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We aim to understand how the spectrum of semi-Dirac fermions is renormalized due to long-range Coulomb
electron-electron interactions at a topological Lifshitz transition where two Dirac cones merge. At the transition,
the electronic spectrum is characterized by massive quadratic dispersion in one direction, whereas it remains
linear in the other. We have found that, to lowest order, the unconventional log? (double logarithmic) correction
to the quasiparticle mass in bare perturbation theory leads to resummation into strong mass renormalization in
the exact full solution of the perturbative renormalization-group equations. This behavior effectively wipes out
the curvature of the dispersion and leads to Dirac cone restoration at low energy: The system flows towards Dirac
dispersion which is anisotropic but linear in momentum with interaction-depended logarithmic modulation. The
Berry phase associated with the restored critical Dirac spectrum is zero—a property guaranteed by time-reversal
symmetry and unchanged by renormalization. Our results are in contrast with the behavior that has been found

within the large-N approach.
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I. INTRODUCTION

Semi-Dirac fermions are chiral quasiparticles in two di-
mensions (2D) that propagate as Galilean invariant particles
as they move in one direction and as relativistic ones in the
other direction. Such quasiparticles emerge at a topologi-
cal Lifshitz transition where two Dirac cones merge [1-7].
Strongly anisotropic Dirac fermions, eventually transforming
into semi-Dirac particles at a topological quantum critical
point, appear in a variety of physical situations, from strained
graphene-based structures [8], black phosphorus under pres-
sure [9] and doping [10], BEDT-TTF,I; salt under pressure
[11], VO,/TO; heterostructures [12,13], photonic crystals,
and atomic (cold atom) physics [14,15]. In a solid-state con-
text the prototypical example is strained graphene. It is known
that by applying uniaxial strain in the zigzag direction in
graphene one can induce a transition into a gapped state. In
the gapless regime (before the transition), the electronic spec-
trum consists of separated anisotropic (elliptic) Dirac cones,
whereas at the transition the spectrum becomes quadratic in
one direction, remaining linear in the other [1,2,16,17].

The universal effective Hamiltonian describing the physics
outlined above is

2

H(p) = (ﬁ + A)&x + vy, )
2m

where A depends on the (anisotropic) hopping parameters

in the case of strained graphene. We will keep in mind this

example, whereas the results will be, of course, applicable to

all systems falling within the same universality class. The case
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A < 0 corresponds to separated anisotropic (elliptic) Dirac
cones (gapless phase and weak strain), the value of A =0 is
the critical point, and A > 0 corresponds to the gapped phase
(strong strain) as shown in Fig. 1. The chemical potential is
set to zero.

At the critical point the spectrum is

7\ 2
e(p)== <—) +v2p2, A =0. )
2m Y

From now on we set 2 = 1, and all lengths will be measured in
units of the lattice spacing (which we set to one) with =+ index-
ing the two particle-hole branches. In particular, at the critical
point induced by zigzag strain by taking into account the strain
dependence of the tight-binding Hamiltonian parameters, one
can deduce the following relationship mv = 2 in units of the
inverse lattice spacing [1,16]. This is the only remnant of
nonuniversal (system specific) physics at the critical point,
and we use it for illustration purposes in our plots describing
interaction effects (whose structure itself is universal).

An important issue is how interactions (both short and
long range) affect the fermion spectrum at and around the
critical point and the various phenomena associated with it.
For example short-range interactions can influence the Dirac
cone merger and shift the critical point itself (i.e., affect the
gap) [18]. Such interactions can also affect the appearance of
various instabilities (such as charge and spin density waves,
etc.) at criticality [19-21].

The role of long-range Coulomb interactions is expected
to be even more dramatic. It has been argued [22-24] that a

©2021 American Physical Society
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FIG. 1. Topological Lifshitz phase transition across a quantum
critical point (QCP) at A = 0. For A < 0, approaching the QCP from
the left, two Dirac cones merge, producing a single touching point
with semi-Dirac fermion excitations. For A > 0, a trivial insulating
phase forms.

