
Proceedings of Machine Learning Research vol 125:1–24, 2020 33rd Annual Conference on Learning Theory

Halpern Iteration for Near-Optimal and Parameter-Free
Monotone Inclusion and Strong Solutions to Variational Inequalities

Jelena Diakonikolas JELENA@CS.WISC.EDU

Department of Computer Sciences, University of Wisconsin-Madison
1210 W. Dayton St, Madison, WI 53706

Editors: Jacob Abernethy and Shivani Agarwal

Abstract
We leverage the connections between nonexpansive maps, monotone Lipschitz operators, and prox-
imal mappings to obtain near-optimal (i.e., optimal up to poly-log factors in terms of iteration
complexity) and parameter-free methods for solving monotone inclusion problems. These results
immediately translate into near-optimal guarantees for approximating strong solutions to varia-
tional inequality problems, approximating convex-concave min-max optimization problems, and
minimizing the norm of the gradient in min-max optimization problems. Our analysis is based on
a novel and simple potential-based proof of convergence of Halpern iteration, a classical iteration
for finding fixed points of nonexpansive maps. Additionally, we provide a series of algorithmic
reductions that highlight connections between different problem classes and lead to lower bounds
that certify near-optimality of the studied methods.
Keywords: Halpern iteration, monotone inclusion, min-max optimization, variational inequalities.

1. Introduction

Given a closed convex set U ⊆ Rd and a single-valued monotone operator F : Rd → Rd, i.e., an
operator that maps each vector to another vector and satisfies:

(∀u,v ∈ Rd) : 〈F (u)− F (v),u− v〉 ≥ 0, (1)

the monotone inclusion problem consists in finding a point u∗ that satisfies:

0 ∈ F (u) + ∂IU (u), where

IU (u) =

{
0, if u ∈ U ,
∞, otherwise

(MI)

is the indicator function of the set U ⊆ Rd and ∂IU (·) denotes the subdifferential operator (the set
of all subgradients at the argument point) of IU .

Monotone inclusion is a fundamental problem in continuous optimization that is closely re-
lated to variational inequalities (VIs) with monotone operators, which model a plethora of problems
in mathematical programming, game theory, engineering, and finance (Facchinei and Pang, 2003,
Section 1.4). Within machine learning, VIs with monotone operators and associated monotone in-
clusion problems arise, for example, as an abstraction of convex-concave min-max optimization
problems, which naturally model adversarial training (Madry et al., 2018; Arjovsky et al., 2017;
Arjovsky and Bottou, 2017; Goodfellow et al., 2014).
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When it comes to convex-concave min-max optimization, approximating the associated VI leads
to guarantees in terms of the optimality gap. Such guarantees are generally possible only when the
feasible set U is bounded; a simple example that demonstrates this fact is Φ(x,y) = 〈x,y〉 with the
feasible set x,y ∈ Rd. The only (min-max or saddle-point) solution in this case is obtained when
both x and y are the all-zeros vectors. However, if either x 6= 0 or y 6= 0, then the optimality gap
maxy′∈Rd Φ(x,y′)−minx′∈Rd Φ(x′,y) is infinite.

On the other hand, approximate monotone inclusion is well-defined even for unbounded feasible
sets. In the context of min-max optimization, it corresponds to guarantees in terms of stationarity.
Specifically, in the unconstrained setting, solving monotone inclusion corresponds to minimizing
the norm of the gradient of Φ. Note that even in the special setting of convex optimization, conver-
gence in norm of the gradient is much less understood than convergence in optimality gap (Nesterov,
2012; Kim and Fessler, 2018). Further, unlike standard results for VIs that provide convergence
guarantees for approximating weak solutions (Nemirovski, 2004; Nesterov, 2007; Bach and Levy,
2019), approximations to monotone inclusion lead to approximations to strong solutions (see Sec-
tion 1.2 for definitions of weak and strong solutions and their relationship to monotone inclusion).

We leverage the connections between nonexpansive maps, structured monotone operators, and
proximal maps to obtain near-optimal algorithms for solving monotone inclusion over different
classes of problems with Lipschitz-continuous operators. In particular, we make use of the classical
Halpern iteration, which is defined by (Halpern, 1967):

uk+1 = λk+1u0 + (1− λk+1)T (uk), (Hal)

where T : Rd → Rd is a nonexpansive map, i.e., ∀u,v ∈ Rd : ‖T (u)− T (v)‖ ≤ ‖u− v‖.
In addition to its simplicity, Halpern iteration is particularly relevant to machine learning ap-

plications, as it is an implicitly regularized method with the following property: if the set of fixed
points of T is non-empty, then Halpern iteration (Hal) started at a point u0 and applied with any
choice of step sizes {λk}k≥1 that satisfy all of the following conditions:

(i) lim
k→∞

λk = 0, (ii)
∞∑
k=1

λk =∞, (iii)
∞∑
k=1

|λk+1 − λk| <∞ (2)

converges to the fixed point of T with the minimum `2 distance to u0. This result was proved
by Wittmann (1992), who extended a similar though less general result previously obtained by Brow-
der (1967). The result of Wittmann (1992) has since been extended to various other settings (Bauschke,
1996; Xu, 2002; Kohlenbach, 2011; Körnlein, 2015; Lieder, 2017, and references therein).

1.1. Contributions and Related Work

A special case of what is now known as the Halpern iteration (Hal) was introduced and its asymp-
totic convergence properties were analyzed by Halpern (1967) in the setting of u0 = 0 and T :
B2 → B2, where B2 is the unit Euclidean ball. Using the proof-theoretic techniques of Kohlenbach
(2008), Leustean (2007) extracted from the asymptotic convergence result of Wittmann (1992) the
rate at which Halpern iteration converges to a fixed point. The results obtained by Leustean (2007)
are rather loose and provide guarantees of the form ‖T (uk) − uk‖ = O( M

log(k)) in the best case
(obtained for λk = Θ( 1

k )), where M ≥ ‖u0‖ + ‖T (u0)‖ + ‖uk‖, ∀k. A tighter result that shows
that ‖T (uk) − uk‖ decreases at rate that is at least as good as 1/

√
k was obtained by Kohlenbach
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(2011). The results of Leustean (2007) and Kohlenbach (2011) apply to general normed spaces.
The work of Kohlenbach (2011) also provided an explicit rate of metastability that characterizes the
convergence of the sequence of iterates {uk} in Hilbert spaces.

More recently, Lieder (2017) proved that under the standard assumption that T has a fixed point
u∗ and for the step size λk = 1

k+1 , Halpern iteration converges to a fixed point as ‖T (uk) −
uk‖ = 2‖u0−u∗‖

k+1 . A similar result but for an alternative algorithm was recently obtained by Kim
(2019). These two results (as well as all the results from this paper) only apply to Euclidean spaces.
Unlike Halpern iteration, the algorithm introduced by Kim (2019) is not known to possess the
implicit regularization property discussed earlier in this paper. The results of Lieder (2017) and
Kim (2019) can be used to obtain the same 1/k convergence rate for monotone inclusion with
a cocoercive operator but only if the cocoercivity parameter is known, which is rarely the case in
practice. Similarly, those results can also be extended to more general monotone Lipschitz operators
but only if the proximal map (or resolvent) of F can be computed exactly, an assumption that can
rarely be met (see Section 1.2 for definitions of cocoercive operators and proximal maps). We
also note that the results of Lieder (2017) and Kim (2019) were obtained using the performance
estimation (PEP) framework of Drori and Teboulle (2014). The convergence proofs resulting from
the use of PEP are computer-assisted: they are generated as solutions to large semidefinite programs,
which typically makes them hard to interpret and generalize.

Our approach is arguably simpler, as it relies on the use of a potential function, which allows us
to remove the assumptions about the knowledge of the problem parameters and availability of exact
proximal maps. Our main contributions are summarized as follows:

Results for cocoercive operators. We introduce a new, potential-based, proof of convergence of
Halpern iteration that applies to more general step sizes λk than handled by the analysis of Lieder
(2017) (Section 2). The proof is simple and only requires elementary algebra. Further, the proof is
derived for cocoercive operators and leads to a parameter-free algorithm for monotone inclusion.
We also extend this parameter-free method to the constrained setting using the concept of gradient
mapping generalized to monotone operators (Section 2.1). To the best of our knowledge, this is the
first work to obtain the 1/k convergence rate with a parameter-free method.

Results for monotone Lipschitz operators. Up to a logarithmic factor, we obtain the same 1/k
convergence rate for the parameter-free setting of the more general monotone Lipschitz operators
(Section 2.2). The best known convergence rate established by previous work for the same setting
was of the order 1/

√
k (Dang and Lan, 2015; Ryu et al., 2019), and it was for the “best” iterate (all of

our results are for the last iterate). We obtain the improved convergence rate through the use of the
Halpern iteration with inexact proximal maps that can be implemented efficiently. The idea of cou-
pling inexact proximal maps with another method is similar in spirit to the Catalyst framework (Lin
et al., 2017) and other instantiations of the inexact proximal-point method, such as, e.g., in the
work of Davis and Drusvyatskiy (2019); Asi and Duchi (2019); Lin et al. (2018); Thekumparampil
et al. (2019). However, we note that, unlike in the previous work, the coupling used here is with a
method (Halpern iteration) whose convergence properties were not well-understood and for which
no simple potential-based convergence proof existed prior to our work.

