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ABSTRACT
Learning in tightly coupled multiagent settings with sparse rewards
is challenging because multiple agents must reach the goal state
simultaneously for the team to receive a reward. This is even more
challenging under temporal coupling constraints - where agents
need to sequentially complete di�erent components of a task in a
particular order. Here, a single local reward is inadequate for learn-
ing an e�ective policy. We introduce MADyS, Multiagent Learning
via Dynamic Skill Selection, a bi-level optimization framework that
learns to dynamically switch between multiple local skills to opti-
mize sparse team objectives. MADyS adopts fast policy gradients to
learn local skills using local rewards and an evolutionary algorithm
to optimize the sparse team objective by recruiting the most optimal
skill at any given time. This eliminates the need to generate a single
dense reward via reward shaping or other mixing functions. In en-
vironments with both spatial and temporal coupling requirements,
we outperform prior methods and provides intuitive visualizations
of its skill switching strategy.

KEYWORDS
Multiagent Coordination; Reinforcement Learning; Evolutionary
Algorithm; Dynamic Skill Selection

ACM Reference Format:
Enna Sachdeva, Shauharda Khadka, Somdeb Majumdar, and Kagan Tumer.
2021. Dynamic Skill Selection for Learning Joint Actions: Extended Abstract.
In Proc. of the 20th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2021), Online, May 3–7, 2021, IFAAMAS, 3 pages.

1 INTRODUCTION
Real-world multiagent tasks often require agents to collaborate
with varying spatial and temporal coupling requirements [2, 3, 6,
11]. While spatial coupling requires multiple agents’ simultaneous
presence at a given location, temporal coupling requires agents to
perform multiple sub-tasks in a �xed sequence. The sparsity of the
shared team objective signi�cantly increases with high spatial or
temporal coupling. It is infeasible to learn e�ective coordination
strategies by relying only on such a sparse global reward [9].

One potential solution to partially address this problem is reward
shaping [1, 15], where a dense reward is heuristically designed to
allow agents to learn an e�ective coordination policy. Recent work
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on D++ [12] provides stepping stone rewards to address the credit
assignment problem in domains with spatial coupling requirements.
However, designing such rewards requires a functional form of
global rewards, and their e�ectiveness is limited by the sparsity of
global reward.While a local approximation of di�erence evaluations
could address this, it relies on agents generating useful training
data by stumbling upon the goal state [5, 13]. LIIR [7] addresses
the structural credit assignment problem by learning agent-speci�c
rewards to enable coordinated exploration. MERL [10] addresses
spatially coupledmultiagent coordination tasks with sparse rewards
by using dense proxy rewards. However, these approaches su�er
in domains with extremely sparse rewards requiring both spatial
and temporal coupling, as the likelihood of agents simultaneously
stumbling upon the right joint action at the right time is extremely
small.

Figure 1: MADyS integrates local and global rewards.

2 MADyS: MULTIAGENT LEARNINGWITH
DYNAMIC SKILL SELECTION

We introduceMADyS, a bi-level optimization framework that lever-
ages a portfolio of semantically meaningful local rewards to coordi-
nate agents across time and space. Each local reward corresponds
to a basic skill and is based on domain knowledge.

Figure 1 depicts the general �ow of MADyS. We initialize an EA
population of " teams, each consisting of # agents. Each agent,
c= , is a neural network skill picker that maps a local observation to
one of  skills. Separately, we initialize one skill learner for each of
 as ⇧: , which is a neural network that maps local observations
to primitive action to execute in the environment when an agent
picks this skill : . When an agent in the EA population picks a skill
: , consecutively, skill learner ⇧: generates the primitive to execute
in the environment.

For every action that an agent takes in the environment, it re-
ceives a vector of local rewards as A = [A1, A2, ...A ], which captures



(a) Con�guration: 2 agents with spatial coupling of 2, and temporal coupling of 2. Agent-1 selects "go to POI-A" followed by "go to POI-B",
whereas Agent-2 learns to stay close to Agent-1 by picking "go to agent" for all time steps.

(b) Con�guration: 6 agents with spatial coupling of 3, and temporal coupling of 2. Agent-1, Agent-2 and Agent-5 form a team of 3 and pick "go
to POI-A", and Agent-3, Agent-4 and Agent-6 form another team of 3 and pick "go to POI-B".

Figure 2: Training curves (left) and histograms (right) showing the distributional shift of local rewards, for various spatial and
temporal coupling. The vertical dotted blue line denotes the time steps required to pre-train the skills for the MFL baseline.

how good or bad that action is for all  skills. The experiences gath-
ered during the EA rollouts are stored in a shared replay bu�er R,
as tuples < B,0, B 0, A >.

EA pushes each agent to select the skill most likely to maxi-
mize the team reward. Concurrently, the skill learner ⇧: is trained
using a gradient-based optimizer to maximize A: by sampling a ran-
dom mini-batch from the shared replay bu�er. The shared replay
bu�er allows for increased information extraction from each agent,
facilitating exploration maximization and sample e�ciency. The
concurrent learning of low-level skills and agent policies to opti-
mize team objectives allows agents to learn skills from experiences
driven towards optimizing the global reward.

We test MADyS on a simulated robot exploration domain [14,
15]. The environment consists of homogeneous agents and several
types of Points of Interests (POIs), denoted as �,⌫, .... The task is to
observe each POI type by a team of 8 agents- characterized by spatial
coupling, in a speci�c order of POI types (� ! ⌫)- characterized
by temporal coupling. The team gets a reward of 1 when it ful�lls
the temporal and spatial coupling and 0 otherwise.

3 RESULTS
We compare the performance of MADyS with a standard evolution-
ary algorithm (EA) [4] operating directly on the individual agent
actions, as well as with Multi-�tness Learning (MFL) [14], as shown
in Fig. 2. In MFL, EA searches over actions generated by agents that
have been pre-trained on local skills only, without access to the team
objective - thus, EA simply learns to pick an optimal pre-trained
skill. While the original MFL paper adopted EA to learn local skills
separately, we allow our MFL agents to be pre-trained using PG and
a shared replay bu�er. These modi�cations to MFL agents equalize

the skill learning modules in MFL and MADyS and ensure that
any sample e�ciency gains we observe come purely from the joint
optimization of local and global objectives in MADyS and not from
implementation di�erences of the common components. We refer
to this modi�ed implementation as MFL. Both MFL and MADyS
utilize EA to select skills rather than low-level actions. However,
in MADyS, local skills are learned concurrently with the global
optimization, making the overall process more sample e�cient. We
use TD3 [8] as the PG method to optimize local rewards for both
MADyS and pre-training skills for our baseline "�!. We conduct
experiments over 5 statistically independent runs with random
seeds from 2000, 2004 and report the average performance with
error bars showing 95% con�dence interval. All scores reported are
compared against the number of environment steps.

4 CONCLUSION
In this paper, we introduced MADyS - a framework that allows a
team of agents to coordinate and solve complex tasks involving
spatial and temporal coupling. MADyS targets a class of multiagent
coordination problems where agents need to learn to decompose
a long-horizon task into several sub-tasks, each of which requires
di�erent sub-strategies. MADyS solves this by allowing multiagent
teams to dynamically select from local policies trained on di�er-
ent dense local objectives to optimize a sparse global objective. It
outperforms all baselines tested on a set of complex coordination
problems with several spatial and temporal coupling requirements.
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