non-Fermi-liquid (NFL) state emerges in the large-N limit
where the quasiparticle residue (Z) approaches zero as a
power law at low energy. This behavior is governed by the
Na > 1 limit. At the lowest energies, this state crosses over
to a marginal Fermi liquid (MFL) where Z exhibits a weaker
logarithmic renormalization, governed by a weak coupling
(in a sense that No < 1) fixed point. Here N is the num-
ber of fermion flavors (equal to four), and « is the effective
Coulomb coupling constant. This overall behavior can be
compared with previous results for simple isotropic Dirac
cones in graphene within the same approximation [25-27]
where Z does not vanish and the interacting isotropic Dirac
liquid remains coherent. The peculiar incoherent behavior of
the semi-Dirac fermions can be traced back to the appearance
of higher powers of logarithms in perturbation theory (log?
contributions even at first order of perturbation theory, com-
pared to simple logarithms for isotropic graphene). It should
be emphasized that this result is based on the large-N scheme,
i.e., assuming the dominance of polarization bubbles. The
alternative to large N is the “conventional” perturbative renor-
malization group (RG) in powers of the Coulomb coupling «.
Although in isotropic graphene the two approaches connect
smoothly and describe the same state (interacting Dirac lig-
uid) [27], for semi-Dirac fermions the results are drastically
different as we will show below.

The purpose of the present paper is to point out that for
semi-Dirac fermions the “NFL-MFL” fixed point obtained
in the large-N limit is not the only possible scenario. The
presence of log? terms in first order of perturbation theory
does not by itself justify nonperturbative RG when « is small
and N ~ 1. We show that after taking into account the un-
conventional log? contributions that appear in the self-energy
for semi-Dirac fermions and performing perturbative RG to
lowest order in «, the resulting fixed point is characterized by
restoration of linear quasiparticle dispersion in the direction
where it was originally quadratic. The resulting Dirac cone is
not necessarily isotropic, but the “semi-Diracness” has disap-
peared. We also emphasize that even though the interaction
effects tend to restore the linear Dirac dispersion, the Berry
phase, which is zero for the bare semi-Dirac Hamiltonian
[1], remains zero upon renormalization. The zero value of the

.

FIG. 2. Self-energy to first order in the Coulomb interaction
(wavy line).

Berry phase is a topological property which is guaranteed by
the fact that the semi-Dirac spectrum is a result of a merger
of two Dirac cones (related by time-reversal symmetry) with
Berry phases . The behavior we find is in contrast to
the MFL state where the dispersion retains its semi-Dirac
features [22]. Although we have not addressed the issue how
the quasiparticle residue behaves since it appears at the next
order in ¢, we do not expect our main conclusion about Dirac
cone restoration to be altered due to the fact that the residue
affects the terms in the different momentum directions in the
same manner. Thus, our results indicate that the perturbative
RG and the large-N version lead to different fixed points,
and this can have far-reaching consequences for properties of
interacting semi-Dirac fermions.

For instance, it has been claimed [24] that, at large N, the
ratio between the shear viscosity and the entropy of semi-
Dirac fermions violates the conjectured lower bound n/s >
li/(4mkg) derived in an infinitely strongly coupled conformal
field theory [28]. This ratio is usually taken as a universal
measure of the strength of interactions in the hydrodynamic
regime of quantum fluids. The violation was attributed to the
strongly anisotropic nature of semi-Dirac fermions [24]. In
contrast, conventional Dirac fermions are known to satisfy
the lower bound [29]. In the present paper we find that, at
least, in the perturbative regime, Coulomb interactions lead to
restoration of the linearity of the spectrum. This effect may
have relevant implications for the solution of the quantum
kinetic equation in the collision dominated regime.

The rest of the paper is organized as follows. In Sec. II
we present a detailed formulation and results of the perturba-
tive RG for semi-Dirac fermions at criticality. In Sec. III we
discuss issues related to the self-consistency of our approach
which include examination of screening at weak coupling.
Section IV contains implications of our results for physical
observables. In Sec. V we also extend our treatment away
from the critical point. Section VI contains our conclusions.

