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The ratio between the shear viscosity and the entropy 7/s is considered a universal measure of the strength
of interactions in quantum systems. This quantity was conjectured to have a universal lower bound (1/4m)7/kg,
which indicates a very strongly correlated quantum fluid. By solving the quantum kinetic theory for a nodal-line
semimetal in the hydrodynamic regime, we show that n/s o< T violates the universal lower bound, scaling toward
zero with decreasing temperature 7' in the perturbative limit. We find that the hydrodynamic scattering time
between collisions is nearly temperature independent, up to logarithmic scaling corrections, and can be extremely
short for large nodal lines, near the Mott-Ragel-Ioffe limit. Our finding suggests that nodal-line semimetals can

be very strongly correlated quantum systems.
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I. INTRODUCTION

Hydrodynamics describes the behavior of quantum fluids
in the regime where the relaxation of electrons is dominated
by collision among the quasiparticles. This theory describes
long wavelength deviations from local thermal equilibrium,
when transport is dominated by conservation laws [1]. Since
the time between collisions is the shortest timescale in the
problem, the electrons exchange momentum faster than they
can relax to phonons or disorder. That leads to universal
behavior in the form of a slow diffusion of densities and
to viscous flow. This framework has been successfully ap-
plied to a variety of different systems, ranging from strong
coupling gauge theories with holographic duals [2], quark-
gluon plasma [3], cold-atom systems [4,5], thin wires [6], and
graphene [7-9].

The shear viscosity measures the longitudinal resistivity
to transverse gradients in the velocity of a fluid. It has been
conjectured by Kovtun et al. [10] that quantum systems have a
universal lower bound for the ratio between the sheer viscosity
and the entropy,

g > (147 )h/ks. 1)

The equality was found in an infinitely strongly coupled field
theory and has been associated with “perfect fluids,” systems
that are so strongly interacting that they can display quantum
turbulence [7,11]. This ratio is widely believed to be a proxy
for the strength of interactions in many classes of quantum
systems, including relativistic, nonrelativistic systems, and
Plankian metals [12], which entirely lack quasiparticles.
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By dimensional analysis, the shear viscosity n ~ Frt,
where F is the free energy and t is the relaxation time
[13,14]. In hydrodynamic relativistic systems, the free energy
is mostly entropic, F ~ sT. In the absence of screening, the
scattering time due to Coulomb interactions is t ~ i/(kgT ),
and hence n/s ~ h/kg, with a prefactor of order unity. In
general, screened electronic quasiparticles are long lived and
typically lead to high viscosity in quantum fluids. In Fermi
liquids, the free energy is dominated by the Fermi energy
Ep at low temperature, whereas T o T~2. The ratio /s ~
h/k}_q(Ep/T)3 for T < Ep [15], saturating to a constant /s ~
h/kg at T > Ep, above the conjectured universal lower bound.

Violations of the universal bound were found before in
some strongly interacting conformal field theories [16—18]
and in holographic gravity models [19,20], and were predicted
near a superfluid transition [21]. In quantum materials, it has
been recently suggested that anisotropic Dirac fermions found
at a topological Lifshitz transition, where two Dirac cones
merge [22], violate the proposed lower bound in the nonper-
turbative regime of interactions [23]. Coulomb interactions,
nevertheless, were more recently shown to restore the isotropy
of the Dirac cone near the fixed point of that problem [24],
effectively reinstating a lower bound. The extent to which
the universal lower bound is violated (or not) in that problem
requires a closer examination.

In this paper, we show that in nodal systems where the
density of states vanishes along a Fermi line, such as in nodal-
line semimetals (NLSMs) [25-37], the ratio between the shear
viscosity and the entropy strongly violates the conjectured
lower bound, scaling toward zero with decreasing temperature
in the perturbative regime,

n h kBT
N kB OlZUFkF

~Tr, 2)
where kr is the radius of the nodal line, v is the Fermi veloc-
ity of the quasiparticles, and a = €?/vr is the fine structure

constant. This is the main result of the paper.
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FIG. 1. Fermi surface of a NLSM. Massless quasiparticles dis-
perse linearly away from a nodal line (red) with radius kr. The
toruses enclosing the nodal line are finite energy surfaces. The outer
shell with energy kg A7 sets the ultraviolet temperature cutoff of the
theory.

In the absence of screening, the scattering rate t—! is set

by the volume of the phase space available for collisions. Due
to the lack of dispersion along the line, as illustrated in Fig. 1,
there is no energy cost for the quasiparticles to scatter in that
direction, even at zero temperature. From this phase space
argument, the scattering time is hence temperature indepen-
dent, scales inversely with the length of the nodal line, and
can be extremely short for large nodal lines, possibly close to
the Mott-Ragel-Ioffe limit [38]. We find that

h
T~ 3)

Olzl)pkp ’

with additional logarithmic scaling corrections in temperature
in the perturbative regime.

We confirm that result by calculating the longitudinal con-
ductivity in the collision dominated regime (o < 77'),

@1 S5 )T @)
o(w, — ~— -,
hatvg  h TP R

which is indicative of insulating behavior. We note that in
Weyl semimetals, the dc conductivity o oc 727 also scales
linearly with temperature (since 7 o 1/T, as in graphene
[39,40]), although reflecting a completely distinct behavior in
the scaling of the scattering rate and hence in the viscosity-
to-entropy ratio. We conclude that the violation of the bound
due to an unusually short and nearly temperature-independent
scattering time suggests that NLSMs can be extremely corre-
lated quantum systems.

In the following, we outline the structure of the paper. In
Sec. II, we derive the quantum kinetic equation. In Sec. III,
we calculate the conductivity in the hydrodynamic regime,
including a discussion on many-body effects through a renor-
malization group analysis. In Sec. IV, we calculate the shear
viscosity and demonstrate the violation of the viscosity-to en-
tropy ratio bound. Finally, in Sec. V, we discuss experimental
implications of this result.