Results for strongly monotone Lipschitz operators. We show that a simple restarting-based ap-
proach applied to our method for operators that are only monotone and Lipschitz (described above)
leads to a parameter-free method for strongly monotone and Lipschitz operators (Section 2.3). Un-
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der mild assumptions about the problem parameters and up to a poly-logarithmic factor, the resulting
algorithm is iteration-complexity-optimal. To the best of our knowledge, this is the first near-optimal
parameter-free method for the setting of strongly monotone Lipschitz operators and any of the as-
sociated problems – monotone inclusion, VIs, or convex-concave min-max optimization.

Lower bounds. To certify near-optimality of the analyzed methods, we provide lower bounds that
rely on algorithmic reductions between different problem classes and highlight connections between
them (Section 3). The lower bounds are derived by leveraging the recent lower bound of Ouyang
and Xu (2019) for approximating the optimality gap in convex-concave min-max optimization.

1.2. Notation and Preliminaries

While it is possible to extend all of our results to (infinite-dimensional) Hilbert spaces in a relatively
straightforward manner, we will focus here on real d-dimensional normed vector spaces (E, ‖ · ‖),
where ‖ · ‖ is induced by an inner product 〈·, ·〉 associated with the space, i.e., ‖ · ‖ =

√
〈·, ·〉.

The most important example is (Rd, ‖ · ‖2), which can be taken as a canonical example to have in
mind when reading this paper. Our focus on finite-dimensional spaces is due to the applications that
motivate this work and were mentioned at the beginning of the paper.

Variational Inequalities and Monotone Operators. Let U ⊆ E be closed and convex, and let
F : E → E be an L-Lipschitz-continuous operator defined on U . Namely, we assume that:

(∀u,v ∈ U) : ‖F (u)− F (v)‖ ≤ L‖u− v‖. (3)

The definition of monotonicity was already provided in Eq. (1), and easily specializes to monotonic-
ity on the set U by restricting u,v to be from U . Further, F is said to be:

1. strongly monotone (or coercive) on U with parameter m, if:

(∀u,v ∈ U) : 〈F (u)− F (v),u− v〉 ≥ m‖u− v‖2; (4)

2. cocoercive on U with parameter γ, if:

(∀u,v ∈ U) : 〈F (u)− F (v),u− v〉 ≥ γ‖F (u)− F (v)‖2. (5)

It is immediate from the definition of cocoercivity that every γ-cocoercive operator is monotone and
1/γ-Lipschitz. The latter follows by applying the Cauchy-Schwarz inequality to the left-hand side
of Eq. (5) and then dividing both sides by γ‖F (u)− F (v)‖.

Examples of monotone operators include the gradient of a convex function and appropriately
modified gradient of a convex-concave function. Namely, if a function Φ(x,y) is convex in x and
concave in y, then F ([xy]) = [ ∇xΦ(x,y)

−∇yΦ(x,y)] is monotone.
The Stampacchia Variational Inequality (SVI) problem consists in finding u∗ ∈ U such that:

(∀u ∈ U) : 〈F (u∗),u− u∗〉 ≥ 0. (SVI)

In this case, u∗ is also referred to as a strong solution to the variational inequality (VI) corresponding
to F and U . The Minty Variational Inequality (MVI) problem consists in finding u∗ such that:

(∀u ∈ U) : 〈F (u),u∗ − u〉 ≤ 0, (MVI)
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in which case u∗ is referred to as a weak solution to the variational inequality corresponding to F
and U . In general, if F is continuous, then the solutions to (MVI) are a subset of the solutions
to (SVI). If we assume that F is monotone, then Eq. (1) implies that every solution to (SVI) is also
a solution to (MVI), and thus the two solution sets are equivalent. The solution set to monotone
inclusion is the same as the solution set to (SVI).

Approximate versions of variational inequality problems (SVI) and (MVI) are defined as fol-
lows: Given ε > 0, find an ε-approximate solution u∗ε ∈ U , which is a solution that satisfies:

(∀u ∈ U) : 〈F (u∗ε ),u
∗
ε − u〉 ≤ ε, or

(∀u ∈ U) : 〈F (u),u∗ε − u〉 ≤ ε, respectively.

Clearly, when F is monotone, an ε-approximate solution to (SVI) is also an ε-approximate solution
to (MVI); the reverse does not hold in general.

Similarly, ε-approximate monotone inclusion can be defined as fidning u∗ε that satisfies:

0 ∈ F (u∗ε ) + ∂IU (u∗ε ) + B(ε), (6)

where B(ε) is the ball w.r.t. ‖ · ‖, centered at 0 and of radius ε. We will sometimes write Eq. (6) in
the equivalent form −F (u∗ε ) ∈ ∂IU (u∗ε ) + B(ε). The following fact is immediate from Eq. (6).

Fact 1 Given F and U , let u∗ε satisfy Eq. (6). Then:

(∀u ∈ {U ∩ Bu∗ε }) : 〈F (u∗ε ),u
∗
ε − u〉 ≤ ε,

where Bu∗ε denotes the unit ball w.r.t. ‖ · ‖, centered at Bu∗ε .
Further, if the diameter of U , D = supu,v∈U ‖u− v‖, is bounded, then:

(∀u ∈ U) : 〈F (u∗ε ),u
∗
ε − u〉 ≤ εD.

Thus, when the diameter D is bounded, any ε
D -approximate solution to monotone inclusion is an

ε-approximate solution to (SVI) (and thus also to (MVI)); the converse does not hold in general.
Recall that when D is unbounded, neither (SVI) nor (MVI) can be approximated.

We assume throughout the paper that a solution to monotone inclusion (MI) exists. This as-
sumption implies that solutions to both (SVI) and (MVI) exist as well. Existence of solutions
follows from standard results and is guaranteed whenever e.g., U is compact, or, if there exists a
compact set U ′ such that Id− 1

LF maps U ′ to itself (Facchinei and Pang, 2003).

Nonexpansive Maps. Let T : E → E. We say that T is nonexpansive on U ⊆ E, if ∀u,v ∈ U :

‖T (u)− T (v)‖ ≤ ‖u− v‖.

Nonexpansive maps are closely related to cocoercive operators, and here we summarize some of
the basic properties that are used in our analysis. More information can be found in, e.g., the book
by Bauschke and Combettes (2011).

Fact 2 T is nonexpansive if and only if Id− T is 1
2 -cocoercive, where Id is the identity map.

T is said to be firmly nonexpansive or averaged, if ∀u,v ∈ U :

‖T (u)− T (v)‖2 + ‖(Id− T )u− (Id− T )v‖2 ≤ ‖u− v‖2.

Useful properties of firmly nonexpansive maps are summarized in the following fact.

Fact 3 For any firmly nonexpansive operator T, Id−T is also firmly non-expansive, and, moreover,
both T and Id− T are 1-cocoercive.
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2. Halpern Iteration for Monotone Inclusion and Variational Inequalities

Halpern iteration is typically stated for nonexpansive maps T as in (Hal). Because our interest is
in cocoercive operators F with the unknown parameter 1/L, we instead work with the following
version of the Halpern iteration:

uk+1 = λk+1u0 + (1− λk+1)
(
uk −

2

Lk+1
F (uk)

)
, (H)

where Lk ∈ (0,∞), ∀k. If L were known, we could simply set Lk+1 = L, in which case (H) would
be equivalent to the standard Halpern iteration, due to Fact 2. We assume throughout that λ1 = 1

2 .
We start with the assumption that the setting is unconstrained: U ≡ E. We will see in Sec-

tion 2.1 how the result can be extended to the constrained case. Section 2.2 will consider the case of
operators that are monotone and Lipschitz, while Section 2.3 will deal with the strongly monotone
and Lipschitz case. Some of the proofs are omitted and are instead provided in Appendix A.

To analyze the convergence of (H) for the appropriate choices of sequences {λi}i≥1 and {Li}i≥1,
we make use of the following potential function:

Ck =
1

Lk
‖F (uk)‖2 −

λk
1− λk

〈F (uk),u0 − uk〉 . (7)

Let us first show that if AkCk is non-increasing with k for an appropriately chosen sequence
of positive numbers {Ak}k≥1, then we can deduce a property that, under suitable conditions on
{λi}i≥1 and {Li}i≥1, implies a convergence rate for (H).

