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Microorganisms and artificial microswimmers often need to swim through environments that are more
complex than purely viscous liquids in their natural habitats or operational environments, such as gel-like mucus,
wet soil, and aquifers. The question of how the properties of these complex environments affect locomotion
has attracted considerable recent attention. In this paper, we present a theoretical model to examine how the
additional resistance due to the network of stationary obstacles in a porous medium affects helical locomotion.
Here, we focus on helical locomotion for its ubiquity as a propulsion mechanism adopted by many swimming
bacteria and artificial microswimmers. We show that the additional resistance can have qualitatively different
effects on various scenarios of helical locomotion: (1) a helical propeller driven by an external torque, (2) a
free swimming bacterium consisting of a helical flagellum and a head, and (3) a cargo-carrying helical propeller
driven by an external torque. Our results elucidate the subtle and significant differences between torqued helical
propulsion versus force-free and torque-free swimming in a porous medium. We also remark on the limitations
as well as potential connections of our results with experimental measurements of bacterial swimming speeds in

polymeric solutions.
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I. INTRODUCTION

Locomotion of microorganisms is critical for various
biological functions, including reproduction, foraging, and
escaping from predators [1-3]. The Reynolds number (Re),
which characterizes the inertial to viscous forces, of their
locomotion typically ranges from 107> for swimming bac-
teria to 1072 for human spermatozoa [4,5]. Inertial effects
are therefore virtually absent in this regime, imposing strin-
gent constraints on effective locomotion strategies at low
Re. For instance, Purcell’s scallop theorem rules out any
reciprocal motion (motion with time-reversal symmetry) for
self-propulsion in the absence of inertia [6]. Microorganisms
exploit different mechanisms to escape the constraints from
the scallop theorem. The past decades have seen tremendous
progress in understanding the physical principles underly-
ing the locomotion of swimming microorganisms [3-9]. In
parallel, substantial interdisciplinary efforts have also led to
the development of artificial microswimmers, which have
demonstrated great promise for biomedical and environmental
applications, such as targeted drug delivery, microsurgery, and
environmental remediation [10-16].

Earlier works typically assumed the medium surrounding
the microswimmers to be a purely viscous liquid. However,
both microorganisms and artificial microswimmers often need
to move through complex heterogeneous environments in
their natural habitats or operational environments, such as
gastric and cervical mucus, soils, and aquifers [17,18]. The
question of how the complex properties of the surround-
ing medium affect the swimming performance has attracted
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considerable recent attention [19,20]. Motivated by the loco-
motion of microorganisms in porous media (e.g., wet soils
and aquifers) for applications including environmental reme-
diation and enhanced oil recovery [14], we focus here on
the effect due to a matrix of stationary obstacles (such as
fibers or grains) embedded into a purely viscous solvent on
locomotion. The relevance of such a physical scenario for the
movement of microorganisms through biological filamentous
media such as gel-like mucus and extracellular matrix has
also been suggested [17,18,21]. Previous work in this area
has captured the indirect, viscous solvent-mediated interac-
tions between a swimmer and its surrounding obstacles by
an effective medium approach [17,21,22]. These interactions
can be captured by solving the properly averaged (mean-field)
equation describing the viscous, incompressible flow through
a random, sparse network of stationary obstacles given by the
Brinkman equation [23-26],

—Vp+uViu=pc’u, V-u=0. (D)

Here u and p are, respectively, the average velocity and
pressure fields, p is the dynamic viscosity, and a2 is the
permeability. The Stokes equation is recovered in the limit
when o = 0; the term po’u represents additional resistance
due to the network of stationary obstacles. The validity of
the Brinkman equation at low particle volume fraction was
established by proper averaging methods [23-26]. At larger
volume fractions, the Brinkman equation is not expected to
be quantitatively accurate, but the approximation may still be
effective in capturing the qualitative behavior [27]. Such an
effective medium approach via the Brinkman equation has
been applied to model different types of swimmers in porous
media [18,28-32].
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In this paper, we focus on helical locomotion for its ubiq-
uity as a propulsion mechanism adopted by many swimming
bacteria [3,33,34] and artificial microswimmers [35-38]. Bac-
teria such as Escherichia coli and Vibrio alginolyticus employ
relatively rigid helical flagella for self-propulsion. These bac-
terial flagella are helical filaments connected to the cell body
via a rotary motor, which drives the rotation of the helical
flagella to generate propulsion [4,39,40]. Bacterial locomo-
tion has inspired the design of artificial helical propellers,
which are magnetic helical microstructures resembling bac-
terial flagella. Instead of being driven by the rotary motor
embedded in the cell membrane of a bacterium, artificial
helical propellers are driven by external torques imposed by
rotating magnetic fields. While the former scenario results
in a swimming bacterium that is force-free and torque-free,
artificial helical propellers are not torque-free but torqued by
the external magnetic field. This subtle difference could lead
to qualitatively different effects on propulsion performance in
a purely viscous liquid [41] and in a porous medium as shown
later in this paper.