II. QUANTUM KINETIC EQUATION

We adopt the low-energy Hamiltonian of a NLSM that is
described by a circular nodal line in the k, = O plane. The
low-energy quasiparticles are Dirac fermions located in the

vicinity of the nodal line,

ki +k; — k¢
Ho(k) = ————0, + vk, 0y = vpdk,0, + v k00, (5)
where §k, = k, — kp is the in-plane momentum away from
the nodal line, and vg = kp/m is the Fermi velocity in the
radial direction and v, along the the z direction. The quasipar-
ticles interact through the three-dimensional (3D) Coulomb
potential
&2
Vig) = 4n pe (6

and disperse linearly near the nodal line.

In the hydrodynamic regime, the particles interact with
each other more quickly than they lose energy to the lat-
tice. The electronic relaxation is driven by the collision
between particles, leading to local thermalization. The out-
of-equilibrium distribution function of the quasiparticles
£ (K, x, t) satisfies the Boltzmann equation

0
(5 +Vik-Vx+eE- Vk)f,\ = Zeall 11, )
where A = %1 for quasiparticles and quasiholes respectively,
and v, x = Ve, « is the velocity of the quasiparticles, with

&)« = A/ (rdk, )2 + (v k,)? (8)

being the equilibrium energy spectrum. The term eE = dk/0¢
is the external force driving the system, with E being the
electric field, and Z o[ f3] is the collision integral, which in-
cludes all scattering processes between quasiparticles allowed
by Fermi’s golden rule. For a nonequilibrium state,

Lk, x,1) = (k) + 8f(k, X, 1), ©)

where f? = [¢/# + 1]~ is the equilibrium Fermi distribu-
tion, which solves the Boltzmann equation in the absence
of interactions (I.q = 0), B8 = 1/kgT, and § f,. (K, X, t) is the
nonequilibrium correction in linear response to an external
perturbation such as electric field and strain. In general, Z., ~
8f /7, where 7 is the scattering time between collisions.

III. CONDUCTIVITY

To gain physical intuition in the problem, we derive first the
conductivity and the scattering time for NLSMs. If the system
is spatially homogenous, the nonequilibrium current carried
by the quasiparticles in the presence of an external electric
field is

=Y [ vk, o) (10)
s

with [, = 27) [d’k. In linear response, where J; =
o0i;E;, the conductivity per spin is

0
0 (. T) = e; /k g o). D

In leading order and close to equilibrium, the driving force
term on the left-hand side of (7) is

—eE - Vi fi = eE - ¢, (k) (12)

033003-2



HYDRODYNAMIC TRANSPORT AND VIOLATION OF THE ...

PHYSICAL REVIEW RESEARCH 3, 033003 (2021)

with ¢, ;(k) = ﬂff(l — ff)(v,\,k)i. The nonequilibrium dis-
persion can be written in the form

ek = &5 + eB(0) - (Vie] ) (k), (13)

with g; (k) being some unknown function to be found from
the solution of the kinetic equation, where k = (k, ). With
this ansatz, the nonequilibrium correction of the distribution

J

function assumes the form
8fk) =B (1= £)eE(o) - Vikga(k).  (14)

For convenience, we define x, ; = (v) k)igx. In the collision-
dominated regime @ <« T, the linearized kinetic equation
(2) can be approximately expressed in terms of the collision
operator as

i =Cxois (15)

where

Cxani= Z / / Q)8 (k + ki — ko —ka)S (el + &) 1 — 0 — e )M L L o
ki Jky Jk;3

AA2ds

X [xr,i (k) + xy,itk1) = X0,,i(k2) — Xas,i(k3)], (16)

with MS7!, . being the collision matrix element [41]. For
details in the derivation of the collision term and integration,
see Appendix A.

The solution of the Boltzmann equation requires invert-
ing the collision operator C, which can be done through the
standard procedure [41]. The dominant contribution to the
conductivity follows from the eigenfunctions of the collision
operator with the lowest eigenvalues. In the collinear approx-
imation, where the momenta of the quasiparticles point in the
same direction, the momenta embedded in the definition of
the velocities v; x factor out in the integrand of C, which is
proportional to

A (k) + 18y, (k1) — Aagr, (k2) — A3, (k3). (17

The zero modes of the collision operator Cy; ; = 0 in this
restricted phase space are

g1, (k) = a(w), (18)
g2, (k) = a©(w)A, (19)

and
gaa(k) = aP(w)ey ., (20)

corresponding to conservation of charge, chirality, and mo-
mentum, respectively.

In the absence of noncollinear processes, those zero modes
would produce infinite conductivity [41]. To account for non-
collinear processes, we express the eigenfunctions of full
collision operator C that have the lowest eigenvalues in a
basis of zero modes of the collinear regime. We note that
due to translational symmetry, the momentum zero mode is
an exact eigenfunction of (16), as can be readily checked
[41,42]. It does not, however, contribute to the conductivity
(11) due to particle-hole symmetry at the nodal line. For the
same reason, the chiral modes do not contribute the the charge
transport either. We are then left with the charge zero mode,
x..i(k) = @ (w)(v; k)i, which provides the only contribution
to the conductivity.

We next restore the frequency dependence of the Boltz-
mann equation, ¢, ; = Cx,.; + iwg; ;. ;- In order to calculate
the function a'®(w), we define the inner product (ay ;, b, ;) =

(
Do fk a,.i(k)b; ;(k) and set the variational functional

01a"“1 = (s d1.0) = 5 (X005 Coni + i0a®95), (1)

which is to be minimized, dQ/3a® = 0. The momentum
integral of the collision operator is performed in the collinear
approximation, where all momenta are nearly parallel to each
other. As shown in Appendix B, this approximation is justified
by the fact that for a large nodal line (vpkr > kA7), the
weight of collinear processes in the collision phase space is
logarithmically divergent, as in the case of two-dimensional
(2D) Dirac fermions [7,41]. We also restrict scattering to
channels that conserve the number of particles and holes,
which are dominant processes in the collinear regime.