II. RENORMALIZATION GROUP AT CRITICALITY:
RESTORATION OF THE DIRAC SPECTRUM
AT LOW ENERGY

In this section we consider the critical point A = 0. Let us
introduce interactions via the nonretarded Coulomb potential,

27 &2
Ipl

V(p) = 3

We will take into account the interaction at first order in
perturbation theory. The self-energy shown in Fig. 2 is

- % dv i
X(p) = lﬁw Z/WGG(’ VVk—p), 4
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where
G'(p,v) =v — H(p) +i0Tsgn(v) ®)

is the fermionic Green’s function. The frequency integral can
be easily evaluated

1 d*k 2mé? 1 <k2 )
6y + vk,6 (6)
(27)% |k — p| le(K)| ’

In this order, the self-energy is frequency independent. When
evaluating logarithmic corrections it is useful to look at the
behavior at small external momenta p — 0 and expand

k-p p*  3k-p’

1 1
|k—p|_E{ TS 2k4

Here k = |k|.
coupling,

S(p) =

}+0<p3). (7

As usual, we introduce the dimensionless

o =é/v. 3

A. Gap generation

First we observe that, unlike the case of isotropic graphene,
the self-energy at zero momentum is finite,

2(p =0) = Agéy, )

implying that a gap is generated by the interactions. The mass
gap evaluated from Eq. (6) is

2w

d
Ao = omv? / kdk/ do 0 g
277 Vk2 cos* ¢ + sin® ¢

where A = A/2mv is the rescaled ultraviolet cutoff and A ~ 1
is the ultraviolet momentum cutoff in units of the inverse
lattice spacing (set to one in our convention). To be specific,
we evaluate this expression at the critical point relevant to
strained graphene, i.e., for mv = 2 leading to Y| /4. At
this point the integral that appears in the above equation is
0.046. The result is then Ay ~ 0.lav (restoring the units:
Ao ~ 0.1ahv/a, where a is the lattice spacing).

Thus, we can conclude that the interaction effects drive
the system away from criticality, towards the gapped phase
(Ao > 0). In the rest of this section we will assume that the
system parameters (for example, anisotropic hopping param-
eters, strain, pressure, etc.) are externally fine-tuned in such a
way that the effective gap is zero. This way we can study the
spectrum renormalization at criticality. We will return to the
issue of gap renormalization in Sec. III.

B. Mass and velocity renormalizations

We now proceed to calculate the first-order corrections
to the velocity and mass parameters. These will exhibit
logarithmic divergencies and we will adopt an “on-shell”
renormalization procedure with an ultraviolet energy cutoff A
which follows the structure of the dispersion £(p) and, there-
fore, depends on direction in momentum space. To extract the
logarithmic divergence with an energy cutoff we introduce a
change in variables,

k2

= = ¢ sin ¢,

vk, = € cos ¢, (11)
2m ’

where ¢ € [0, A] and ¢ € [0, ]. Then we have

A b4 1
2
/d k= (l/v)fo v2m8d8/0 dwm.

Integration over the variables ¢ and ¢ in the self-energy (6)
gives

12)

2 2
& D Py N N
E(P) = (ﬁzx + ﬁzysm)ax + vpyEy.vay' (13)

The term,

Ex
DINES —/ d—EL1 (E) = —ln (A/w) (14)
4 Jg, E

gives the self-energy correction to the velocity v, where

T do E cos? ¢
0o T «/sin ¢(E cos? ¢ + sin ¢)3/?

is an angular integral, and

Li(E) =

Ex1 4
_)_
T

E =¢/ey, €y =2mv? (15)

is the dimensionless energy integrated in the interval E €
[Ew, EA] With E, = w/gy and Ex = A/ey. The renormaliza-
tion is performed on-shell in the low-energy limit,

7\ 2
Px

w = |e(p)l = <2m) +vPpy KA. (16)

The first term in (13) gives correction to the mass m for
quasiparticles moving along p,,

a (B dE 3a [Er dE
Yy=-—3 —Ly(E)+ — —L3(E)
E, E,

8Jeg, E 8 Jg, R
o, a
= — In2(A/o) + —F In(A/ow), (17)
4 4
where
T d A/sin E<l 2 c
L2<E>=[—“” St S S (4),
o 7 (Ecos?¢+sin ¢)3/ T E
(18)
7 d : 3/2 2 d
L) = [ Lo RO (£,
o 7 (E cos?g@ +sin ¢)/? T E
(19)

with the numerical constants ¢ = 1.1, d = 0.56, and F =
360)/(A20)].