The pioneering work by Leshansky [17] analyzed the
propulsion of a rotating helix and found faster propulsion
speeds with increased resistance in a Brinkman medium than
in a purely viscous liquid. Here we extend the analysis to
consider a full model for a bacterium consisting of a heli-
cal flagellum and a cell body (head) swimming in a porous
medium. The presence of the head is essential in realizing
a force-free and torque-free swimming bacterium as eluci-
dated by Chwang and Wu [41]. Compared with the case of
a rotating helix, the inclusion of the head in the bacterium
model modifies the physical picture in two ways: The first
obvious effect is that the head contributes additional drag
on the overall structure, hindering its propulsion. The second
effect, more subtle, is that the rotation of the helical flagellum
will induce counter-rotation of the entire bacterium (head plus
the flagellum) to balance the torque from the flagellum for
the bacterium to remain torque-free. Without a head, the only
way for a rotating helix to maintain torque-free motion is
to counter-rotate at exactly the same speed but in the oppo-
site direction, effectively canceling all propulsive thrust and
thus leading to zero propulsion [41]. These two competing
effects give rise to some optimal head sizes that maximize the
speed of a swimming bacterium. We extend the analyses by
Chwang and Wu in a purely viscous liquid to probe the effect
of additional resistance in a Brinkman medium on bacterial
locomotion, when the subtle and crucial dynamics of the head
is included in the analysis. In contrast to previous conclusions
on a rotating helix [17], our results show that the additional
resistance can have both quantitatively and qualitatively dif-
ferent effects on various types of helical locomotion in porous
media.

The paper is organized as follows. We formulate the prob-
lem in Sec. II by introducing the swimmer model (Sec. IT A)
and the description of its dynamics in a porous medium
(Sec. IIB). In Sec. III, we first reproduce previous results
on a rotating helical propeller driven by an external torque
in a porous medium [17] (Sec. IIT A), before considering a
force-free and torque-free model for a swimming bacterium
(Sec. III B). We then elucidate the difference in the dynamics
of a swimming bacterium and a cargo-carrying helical pro-

peller driven by an external torque in Sec. III C, before some
concluding remarks in Sec. I'V.

II. FORMULATION

A. Swimmer model

We first describe the setup shown in Fig. 1 as a model for
a swimming bacterium. The same geometrical setup applies
to other types of helical locomotion (i.e., artificial helical
propellers with and without a cargo) considered in this pa-
per with modifications explained later. The model consists of
a spherical head of radius R and a helically shaped flagel-
lum with centerline r = r cos[kz + (w — 2)t]e, + rsin[kz +
(w — Q)tle, + (z + Ut)e,. Here r is the helix radius, & is the
wave number, z = s/+/1 + r2k?, 6 is the pitch angle with
tan @ = rk, N is the number of helical turns, U is the unde-
termined swimming speed, and s and ¢ are the arc length and
time, respectively. We have followed the analysis by Chwang
and Wu [41] and assumed unidirectional swimming and rota-
tion in the z direction here. A full three-dimensional analysis
can be similarly performed following the analysis by Keller
and Rubinow [42]. When the helical flagellum is rotated by
the motor at its base at a given rate we,, the flagellum not
only generates a propulsive thrust but also a torque about the
z axis. This torque induces the entire swimmer (the head plus
the flagellum) to counter-rotate at an undetermined rate —Qe;.
Therefore, the helical flagellum rotates at an apparent rate
(w — Q)e,, while the head rotates in the opposite direction at
the rate —Qe, (Fig. 1). The goal of the following calculation
is to determine the unknown translational (U = Ue,) and ro-
tational (2 = —Qe,) velocities of a swimming bacterium in a
porous medium.

B. Dynamics in a porous medium

We use the same framework based on the resistive force
theory (RFT) by Leshansky [17] to describe the dynamics of
the flagellum in a porous medium modeled by the Brinkman
equation [Eq. (1)]. Similar to the RFT in a purely viscous
liquid, the force density f on the flagellum depends only on
the local velocity u = dr/dt as

f=—[5.T—tt)+§tt]-u, 2)
where t = dr/ds is the local tangent vector, I is the identity

tensor, and the resistive coefficients &, and & characterize,
respectively, the force densities due to transverse and axial

—
A=2n/k

FIG. 1. Notations and geometrical setup of the model of a swim-
ming bacterium consisting of a spherical head and a helically shaped
flagellum.
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translation of a straight cylinder. In a Brinkman medium, the
coefficients are given by [17,43]

T PR 1)

I 4(aa) +aaKo(aoz)’ 3)
RN — laal(l(aa)7 4)
4 2 Ky(aa)

where K, are the modified Bessel functions of degree p.
The drag anisotropy measured by the ratio y =&, /& =2+
aaKy(aa)/[2K; (aa)] is essential to the generation of propul-
sive thrust in flagellar swimming [5]. The effectiveness of
this RFT approach in a Brinkman medium was demonstrated
by validations against numerical simulations that explicitly
model the porous medium as random arrays of stationary
spheres [17]. However, special attention is required in the
limit of vanishing resistance ae — 0 as noted in Ref. [17]:
while the drag anistropy ratio reduces to the value in the
Stokes limit (y = 2), the individual coefficients do not recover
their corresponding values in this limit due to its singular
nature. Moreover, biologically relevant values of the scaled
resistance ac in filamentous media are typically estimated
to be of O(0.1)-O(1) or higher [17,28,30,44]. We therefore
focus on results for ac > 0.1 in the main text and only remark
on some interesting observations for smaller values of ax in
the Appendix.