Combining the solution of Eq. (21) with Egs. (11) and
(14), we obtain the frequency-dependent conductivity in the
hydrodynamic regime,

(,T) “ Nk ks (22)
o;ilw, =Vi- ; ’
Y i + a2 (Tyor(Tkre(y)
where
=y =v/vr.  vi=y (23)

fori = x, y and N is the spin degeneracy [43]. The coefficient
c(1) =~ 1.034 was numerically extracted from the collision
integral for N = 2. This value decreases monotonically away
from y = 1. The functions «(T) and vp(T) are the fine-
structure constant and Fermi velocity, respectively, dressed by
interaction effects.

Renormalization group analysis

As in graphene [44], Coulomb interactions are marginal
and renormalize the velocity of the quasiparticles in the per-
turbative regime. The velocity grows logarithmically with
decreasing temperature,

vp(T) = vp[1+%ln (%)} (24)

where kpAr = vp A < vpkp is the ultraviolet cutoff. The
electron charge does not run and the fine-structure constant
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FIG. 2. (a) Longitudinal conductivity ¢(0,7) in units of
ek /(ha*) vs temperature normalized by the ultraviolet temperature
cutoff A7 in the collision-dominated regime, w <« t~!. The con-
ductivity has a quasilinear scaling in the range 7 € [Ar, T], with
Ar/A7 ~ 0.2 (see text). (b) Scattering time 7 in units of 1/a’vpkr vs
temperature for quasiparticles near the nodal line. In the perturbative
regime, T scales logarithmically with temperature and has only a
modest increase per decade of temperature variation compared to
conventional relativistic systems, where t o< 1/T.

is also renormalized,

o

aT)= —————,
1+ 2In(Ar/T)

(25)

and decreases logarithmically at low temperature. The renor-
malization group (RG) results mimic the structure of the
calculation in graphene. The details can be found in
Appendix C.

The combination [ccvr](r) does not run, whereas the ratio
y = v, /vr flows toward 1. Hence, in the collision-dominated
regime w < 17!, 0(0, T) scales linearly up to logarithmic
corrections, suggesting that the system behaves as an insu-
lator, as shown in Fig. 2(a). In that plot, we use kpAr =
0.2 x vpkp, y = 1, and @ = 0.6. The static charge polariza-
tion bubble of a NLSM, I(g, 0) ~ —N/(27 )3 krq/vF, scales
linearly with momentum. Since the Coulomb interaction o<
g%, the quasiparticles are partially screened at momenta
g < Nakp/2m?, where interactions decay as o< g~'. Be-
low the cutoff temperature Ay /A7 ~ Nakp/ 272A ~ 0.2, the
Coulomb interaction is therefore screened by charge polariza-
tion effects, although still long ranged, indicating a crossover
in the T — O limit. In that regime, the velocity is not further
renormalized by the screened Coulomb interaction and the RG
flow stops.

A previous on-shell Wilson-Yukawa RG analysis has indi-
cated the presence of a screened interacting fixed point in this
problem [45,46]. In the vicinity of that fixed point, a strong
charge renormalization was found, suggesting a crossover to
a Fermi liquid. We point out that the analysis of Refs. [45,46]
did not incorporate the nonanalytic structure of the infrared
(IR) polarization bubble in the bosonic propagator, which is
relevant in the RG sense. For Dirac fermions, it has been
recently shown [47] that the incorporation of the IR bubble
(which is nonanalytic) in the on-shell propagator of the bosons
is necessary and correctly recovers previous numerical results
based on conformal bootstrap calculations. The fermionic
analysis for NLSMs shown above indicates that for 7 > Ar

the charge is not renormalized, whereas the velocity is the
only physical quantity that runs in the RG flow in that regime.

From Eq. (22), one can extract the scattering time between
collisions,

T(T) = 0.998 x (26)

a*(Tyvp(T)kr
This is the second main result of the paper. In Fermi lig-
uids, the scattering time diverges as 7 « heg/ (kgT)?, with
the Fermi energy. Relativistic systems have a parametrically
shorter scattering time (t ~ /i/kgT), reflecting the absence
of screening. The nodal line significantly enlarges the phase
space for collisions among the quasiparticles, without pro-
ducing any screening effects at T = Ar. That further reduces
the scattering time, which increases only logarithmically with
decreasing temperature, as shown in Fig. 2(b).

IV. SHEAR VISCOSITY

The shear viscosity 7 is the dissipative response of fluids
to transverse gradients in their velocity field. It is defined
after the strain contribution to the stress tensor away from the
equilibrium distribution [48]

8uk
3)6@ ’
where u = 0&/9¢ is the velocity field of the fluid, with §&;
being a strain deformation field. The gradient u;; = du;/0x; =
0&;;/0t is the time derivative of the strain tensor &;; = 9&;/0x;.
For systems that preserve time-reversal symmetry, the viscos-
ity tensor is symmetric, obeying the Onsager relation n; ., =
Nkeij [49].

The stress tensor can be derived from the change of the
Hamiltonian with respect to the strain tensor,

oH
&
In linear response, the first-order contribution of strain to the

Hamiltonian can be shown [50] to appear through a term with
the general form

(Tij) = nijke (27)

T = (28)

He = 5&;(vik; + kjvi). (29)

From Eq. (28), the deviation of the expectation value of the
stress tensor (7;;) away from equilibrium is

ST =NY /k 021k 8 ., 1), (30)
A

from which the shear viscosity in Eq. (27) can be extracted.
For details of the derivation, see Appendix D.