Lemma 4 Let Ck be defined as in Eq. (7) and let u∗ be the solution to (MI) that minimizes ‖u0 −
u∗‖. Assume further that 〈F (u1)− F (u0),u1 − u0〉 ≥ 1

L1
‖F (u1) − F (u0)‖2. If Ak+1Ck+1 ≤

AkCk, ∀k ≥ 1, where {Ai}i≥1 is a sequence of positive numbers that satisfies A1 = 1, then:

(∀k ≥ 1) : ‖F (uk)‖ ≤ Lk
λk

1− λk
‖u0 − u∗‖.

Using Lemma 4, our goal is now to show that we can chooseLk = O(L) and λk = O( 1
k ),which

in turn would imply the desired 1/k convergence rate: ‖F (uk)‖ = O(L‖u0−u∗‖
k ). The following

lemma provides sufficient conditions for {Ai}i≥1, {λi}i≥1, and {Li}i≥1 to ensure thatAk+1Ck+1 ≤
AkCk, ∀k ≥ 1, so that Lemma 4 applies.

Lemma 5 Let Ck be defined as in Eq. (7). Let {Ai}i≥1 be defined recursively as A1 = 1 and
Ak+1 = Ak

λk
(1−λk)λk+1

for k ≥ 1. Assume that {λi}i≥1 is chosen so that λ1 = 1
2 and for k ≥ 1 :

λk+1

1−2λk+1
≥ λkLk

(1−λk)Lk+1
. Finally, assume that Lk ∈ (0,∞) and 〈F (uk)− F (uk−1),uk − uk−1〉 ≥

1
Lk
‖F (uk)− F (uk−1)‖2, ∀k. Then,

(∀k ≥ 1) : Ak+1Ck+1 ≤ AkCk.

Observe first the following. If we knew L and set Lk = L, λk = 1
k+1 , and Ak = k(k +

1)/2, then all of the conditions from Lemma 5 would be satisfied, and Lemma 4 would then imply
‖F (uk)‖ ≤ L‖u0−u∗‖

k , which recovers the result of Lieder (2017). The choice λk = 1
k+1 is also the

tightest possible that satisfies the conditions from Lemma 5 – the inequality relating λk+1 and λk is
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satisfied with equality. This result is in line with the numerical observations made by Lieder (2017),
who observed that the convergence of Halpern iteration is fastest for λk = 1

k+1 .
To construct a parameter-free method, we use that F is L-cocoercive; namely, that there exists

a constant L < ∞ such that F satisfies Eq. (5) with γ = 1/L. The idea is to start to with a
“guess” of L (e.g., L0 = 1) and double the guess Lk as long as 〈F (uk)− F (uk−1),uk − uk−1〉 <
1
Lk
‖F (uk)−F (uk−1)‖2. The total number of times that the guess can be doubled is bounded above

by max{0, log2(2L/L0)}. Parameter λk is simply chosen to satisfy the condition from Lemma 5.
The algorithm pseudocode is stated in Algorithm 1 for a given accuracy specified at the input.

Algorithm 1: Parameter-Free Halpern – Cocoercive Case
Input: L0 > 0, ε > 0, u0. If not provided at the input, set L0 = 1.
λ1 = 1

2 , k = 0
while ‖F (uk)‖ > ε do

k = k + 1
Lk = Lk−1

pk =
Lk−1

Lk

λk−1

1−λk−1
, λk = pk

1+2pk

uk = λku0 + (1− λk)(uk−1 − 2F (uk−1)/Lk)
while 〈F (uk)− F (uk−1),uk − uk−1〉 < 1

Lk
‖F (uk)− F (uk−1)‖2 do

Lk = 2 · Lk
pk =

Lk−1

Lk

λk−1

1−λk−1
, λk = pk

1+2pk

uk = λku0 + (1− λk)(uk−1 − 2F (uk−1)/Lk)
end

end
return uk

We now prove the first of our main results. Note that the total number of arithmetic operations
in Algorithm 1 is of the order of the number of oracle queries to F multiplied by the complexity of
evaluating F at a point. The same will be true for all the algorithms stated in this paper, except that
the complexity of evaluating F may be replaced by the complexity of projections onto U .

Theorem 6 Given u0 ∈ U and an operator F that is 1
L -cocoercive on E, Algorithm 1 returns a

point uk such that ‖F (uk)‖ ≤ ε after at most max{2L,L0}‖u0−u∗‖
ε + max{0, log2(2L/L0)} oracle

queries to F .

Proof As F is 1
L -cocoercive, Lk ≤ max{2L,L0} and the total number of times that the algorithm

enters the inner while loop is at most max{0, log2(2L/L0)}. The parameters satisfy the assumptions
of Lemmas 4 and 5, and, thus, ‖F (uk)‖ ≤ Lk

λk
1−λk ‖u0 − u∗‖. Hence, we only need to show that

λk decreases sufficiently fast with k. As Lk can only be increased in any iteration, we have that

λk+1 ≤
λk

1−λk
1 + 2 λk

1−λk

=
λk

1 + λk
≤ λk−1

1 + 2λk−1
≤ · · · ≤ λ1

1 + kλ1
=

1

k + 2
.

Hence, the total number of outer iterations is at most max{2L,L0}‖u0−u∗‖
ε . Combining with the

maximum total number of inner iterations from the beginning of the proof, the result follows.
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2.1. Constrained Setups with Cocoercive Operators

Assume now that U ⊆ E. We will make use of a counterpart to gradient mapping (Nesterov, 2018,
Chapter 2) that we refer to as the operator mapping, defined as:

Gη(u) = η
(
u−ΠU

(
u− 1

η
F (u)

))
, (8)

where ΠU
(
u− 1

ηF (u)
)

is the projection operator, namely:

ΠU

(
u− 1

η
F (u)

)
= argmin

v∈U

{1

2
‖v − u + F (u)/η‖2

}
= argmin

v∈U

{
〈F (u),v〉+

η

2
‖v − u‖2

}
.

Operator mapping generalizes a cocoercive operator to the constrained case: when U ≡ E, Gη ≡ F.
It is a well-known fact that the projection operator is firmly-nonexpansive (Bauschke and Com-

bettes, 2011, Proposition 4.16). Thus, Fact 3 can be used to show that, if F is 1
L -cocoercive and

η ≥ L, then Gη is 3
4η -cocoercive. This is shown in the following (simple) proposition, which can

be found in a similar form in (Beck, 2017, Lemma 10.11) and is provided here for completeness.

Proposition 7 Let F be a 1
L -cocoercive operator and letGη be defined as in Eq. (1), where η ≥ L.

Then Gη is 3
4η -cocoercive.

As Gη is 3
4η -cocoercive, applying results from the beginning of the section to Gη, it is now

immediate that Algorithm 2 (provided for completeness) produces uk with ‖GLk(uk)‖ ≤ ε after
at most max{8L/3,L0}‖u0−u∗‖

ε + max{0, log2(8L/(3L0))} oracle queries to F (as each computation
of Gη requires one oracle query to F ). To complete this subsection, it remains to show that Gη

Algorithm 2: Parameter-Free Halpern – Cocoercive and Constrained Case
Input: L0 > 0, ε > 0, u0 ∈ U . If not provided at the input, set L0 = 1.
λ1 = 1

2 , k = 0

ū0 = ΠU (u0 − F (u0)/L0) , L̄0 = ‖F (ū0)−F (u0)‖
‖ū0−u0‖

while ‖GLk(uk)‖ > ε/(1 + L̄k/Lk) do
1 k = k + 1
2 Lk = Lk−1

3 pk =
Lk−1

Lk

λk−1

1−λk−1
, λk = pk

1+2pk

4 uk = λku0 + (1− λk)ūk−1

while 〈GLk(uk)−GLk(uk−1),uk − uk−1〉 < 3
4Lk
‖GLk(uk)−GLk(uk−1)‖2 do

5 Lk = 2 · Lk
6 pk =

Lk−1

Lk

λk−1

1−λk−1
, λk = pk

1+2pk

7 uk = λku0 + (1− λk)(uk−1 −GLk(uk−1)/Lk)

end
8 ūk = ΠU (uk − F (uk)/Lk), L̄k = ‖F (ūk)−F (uk)‖

‖ūk−uk‖ , Lk = max{Lk, L̄k}
end
return ūk, uk

is a good surrogate for approximating (MI) (and (SVI)). This is indeed the case and it follows as
a suitable generalization of Lemma 3 from Ghadimi and Lan (2016), which is provided here for
completeness.

8



HALPERN ITERATION FOR NEAR-OPTIMAL AND PARAMETER-FREE MONOTONE INCLUSION

Lemma 8 Let Gη be defined as in Eq. (8). Denote ū = ΠU (u − F (u)/η), so that Gη(u) =
η(u− ū). If, for some u ∈ U , ‖Gη(u)‖ ≤ ε, then

F (ū) ∈ −∂IU (ū) + B((1 + Lloc/η)ε),

where Lloc = ‖F (ū)−F (u)‖
‖ū−u‖ ≤ L.