Finally, the second term in Eq. (13) gives an induced mass
in the p, direction, which is generated by interactions,

o [ErdE 30 (B dE
Yym=—3% —Ly(E)+ — —L4(E)
8 Jk, 8 Jk,

E E
- —8—ln (AJw) — —Gln (A/o), (20)
where
Tde Ey/si :
L) = [ LIRSt L e
o 7 (E cos? g+ sing)/? 3
and G = In[ceg/A] —

045403-3



KOTOV, UCHOA, AND SUSHKOV

PHYSICAL REVIEW B 103, 045403 (2021)

On the basis of the above results, the renormalized Hamil-
tonian to leading order in the interaction has the form

P r
H(p) = (gl(w)f - gz(w)?y>5x +v(@)py6y,.  (22)

We define the inverse masses as

g(w) = m; (). (23)

The functions g;(w), g2(w), and v(w) will be found below
from the solution of the RG equations. The bare values
of all parameters, i.e., the values at the lattice (ultravi-
olet) energy scale are determined by the parameters of
the Hamiltonian without interactions: gj(w = A) = g0 =
m™!, ga(w=A)=gy =0, and v(w = A) = vp = v. Sim-
ilarly, ap = €?/v = « [from Eq. (8)] is defined as the bare
value of the Coulomb coupling, corresponding to the bare
value of vy = v.

Taking into account Eqs. (13)—(21), we have the one-loop
perturbation theory results,

gi(w) = m; ' (w),

(@) = v(l + = ln(A/a))) (24)

81@) = gio(1+ = In(A/@) + —F In(A/w)).  (25)
and

82@) = guo( o= (A /) + -G In(A/w)).  (26)

Here g0 = m~! as explained previously. We find, in particu-

lar, that a mass term is generated in the p, direction where the
dispersion was originally linear. The most important feature of
the mass renormalization formulas above is that both masses
contain a log? contribution at leading order in the coupling
«. In addition, the two mass terms have different signs upon
renormalization (with the sign in front of m, being negative).
In Egs. (25) and (26) we have also kept subleading (first
power) logarithm contributions which strictly speaking is not
necessary; however, we retain them in our calculations for
completeness.

C. Renormalization-group equations and their solutions

Given that the Coulomb interaction in 2D is a nonanalytic
function, the electron charge does not renormalize [30,31] in
the RG flow. Next, define the RG scale,

{=1n(A/w). (27)
From Egs. (24)—(26), we obtain the RG equations,
PO iy = (28)
T, =v()al)/t = e /7,
deilt) _ (e)(@z + @F> (29)
de
and
dg:(6) _ at) al)
T (ﬁ)(—e ) (30)

Integrating the velocity, Eq. (28), we obtain
o
1+2¢

v(l) = v(l n %Z) = a(l) = 31)

which, in turn, determines the running of the interaction cou-
pling constant. Similar to isotropic graphene, the velocity
increases logarithmically as energy decreases, leading to a
logarithmic decrease in the interaction, which flows to weak
coupling,

o

a[len(A/a))]zm (32)

Equation (29) can be integrated with the result,

a@/go=(1+20) e[t Zin (14 20)]
(33)

Rewriting this result as a function of energy w, by taking into
account Eq. (27), we obtain

Alw
(1+ £ 1n (A/w)) 7200

g1(@)/g10 = (34)

It is instructive to expand Eq. (34) for small values of the bare
coupling (we set F' = 0 in this formula for clarity),

(07
g1(@)/g10 ~ 1+ — In* (A/w)
TT

2
+—<$ln (A/a))—lln (A/a))) +0(@@),

(35)

which gives an idea of the structure of higher orders of
perturbation theory, resummed by the RG. We note that the
expansion is well controlled at all orders when oo/ < 1. This
inequality defines the validity of the perturbative regime.