In addition to the flagellar dynamics, the additional re-
sistance in a Brinkman medium also alters the translational
and rotational dynamics of the head. The hydrodynamic force
(Fy = =67 uRUCy) and torque (T, = —8m uR*QC,) acting
on the spherical head are modified, with the correction factors
given by [17,45]

R%¢?
Cr=1+Ra+ 9 (®))
R%o?
CG=14——— ()
; + 30 1 Re) (6)

We remark that when the separation between the obstacles in
the porous medium is small compared with a characteristic
length scale of the swimmer (i.e., ac > 1 or Ra > 1), the
above results based on the Brinkman medium approach is not
expected to be quantitatively accurate and may only capture
the dynamics qualitatively [27].

For locomotion at low Re, the overall force-free and
torque-free conditions, respectively, read

L
/fds—i—F;,:O, 7)
0
L
/ rxfds+T,=0, ®)
0

where L = 27 N+/r? + (1/k)? is the length of the flagellum.
Under the assumption of undirectional swimming and rotation
in the z direction [41], the above force and torque balances
therefore reduce to

A+ v +ACHU + (y — DerQ = (y — e, (9)

(y — DkU + (y + k2 + BCHrQ =« (y +«*)e,  (10)

respectively, ~where A = 3uRik+/1+«2/(N§r), B=

4M,R3K\/1+K2/(NS||I’3), c=a)/k, V=EL/EII» and
k =tanf = rk. Solving the system of equations [Eqgs. (9)
and (10)] for U and €2 yields the solution

U _ BC(y — Dk

S AV 11

rw A an
Q  yll+23 4« +AC(1 + 1)) 12)
® A ’

where A = BC,(ACy + 1+ yK?) +ACs(y + ) +yd+
2«2 4 k*). These results extend previous analyses in two
ways. First, we extend the analysis by Chwang and Wu on
a swimming bacterium in a purely viscous liquid [41] to a
porous medium modeled by the Brinkman equation. Second,
we also extend the analysis by Leshansky on a rotating helical
propeller driven by an external torque in a Brinkman medium
[17] to a force-free and torque-free swimming bacterium. We
discuss in the next section the quantitative and qualitative
changes compared with these previous results.

III. RESULTS AND DISCUSSION

Based on the formulation and results in Sec. I, we consider
here different types of helical motion in a porous medium in
the following sections: (1) a helical propeller driven by an
external torque (Sec. III A), (2) a free swimming bacterium
consisting of a helical flagellum and a head (Sec. III B), and
(3) a cargo-carrying helical propeller driven by an external
torque (Sec. III C).

A. A rotating helical propeller driven by an external torque

We first reduce our results to that of a previous analysis of
a helical propeller rotating at a prescribed rotation speed  in
a Brinkman medium [17]. Since the rotating helix is driven
by an external torque (i.e., not torque-free), we only need to
enforce the force-free condition [Eq. (9)] and set the size of
the sphere R = 0 to determine the resulting propulsion speed
U as
U _@-be 13
ro 14+ yk?
where the drag anisotropy ratio is given by y =&, /& =
2 + aaKy(aa)/[2K (@a)] = 2 in the Brinkman medium. We
note that, for all values of «, the ratio y is greater than that in a
purely viscous liquid, where y = 2 for very slender filaments
[5]. Since anisotropic drag is essential to the generation of
propulsive thrust for slender bodies [5], for the same rotational
speed, the greater drag anistropy in a Brinkman medium leads
to faster propulsion speed in a Brinkman medium than in a
purely viscous liquid. Moreover, for a given value of resis-
tance « in a Brinkman medium, there exists an optimal pitch
angle of the helix 6 that maximizes its propulsion speed. It
can be determined from Eq. (13) that the optimal pitch angle
occurs at tan ¢ = 1/,/y, where the corresponding swimming
speed is given by

R — (14)
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FIG. 2. Propulsion of a rotating helical propeller driven by an external torque in a Brinkman medium. (a) The scaled propulsion speed,
U/rw, as a function of the scaled resistance ac«. For each value of the scaled resistance, the speed is optimized over the pitch angle, 6. The
corresponding optimal values of 6 are shown in (b). The results are the same as that given by Leshansky [17].

Figure 2(a) shows that the scaled optimal swimming speed
U/(rw) increases monotonically with the scaled resistance
aa in a Brinkman medium. The corresponding optimal pitch
angle 6 is shown in Fig. 2(b). The calculation here reproduces
the conclusion that the propulsion of a rotating helical pro-
peller is enhanced in a Brinkman medium [17]. As a remark,
a similar behavior is observed for smaller values of the scaled
resistance [17] as discussed in the Appendix.