Proof As, by definition, ū = argminv∈U
{
〈F (u),v〉+ η

2‖v−u‖2
}
, by first-order optimality of ū,

we have: 0 ∈ F (u)+η(ū−u)+∂IU (ū). Equivalently: −F (ū) ∈ F (u)−F (ū)−Gη(u)+∂IU (ū).
The rest of the proof follows simply by using ‖Gη‖ ≤ ε and ‖F (u) − F (ū)‖ = Lloc‖u − ū‖ =
Lloc
η ‖Gη(u)‖ ≤ Lloc

η ε.

Lemma 8 implies that when the operator mapping is small in norm ‖·‖, then ū = ΠU (u−F (u)/η) is
an approximate solution to (MI) corresponding to F on U . We can now formally bound the number
of oracle queries to F needed to approximate (MI) and (SVI).

Theorem 9 Given u0 ∈ U and a 1
L -cocoercive operator F , Algorithm 2 returns ūk ∈ U such that

1. ‖GLk(ūk)‖ ≤ ε, maxv∈{U∩Būk} 〈F (ūk), ūk − v〉 ≤ ε after at most 4 max{8L/3,L0}‖u0−u∗‖
ε +

2 max{0, log2( 8L
3L0

)} oracle queries to F ;

2. maxv∈U 〈F (ū), ū− v〉 ≤ ε after at most 4 max{8L/3,L0}‖u0−u∗‖D
ε + 2 max{0, log2( 8L

3L0
)}

oracle queries to F.

Further, every point uk that Algorithm 2 constructs is from the feasible set: uk ∈ U , ∀k ≥ 0, and a
simple modification to the algorithm takes at most max{8L/3,L0}‖u0−u∗‖

ε +max{0, log2(8L/(3L0))}
oracle queries to F to construct a point such that ‖GLk(uk)‖ ≤ ε.

Proof By the definition of Gη, if u0 ∈ U , then uk ∈ U , for all k. This follows simply as:

uk+1 = λk+1u0 + (1− λk+1)
(
uk −

1

Lk+1
GLk+1

(uk)
)

= λk+1u0 + (1− λk+1)ΠU (uk − F (uk)/Lk+1).

Observe that, due to Line 8 of Algorithm 2, Lk ≥ L̄k. The rest of the proof follows using Lemma 8,
Fact 1, and the same reasoning as in the proof of Theorem 6. Observe that if the goal is to only
output a point uk such that ‖GLk(uk)‖ ≤ ε, then computing ūk and F (ūk) is not needed, and the
algorithm can instead use ‖GLk(uk)‖ > ε as the exit condition in the outer while loop.

2.2. Setups with non-Cocoercive Lipschitz Operators

We now consider the case in which F is not cocoercive, but only monotone and L-Lipschitz. To
obtain the desired convergence result, we make use of the resolvent operator, defined as JF+∂IU =
(Id+F+∂IU )−1.A useful property of the resolvent is that it is firmly-nonexpansive (Ryu and Boyd,
2016, and references therein), which, due to Fact 3, implies that P = Id− JF+∂IU is 1

2 -cocoercive.
Finding a point u ∈ U such that ‖P (u)‖ ≤ ε is sufficient for approximating monotone inclusion

(and (SVI)). This is shown in the following simple proposition, provided here for completeness.

9
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Proposition 10 Let P = Id−JF+∂IU . If ‖P (u)‖ ≤ ε, then ū = u−P (u) = JF+∂IU (u) satisfies

F (ū) ∈ −∂IU (ū) + B(ε).

Proof By the definition of P and JF+∂IU , u− P (u) = (Id + F + ∂IU )−1(u). Equivalently:

u− P (u) + F (u− P (u)) + ∂IU (u− P (u)) 3 u.

As ‖P (u)‖ ≤ ε, the result follows.

If we could compute the resolvent exactly, it would suffice to directly apply the result of Lieder
(2017). However, excluding very special cases, computing the exact resolvent efficiently is gen-
erally not possible. However, since F is Lipschitz, the resolvent JF+∂IU can be approximated
efficiently. This is because it corresponds to solving a VI defined on a closed convex set U with the
operator F + Id that is 1-strongly monotone and (L + 1)-Lipschitz. Thus, it can be computed by
solving a strongly monotone and Lipschitz VI, for which one can use the results of e.g., Nesterov
and Scrimali (2011); Mokhtari et al. (2019); Gidel et al. (2019) if L is known, or Stonyakin et al.
(2018), if L is not known. For completeness, we provide a simple modification to the Extragradient
algorithm of Korpelevich (1977) in Algorithm 4 (Appendix A), for which we prove that it attains
the optimal convergence rate without the knowledge of L. The convergence result is summarized in
the following lemma, whose proof is provided in Appendix A.

Lemma 11 Let ū∗k = JF+IU (uk), where uk ∈ U and F is L-Lipschitz. Then, there exists a

parameter-free algorithm that queries F at most O((L + 1) log(
L‖uk−ū∗k‖

ε )) times and outputs a
point ūk such that ‖ūk − ū∗k‖ ≤ ε.

To obtain the desired result, we need to prove the convergence of a Halpern iteration with inexact
evaluations of the cocoercive operator P . Note that here we do know the cocoercivity parameter of
P – it is equal to 1/2. The resulting inexact version of Halpern’s iteration for P is:

uk+1 = λk+1u0 + (1− λk+1)(uk − P̃ (uk))

= λk+1u0 + (1− λk+1)J̃F+∂IU (uk),
(9)

where P̃ (uk)− P (uk) = JF+∂IU (uk)− J̃F+∂IU (uk) = ek is the error.
To analyze the convergence of (9), we again use the potential function Ck from Eq. (7), with

P as the operator. For simplicity of exposition, we take the best choice of λi = 1
i+1 that can be

obtained from Lemma 4 for Li = L = 2, ∀i. The key result for this setting is provided in the
following lemma, whose proof is deferred to the appendix.

Lemma 12 Let Ck be defined as in Eq. (7) with P as the 1
2 -cocoercive operator, and let Lk = 2,

λk = 1
k+1 , and Ak = k(k+1)

2 , ∀k ≥ 1. If the iterates uk evolve according to (9) for an arbitrary
initial point u0 ∈ U , then:

(∀k ≥ 1) : Ak+1Ck+1 ≤ AkCk +Ak+1 〈ek, (1− λk+1)P (uk)− P (uk+1)〉 .

Further, if, ∀k ≥ 1, ‖ek−1‖ ≤ ε
4k(k+1) , then ‖P (uK)‖ ≤ ε after at most K = 4‖u0−u∗‖

ε iterations.

We are now ready to state the algorithm and prove the main theorem for this subsection.

10
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Algorithm 3: Parameter-Free Halpern – Monotone and Lipschitz Case
Input: ε > 0, u0 ∈ U
k = 0, ε0 = ε

8

ū0 = J̃F+∂IU (u0), where ‖J̃F+∂IU (u0)− JF+∂IU (u0)‖ ≤ ε0
P̃ (u0) = u0 − ū0

while ‖P̃ (uk)‖ > 3ε
4 do

k = k + 1, λk = 1
k+1 , εk = ε

8(k+1)(k+2)

uk = λku0 + (1− λk)ūk−1

ūk = J̃F+∂IU (uk), where ‖J̃F+∂IU (uk)− JF+∂IU (uk)‖ ≤ εk
P̃ (uk) = uk − ūk

end
return ūk, uk

Theorem 13 Let F be a monotone and L-Lipschitz operator and let u0 ∈ U be an arbitrary initial
point. For any ε > 0, Algorithm 3 outputs a point with ‖P (uk)‖ ≤ ε after at most 8‖u∗−u0‖

ε itera-
tions, where each iteration can be implemented with O((L + 1) log( (L+1)‖u0−u∗‖

ε ) oracle queries
to F. Hence, the total number of oracle queries to F is: O

( (L+1)‖u0−u∗‖
ε log

( (L+1)‖u0−u∗‖
ε

))
.

Proof Recall that P̃ (uk)−P (uk) = ek and ‖ek‖ = εk = ε
8(k+1)(k+2) <

ε
4 . Hence, as Algorithm 3

outputs a point uk with ‖P̃ (uk)‖ ≤ 3ε
4 , by the triangle inequality, ‖P (uk)‖ ≤ ε.

To bound the number of iterations until ‖P̃ (uk)‖ ≤ 3ε
4 , note that, again by the triangle inequal-

ity, if ‖P (uk)‖ ≤ ε/2, then ‖P̃ (uk)‖ ≤ 3ε
4 . Applying Lemma 12, ‖P (uk)‖ ≤ ε/2 after at most

k = 8‖u0−u∗‖
ε iterations, completing the proof of the first part of the theorem.

For the remaining part, using Lemma 11, J̃F+∂IU (uk) can be computed (with target error εk) in

O((L+1) log(
(L+1)‖uk−JF+∂IU (uk)‖

εk
)) = O((L+1) log( (L+1)‖P (uk)‖

ε )) iterations, asO(log( 1
εk

)) =

O(log(1
ε )) and P (uk) = uk − JF+∂IU (uk), by definition. It remains to use that ‖P (uk)‖ =

O(‖u0 − u∗‖), which can be deduced from, e.g., Eq. (15) in the proof of Lemma 12.