The RG solution Eq. (34) is one of our main results. Ex-
amining the p, direction part of the dispersion, we clearly see
that in the low-energy limit A /w >> 1, we have the dominant
behavior g;(w)/g10 ~ /A /w, up to logarithmic corrections.
This, in turn, implies that the mass term in the renormalized

Hamiltonian (22), which has the structure g (a))%%, effectively
becomes linear in momentum when the energy is on shell
as defined in Eq. (16). More precisely, for low momenta
|p«l/~/2mA < 1 provided also £ In (2mA/p?) > 1, we have

gl(w)ljz o P (/2a)-F/4" (36)
2 V[ @2ma/pd)]

We see from here that the dispersion becomes linear with
logarithmic correction whose power depends on the value of
a (the value of the subleading piece F' is conceptually and
numerically not important; for our parameter values we have
|F|/4 = 0.1). Therefore, for small values of « when the power
7, is large, the logarithmic term presence will provide some
bending to the dispersion; as « increases the linearity becomes
gradually more pronounced. We will see shortly that the nu-
merical plot of the RG dispersion confirms this behavior.
Finally, integration of Eq. (30),

1 ¢
&) = E/o [(5g1(5)a(E) + Ggi1(§)a(8)]dE (37)

leads to a cumbersome expression which is not particularly
illuminating and will be taken into account numerically. We
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FIG. 3. Evolution of the renormalized electronic spectrum E = (k) in the k, and k, directions. Energy is in units of A/2 and momenta
are in units of inverse lattice spacing; the values of various parameters (A, m, v) are fixed as described in the text. Top row: noninteracting case
a/m = 0. Mid row: a/m = 0.16. Bottom row: «/m = 0.63. The left column shows the transition from parabolic to linear dispersion, driven
by the mass renormalization as the interaction increases. The right column indicates the logarithmic velocity renormalization as in graphene.

can deduce, however, both analytically and numerically that
in the extreme low-energy limit (¢ — 00),

ow)/g1(w) > 1/2, o — 0.

(38)
This is related to the factor of 2 difference which appears in
the RG Eqgs. (29) and (30). Therefore, the induced g, term
plays a marginal role and modifies somewhat the dispersion
in the p, direction at intermediate energies, whereas at low
energies it does not change the preexistent linear behavior.
Our numerical results for the renormalized dispersion,

2 24 2
&(p) = i\/<gl(;})px - gZ(Z)py> +v(?py  (39)

evaluated simultaneously with Eq. (16), are presented in
Fig. 3. We use the following values of parameters for these
plots, settingv =1: m=2, A=2, F =-04, G=—1.2.
In the full units, mv = 2h/a, A = 2hv/a, where a is the
lattice spacing. The overall behavior is quite robust and not
sensitive to these particular values (in particular, the sublead-
ing pieces F, G follow from the previously derived formulas
and are nonuniversal, although the results are very weakly
dependent on their exact values, as expected). We see that the
spectrum undergoes a profound transformation from parabolic
towards linear, thus, recovering a more conventional Dirac
cone shape. In the p, direction the spectrum remains linear
even though it undergoes renormalization due to the increase
in the velocity at low energy.

A different way to detect the transition towards Dirac cone
behavior is to monitor the density of states (DOS) which
can be expressed in the following way for the renormalized

spectrum:

DE) = Son )2/ /d“’

Here the notation &(e, ¢) means that the momenta are ex-
pressed via the energy-angle variables as in Eqs. (11) and (12).
Without interactions (¢ = 0) we have &(¢, ¢) = ¢ by the very
definition of the energy-angle variables, and we obtain the
well-known result for a semi-Dirac dispersion D(E) ~ VE.
As the interaction « increases we evaluate the above formula
numerically and see quite clearly the transition to linear be-
havior as shown in Fig. 4.

Finally, we calculate the Berry phase associated with the
renormalized Hamiltonian. As is well known, the Berry phase
is given by the circulation of the wave-function phase gradi-
ent around the Fermi point (k, = k, = 0), or more explicitly
% 9§ [Vo(k)] - dk. The Hamiltonian (both bare and renormal-
ized) has the form H (k) = h,(k)6x + h,(k)&,. Then the phase
of the wave function is determined by the equation:

tan ¢(k) = hy(k)/h.(k). Consequently, one finds that the
Berry phase is zero both for the bare and the renormalized
semi-Dirac cases. For the bare case it was understood a while
back [1] that since the semi-Dirac spectrum appears as a
merger of two Dirac cones with Berry phases +m (related
by time-reversal symmetry), at the topological Lifshitz point
the Berry phase is zero, being a sum of those two values.
Technically this is related to the fact that 4, (k) is even un-
der the transformation k, — —k, for semi-Dirac fermions,
leading to zero Berry phase. Even though the spectrum un-
dergoes complex renormalization when Coulomb interactions
are included, the above parity symmetry is preserved in the
renormalized Hamiltonian, and we find that the Berry phase

3[E — & p)]. (40)
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FIG. 4. Renormalized density of states as a function of energy
D(E) where the energy E is in units of A, and D(E) is in units
of v2mA/[(27)*v]. We show the transition from D(E) x +E in
the absence of interactions («/m = 0) to linear behavior D(E)
E (a/m = 0.63) as the interaction coupling increases.

is identically zero. This is natural since the Berry phase is a
purely topological property and should not change upon intro-
duction of (parity- and time-reversal-preserving) interaction
effects.

