addi-
tional signatures of the two quantum states. As higher-
order correlators are beginning to be probed in QGM
experiments [19], our work demonstrates an automated
method for learning high signal-to-noise correlators use-
ful for theory hypothesis testing. It will be interesting to
extend our analysis to a broader collection of candidate
theories, as well as snapshots generated using recently
developed finite-T tensor network methods [35, 36] and
spin-resolved experimental data.

IV. DISCUSSION

The broad implications of CCNN-based machine learn-
ing for analysis and acquisition of image-like data are
threefold. Firstly, CCNN is the first neural network
architecture that was explicitly designed for image-like
quantum matter data. Our results showcase how a suc-
cessful design of machine learning architecture that is de-
signed with scientific objectives at the forefront can offer
new scientific insight.

Secondly, our approach can guide quantum simula-
tor design by revealing necessary discriminating features.
In particular, we found that experimental uncertain-
ties on the actual doping level in QGM without spin-
resolution led the CCNN to focus on the doping level
rather than a meaningful hypothesis testing (see Supple-
mentary Note 6). Hence, access to either spin or charge-
resolved snapshots, which are just now becoming avail-
able [27, 28, 37, 38], will be essential. Finally, our results
showcase how a targeted “tomography” can be achieved
to extract new insights from near-term quantum systems
from quantum-classical hybrid approaches. Full recon-
struction of the density matrices from projective mea-
surements is an exponentially difficult task. However,
available and near-term quantum systems are showing
great promise as quantum simulators with their design
and objectives guided by classical simulations. For such
quantum systems, CCNN-based hypothesis testing can
offer much needed state characterization in a scalable
fashion.

Data availability All simulated snapshots examined
in this work are available publically at Zenodo, Ref. [39].
All experimental snapshots examined in the Supplemen-
tary Notes are available from Ref. [20].

Code availability All code used for training and anal-
ysis of the CCNNs is available at Github, Ref. [40].

Acknowledgements. We thank Fabian Grusdt and
Andrew Gordon Wilson for insightful discussions during
the completion of this work. C.M. acknowledges that
this material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Ad-
vanced Scientific Computing Research, Department of
Energy Computational Science Graduate Fellowship un-
der Award Number DE-SC0020347. A.B., R.W., K.W.,
E.D., E-A.K. acknowledge support by the National Sci-
ence Foundation through grant No. OAC-1934714. AB
acknowledges funding by Germany’s Excellence Strategy
- EXC-2111 - 390814868.

Author Contributions C.M. conceived the CCNN
architecture, wrote the ML and analysis code, and per-
formed the training experiments and analysis. R.W. and
K.Q.W conceived the application of regularization paths,
and provided guidance of the ML procedure. A.B. pro-
duced the simulated snapshot data. C.C., M.X., G.J.,
and M.G. produced the experimental data and provided
feedback on connections to experiments. C.M., A.B.,
R.W., K.Q.W., E.D., and E-A.K. initiated the project
concept, and guided the work. C.M. and E.A.K. wrote
the manuscript, with input and modifications from all
authors. E.A.K. led the project.

Competing Interests The authors declare no com-
peting interests.

Disclaimer. This report was prepared as an account
of work sponsored by an agency of the United States
Government. Neither the United States Government nor
any agency thereof, nor any of their employees, makes
any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness,



7

or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not

necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government
or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those
of the United States Government or any agency thereof.

[1] Zhang, Y. et al. Machine learning in electronic-quantum-
matter imaging experiments. Nature 570, 484–490
(2019).

[2] Rem, B. S. et al. Identifying quantum phase transitions
using artificial neural networks on experimental data.
Nature Physics 15, 917–920 (2019).

[3] Bohrdt, A. et al. Classifying snapshots of the doped Hub-
bard model with machine learning. Nature Physics 15,
921–924 (2019).

[4] Ness, G., Vainbaum, A., Shkedrov, C., Flor-
shaim, Y. & Sagi, Y. Single-Exposure Absorption
Imaging of Ultracold Atoms Using Deep Learning.
Physical Review Applied 14, 014011 (2020).

[5] Casert, C., Mills, K., Vieijra, T., Ryckebusch, J. & Tam-
blyn, I. Optical lattice experiments at unobserved con-
ditions and scales through generative adversarial deep
learning. arXiv:2002.07055 (2020).

[6] Pilati, S. & Pieri, P. Supervised machine learning of
ultracold atoms with speckle disorder. Scientific Reports
9, 5613 (2019).

[7] Zhang, P., Shen, H. & Zhai, H. Machine Learn-
ing Topological Invariants with Neural Networks.
Physical Review Letters 120, 066401 (2018).

[8] Ghosh, S. et al. One-component order parameter in
URu2Si2 uncovered by resonant ultrasound spectroscopy
and machine learning. Science Advances 6, eaaz4074
(2020).

[9] Wetzel, S. J. & Scherzer, M. Machine learning of explicit
order parameters: From the Ising model to SU(2) lattice
gauge theory. Physical Review B 96, 184410 (2017).

[10] Casert, C., Vieijra, T., Nys, J. & Ryckebusch, J. Inter-
pretable machine learning for inferring the phase bound-
aries in a nonequilibrium system. Physical Review E 99,
023304 (2019).
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