B. A swimming bacterium consisting
of a helical flagellum and a head

In Sec. IIT A, the helical propeller is driven to rotate at a
prescribed rotation speed by an external torque. The torque-
free condition [Eq. (10)] therefore does not apply to this case;
instead, the net hydrodynamic torque acting on the helix is
equal to the external torque required to drive the rotation
at the prescribed rate. Since a swimming bacterium is both
force-free and torque-free, the model in Sec. III A is more ap-
propriate for a magnetically driven artificial helical propeller
but not a free swimming bacterium.

As elucidated by Chwang and Wu [41], to satisfy the
torque-free condition, it is essential to include the head of the
bacterium in the analysis (see Introduction, Sec. I). The head
is induced to counter-rotate and generate the torque required
to balance the torque due to the rotating flagellum. A swim-
ming bacterium with a vanishingly small head cannot swim
effectively due to the absence of the counterbalancing torque
from the head. In such case, the torque-free condition would
induce the flagellum to counter-rotate at virtually the same
speed as the rotary motor (i.e., 2 & w) but in the opposite
direction; the flagellum thus becomes “motionless” and the
organism would be unable to propel [46].

It is therefore necessary to include a head in the model for
a swimming bacterium in a Brinkman medium and enforce
the force-free and torque-free conditions [Egs. (9) and (10)]
simultaneously to obtain the induced swimming speed and ro-
tation speed €2 [Egs. (11) and (12)]. In Fig. 3, we examine how
the size of the head affects the swimming speed [Fig. 3(a)]
and rotation speed [Fig. 3(b)] for different values of scaled
resistance ao = 0.1, 1, and 5 (solid lines), compared with the

results in a purely viscous liquid by Chwang and Wu [41]
(dashed lines). For a given resistance ac, while the induced
rotation speed decreases monotonically as the head size in-
creases [Fig. 3(b)], the swimming speed of the bacterium,
varies nonmonotonically with the head size [Fig. 3(a)]: The
speed first increases with the head size, reaches a maximum
value at some optimal head size, and then decreases when
the head becomes excessively large. As expected, the speed
reduces to zero when the head becomes vanishingly small
[Fig. 3(a)], in which case the induced counter-rotation speed
becomes as large as the speed driven by the rotary motor
(/w = 1) [Fig. 3(b)]. The same trends apply to both swim-
ming in a purely viscous liquid and in a Brinkman medium.
However, as the scaled resistance ac increases, the speed of
a swimming bacterium indeed decreases consistently for all
values of head size as shown in Fig. 3(a); this is in stark
contrast to the conclusion for a rotating helix in Sec. IIT A,
where the propulsion speed increases with the resistance ao.

To generate more direct comparisons with the results of
a rotating helix shown in Fig. 2, we show the corresponding
optimal speed of a swimming bacterium as a function of the
resistance in Fig. 4. We note that while the speed is optimized
over the pitch angle in Fig. 2, the speed is optimized over
both the head size and the pitch angle for the full model of
a swimming bacterium here. However, even with more exten-
sive optimization, the speed of the swimming bacterium still
decreases with increased resistance in the Brinkman medium
[Fig. 4(a)]. The corresponding optimal head size and pitch
angle are shown in Fig. 4(b). To summarize, while the ad-
ditional resistance increases the speed of rotating helix driven
by an external torque [Fig. 2(a)], the same resistance reduces
the speed of a swimming bacterium in a Brinkman medium
[Fig. 4(a)]. As a remark, a more complex speed dependence
on resistance is observed at much smaller values of resistance
(see the Appendix for details).

We further examine the physical origin underlying the
qualitatively different speed dependence on the resistance in
the two scenarios of helical locomotion (Fig. 2 versus Fig. 4).
Compared with the case of a rotating helix driven by an
external torque, the presence of a head in a swimming bac-
terium introduces two major differences: (1) the additional
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FIG. 3. The effect of the head size on the speed of a swimming bacterium in a Brinkman medium. The variation of (a) the scaled swimming
speed, U/rw, and (b) scaled rotation rate of the head, ©2/w, as a function of the scaled head size Rk of a swimming bacterium at different
values of the scaled resistance acx [see the legend in (b)] at a fixed pitch angle & = 7 /4 and N = 3. The dashed lines are results in a purely

viscous liquid (Stokes flow) by Chwang and Wu [41].

drag caused by the head to the overall structure and (2) the
reduced effective rotation velocity of the flagellum due to the
induced counter-rotation of the bacterium. We elucidate the
crucial roles both effects play in the observed difference in
the speed dependence. Through a third relevant scenario of
helical locomotion: a cargo-carrying helical propeller driven
by an external torque (Sec. III C), we argue that including only
the first effect would lead to yet another qualitatively different
speed dependence on the resistance. A comparison between
the results in this section and the next will reveal the relative
importance of the two individual effects in different scenarios.

C. A cargo-carrying helical propeller driven
by an external torque

We consider here a relevant scenario of a cargo-carrying
helical propeller driven by an external torque. Compared
with the two effects due to the head in a swimming bac-
terium (Sec. III B), the cargo-carrying helical propeller here
retains only the first effect of additional drag (due to the
presence of the passive cargo) but not the second effect of

(a) 0.15

0.125

0.1F

U/rw

0.075

0.05 : :
107" 10705 10°
ax

1095 10"

counter-rotation. Such a model allows us to examine the speed
dependence on the resistance by separating the first and sec-
ond effects. As a remark, we use the scenario here not only
to unravel the two effects due to the presence of a head in
a swimming bacterium (Sec. III B) but also as a model for
the application of artificial microswimmers in drug delivery
applications where the cargo represents a therapeutic payload
attached to the propeller [47].