Going back to the kinetic equation (7), the second term on
the left gives

=ik Vaf (k) = BA(1 = £)e) (Lijuij = Dy juij,  (31)
with
Lj = (Uai)ik; /€5 — (8i7/3). (32)

Setting the electric field to zero, the change in the energy
spectrum can be parametrized with the ansatz

k= 82,;( + Liju;jhy (K, 1), (33)
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where &, (K, t) is to be determined by solving the kinetic equa-
tion. Hence, the nonequilibrium correction to the distribution
function due to strain has the form

3£k, 1) = B (1 — fD)uislijhi(k, 1). (34)

Defining x, ;; = I;;h,, the kinetic equation in the stationary
regime (w — 0) is

Dy 5 = Cxnij- (35)

The definition of the collision operator follows directly from
Eq. (16) under the substitution x; ; — x,;- In the collinear
regime, there are three zero modes that are eigenfunctions of
the collision operator, Cx;, ;; = 0, namely,

X5 (K) = ALij, (36)
X 0€) = & @iy, 37

and
X)) = 1. (38)

Those modes correspond to conservation of charge, energy,
and number of particles respectively. The particle number
zero mode, however, does not contribute to the shear viscosity
due to particle-hole symmetry at the nodal line. This mode is
orthogonal to the other two and can be completely decoupled.

Setting a basis with the charge and energy modes X/{“l j(k),
with o = 1, 2, one can express x, ;; as a linear combination
in that basis,

X1 (K) = ag x5 (k). (39)
If we project the kinetic equation in that basis, namely
b* = (%), @aij). (40)
and
Cap = (15> C1L3)- @1

then the solution (39) follows from the determination of the
ag coefficients

ap = b°C;). “2)

C, ﬁl is the inverse of a 2 x 2 matrix that can be evaluated
numerically through the momentum integration of the col-
lision operator in the collinear approximation, as shown in
Appendix C. Substitution in Eqgs. (30) and (34) gives the
viscosity tensor

. (keT) .
Mixi(T) = Cz(V)va =Yz (43)

where ¢,(1) ~ 0.569 and c.(1) ~ 0.759 for N = 2.

Viscosity-entropy ratio

The entropy density of a NLSM can be calculated from
the entropy of a noninteracting system dressed by interactions
with the renormalized observables,

k3 T?kr 9
s(T) = —kgN /folnfoz B -
’ ZA: KT yuR() 4

dEINNC))

0.15
Q 0.10 1
S ; Ar
0.05 - 1
0. ‘ ‘ ‘ ]
0.2 0.4 0.6 0.8 1
T/Ar

FIG. 3. Ratio between the sheer viscosity and the entropy, 1y /s
(in units of /i/kp) vs temperature 7 normalized by the ultraviolet
cutoff Ay. We have set the bare fine structure constant o = 0.6,
y =1, and kgAr = 0.2 X vpkp, with kr being the radius of the
nodal line. The horizontal dashed line is the conjectured lower bound,
which is violated in NLSMs at sufficiently low temperature. At
T <« A7 ~ 0.2A7, Coulomb interactions are partially screened by
charge polarization effects, suggesting a crossover (see text).

where ¢(3) & 1.20 is a zeta function. Allowing the Fermi

velocity and the fine structure constant to be renormalized

according to the RG prescription, the ratio n/s is
n_h 4£3) kT
—=_—vay) 5 .
N kB 9 « (T)UF(T)kF

(45)

In Fig. 3, we plot the temperature dependence of the shear
viscosity-entropy ratio in units of 7/kg versus temperature
in units of the temperature cutoff. The horizontal line is the
conjectured lower bound /s = (1/4m)h/kg. The ratio

gocT[l —i—%ln (%)} (46)

has a quasilinear scaling toward zero with decreasing tem-
perature T € [Ar, Ar], in violation of the lower bound. The
violation reflects the enlarged phase space for collisions at low
temperature in unscreened relativistic systems with a nodal
line. For T « A, partial screening effects can lead to the
restoration of a nonuniversal lower bound, below the one
previously conjectured [10].

V. DISCUSSION

In the hydrodynamic regime, the usual manifestations of
the viscous flow of electrons in constrained geometries in-
clude nonlocal negative resistance [8,9,51] and fluid dynamics
with vortex lines [52]. The very low viscosity compared to the
amount of entropy production, in violation of the conjectured
lower bound, is highly suggestive that NLSMs may exhibit
quantum turbulence [7,11,52].

In general, observation of hydrodynamics requires quasi-
particles with a relatively short scattering time. Signatures
of hydrodynamic behavior can be detected in the collision-
dominated regime through optical and transport measure-
ments when kgT > er, A, with ep being the energy of the
Fermi surface and A being the gap induced by spin-orbit
coupling effects or possible many-body instabilities [53,54],
including excitonic phases [55]. NLSMs that combine
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inversion, time reversal, and mirror glide symmetry have
nodal lines that are robust against spin-orbit coupling [56].

NLSMs are unique in that the nodal line introduces a length
scale that does not generate fully screned interactions, as in
Fermi liquids. That length scale substantially enlarges the size
of the phase space for collision of thermally excited quasipar-
ticles and is responsible for the unusual temperature scaling
of the scattering time in the hydrodynamic regime. Materials
such as ZrSiSe [57] have a large nodal line gapped by a small
spin-orbit coupling gap of A ~ 30 meV, with vp A ~ 0.4 eV
(Ar ~ 4 x 10°K), and vrkr ~ 2eV. In this material, the
Fermi velocity vy ~ 2eVA is three times smaller than in
graphene. Experimental control over the value of the fine
structure constant can be achieved with experiments on thin
films encapsulated by dielectric materials. In ZrSiSe, for a
moderate fine structure constant o« ~ 0.6 within the perturba-
tive regime, the scattering length at T > A /kg,

hUF (47)

by = VpT ~ ———,
’ F OlvakF
is of the order of the lattice constant, near the Mott-Ragel-
Ioffe limit, indicating the presence of very strong correlations.
We speculate that hydrodynamic behavior may be observable
in a number of different NLSM materials.
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APPENDIX A: QUANTUM KINETICS
IN THE HYDRODYNAMIC REGIME

Following the derivation of Kadanoff [58], the Boltzmann
equation has the general form:

a
(5 +Vik  Vx+eE- Vk)fk(X, k,1) =Zalfsl. (AD

where — VU (x, 1) = eE is the external force, fi (X, k, 1) is
the nonequilibrium Fermi distribution, and