III. IMPLICATIONS FOR SCREENING AND
SELF-CONSISTENCY

Let us also discuss more precisely the region of applica-
bility of our results. We use perturbation theory to leading
order with the bare Coulomb interaction, and it is therefore
important to assess the effect of screening. We have calculated
the static polarization function I1(q) numerically and found
that it has the expected form

1, ViE® (41)

consistent with the scaling of the density of states. These
results are also in agreement with the literature [23,32]. In this
formula C has a very weak dependence on the direction in
P space, deviating slightly from the value of C & 0.25. The
screened potential within the random-phase approximation
(RPA) becomes (a = €%/v),

Veea (0) e -
rReA(P) = = '
Ipl =27’ TI(P)  |p| + <22 (Na) /Te ()]

(42)
Therefore, in the p, direction (setting p, = 0 in the above
formula), we see that screening is purely dielectric (momen-
tum independent). The condition that the bare term dominates
over the polarization, i.e., [p| > %E(Na)\/m, trans-
lates into the condition C(7r /2)No < 1 which is the starting
point of our calculation. On the other hand, in the p, direction
screening is present, and the bare term is dominant provided
py > [C(1/2)v/2mv(Net)]* = pymin, Which defines the mo-
mentum py, min.

Below this small momentum scale py, min ~ (Na)? « 1,
it is tempting to conclude that bare perturbation theory is
invalid. The bare perturbative analysis of the polarization
bubble, however, is incomplete. In the spirit of RG, one must
account for the self-consistent renormalization of all physi-
cal observables, reflecting an exact resummation of leading
logarithmic divergences in all orders of perturbation theory.
In that philosophy, one must account for the effects of the
velocity and mass renormalization in the polarization bubble,
and consider it explicitly in the analysis of any screening
effects in the RG results.

We found in Sec. IIC that the spectrum undergoes very
strong renormalization at low energy with the linear dis-
persion effectively restored (Figs. 3 and 4). Therefore, a
renormalized RPA potential Vrea(p) has to be constructed
based on the renormalized T1(p), which could change signif-
icantly the structure of the bare RPA potential. Qualitatively
we expect the following behavior: Since the density of states
undergoes a crossover to linear behavior (Fig. 4) at finite
coupling «/m (which follows the crossover in the spectrum
itself, Fig. 3), then we expect

. N
I(p) ~ —W\/[vx(a)]zpi + [vy(@)Ppy.  (43)

This formula reflects the fact that the renormalized dispersion
is characterized by effective (possibly coupling-dependent)
velocities ve(a), vy(cr) in both directions and, therefore, the
polarization would have the well-known functional form for
anisotropic Dirac fermions. Consequently,

27 e?

Pl + 2 (Vo) [Tu ()P + [y (@R
(44)

VRPA (p) =

This formula is valid at finite o only, reflecting the dressed
(beyond RPA) polarization structure. C(e) is a function that
could also show some weak angular dependence and is not
important for our intuitive argument. In addition, it is known
that the anisotropy in the Dirac spectrum tends to disappear
under renormalization [33] (i.e., vy/vy — 1).

From these considerations, we conclude that one can ex-
pect simple dielectric screening at weak coupling. Hence, our
analysis leads to a fully self-consistent picture, i.e., is valid
all the way down to zero energy where screening (calculated
self-consistently) is not important. Therefore the low-energy
RG equations discussed in Sec. II C represents the true RG
fixed point behavior in the perturbative regime of the problem.