Since the rotating helical propeller with a cargo is ex-
ternally torqued, we enforce only the force-free condition
[Eq. (9)] with the drag from the cargo represented by the term
F, to obtain the propulsion speed as

U -k

=— 15
ro 1+ yk?+ACy (13)

Increasing the resistance in a Brinkman medium leads to
two competing effects: on one hand, the increased resistance
enhances the propulsive thrust generated by the rotating he-
lix through greater drag anisotropy y in Eq. (15), which
tends to increase the propulsion speed; on the other hand,
the drag acting on the cargo increases with the resistance in

(b) 1

22

0.9r

0.7r

0.6 : :
107 1005 10°
ax

1095 10"

FIG. 4. The effect of resistance in a Brinkman medium on the speed of a swimming bacterium. (a) The scaled swimming speed, U /rw, as
a function of the scaled resistance awx. For each value of the scaled resistance, the speed is optimized over both the pitch angle 6 and the scaled
head size Rk. Here N = 3. The corresponding optimal values of 6 and Rk are shown in (b) and its inset, respectively.
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FIG. 5. Propulsion of a cargo-carrying helical propeller driven by an external torque. (a) The scaled propulsion speed, U /rw, of the torqued
propeller as a function of the scaled cargo size Rk at different values of the scaled resistance ac (red solid lines) at a fixed pitch angle 0 = 7 /4.
For comparison, the speed of a force-free and torque-free swimming bacterium with identical geometrical setup is also shown (blue dot-dashed
lines). (b) The dependence of the propulsion speed of a cargo-carrying helical propeller on the scaled resistance ax at a fixed pitch angle
0 = m /4. Depending on the scaled cargo size Rk, the propulsion speed can either increase (Rk = 1) or decrease (Rk = 5) with the resistance.

In all cases considered here, N = 3.

the Brinkman medium through C; in Eq. (15), which tends
to lower the propulsion speed. These two competing effects
give rise to two different speed dependencies on the resistance
as shown in Fig. 5(a), depending on the cargo size, Rk (red
solid lines). When the cargo size is small (e.g., Rk = 1), the
increase in drag on the cargo is relatively small compared
with the enhancement in propulsive thrust as the resistance
o increases. The propulsion speed therefore increases with
the resistance aw in this small Rk regime [Fig. 5(b), Rk = 1].
However, as the cargo size becomes sufficiently large (e.g.,
Rk =5), the effect due to the increased drag on the cargo
becomes eventually more significant than the enhancement in
propulsive thrust. In this large Rk regime, the propulsion speed
therefore decreases with increased resistance ac [Fig. 5(b),
Rk = 5]. Therefore, whether a helical propeller carrying cargo
moves faster or slower in a Brinkman medium with increased
resistance largely depends on the size of the cargo.

Finally, we contrast the above results with that of a swim-
ming bacterium in Sec. III B to highlight the crucial role of
the second effect of counter-rotation, which is absent in the
case of a cargo-carrying helical propeller. In Fig. 5(a), we
contrast the speed dependence on resistance for a swimming
bacterium (blue dot-dashed lines) and cargo-carrying helical
propeller (red solid lines), for the same size of head and cargo.
When the head size is small (e.g., Rk = 1), the second effect
due to the counter-rotation of the bacterium causes the speed
of the bacterium to decrease with increased resistance (blue
dot-dashed lines), opposite to the speed dependence for a
cargo-carrying helical propeller (red solid lines). This implies
that, for small head sizes, the speed reduction of a swimming
bacterium with increased resistance in a Brinkman medium is
primarily caused by the second effect, namely the reduction
in the apparent rotation speed of the flagellum due to the
counter-rotation of the bacterium. On the contrary, as the head
size becomes large, the results of a swimming bacterium (blue
dot-dashed lines) and a cargo-carrying helical propeller (red
solid lines) converge, because the induced counter-rotation
becomes insignificant; the speed reduction with increased re-

sistance is thus primarily due to increased drag on the head of
the bacterium.