Icol[f)»] = - f)\(k, t)(i)ix(k7 t))w:&\

(E;A)w:g)\ = Z /k /k /k Q)8 +p1— P2 — P38 (Exk + &k — Ennks — Einiks)
1 2 3

Adads

+ (1 = fulk, D) (E5, K, f))wzal (A2)
is the collision term, with
|
X [NV(k —K)V (K — Ko)M; 5 My, 5, M5, M5 f, (1 - fxz)(l - f;\3)
— V(k — k2)V (k = k3)M;;,M;,5, My 5, Mo fr, (1 = fo,) (1 = £oy)]s (A3)
(A4

(B, = < 1= 1),

V (k) = 4 é? / Kk? is the Coulomb interaction and M is a tensor
in the quasiparticle-hole basis. Explicitly,

My, (k, k) = [U Uy, | (AS)

o’

with Ux being a unitary transformation that diagonalizes the
Hamiltonian.
For nodal-line semimetals (NLSMs),

K2 — k2
Ho = ox + vk.oy
2kp )k, — k
~ MO‘X + UZkZJy
2m

= vpdk,o + v 0k 0y

= vr(heo, + hyoy),

0 H
HO = <H* O)v

where H = h, + ih,,

Ih| = H| = /(.)* + (hy)* = h.

8k is a relative momentum from the node line. The Hamil-
tonian can be diagonalized in the quasiparticle and quasihole
basis with their energy tvrh. We assign each basis as A =

(A6)
or

(A7)

(

+1, and thus &,y = Avph where A = 41 corresponds to a
excited particle and A = —1 to a excited hole. The unitary
transformation matrix is

1 1 1
Ui = ﬁ(H/h —H/h)’ (A%)
and thus, the tensor M is
My (. Ky) = l(1 Y H*Hl). (A9)
2 hh;

The velocity of quasiparticles in the Boltzmann equation is,
by definition,

88)\71c
ok;

Vik =

g, Oh | dh ok

=2 (h = he— =2 ).
ho\ ok ok, ok

(A10)

Linearized Boltzmann equation

Starting from the the nonequilibrium correction of the dis-
tribution function due to the presence of an external electric
field,

3k, @) = BfA(1 — f))eE(®) - vixgi(k, ).  (All)
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where x;.; = (vyx)igx, With g, being a function to be determined by solving the quantum kinetic equation (7). The left-hand
side of that equation is

liw ;. (k, @) — 11BeE@)(vi): f (1 = f7). (A12)
Defining f;, = fj,(k:), the collision term in the right-hand side is

zatfil= 3 [ [ [ @o0fmeki -k - kst + e, e - o)
k; Jky Jk3

Mok
X [NV (K = ko)’ Wi, — Vk = K2)V (k — K3)Yoi s ]
x [(1=f(1 = ) fufo — fifi (L= £2) (1= £)]. (A13)
with N being the fermionic degeneracy, and
Wirioans = My, Mo a M, My, 5,
Yioion = My, M, 5,M;5.My,5,, (Al14)

where M;,, = M,,, (k, k), and so on.
The third line of (A13) has two terms with four f functions. One should expand it in eight terms to linear order in § f, with
three f° and one & f. We can simplify them using

0 £0 40 £0 Ak +20,k)B £0 £0 20 0
IS I, L h, = ey I)ﬁfkfklszf)ug
0K AAu KB £0 20 20 20
= T 3ﬂf)‘f)\1f)¥2f)\3

= o Lo (A15)

which is restricted by the energy conservation. After some straightforward algebra, we find

Lol == ¥ [ [ [ enfstcik—to -1 + e, - e - en)
ki Jky Jk3

AraAs

x [NV2(k — ko)Wij 200, — V(k — k2)V (K — K3)Yi 00, | BeEd () [ 1 F25 125

X XA k) + xi(has k) — xi(ha, ko) — xi(s, k3)l, (Al6)
with the collision matrix element
M, =NV — k)W, — VK — k)V (K — K3)Yo,0,1, (A17)
Defining

¢a.ik) = BL (1= f7) Wriis (A18)

equating the left- and the right-hand side of the quantum Boltzmann equation, Egs. (A12) and (A16), we have
b1 = Cxoi + iwgidais (A19)

with C being the collision operator as defined in the main text,

Croi= Y /k / A Q2r)*8 (K + ki — ko — k)8 (3 4 + €3, 4y = €3, 1, — €y i) Mo,
1 2 3

MAaks
X FOF L0 P i () + i) — Xni(ka) = .0 (k3)]1. (A20)
[
APPENDIX B: COLLINEAR APPROXIMATION aligned to each other around the nodal line, we can define the
momenta

1. Collision phase space
Due to the Coulomb potential V (k — k;) and V(k — k3) in

k = (k., 0, k;) = (6k, + kr, 0, k), B1

the integrand of the collision operator, the integral is governed ( ) = ke A ke ) (B1)
by small momentum transfer due to collision processes. In the ki ~ (kiy, ki1, ki) = (8kiy + kp, ki, ki), (B2)
collinear approximation, where the four momenta are nearly Ko & (kor, kot ko) = (8kor + ki, ko1, ko), (B3)
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k3 ~ (k3,, k31, k3;) = (8ks, + kr, k31, k3;),

where we assume that the | components are small compared
to the radius of the nodal line kr. The phase space for collision
processes is set by conservation of energy,

(B4)

0 0
Tk 813»"3)‘
We now expressing it in terms of the dimensionless variables,
x =vrBSk,), y=vpk,
P =xt 4y, (BS)
|

0 0
S(SA,k + & K

Ko = UFkFﬂ,

and

Xn = UFﬂ(Sknr)v Yn = vz,Bknzs %‘n = vFﬁknLa

rr=x2 4y, (B6)
with n = 1, 2, 3. Performing a suitable change of variables
k2 — k—kzandk3 d k] —k3,

BS(D) = 8(e) \ + &3, i, (B7)