Similarly as before, ‖P (uk)‖ ≤ ε implies an ε-approximate solution to (MI), by Proposition 10.
When the diameter D is bounded, ‖P (uk)‖ ≤ ε

D implies an ε-approximate solution to (SVI).

Remark 14 In degenerate cases where L << 1, instead of using the resolvent of F + ∂IU , one
could use the resolvent of F/η+∂IU for η = O(L), assuming the order of magnitude of L is known
(this is typically a mild assumption). Then, each approximate computation of the resolvent would
take O((L/η + 1) log( (L/η+1)‖u0−u∗‖

ε ) oracle queries to F, and we would need to require that
‖P̃ (uk)‖ ≤ 3ε

4η . Thus, the total number of queries to F would be O((L+ η) log( (L+η)‖u0−u∗‖
ε )).

2.3. Setups with Strongly Monotone and Lipschitz Operators

We now show that by restarting Algorithm 3, we can obtain a parameter-free method with near-
optimal oracle complexity. To simplify the exposition, we assume w.l.o.g. that L = Ω(1). The
proof of the following theorem is provided in Appendix A.

Theorem 15 Given F that is L-Lipschitz and m-strongly monotone, consider running the follow-
ing algorithm A, starting with u0 ∈ U :

11
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(A) : At iteration k, call Algorithm 3 with error εk = 7
16‖P̃ (uk−1)‖ and initial point uk−1.

Then, A outputs uk ∈ U with ‖P (uk)‖ ≤ ε after at most 1 + log2(‖u0−u∗‖
ε ) iterations, for any ε ∈

(0, 1
2 ]. The total number of queries toF until ‖P (uk)‖ ≤ ε isO

(
(L+ L

m) log(‖u0−u∗‖
ε ) log(L+ L

m)
)
.

3. Lower Bound Reductions

In this section, we only state the lower bounds, while more details about the oracle model and the
proof are deferred to Appendix A.

Lemma 16 For any deterministic algorithm working in the operator oracle model and any L,D >
0, there exists an L-Lipschitz-continuous operator F and a closed convex feasible set U with diam-
eter D such that:

(a) For all ε > 0 such that k = LD2

ε = O(d), maxu∈U 〈F (uk),uk − u〉 = Ω(ε);

(b) For all ε > 0 such that k = LD
ε = O(d), maxu∈{U∩Buk} 〈F (uk),uk − u〉 = Ω(ε);

(c) If F is 1
L -cocoercive, then for all ε > 0 such that k = LD

ε log(D/ε) = O(d), it holds that

max
u∈{U∩Buk}

〈F (uk),uk − u〉 = Ω(ε);

(d) If F is m-strongly monotone, then for all ε > 0 such that k = L
m = O(d), it holds that

max
u∈{U∩Buk}

〈F (uk),uk − u〉 = Ω(ε).

Parts (a) and (b) of Lemma 16 certify that Algorithm 3 is optimal up to a logarithmic fac-
tor, due to Theorem 13. This is true because we can run Algorithm 3 with accuracy ε

D to obtain
maxu∈U 〈F (uk),uk − u〉 = O(ε) in k = O(LD

2

ε log(LDε )) iterations, or with accuracy ε to obtain
maxu∈{U∩Buk} 〈F (uk),uk − u〉 = O(ε) in k = O(LDε log(LDε )) iterations (see Proposition 10).

Part (c) of Lemma 16 certifies that Algorithm 2 is optimal up to a log(D/ε) factor, due to
Theorem 9. Part (d) certifies that the restarting algorithm from Theorem 15 is optimal up to a
factor log(D/ε) log(L/m) whenever L = Ω(L/m). Note that L = Ω(L/m) can be ensured by a
proper scaling of the problem instance, as any such scaling would leave the condition number L/m
unaffected and would only impact the target error ε, which only appears under a logarithm.

4. Conclusion

We showed that variants of Halpern iteration can be used to obtain near-optimal methods for solving
different classes of monotone inclusion problems with Lipschitz operators. The results highlight
connections between monotone inclusion, variational inequalities, fixed points of nonexpansive
maps, and proximal-point-type algorithms. Some interesting questions that merit further investi-
gation remain. In particular, one open question that arises is to close the gap between the upper and
lower bounds provided here. We conjecture that the optimal complexity of monotone inclusion is:
(i) Θ(LDε ) when the operator is either L-Lipschitz or 1

L -cocoercive, and (ii) Θ( Lm log(LDε )) when
the operator is L-Lipschitz and m-strongly monotone.

12
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Appendix A. Omitted Proofs

A.1. Unconstrained Setting with a Cocoercive Operator

Lemma 4 Let Ck be defined as in Eq. (7) and let u∗ be the solution to (MI) that minimizes ‖u0 −
u∗‖. Assume further that 〈F (u1)− F (u0),u1 − u0〉 ≥ 1

L1
‖F (u1) − F (u0)‖2. If Ak+1Ck+1 ≤

AkCk, ∀k ≥ 1, where {Ai}i≥1 is a sequence of positive numbers that satisfies A1 = 1, then:

(∀k ≥ 1) : ‖F (uk)‖ ≤ Lk
λk

1− λk
‖u0 − u∗‖.

Proof The statement holds trivially if ‖F (uk)‖ = 0, so assume that ‖F (uk)‖ > 0. Under the
assumption of the lemma, we have that AkCk ≤ C1, ∀k ≥ 1. From (H) and λ1 = 1

2 , u1 =
u0 − 1

L1
F (u0), and thus: C1 = 1

L1
‖F (u1)‖2 − 1

L1
〈F (u1), F (u0)〉 .

Let u∗ be an arbitrary solution to (MI) (and thus also to (MVI)). As 〈F (u1)− F (u0),u1 − u0〉 ≥
1
L1
‖F (u1)−F (u0)‖2 and u1 = u0− 1

L1
F (u0), it follows that ‖F (u1)‖2 ≤ 〈F (u0), F (u1)〉 , and,

thus C1 ≤ 0. Further, as Ak > 0, we also have Ck ≤ 0, and, hence:

‖F (uk)‖2 ≤ Lk
λk

1− λk
〈F (uk),u0 − uk〉

= Lk
λk

1− λk
〈F (uk),u0 − u∗〉+ Lk

λk
1− λk

〈F (uk),u
∗ − uk〉

≤ Lk
λk

1− λk
〈F (uk),u0 − u∗〉 ≤ Lk

λk
1− λk

‖F (uk)‖ · ‖u0 − u∗‖,
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where the last line is by u∗ being a solution to (MVI) and by the Cauchy-Schwarz inequality. The
conclusion of the lemma now follows by dividing both sides of ‖F (uk)‖2 ≤ Lk

λk
1−λk ‖F (uk)‖ ·

‖u0 − u∗‖ by ‖F (uk)‖ and observing that the statement holds for an arbitrary solution u∗ to (MI),
and thus, it also holds for the one that minimizes the distance to u0.

Lemma 5 Let Ck be defined as in Eq. (7). Let {Ai}i≥1 be defined recursively as A1 = 1 and
Ak+1 = Ak

λk
(1−λk)λk+1

for k ≥ 1. Assume that {λi}i≥1 is chosen so that λ1 = 1
2 and for k ≥ 1 :

λk+1

1−2λk+1
≥ λkLk

(1−λk)Lk+1
. Finally, assume that Lk ∈ (0,∞) and 〈F (uk)− F (uk−1),uk − uk−1〉 ≥

1
Lk
‖F (uk)− F (uk−1)‖2, ∀k. Then,

(∀k ≥ 1) : Ak+1Ck+1 ≤ AkCk.

Proof By the assumption of the lemma,

1

Lk+1
‖F (uk+1)− F (uk)‖2 ≤ 〈F (uk+1)− F (uk),uk+1 − uk〉 ,

which, after expanding the left-hand side, can be equivalently written as:

1

Lk+1
‖F (uk+1)‖2 ≤

〈
F (uk+1),uk+1 − uk +

2

Lk+1
F (uk)

〉
−
〈
F (uk),uk+1 − uk +

1

Lk+1
F (uk)

〉
.

From (H), we have that uk+1−uk =
λk+1

1−λk+1
(u0−uk+1)− 2

Lk+1
F (uk) and uk+1−uk = λk+1(u0−

uk)− 2(1−λk+1)
Lk+1

F (uk). Hence:

1

Lk+1
‖F (uk+1)‖2 ≤ λk+1

1− λk+1
〈F (uk+1),u0 − uk+1〉 − λk+1 〈F (uk),u0 − uk〉

+
1− 2λk+1

Lk+1
‖F (uk)‖2.