IV. CONCLUDING REMARKS

In this paper, we have extended the previous analysis by
Chwang and Wu in a purely viscous liquid [41] to probe the
effect of resistance due to a network of stationary obstacles
on the swimming of a bacterium in a porous medium. In a
local RFT framework, the resistance in a Brinkman medium
was previously shown to enhance the propulsion speed of a
rotating helix [17]. We have employed the same framework to
show that the resistance can, on the contrary, reduce the speed
of a swimming bacterium consisting of a helical flagellum
and a spherical head. Some estimates of the enhancement and
reduction are as follows: based on the estimates in Ref. [17],
for a flagellum radius ~0.05 um swimming in a sparse fiber
matrix (0.1% vol) with a fiber radius 1 nm (e.g., polysaccha-
ride chains in the extracellular medium), the scaled resistance
aa =~ 1.5 was estimated to enhance propulsion of a rotat-
ing helical propeller by approximately 40%. Using the same
estimate of the scaled resistance, the optimal speed of a
swimming bacterium could, instead, drop by more than 50%
[Fig. 4(a)]. We have also analyzed a third scenario of a cargo-
carrying helical propeller to elucidate its difference compared
with a swimming bacterium. The qualitatively different speed
dependence on resistance in a Brinkman medium highlights
the subtle differences between various modes of helical loco-
motion. We remark that the above conclusions are based on
the results in the regime ac > 0.1, which is relevant to flag-
ellar locomotion in typical filamentous media [17,28,30,44];
the effectiveness of the RFT framework in this regime was
validated against numerical simulations that account for the
network of stationary obstacles explicitly [17].

We comment on several limitations of the current model.
First, the Brinkman medium approach is expected to become
less accurate at concentrated porous media [27]. Second,
since RFT is a local theory that neglects the hydrodynamic
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FIG. 6. The scaled speed U/rw of (a) a rotating helical propeller driven by an external torque and (b) a swimming bacterium in the regime
of small scaled resistance ac. The results shown in (a) and (b) above are the corresponding results of Figs. 2(a) and 4(a), respectively, but in

the regime where 1073 < aa < 1071,

interactions between different parts of the filament, we expect
the framework to be less accurate for helical geometries with
smaller wavelengths, where stronger intrafilament hydrody-
namic interactions occur [48]. In addition, the hydrodynamic
interaction between the helical flagellum and the cell body is
not included in the RFT framework. Results from the current
model provide benchmarks for comparisons with future sim-
ulations that account for full hydrodynamic interactions and
dynamics in more concentrated porous media.

We also remark on the notion of modeling bacterial lo-
comotion in polymeric solutions as locomotion in a network
of stationary obstacles formed by entangled linear polymer
molecules [17,34,49-51] by interpreting that a higher polymer
concentration leads to a larger resistance in the Brinkman
medium. The rather substantial decrease in the speed of a
swimming bacterium predicted at large values of resistance
above is consistent with the measured decrease in swimming
speed in polymeric solutions at high polymer concentrations.
At low polymer concentrations, in contrast, experiments mea-
sured increased bacterial swimming speeds [34,49]. Indeed,
such a nonmonotonic speed variation is also captured at
very small values of resistance as shown in the Appendix.
However, since the current framework is not expected to be
quantitatively accurate in the small resistance regime, we only
make a cautionary note here and call for subsequent inves-
tigations into these observations. Finally, we note that more
complex effects, such as the elastic response of the network
[21], non-Newtonian rheology [52-54], local viscosity dif-
ferences [55], and polymer depletion [56,57], may also play
important roles in bacterial locomotion in polymeric solutions
that are not captured in this paper.
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APPENDIX: LOCOMOTION IN THE REGIME
OF SMALL RESISTANCE

Flagellar locomotion in typical filamentous media is es-
timated to occur in the regime where ax ~ O(0.1)-O(1) or

higher [17,28,30,44]. Moreover, since the current framework
is not expected to be quantitatively accurate for much smaller
values of resistance, the results in the main text focus on the
regime of aa > 0.1. For completeness, in this Appendix we
remark on some interesting observations on results for much
smaller values of resistance.

First, we present the results for a rotating helical propeller
driven by an external torque (Sec. III A) in the small resis-
tance regime in Fig. 6(a). The propulsion speed monotonically
increases with the scaled resistance in the same way as the
results for larger resistance [Fig. 2(a)]. Next, we examine the
speed of a swimming bacterium consisting of a helical flag-
ellum and a head (Sec. III B) in the small resistance regime.
A more complex speed variation is revealed in this regime: In
contrast to the monotonic decay in speed at larger resistance
[Fig. 4 (a)], our results suggest that a swimming bacterium
could indeed show an increased speed in a porous medium
with a very small resistance, before a decrease in speed at
larger resistance [Fig. 6(b)].

The nonmonotonic speed variation shown in Fig. 6(b) is
qualitatively similar to experimental measurements of bacte-
rial swimming speeds in polymeric solutions [34,49], when
the resistance in a porous medium is correlated with the
polymer concentration: While a speed enhancement was ob-
served at low polymer concentrations, a more substantial
decrease in speed occurred at higher concentrations. Berg and
Turner [34] suggested that the observed phenomenon may
be attributed to flagellum pushing on the loose and quasi-
rigid networks formed by long linear polymer molecules
(e.g., polyvinylpyrrolidone and methylcellulose). Based on
this hypothesis, Magariyama and Kudo [50] introduced a
phenomenological model with two apparent viscosities to cap-
ture the interaction between the swimmer and its surrounding
network. While the model predicted similar nonmonotonic
behaviors, the physical origin of the phenomenological pa-
rameters remain unclear. Our results here are based on a more
physical framework [17] developed to model the embedded
polymer network in the viscous solution as a porous medium
described by the Brinkman equation. Although our model can
predict qualitatively similar behaviors as those obtained in
the experiment and the phenomenological model, the non-
monotonic behaviors occur in the small resistance regime
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where the modified force densities may no longer be quan-
titatively accurate [17]. We therefore only leave a cautionary

remark here and call for further investigations into these
observations.