0 0
T Eaktky T 8)»391(1*1(3)’

where

D> AN CAY ) DAY
=Ar+ A,/ [ X1 + +y7 = A x+x+ FO+) Ayl —x+—"—| +01—y2), (B8
2K0 2K0 2/(0

while at the same time

- 1
Vk—-ky) — V|, = , (B9)
)+ ¥ 2(0n) + (&)
- 1
VK= k) — Vs = ( ) (B10)
x—x1+x0) +y 20—y +y) + & — &)
after using momentum conservation k + k; — k, — k3 = 0.
Since & and &, are much smaller than k¢, we can rewrite the argument of the é function D as
2 2 _ _ 2
D~Ati xiéf I (x+x)é . (xr —x2) (&1 — &)
2riko 2|r 4+ r3|ko 2|r; — ko
As(xp —x2) A 4x2) )., Azl —x2) A3(xr—x2)  Aixi )., -
R e - E+A
2|y —r2lkp - 2Ir +12lKo [r; —r2lko 2|y — 2l 2rikp
w w w A
= —2—1<§12 226k + —8) — —> (B1D)
Ko wq wi wi
where
2 A
i == [(38) - <g§2 - —) (B17)
A= Ar+ Airi — lr +ra| — Azlr; — |, (B12) 2k wq w1 w1
rtml =@+ 0P +0+m?  (B13)  Thus,
I S I (B14) |
3(D(§1)) = Ko (B13)
and w; (i =1, 2, 3) are functions of the dimensionless vari- \/(w1w2§2)2 — (ww3&? — wiA)
ables x, y, x;, y;. D is a quadratic function of &;. We can then
express the 8 function as X [8(81 — &14) + 8(61 — &1-)] (B19)

8(51 — éz)

B15
D&l B

S(DE) =) ———-

i=%

where D' is the first derivative of D, and &;_.. are the two roots
of the quadratic function, namely

b= 6 \/( %) —(i—:sZ——l) (B16)
Hence,
D& = [ F 108 &~ 5 )

= |56 — )|
0

It is clear that the phase space has a logarithmic divergence in
the &, variable when A — 0. At the same time, the Coulomb
interaction terms V; and V, defined in Egs. (B9) and (B10)
decay quickly to zero with & when it is large. Thus, there are
two important regions of the integrand in phase space: A — 0
and & — 0. This phase space argument justifies the validity
of the collinear approximation, with which the conductivity
and the shear viscosity were calculated.

Calculation of the conductivity

The variational functional of the conductivity is

0“1 = Guis $1.0) — 3 (0.0 Cxoi + iwa ¢y ;). (B20)

033003-8



HYDRODYNAMIC TRANSPORT AND VIOLATION OF THE ... PHYSICAL REVIEW RESEARCH 3, 033003 (2021)

We define the inner product (@i, byi) = with a“(w) being the variational function corresponding to
Yoi Jx ari(K)by i(K), with charge conservation in the collinear regime. For convenience,
90 after multiplying the factor vz A3 in both sides of Eq. (B20),
— =0, the first term is
da'®
|
d*k 1
30y b ) — 4@ B3 2212
VB (Xnis $i) = aVvrp ; /k v; f TP DD
k
= g2 Fﬁ(y" +V)/dr—r
T e+ 7"+1)
In(2)
— 4 1 B21
Ko— r " +y) (B21)
where y = v,/vr, and
d*k dk, dk dé&k, ddk, k dxd
/ M. /kp Zdp — ka —dp - —- 2/ ~Ddg. (B22)
(2m) (2m) (2m) vv:p7 ) (2m)

To calculate the second term, we consider the dominant processes in the near collinear regime, which conserve the number of
particles and holes. We have

UF:83
2

3 A’k dSky,d8ki,dky | dSky,dSky,dky, dSks,dSs.dk
(X/\,i,CXA,i+ia)a(e)¢A,i) vl Z/( 1 il 2 Sades i

27)} @2n)? @2r)? @r)?
X 27 8(Avph 4+ Avphy — Avrhy — Avphs)(27)°83 (kK + ki — ko — k3)
X S FO FOL [NV — Ko)Was s, — V(K — ko)V (K — k3)Yisin, ]

N2 iw, 2 In@2) _
X (a( )) [Vik + Vi ki = Vioks — Visks]” + j(a( )) KOT(V )
2.2 In(2
= —Koﬁo’ @9 I(y) + iw[a“)]zx()%(y*l +), (B23)
T

where « = ¢?/vr, and I(y) is a dimensionless number. The extra factor of % on the right-hand side is due to the symmetrization
in the four-momenta. In terms of the dimensionless variables (B5) and (B6), the combination [a'©]*] (y) can be written in the
collinear approximation as

1 dx dy dX1dy1d§1 dXQdyzdéz
(e) 2[ ~——(4 2/ 278(D 0 0 0 0
[a ] ()/) 8)/3( 7T) 27_[2 (27[)3 (27[)3 v ( )fkfklf—sz—A3
_ i _ 2
X (NVPWasiinne — ViVaYasinin ) (@9 [Xisinn ] (B24)
where
2 X X X+ x2 x—x\° y n Y+ yvi—»Y
(Kriions) = (A— +A— =X — A3 ) + <)»— FAa= =X — A3 ) . (B25)
r r Ir + 12| Iry —rsf r r Ir + 12| [r; — 12|

D, Vy, and V, are given in Eqs. (B8)—(B10). The W and Y tensors follow from Egs. (A5) and (A14) with the substitution 4, — x,
hy, — y, and so on. The integral is performed enforcing the restriction in momentum space (w wzéz)z — (wq w3522 —wAd) >0
after integrating &; out through the § function (B18). From Eq. (B23),

0 In(2 Ko In (2
90 _ —Ko ( )(y—1 + )+ 2—ad“I(y) + iwa“x ( )()f‘1 +y)=0. (B26)
da® 21 B 2w
This implies that
@)= — P (B27)
Kkoa’c(y) + iop
where
2
()= ———Iy). (B28)
In2(y~'+y)