Rearranging the last inequality and multiplying both sides by Ak+1, we have:

Ak+1

( 1

Lk+1
‖F (uk+1)‖2 − λk+1

1− λk+1
〈F (uk+1),u0 − uk+1〉

)
≤ Ak+1(1− 2λk+1)

Lk+1
‖F (uk)‖2 −Ak+1λk+1 〈F (uk),u0 − uk〉 .

The left-hand side of the last inequality if preciselyAk+1Ck+1. The right-hand side is at mostAkCk,
by the choice of sequences {Ai}i≥1, {λi}i≥1.

A.2. Operator Mapping

Proposition 7 Let F be a 1
L -cocoercive operator and letGη be defined as in Eq. (1), where η ≥ L.

Then Gη is 3
4η -cocoercive.
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Proof As ΠU is firmly nonexpansive, it is also 1-cocoercive (by Fact 3). Thus, using that, by
definition of Gη, u−ΠU (u) = 1

ηGη(u), ∀u ∈ U , we have, ∀u,v ∈ E:〈
ΠU

(
u− 1

η
F (u)

)
−ΠU

(
v − 1

η
F (v)

)
,u− 1

η
F (u)−

(
v − 1

η
F (v)

)〉
=

〈
1

η
(Gη(v)−Gη(u)) + u− v,u− v − 1

η
(F (u)− F (v))

〉
≥
∥∥∥1

η
(Gη(v)−Gη(u)) + u− v

∥∥∥2
.

Expanding the square on the right-hand side and rearranging, we get:

1

η2
‖Gη(v)−Gη(u)‖2 ≤ 1

η
〈Gη(u)−Gη(v),u− v〉

+
1

η2
〈Gη(u)−Gη(v), F (u)− F (v)〉 − 1

η
〈F (u)− F (v),u− v〉 .

As η ≥ L and F is 1
L -cocoercive, 1

η 〈F (u)− F (v),u− v〉 ≥ 1
η2 ‖F (u)−F (v)‖2. It remains to ap-

ply Young’s inequality, which implies 〈Gη(u)−Gη(v), F (u)− F (v)〉 ≤ ε
2‖Gη(u)−Gη(v)‖2 +

1
2ε‖F (u)− F (v)‖2, ∀ε > 0, and choose ε = 1

2 .

A.3. Approximating the Resolvent

Let us start by proving the convergence of a variant of the Extragradient method of Korpelevich
(1977) that does not require the knowledge of the Lipschitz constant L (but does require knowledge
of the strong monotonicity parameter m; when computing the resolvent we have m = 1). The
algorithm is summarized in Algorithm 4. Observe that the update step for uk from Lines 6 and 10
can be written in the form of a projection onto U ; we chose to write it in the current form as it is
more convenient for the analysis.

We now bound the convergence of Algorithm 4.

Lemma 17 Let a0 > 0 and let F be m-strongly monotone and L-Lipschitz. Then, Algorithm 4
outputs a point uk with ‖uk − u∗‖ ≤ ε after at most k = O

(
L
m log(L‖u0−u∗‖

mε

)
) oracle queries to

F, where u∗ solves (SVI).

Proof Define Ak =
∑k

i=0 ai. To prove the lemma, we will use the following gap (or merit) func-
tions:

fk =
1

Ak

k∑
i=0

ai

(
〈F (ūi), ūi − u∗〉 − m

2
‖ūi − u∗‖2

)
.

As F is strongly monotone and u∗ solves (SVI), fk ≥ 0, ∀k. By convention, we take f−1 = 0 and
A−1 = 0, so that Akfk−Ak−1fk−1 = ak

(
〈F (ūk), ūk − u∗〉− m

2 ‖ūk−u∗‖2
)
. Let us now bound

Akfk −Ak−1fk−1, and observe that Akfk −Ak−1fk−1 ≥ 0. First, write

Akfk −Ak−1fk−1 = ak

(
〈F (ūk), ūk − u∗〉 − m

2
‖ūk − u∗‖2

)
= ak 〈F (ūk),uk+1 − u∗〉+ ak 〈F (uk), ūk − uk+1〉

+ ak 〈F (ūk)− F (uk), ūk − uk+1〉 −
akm

2
‖ūk − u∗‖2.

(10)
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Algorithm 4: EG Without the Knowledge of L
Input: a0, u0 ∈ U , m, ε. If not provided at the input or > 1/m, set a0 = 1/m.

1 ū0 = ΠU (u0 − akF (u0))
2 k = 0, δ0 = a0mε

5
√

2

3 while ‖ūk − uk‖ > δk do
4 k = k + 1, ak = ak−1

5 ūk = ΠU (uk − akF (uk))

6 uk+1 = argminu∈U

{
ak 〈F (ūk),u〉+ akm

2 ‖u− ūk‖2 + 1
2‖u− uk‖2

}
7 while ak 〈F (ūk)− F (uk), ūk − uk+1〉 > 1

4‖uk+1 − ūk‖2 + 1
4‖ūk − uk‖2 do

8 ak = min
{
ak
2 ,

‖ūk−uk‖
‖F (ūk)−F (uk)‖

}
9 ūk = ΠU (uk − akF (uk))

10 uk+1 = argminu∈U

{
ak 〈F (ūk),u〉+ akm

2 ‖u− ūk‖2 + 1
2‖u− uk‖2

}
end

11 δk = akmε

5
√

2

end
return uk

By the first-order optimality of uk+1 in its definition, we have, ∀u :

〈akF (ūk) + akm(uk+1 − ūk) + uk+1 − uk,u− uk+1〉 ≥ 0,

and, thus:

ak 〈F (ūk),uk+1 − u〉 ≤ akm 〈uk+1 − ūk,u− uk+1〉+ 〈uk+1 − uk,u− uk+1〉 .

By the standard three-point identity (which can also be verified directly):

〈uk+1 − uk,u− uk+1〉 =
1

2
‖u− uk‖2 −

1

2
‖u− uk+1‖2 −

1

2
‖uk − uk+1‖2.

Thus, setting u = u∗ :

ak 〈F (ūk),uk+1 − u∗〉 = akm 〈uk+1 − ūk,u
∗ − uk+1〉

+
1

2
‖u∗ − uk‖2 −

1

2
‖u∗ − uk+1‖2 −

1

2
‖uk − uk+1‖2.

Observe also that:

〈uk+1 − ūk,u
∗ − uk+1〉 =

1

2
‖u∗ − ūk‖2 −

1

2
‖uk+1 − ūk‖2 − ‖u∗ − uk+1‖2.

Thus, we have:

ak 〈F (ūk),uk+1 − u∗〉 =
1

2
‖u∗ − uk‖2 −

1 + akm

2
‖u∗ − uk+1‖2

− 1

2
‖uk − uk+1‖2 +

akm

2
‖u∗ − ūk‖2 −

akm

2
‖uk+1 − ūk‖2.

(11)
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By similar arguments:

ak 〈F (uk), ūk − uk+1〉 =
1

2
‖uk+1 − uk‖2 −

1

2
‖uk+1 − ūk‖2 −

1

2
‖ūk − uk‖2. (12)

Combining Eq. (10)-(12):

Akfk −Ak−1fk−1 =
1

2
‖u∗ − uk‖2 −

1 + akm

2
‖u∗ − uk+1‖2 + ak 〈F (ūk)− F (uk), ūk − uk+1〉

− 1 + akm

2
‖uk+1 − ūk‖2 −

1

2
‖ūk − uk‖2.

By the condition of the while loop in Line 7 of Algorithm 4, and because Akfk −Ak−1fk−1 ≥ 0,

1 + akm

2
‖u∗ − uk+1‖2 +

1 + 2akm

4
‖uk+1 − ūk‖2 +

1

4
‖ūk − uk‖2 ≤

1

2
‖u∗ − uk‖2. (13)

The condition of the while loop in Line 7 of Algorithm 4 is satisfied for any ak ≤ 1
2L , as

ak 〈F (ūk)− F (uk), ūk − uk+1〉 ≤ akL‖ūk − uk‖ · ‖ūk − uk+1‖

≤ akL

2

(
‖ūk − uk‖2 + ‖ūk − uk+1‖2

)
,

where we have used the Cauchy-Schwarz inequality, the fact that F is L-Lipschitz, and the Young
inequality. Thus, in any iteration, ak > 1

4L , and the total number of times the while loop from
Line 7 is entered is at most log2(4L/a0).

From Eq. (13), ‖u∗ − uk+1‖2 ≤ 1
1+m/(4L)‖u

∗ − uk‖2 ≤ (1 − m
8L)‖u∗ − uk‖2. Thus, for any

δ > 0, ‖u∗ − uk‖ ≤ δ for k ≥ 16L
m log(‖u

∗−u0‖
δ ). Consequently, from Eq. (13), ‖ūk − uk‖ ≤

√
2δ

whenever ‖u∗ − uk‖ ≤ δ. In particular, for δ = akmε

5
√

2
≥ mε

20
√

2L
, ‖ūk − uk‖ ≤

√
2δ = akm

5 ε after

at most k = 16L
m log(20

√
2L‖u∗−u0‖
mε (outer loop) iterations.