[1] D. F. Blair, Annu. Rev. Microbiol. 49, 489 (1995).
[2] K. M. Ottemann and J. F. Miller, Mol. Microbiol. 24, 1109
(1997).
[3] E. Lauga, Annu. Rev. Fluid Mech. 48, 105 (2016).
[4] L. J. Fauci and R. Dillon, Annu. Rev. Fluid Mech. 38, 371
(2006).
[5] E. Lauga and T. R. Powers, Rep. Prog. Phys. 72, 096601 (2009).
[6] E. M. Purcell, Am. J. Phys. 45, 3 (1977).
[7] C. Brennen and H. Winet, Annu. Rev. Fluid Mech. 9, 339
(1977).
[8] N. Cohen and J. H. Boyle, Contemp. Phys. 51, 103 (2010).
[9] J. M. Yeomans, D. O. Pushkin, and H. Shum, Eur. Phys. J. Spec.
Top. 223, 1771 (2014).
[10] M. Sitti, Nature 458, 1121 (2009).
[11] B. J. Nelson, I. K. Kaliakatsos, and J. J. Abbott, Annu. Rev.
Biomed. 12, 55 (2010).
[12] S. Sengupta, M. E. Ibele, and A. Sen, Angew. Chem. Int. Ed.
51, 8434 (2012).
[13] K. E. Peyer, L. Zhang, and B. J. Nelson, Nanoscale 5, 1259
(2013).
[14] W. Gao and J. Wang, ACS Nano 8, 3170 (2014).
[15] J. Katuri, X. Ma, M. M. Stanton, and S. Sanchez, Acc. Chem.
Res. 50, 2 (2017).
[16] A. C. H. Tsang, E. Demir, Y. Ding, and O. S. Pak, Adv. Intell.
Syst. 2, 1900137 (2020).
[17] A. M. Leshansky, Phys. Rev. E 80, 051911 (2009).
[18] S. A. Mirbagheri and H. C. Fu, Phys. Rev. Lett. 116, 198101
(2016).
[19] C. Bechinger, R. Di Leonardo, H. Lowen, C. Reichhardt, G.
Volpe, and G. Volpe, Rev. Mod. Phys. 88, 045006 (2016).
[20] Z. W, Y. Chen, D. Mukasa, O. S. Pak, and W. Gao, Chem. Soc.
Rev. (2020).
[21] H. C. Fu, V. B. Shenoy, and T. R. Powers, Europhys. Lett. 91,
24002 (2010).
[22] S. Jung, Phys. Fluids 22, 031903 (2010).
[23] C. K. W. Tam, J. Fluid Mech. 38, 537 (1969).
[24] S. Childress, J. Chem. Phys. 56, 2527 (1972).
[25] I. D. Howells, J. Fluid Mech. 64, 449 (1974).
[26] E. J. Hinch, J. Fluid Mech. 83, 695 (1977).
[27] L. Durlofsky and J. F. Brady, Phys. Fluids 30, 3329 (1987).
[28] N. Ho, S. D. Olson, and K. Leiderman, Phys. Rev. E 93, 043108
(2016).
[29] K. Leiderman and S. D. Olson, Phys. Fluids 28, 021902 (2016).
[30] H. Nganguia and O. S. Pak, J. Fluid Mech. 855, 554 (2018).
[31] N. Ho, K. Leiderman, and S. Olson, J. Fluid Mech. 864, 1088
(2019).
[32] H. Nganguia, L. Zhu, D. Palaniappan, and O. S. Pak, Phys. Rev.
E. 101, 063105 (2020).
[33] H. C. Berg and R. A. Anderson, Nature 245, 380 (1973).
[34] H. C. Berg and L. Turner, Nature 278, 349 (1979).

[35] A. Ghosh and P. Fischer, Nano Lett. 9, 2243 (2009).

[36] L. Zhang, J. J. Abbott, L. Dong, B. E. Kratochvil, D. Bell, and
B. J. Nelson, Appl. Phys. Lett. 94, 064107 (2009).

[37] L. Zhang, J. J. Abbott, L. Dong, K. E. Peyer, B. E. Kratochvil,
H. Zhang, C. Bergeles, and B. J. Nelson, Nano Lett. 9, 3663
(2009).

[38] L. Zhang, K. E. Peyer, and B. J. Nelson, Lab Chip 10, 2203
(2010).

[39] I. Gibbons, J. Cell Biol. 91, 107s (1981).

[40] D. K. Vig and C. W. Wolgemuth, Phys. Rev. Lett. 109, 218104
(2012).

[41] A. Chwang and T. Y. Wu, Proc. R. Soc. London, Ser. B 178,
327 (1971).

[42] J. Keller and S. Rubinow, Biophys. J. 16, 151 (1976).

[43] L. Spielman and S. L. Goren, Environ. Sci. Technol. 2, 279
(1968).

[44] W. Saltzman, M. Radomsky, K. Whaley, and R. Cone, Biophys.
J. 66, 508 (1994).