In the near collinear approximation, we find c(y = 1) = 1.034 for N = 2. When the nodal line is spin polarized, with N = 1,
c(1) ~ 0.361. In the two anisotropic limits y — 0 and y — oo, c(y) is proportional to 2 and y ~2 respectively, and scales
toward zero.
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The conductivity is

aJ, & d’k
_ _ X __ ) 0)\ ,(e)
y — Oxx — T~ — +© — (Vv A
Oy =0 E = R XA:/ (271)3( W) (VB (1 = f)a
&2 1 2Nkr dx dy x2e
Sy LA [ ameosoan [ SESE 20
h koa’c(y) +iwB y 21 21 r2(e" 4+ 1)
2 1 Nln (2
_ g Nn@ (B29)
2h " yB vpkpalc(y) + iw
1
= —0z. (B30)
14
[
2. Calculation of the viscosity and Cyp = ( an,),v C X;’Sli) with o = 1, 2, then the solution of

In the collinear regime, we set a basis with the zero modes the kinetic equation is

reflecting conservation of energy and number of particles
R & P K01 (6) = ag ) (k) = b°Cl 1) (), (B33)
Aij? Al]
where C,, ﬁ] is the inverse of a 2 x 2 matrix, and
(1) _ ) 0 7.
Kk = Ay x k) = Belyly. (B3 4 = bC).
with To be specific, one can define two different variational
functions Q with the two modes as
3 M D @, D Conis B34
Iij = \/;[(Vk.k)ikj/gg,k — (8ij/3)]7 Q[X)» lj] (XA ij° )»,j) (XA Jij? X)»,])’ ( )
ol = (12 @) = (67 Cog). - (B3S)

as described in the main text. One can express x, ;; as a lin-
ear combination in that basis. Projecting b* = ( Xx(aii" D)

s Ve 1
where b’ _ (Cu Ci\(ai
()= &)()  wo
=B (1= £)e) (1) (B32)  where
|

Minimization results in two equations with the form

i=1,2,3
Cop = Z f / f 2m)*8* (k + ki — Ky — k3)S(Av.k' + Ayv,.k] — Ao,k — Asv k) MST,
k; Jky JKk3

X 2RO A0 O ) + k) — 1 (k) — k) () + 1P ki) = X (ko) — (k). (B3T)
and

" Z(2-1+%) (@=1)

foxf 2Bl 00350 = Ko 2B(E-1+%) @=2)

We calculate the Cyg matrix numerically in the near collinear approximation. Inverting the resulting matrix, the coefficients a,
(¢ =1,2)for N =2 are

1

b"’CO(_/3 = (a1, a2) ® —(—1.696,7.567), fory = 1. (B38)
Ko

ay(y) has a similar asymptotic behavior with y as the coefficient c(y) for the conductivity. For N = 1, a; = —3.756 and

ap = 14.796.
The solution of the kinetic equation has the form

X0,ij(K) = Iij(ar + Bey kaz). (B39)

The different components of the shear viscosity tensor are

Nijke = Z/l;(vk,k)ikjﬂf)?(l — 1) 0.ke(K), (B40)
»
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with Nxyxy = Nxyyx = Nyxxy = Nyxyx = %77 Mxzxz =V 770’ Noxzx = N0s Nxzzx = Y 770: and Nxzyz = MNxzzy =

the remaining ones, where

1\ 1
=1)= Niogy | —
no(y ) Koy (wﬂ) =

for N = 2. The numerical prefactor is ~1.469 for N = 1.

APPENDIX C: RENORMALIZATION GROUP ANALYSIS

We perform the renormalization group (RG) analysis using
standard perturbation theory. Since Coulomb interactions are
marginal operators in the RG sense, perturbation theory is
well controlled in the regime where the fine structure constant
a = e?/vp < 1. In the spirit of perturbation theory, in one
loop one needs to extract the leading logarithmic divergences
of three diagrams: The Fock diagram for the self-energy,
the polarization bubble, and the vertex diagram, as shown in
Fig. 4.

The Green’s function for a NLSM is given by

. 2 _ k2
G (v, k) = r F

iv— ox — v:k.0y (CDhH

~ v — vp(8k,)o, — v k.0, (C2)
with vp = kg /m and 8k, = k, — kr. The pole of the Green’s

function gives the energy dispersion

+e(k) = £,/v2(5k,)? + v2K2,

whereas the Coulomb interaction is V (¢) = 4mwe*/q>.
The Fock self-energy is given by the diagram

i

At one loop level, the self-energy is frequency independent.
In the regime where the radius of the nodal line kr > A, with
A the momentum ultraviolet cutoff around the line, one can
ignore terms such as ¢ /kr,

(C3)

k +q)? — k2

~ vp(8k, + Ok, - q,).
2m

(C4)

We integrate the bosonic momentum ¢ of the self-energy
in the regime 8k < g < kp, where the leading logarithmic
divergence of the diagram is expected.

Integrating in the frequency, it is convenient to calcu-
late f)(k) at k = (kr + 8k, 0, k;) and enforce rotational

(a) (b) (c)

O

FIG. 4. (a) Self-energy, (b) polarization bubble, and (c) vertex
correction diagrams in one-loop perturbation theory.