IV. PHYSICAL OBSERVABLES

Here we discuss the effect of the strong spectrum renor-
malization on physical observables and potential relevance to
real materials. The specific-heat low-temperature dependence
Cy(T) is sensitive to the low-energy dispersion. It can be
computed via Cy(T) = —T 3*F/dT?, where F is the free
energy. One then obtains the standard formula for fermionic
quasiparticles,

Cy(T)~ T2 / (d*k/An?)e(k)? cosh™ [e(k)/2T1, (45)

045403-6



COULOMB INTERACTIONS AND RENORMALIZATION OF ...

PHYSICAL REVIEW B 103, 045403 (2021)

20

D()”

10

FIG. 5. Upper panel: Specific heat Cy(T) in units of
V2mA¥?/[(27)*v], evaluated for noninteracting semi-Dirac
fermions (T3 law), and for finite value of the interaction, leading
to behavior (7%) consistent with linear Dirac dispersion. Symbols
represent numerical evaluation, and the solid red line is the pure
T? behavior. Temperature is measured in units of A. Lower panel:
Inverse DOS, 9u/dn = D()~' as a function of the chemical
potential showing the noninteracting behavior (u~'/2, shifted
by a factor of 2 for clarity), changing to u~' (characteristic of
linear Dirac fermions) upon renormalization. Symbols represents
numerical evaluation, and the solid red line is the pure 1~ behavior.
DOS and energy units are the same as in Fig. 4.

which leads to the following results for semi-Dirac fermions
before and after renormalization [upon replacing the bare with
the renormalized dispersion e(k) — &(k)]:

Cv(T) ~ T2,
Cy(T) ~ T2,

bare semi-Dirac, (46)

renormalized. 47)

The last formula reflects the crossover towards linear behavior
in the density of states at finite o upon renormalization (Fig. 4)
and represents the result for linear Dirac fermions. Figure 5
shows this behavior in more detail, comparing the numerical
evaluation of Cy with the renormalized dispersion and the
pure T2 law, similar to graphene.

The electronic compressibility «, measured, for example,
by quantum capacitance techniques, is also very sensi-
tive to the dispersion and interaction effects, in general

[27,34-36]. It is defined as k~' = n?(d/dn), however, the
charge response is experimentally determined by du/dn,
which is the inverse density of states, related to the inverse
capacitance as explained in the above literature. Therefore, for
the charge response we obtain

o1 1
on Jm n'3
o 1

— ~ —, renormalized. 49
T (49)

bare semi-Dirac, 48)

Figure 5 shows the behavior of the inverse DOS du/dn as
a function of the chemical potential u relative to the Dirac
point at zero temperature. Clearly the behavior associated
with linear dispersion D(u) ~ u is observed for interacting
renormalized fermions. Finally, it is often useful experimen-
tally to plot dpu/dn as a function of the electron density n.
The relevant dependence is also shown in the above equations
where we have used the relationship between the chemical
potential and density: for semi-Dirac fermions p ~ n%/3 and
for linear Dirac fermions u ~ 4/n. Our renormalized theory
clearly predicts power laws similar to graphene [34-36]. The
above formulas can also be written as a function of tempera-
ture T at u© = 0 where we have the corresponding behavior:
dp/on ~ 1/+/T for the bare semi-Dirac dispersion and ~
1/T for our renormalized case.

Thus, we conclude that physical observables associated
with interacting fermions show the characteristic power laws
associated with linear Dirac dispersion at low energy, and,
therefore, they can be clearly distinguished from the different
powers in the case of noninteracting semi-Dirac fermions.
Our results are also very different from the large-N theory
[22,23] which predicts power-law behavior similar to the non-
interacting semi-Dirac case with powers modified by small
corrections of order 1/N.

In real materials, such as black phosphorus under doping
[10], the Fermi velocity has been measured by angle-resolved
photoemission spectroscopy (ARPES) tobe v &~ 5 x 103 m/s
over an energy window of ~1 eV around the touching point
of the bands. This value is approximately half of the one
measured in graphene and corresponds to an effective fine-
structure constant «/m ~ 1.4/€, where € is the dielectric
constant due to screening effects. We expect that relatively
weak dielectric screening could lead to values of «/m that
fall within the range where perturbation theory is valid. We
note that the restoration of the linearity in the spectrum is
detectable within a much narrower energy window around the
neutrality point compared to the typical energy window inves-
tigated with ARPES. We propose that quantum capacitance
measurements [34,35] of the electronic compressibility would
have enough energy resolution to reveal the low-energy be-
havior of the electronic dispersion in the perturbative regime.