It remains to show that when ‖ūk − uk‖ ≤ δ, ‖uk − u∗‖ ≤ ε, and so Algorithm 4 terminates.
Observe that uk − ūk = akG1/ak(uk), where G1/ak is the operator mapping defined in Eq. (8).

Thus, using Lemma 8 and noting that ak ≤ 1/Lloc = ‖ūk−uk‖
‖F (ūk)−F (uk)‖ , if ‖ūk − uk‖ ≤ akm

5 ε, we
have

〈F (ūk), ūk − u∗〉 ≤ 2m

5
ε‖ūk − u∗‖.

On the other hand, as F is m-strongly monotone, we also have 〈F (ūk), ūk − u∗〉 ≥ m
2 ‖ūk−u∗‖2.

Hence, ‖ūk − u∗‖ ≤ 4ε
5 . Finally, applying the triangle inequality and as a+ k ≤ 1/m :

‖uk − u∗‖ ≤ ‖uk − ūk‖+ ‖ūk − u∗‖ ≤ ε

5
+

4ε

5
= ε.

Note that we have already bounded the total number of inner and outer loop iterations. Observing
that each inner iteration makes 2 oracle queries to F and each outer iteration makes 2 oracle queries
to F outside of the inner iteration, the bound on the total number of oracle queries to F follows.

Lemma 11 Let ū∗k = JF+IU (uk), where uk ∈ U and F is L-Lipschitz. Then, there exists a

parameter-free algorithm that queries F at most O((L+ 1) log(
(L+1)‖uk−ū∗k‖

ε )) times and outputs
a point ūk such that ‖ūk − ū∗k‖ ≤ ε.
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Proof Observe first that ū∗k solves (SVI) for operator F̄ (u) = F (u) + u− uk over the set U . This
follows from the definition of the resolvent, which implies:

ū∗k + F (ū∗k) + ∂IU (ū∗k) 3 uk.

Equivalently: 0 ∈ F̄ (ū∗k) + ∂IU (ū∗k).
The rest of the proof follows by applying Lemma 17 to F̄ , which is (L + 1)-Lipschitz and

1-strongly monotone.

A.4. Inexact Halpern Iteration

We start by first proving the following auxiliary result.

Proposition 18 Given an initial point u0 ∈ U , let uk evolve according to Eq. (9), where λk = 1
k+1 .

Then,

(∀k ≥ 1) : ‖uk − u∗‖ ≤ ‖u0 − u∗‖+
1

k + 1

k∑
i=1

i‖ei−1‖,

where u∗ is such that ‖P (u∗)‖ = 0.

Proof Let T = Id − P. Then T (u∗) = u∗. By Fact 2, T is nonexpansive. Observe that we can
equivalently write Eq. (9) as uk = λku0 + (1 − λk)T (uk−1) + (1 − λk)ek−1. Thus, using that
u∗ = T (u∗):

‖uk − u∗‖ = ‖λk(u0 − u∗) + (1− λk)(T (uk−1)− T (u∗)) + (1− λk)ek−1‖
≤ λk‖u0 − u∗‖+ (1− λk)‖uk−1 − u∗‖+ (1− λk)‖ek−1‖,

where we have used the triangle inequality and nonexpansivity of T. The result follows by recur-
sively applying the last inequality and observing that

∏k
j=i(1− λj) = i

k+1 .

Using this proposition, we can now prove the following lemma.

Lemma 12 Let Ck be defined as in Eq. (7) with P as the 1
2 -cocoercive operator, and let Lk = 2,

λk = 1
k+1 , and Ak = k(k+1)

2 , ∀k ≥ 1. If the iterates uk evolve according to (9) for an arbitrary
initial point u0 ∈ U , then:

(∀k ≥ 1) : Ak+1Ck+1 ≤ AkCk +Ak+1 〈ek, (1− λk+1)P (uk)− P (uk+1)〉 .

Further, if, ∀k ≥ 1, ‖ek−1‖ ≤ ε
4k(k+1) , then ‖P (uK)‖ ≤ ε after at most K = 4‖u0−u∗‖

ε iterations.

Proof By the same arguments as in the proof of Lemma 4 with P in place of F :

1

2
‖P (uk+1)‖2 ≤ 〈P (uk+1),uk+1 − uk + P (uk)〉 −

〈
P (uk),uk+1 − uk +

1

2
P (uk)

〉
.

From (9) and the definition of P̃ , we have that

uk+1 − uk =
λk+1

1− λk+1
(u0 − uk+1)− P (uk)− ek, and

uk+1 − uk = λk+1(u0 − uk)− (1− λk+1)P (uk)− (1− λk+1)ek.
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Hence:

1

2
‖P (uk+1)‖2 ≤ λk+1

1− λk+1
〈P (uk+1),u0 − uk+1〉 − λk+1 〈P (uk),u0 − uk〉

+
1− 2λk+1

2
‖P (uk)‖2 + 〈ek, (1− λk+1)P (uk)− P (uk+1)〉 .

Plugging λk+1 = 1
k+2 in the last inequality and using the definition of Ck and the choice ofAk from

the statement of the lemma completes the proof of the first part.
Using the same arguments as in the proof of Lemma 5, we can conclude from Ak+1Ck+1 ≤

AkCk +Ak+1 〈ek, (1− λk+1)P (uk)− P (uk+1)〉 , ∀k ≥ 1 that:

‖P (uk)‖2

2
≤ 1

k
‖P (uk)‖‖u0 − u∗‖+

1

Ak

k∑
i=1

Ai 〈ei−1, (1− λi)P (ui−1)− P (ui)〉

=
1

k
‖P (uk)‖‖u0 − u∗‖+

1

k(k + 1)

k∑
i=1

i(i+ 1)

〈
ei−1,

i

i+ 1
P (ui−1)− P (ui)

〉
.

(14)
Let us now bound each

〈
ei−1,

i
i+1P (ui−1)− P (ui)

〉
term. Recall that P (u∗) = 0 and P is 2-

Lipschitz (as discussed in Section 1.2, this follows from P being 1
2 -cocoercive). Thus, we have:〈

ei−1,
i

i+ 1
P (ui−1)− P (ui)

〉
=

〈
ei−1,

i

i+ 1
(P (ui−1)− P (u∗))− (P (ui)− P (u∗))

〉
≤ 2‖ei−1‖

( i

i+ 1
‖ui−1 − u∗‖+ ‖ui − u∗‖

)
≤ 2‖ei−1‖

( i+ 2

i+ 1
‖u0 − u∗‖+

i

i+ 1
‖ei−1‖+

2

i+ 1

i−1∑
j=1

j‖ej−1‖
)
,

where we have used Proposition 18 in the last inequality. In particular, if ‖ei−1‖ ≤ ε
4i(i+1) , then,

∀i ≥ 1: 〈
ei−1,

i

i+ 1
P (ui−1)− P (ui)

〉
≤ ε

2i(i+ 1)

( i+ 2

i+ 1
‖u0 − u∗‖+ ε/2

)
.

Combining with Eq. (14):

‖P (uk)‖2

2
≤ 1

k
‖P (uk)‖‖u0 − u∗‖+

ε

2k
(‖u0 − u∗‖+ ε/2). (15)

Observe that if ‖u0−u∗‖ ≤ ε/2, as P is 2-Lipschitz and P (u∗) = 0, we would have ‖P (u0)‖ ≤ ε,
and the statement of the second part of the lemma would hold trivially. Assume from now on that
‖u0 − u∗‖ > ε/2. Suppose that ‖P (uk)‖ > ε and k ≥ 4‖u0−u∗‖

ε . Then, dividing both sides of
Eq. (15) by ‖P (uk)‖/2 and using that ‖P (uk)‖ > ε and ‖u0 − u∗‖ > ε/2, we get:

‖P (uk)‖ <
2‖u0 − u∗‖(1 + 1/2)

k
+

2 · ε/4
k

<
3ε

4
+
ε

4
≤ ε,

contradicting the assumption that ‖P (uk)‖ > ε and completing the proof.
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A.5. Strongly Monotone Lipschitz Operators

Theorem 15 Given F that is L-Lipschitz and m-strongly monotone, consider running the follow-
ing algorithm A, starting with u0 ∈ U :

(A) : At iteration k, call Algorithm 3 with error εk = 7
16‖P̃ (uk−1)‖ and initial point uk−1.

Then, A outputs uk ∈ U with ‖P (uk)‖ ≤ ε after at most 1 + log2(‖u0−u∗‖
ε ) iterations, for any ε ∈

(0, 1
2 ]. The total number of queries toF until ‖P (uk)‖ ≤ ε isO

(
(L+ L

m) log(‖u0−u∗‖
ε ) log(L+ L

m)
)
.