[45] Y. E. Solomentsev and J. L. Anderson, Phys. Fluids 8, 1119
(1996).

[46] The inclusion of the torque due to the spinning motion of
the filament would lead to a negligibly small but finite swim-
ming speed when the head size becomes zero. The resulting
swimming speed scales quadratically with the filament ra-
dius as U/c = O(a/r)?, which is practically zero due to the
slenderness of biological filaments in flagellar locomotion as
elucidated by Chwang and Wu [41]. We therefore do not include
the torque due to the spinning motion of the filament in our
analysis.

[47] W. Gao, D. Kagan, O. S. Pak, C. Clawson, S. Campuzano,
E. Chuluun-Erdene, E. Shipton, E. E. Fullerton, L. Zhang, E.
Lauga, and J. Wang, Small 8, 460 (2012).

[48] B. Rodenborn, C.-H. Chen, H. L. Swinney, B. Liu, and H. P.
Zhang, Proc. Natl. Acad. Sci. USA 110, E338 (2013).

[49] W. R. Schneider and R. N. Doetsch, J. Bacteriol. 117, 696
(1974).

[50] Y. Magariyama and S. Kudo, Biophys. J. 83, 733 (2002).

[51] A. E. Patteson, A. Gopinath, M. Goulian, and P. E. Arratia, Sci.
Rep. 5, 15761 (2015).

[52] B. Liu, T. R. Powers, and K. S. Breuer, Proc. Natl. Acad. Sci.
812, R3 (2011).

[53] S. E. Spagnolie, B. Liu, and T. R. Powers, Phys. Rev. Lett. 111,
068101 (2013).

[54] S. Gémez, F. A. Godinez, E. Lauga, and R. Zenit, J. Fluid Mech.
812 (2017).

[55] V. A. Martinez, J. Schwarz-Linek, M. Reufer, L. G. Wilson,
A. N. Morozov, and W. C. K. Poon, Proc. Natl. Acad. Sci. 111,
17771 (2014).

[56] Y. Man and E. Lauga, Phys. Rev. E 92, 023004 (2015).

[57] A. Zottl and J. Yeomans, Nat. Phys 15, 554 (2019).

043111-8


https://doi.org/10.1146/annurev.mi.49.100195.002421
https://doi.org/10.1046/j.1365-2958.1997.4281787.x
https://doi.org/10.1146/annurev-fluid-122414-034606
https://doi.org/10.1146/annurev.fluid.37.061903.175725
https://doi.org/10.1088/0034-4885/72/9/096601
https://doi.org/10.1119/1.10903
https://doi.org/10.1146/annurev.fl.09.010177.002011
https://doi.org/10.1080/00107510903268381
https://doi.org/10.1140/epjst/e2014-02225-8
https://doi.org/10.1038/4581121a
https://doi.org/10.1146/annurev-bioeng-010510-103409
https://doi.org/10.1002/anie.201202044
https://doi.org/10.1039/C2NR32554C
https://doi.org/10.1021/nn500077a
https://doi.org/10.1021/acs.accounts.6b00386
https://doi.org/10.1002/aisy.201900137
https://doi.org/10.1103/PhysRevE.80.051911
https://doi.org/10.1103/PhysRevLett.116.198101
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1039/D0CS00309C
https://doi.org/10.1209/0295-5075/91/24002
https://doi.org/10.1063/1.3359611
https://doi.org/10.1017/S0022112069000322
https://doi.org/10.1063/1.1677576
https://doi.org/10.1017/S0022112074002503
https://doi.org/10.1017/S0022112077001414
https://doi.org/10.1063/1.866465
https://doi.org/10.1103/PhysRevE.93.043108
https://doi.org/10.1063/1.4941258
https://doi.org/10.1017/jfm.2018.685
https://doi.org/10.1017/jfm.2019.36
https://doi.org/10.1103/PhysRevE.101.063105
https://doi.org/10.1038/245380a0
https://doi.org/10.1038/278349a0
https://doi.org/10.1021/nl900186w
https://doi.org/10.1063/1.3079655
https://doi.org/10.1021/nl901869j
https://doi.org/10.1039/c004450b
https://doi.org/10.1083/jcb.91.3.107s
https://doi.org/10.1103/PhysRevLett.109.218104
https://doi.org/10.1098/rspb.1971.0068
https://doi.org/10.1016/S0006-3495(76)85672-X
https://doi.org/10.1021/es60016a003
https://doi.org/10.1016/S0006-3495(94)80802-1
https://doi.org/10.1063/1.868890
https://doi.org/10.1002/smll.201101909
https://doi.org/10.1073/pnas.1219831110
https://doi.org/10.1128/JB.117.2.696-701.1974
https://doi.org/10.1016/S0006-3495(02)75204-1
https://doi.org/10.1038/srep15761
https://doi.org/10.1103/PhysRevLett.111.068101
https://doi.org/10.1017/jfm.2016.807
https://doi.org/10.1073/pnas.1415460111
https://doi.org/10.1103/PhysRevE.92.023004
https://doi.org/10.1038/s41567-019-0454-3