V. GAP RENORMALIZATION AWAY FROM CRITICALITY

For completeness, we also consider behavior away from
the critical point in order to assess how the gap changes un-
der interaction-induced renormalization. In fact, we consider
modification of the Hamiltonian to include two gap-producing
pieces: (1) Aj, already mentioned previously, and (2) A,,
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which could be generated by excitonic pairing,

2
H(p) = (é’—m + Al)éx +opyby + Asbe. (50)

The spectrum now obviously becomes

o) 2
s(p):\/(ﬂ+m> +v2p2 + AL, (51)

2m

The renormalization of the two gaps in the frequency regime

of interest,
VAT + A <o <A (52)

can be determined similarly to the procedure from the pre-
vious section. We will keep only the leading logarithmic
contributions. Our final result is

ARV
Al(w)=A1<1+Eln (A/a))+-~->, (53)
Ag(w)zAz(l—i-:l—nlnz(A/w)—i—'u). (54)

This shows that the two gaps are renormalized exactly the
same way and again the unconventional log® behavior is the
dominant one even at first order in the interaction. The next
steps are identical to the ones preformed in the previous sec-
tion for the mass terms. The corresponding RG equations are

dAi(f)
dt

Their solution leads to the following results:

al) .
= Ai(ﬁ)gﬁ (i=12). (55)

Aw
[1+ £ 1n(A/w)] "

Ai(w) = A; (i=12). (56)

These demonstrate that if the initial bare gaps (Aj»)
are present, the gap values will increase quite strongly
~y/ A /o under renormalization at low energy (with additional
interaction-dependent logarithmic variation). In particular, if
A, = 0 (no excitonic pairing), the sign and value of A} = A
controls the distance from criticality (A < 0, gapless phase;
A > 0, gapped phase) and, therefore, if the system is initially
on either side of criticality, it will keep flowing away from
it. Similarly, if excitonic pairing is present, it will increase
under renormalization. Such tendency (for excitonic pairing)
is similar to the case of graphene [27], except that in our
case the renormalization is much stronger (related to the log?
behavior in perturbation theory).

VI. CONCLUSIONS

We have performed a full RG analysis for semi-Dirac
fermions at first nontrivial order in the interaction. Our

calculation is perturbative (¢/m < 1), and it should be reli-
able for reasonably small bare values of «/7. The system,
subsequently, flows towards weak coupling under RG. The
unconventional log? behavior present in the mass terms in
bare perturbation theory translates into strong (square root of
energy scaling) mass renormalization in the full solution of
the RG equations [Eq. (34)]. This behavior effectively wipes
out the curvature of the dispersion, and the system flows
towards a Dirac dispersion which is anisotropic but linear
in momentum. However, an additional logarithmic scaling
with interaction-dependent power exists on top of the linear
momentum dispersion; as the interaction increases, the loga-
rithmic part becomes less pronounced. Away from the critical
point in either direction, we find that gap renormalization
is also very strong and the system flows further away from
criticality.

We have also presented arguments that our weak-coupling
RG procedure is fully self-consistent in a sense that if we
dress the Coulomb potential with RPA corrections, it will
eventually, upon renormalization, become similar to the un-
screened interaction. Therefore, our low-energy RG behavior
represents a true weak-coupling fixed point.

The emergent, upon renormalization, linear Dirac fermions
at the Lifshitz point are also unusual in the sense that they
carry zero Berry phase. This is a topological property that
remains unaffected by our strong renormalization since it is
related to the fact that the original (noninteracting) semi-Dirac
fermions arise from the merger of two Dirac cones, related by
time reversal with opposite Berry phases.

Overall, we have shown that the full weak-coupling RG
implementation gives results that are very different from
the large-N approach, which favors a fixed point with
renormalized semi-Dirac dispersion and exhibits incoher-
ent (NFL-MFL) behavior. Our results, therefore, can have
profound consequences for understanding systems with in-
teracting semi-Dirac fermions. In particular, we make clear
predictions for physical observables, such as the specific heat
and electronic compressibility, which display characteristic
power laws as a function of temperature or Fermi energy,
consistent with linear Dirac dispersion.
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