Proof The first part of the theorem is immediate, as each call to Algorithm 3 ensures, due to
Theorem 13, that

‖P (uk)‖ ≤
7‖P̃ (uk−1)‖

16
≤ 7‖P (uk−1)‖

16
+
εk
8
≤ ‖P (uk−1)‖

2
,

and ‖P (u0)‖ ≤ 2‖u0 − u∗‖ as P is 2-Lipschitz (because it is 1
2 -cocoercive) and P (u∗) = 0.

It remains to bound the number of calls to F for each call to Algorithm 3. Using Theorem 13 and
‖P̃ (uk)‖ = Θ(‖P (uk)‖), each call to Algorithm 3 takes O(

L‖uk−1−u∗‖
‖P (uk−1)‖ log(

L‖uk−1−u∗‖
‖P (uk−1)‖ )) calls to

F. Denote ū∗k−1 = JF+∂IU (uk−1) = uk−1 − P (uk−1). Using Proposition 10:〈
F (ū∗k−1), ū∗k−1 − u∗

〉
≤ ‖P (uk−1)‖‖ū∗k−1 − u∗‖.

On the other hand, as F is m-strongly monotone and u∗ is an (MVI) solution,

m‖ū∗k−1 − u∗‖2 ≤
〈
F (ū∗k−1), ū∗k−1 − u∗

〉
.

Hence: ‖ū∗k−1 − u∗‖ ≤ 1
m‖P (uk−1)‖. It remains to use the triangle inequality and P (uk−1) =

uk−1 − ū∗k−1 to obtain:

‖uk−1 − u∗‖ ≤
(

1 +
1

m

)
‖P (uk−1)‖, (16)

which completes the proof.

A.6. Lower Bounds

We make use of the lower bound from Ouyang and Xu (2019) and the algorithmic reductions be-
tween the problems considered in previous sections to derive (near-tight) lower bounds for all of the
problems considered in this paper.

The lower bounds are for deterministic algorithms working in a (first-order) oracle model. For
convex-concave saddle-point problems with the objective Φ(x,y) and closed convex feasible set
X × Y , any such algorithm A can be described as follows: in each iteration k, A queries a pair of
points (x̄k, ȳk) ∈ X ×Y to obtain (∇xΦ(x̄k, ȳk), ∇yΦ(x̄k, ȳk)), and outputs a candidate solution
pair (xk,yk) ∈ X ×Y . Both the query points pair (x̄k, ȳk) and the candidate solution pair (xk,yk)
can only depend on (i) global problem parameters (such as the Lipschitz constant of Φ’s gradients
or the feasible sets X ,Y) and (ii) oracle queries and answers up to iteration k :

{x̄i, ȳi, ∇xΦ(x̄i, ȳi), ∇yΦ(x̄i, ȳi)}k−1
i=0 .

We start by summarizing the result from (Ouyang and Xu, 2019, Theorem 9).

22



HALPERN ITERATION FOR NEAR-OPTIMAL AND PARAMETER-FREE MONOTONE INCLUSION

Theorem 19 For any deterministic algorithm working in the first-order oracle model described
above and any L,RX , RY > 0, there exists a problem instance with a convex-concave function
Φ(x,y) : X × Y → R whose gradients are L-Lipschitz, such that ∀k = O(d) :

max
y∈y

Φ(xk,y)−min
x∈X

Φ(x,yk) = Ω
(L(RX

2 +RXRY)

k

)
,

where (xk,yk) ∈ X×Y is the algorithm output after k iterations andRX , RY denote the diameters
of the feasible sets X , Y, respectively, and where both X , Y, are closed and convex.

The assumption of the theorem that k = O(d) means that the lower bound applies in the high-
dimensional regime d = Ω(L(RX

2+RXRY )
ε ), which is standard and generally unavoidable.

In the setting of VIs, we consider a related model in which an algorithm has oracle access to F
and refer to it as the operator oracle model. Similarly as for the saddle-point problems, we consider
deterministic algorithms that on a given problem instance described by (F,U) operate as follows:
in each iteration k the algorithm queries a point ūk ∈ U , receives F (ūk), and outputs a solution
candidate uk ∈ U . Both uk and ūk can only depend on (i) global problem parameters (such as the
feasible set U and the Lipschitz parameter of F ), and (ii) oracle queries and answers up to iteration
k : {ūi, F (ūi)}k−1

i=0 . Note that all methods described in this paper and most of the commonly used
methods for solving VIs, such as, e.g., the mirror-prox method of Nemirovski (2004) and dual
extrapolation method of Nesterov (2007), work in this oracle model.

Lemma 16 For any deterministic algorithm working in the operator oracle model described above
and anyL,D > 0, there exists a VI described by anL-Lipschitz-continuous operator F and a closed
convex feasible set U with diameter D such that:

(a) For all ε > 0 such that k = LD2

ε = O(d), maxu∈U 〈F (uk),uk − u〉 = Ω(ε);

(b) For all ε > 0 such that k = LD
ε = O(d), maxu∈{U∩Buk} 〈F (uk),uk − u〉 = Ω(ε);

(c) If F is 1
L -cocoercive, then for all ε > 0 such that k = LD

ε log(D/ε) = O(d), it holds that

max
u∈{U∩Buk}

〈F (uk),uk − u〉 = Ω(ε)

(d) If F is m-strongly monotone, then for all ε > 0 such that k = L
m = O(d), it holds that

max
u∈{U∩Buk}

〈F (uk),uk − u〉 = Ω(ε).

Proof
Proof of (a): Suppose that this claim was not true. Then we would be able to solve any instance with
L-Lipschitz F and U with diameter bounded by D and obtain uk with maxu∈U 〈F (uk),uk − u〉 ≤
ε in o(LD

2

ε ) iterations, assuming the appropriate high-dimensional regime. In particular, given any
fixed convex-concave Φ(x,y) with L-Lipschitz gradients and feasible sets X ,Y whose diameter
is D/2, let u = [xy], F (u) = [ ∇xΦ(x,y)

−∇yΦ(x,y)], U = X × Y . Then, it is not hard to verify that F
is monotone and L-Lipschitz (see, e.g., Nemirovski (2004); Facchinei and Pang (2003)) and the
diameter of U isD. Thus, by assumption, we would be able to construct a point uk = [xkyk] for which
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maxu∈U 〈F (uk),uk − u〉 ≤ ε in o(LD
2

ε ) iterations. But then, because Φ is convex-concave, we
would also have, for any x ∈ X ,y ∈ Y:

Φ(xk,y)− Φ(x,yk) ≤ max
y∈Y

Φ(xk,y)− Φ(xk,yk) + Φ(xk,yk)−min
x∈X

Φ(x,yk)

≤ 〈∇yΦ(xk,yk),y − yk〉+ 〈∇xΦ(xk,yk),xk − x〉 = 〈F (uk),uk − u〉 .

In particular, we would get:

max
y∈Y

Φ(xk,y)−min
x∈X

Φ(x,yk) ≤ max
u∈U
〈F (uk),uk − u〉 ≤ ε.

Because we obtained this bound for an arbitrary L-Lipschitz convex-concave Φ and arbitrary feasi-
ble sets X ,Y with diameters D/2, Theorem 19 leads to a contradiction.
Proof of (b): If (b) was not true, then we would be able to obtain a point uk with

max
u∈{U∩Buk}

〈F (uk),uk − u〉 = o(ε/D)

in k = LD2

ε iterations. But the same point would satisfy maxu∈U 〈F (uk),uk − u〉 = o(ε), which
is a contradiction, due to (a).
Proof of (c): We prove the claim for L = 2. This is w.l.o.g., due to the standard rescaling argument:
if F is 1

L -cocoercive, then F̄ = F/(2L) is 1
2 -cocoercive. Further, if, for some uk ∈ U ,

max
u∈{U∩Buk}

〈
F̄ (uk),uk − u

〉
= Ω(ε),

then maxu∈{U∩Buk} 〈F (uk),uk − u〉 = Ω(Lε).

Suppose that the claim was not true for a 1
2 -cocoercive operator F. Then for any M -Lipschitz

monotone operator G, we would be able to use the strategy from Section 2.2 to obtain a point uk
with

max
u∈{U∩Buk}

〈G(uk),uk − u〉 = o(ε)

in k = MD
ε iterations. This is a contradiction, due to (b).

Proof of (d): Suppose that the claim was not true, i.e., that there existed an algorithm that, for any
m,L > 0, could output uk with maxu∈{U∩Buk}

〈
F̄ (uk),uk − u

〉
= ε/2 in k = o(L/m) itera-

tions, for any m-strongly monotone and L-Lipschitz operator. Then for any L-Lipschitz monotone
operator F , we could apply that algorithm to F̄ (·) = F (·) + ε

2D (· − u0) to obtain a point uk with
maxu∈{U∩Buk}

〈
F̄ (uk),uk − u

〉
= ε/2 in k = o(LD/ε) iterations. But then we would also have:

max
u∈{U∩Buk}

〈F (uk),uk − u〉 = max
u∈{U∩Buk}

〈
F̄ (uk)−

ε

2D
(uk − u0),uk − u

〉
≤ ε,

which is a contradiction, due to (b).
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