7.[2
[ — ta- ;(3)} A 0.759N -

Myzxz = Myzex = 0 for

(kT )’

s (B41)

(

symmetry around the nodal line,
2 (kr + ks, 0, k;)

_ 1 /Adq dg,dq v(8ky +qy)ox + v (k; +qz)ay 47 e?
= Tons ) S

e(k+q) q’
5k<<q &2 vvqﬁkox—i—vvquo
472 / qp/ 44 Z : :
v qZ +v qx)
qp + qy

v2v cos? ¢ 8keoy + v,v% sin’ Pk, i ( A )
2 I ,

. 2
(v2cos? ¢ + v2sin® ¢)2

62 2
= | 4
472 /0 ¢

with g, = \/q% + ¢?. The self-energy has the form

Sk

(€5

A
Z(kF + 8k, 0, k;) = [I1(y)vdkox + L(y)vk.0p]a In ((Sk)

(Co)
with y = v,/vF, where
1 2 2 0052 ¢
= [ de—— L@
4 Jo [(y? —1)COS2¢+1]2
1 [ sin® ¢
Ly)=— d 3 (C8)
4 Jo [(y> —1)cos? ¢ + 1]
are elliptic integrals.
The perturbative velocity renormalization is
A
v—vo(l—i—aoll(y)ln(Sk)) (C9)
A
—Uzo<1 + aoh(y)In (5k>> (C10)

Next, we examine the vertex and the bubble diagrams. In
standard perturbation theory for Coulomb interactions, the
vertex diagram does not contribute to the charge renormal-
ization due to a Ward identity, which relates the vertex and
the quasiparticle residue renormalizations. In one loop, the
self-energy is frequency independent, and hence the vertex
diagram is zero at this order. The polarization bubble renor-
malizes the Coulomb interaction and could also renormalize
the charge. However, the static polarization bubble of a NLSM
is perfectly regular and does not contain logarithmic diver-
gences [45],

N
(271)3 (C11)

k
(0, g,, ¢.) ~ d ( ag? + axgd),
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with a; and a, of order unity. Therefore, neither diagram
contributes to the renormalization of the charge, which does
not run in the perturbative regime.

We also point out that since the polarization I1(0, g,, q;) is
linear in q whereas V(g) o« 1/¢?, TI changes the form of the
Coulomb propagator due to screening effects at small g,

47 e?

q> — 4ne?T1(0, q,q.)

(C12)

For ¢ < QITOSICF = ¢., Coulomb interactions are screened (al-
though still long range) and the analysis in the vicinity of the
fixed point will change. Our analysis indicates that further
away from that fixed point, for g 2 g. and Na < 1, where
interactions are unscreened and standard perturbation the-
ory applies, only the velocities run. At low momentum, for
q < g, and No < 1 where interactions are partially screened,
no logarithmic divergences are present and the RG flow stops,
whereas the charge remains unrenormalized.

Perturbative RG equations

From Egs. (C9) and (C10), the corresponding RG equa-
tions for the velocities are

dlnv
=l (y), C13
T 1(¥) (C13)
Y any) (C14)
ae R
One can equivalently write two equivalent equations,
dlny 1—y
T alb(y) —L(Y)]~a , (C15)
dlnoa o
= —al N ——. Cl16
T, ali(y) 1 (Cl6)

In this regime, o runs towards an isotropic fixed point with
a = 0and y = 1. The solution of the RG equations for o and

y is

274}
a(8k) = —————— (C17)
1+%1n(%)
and
-1 _
y k) =1+ ’/Z —, (C18)
[1+% (7))
while the velocity runs as
A
(k) = v0|:1 n %m <§)} (C19)

as in graphene [44].

APPENDIX D: DERIVATION OF THE VISCOSITY
IN HYDRODYNAMIC REGIME

In a momentum-conserved system, the continuity equation
for momentum is
9¢;(x, 1)
ot

where £;(x,t) is the momentum density in space and time
x,t. Indices i, j refer to spatial components in d dimen-

+ 0:T;j(x,1) =0, (D)

sions. The stress tensor operator 7;; plays an important role
in the transport of viscous quantum fluids. 7;; = —P;6;; + T
is composed of pressure P and of the viscous stress tensor Ti},
which is the off-diagonal part of the stress tensor and can be
defined as the expectation of the stress tensor due to strain
[59]. In nonequilibrium systems, the deviation in the average
stress tensor (T;iu) depends on the strain tensor and its time
derivative in linear response,

96kt
(T3} = ijredre + nijee——

o (D2)

The component of the viscosity tensor 7;, where the com-
ponent i = j is called bulk viscosity. We are interested in
the shear viscosity, where i # j, so we use T;; and Ti} inter-
changeably. Comparing classical and quantum fluids, there is
an analogous relation between the gradients of the velocity
fieldu and the time derivative of the metric tensor &;; [50]:

ou; 09§

D3
8]7 ot (D3)

Thus, the shear viscosity can be obtained by the nonequilib-
rium stress tensor, which is linearized with respect to space
derivative of average velocity ii.

To find an effect of strain in the Hamiltonian in linear
response, we use the strain generator

1
Ti==32 e pik (D4)

where n stands for particle indices. Following Bradlyn and
Read’s approach at zero magnetic field [50], the correction in
the Hamiltonian up to first order in £, (¢) can be shown to be

gy

= ot

Tij. (D5)

In order to relate the total strain generator J;; to the energy-
stress tensor (7;;), we define the momentum density for a
system of n = 1,2, ... particles in the absence of strain as

1 n n
Gi(x, 1) = 3 Z (P, 8(xi —x™)},

n

(Do)

and then use the continuity equation (D1) in momentum rep-
resentation,

0:6i(q, 1) = —iq;Ti5(q, ). (D7)
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Upon expanding the momentum density for small momentum
q, we find ¢i(q, 1) as

Gi(q, 1) = /eiq'xé'i(X,l)

1
= 60,0 +ig;5 S {pP "+ D8)

n

where ¢;(0, ) is the direct momentum. Hence,
1
0:¢i(q, 1) — 9,4;(0,1) = —0; |:iqj§{xja Pi}] = 0,iq; Ty

D9)

If we set 9;£;(0, 1) = 0 due to global momentum conservation
and compare (D7) and (D9), the stress tensor is

0.7

Tij(q.1) = — o (D10)

When we write it in terms of quasiparticle operators,

3
Tij(q,1) = Z/ky{a(q)/\g(—xj)n,a(q)
Aa

P
=> | 77 57 (s + 0520,
Aa

(D11)
and take the expectation value, then
(T) =Y f 20ugul; Via) (D12)
Aa k
=NY [vasikn. o3
— Jk

with N being the fermionic degeneracy.
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