ARTICLE

Physics of Fluids

scitation.org/journal/phf

Mechanical rotation at low Reynolds humber via
reinforcement learning @

Cite as: Phys. Fluids 33, 062007 (2021); doi: 10.1063/5.0053563
Submitted: 8 April 2021 - Accepted: 21 May 2021 -
Published Online: 17 June 2021 - Corrected: 18 June 2021

©

View Online

®

Export Citatior CrossMark

Yuexin Liu,' (%) Zonghao Zou,” (¥) Alan Cheng Hou Tsang,” (%) On Shun Pak,” (?) and Y.-N. Young"®

AFFILIATIONS

'Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
“Department of Mechanical Engineering, Santa Clara University, Santa Clara, California 95053, USA
*Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China

2 Author to whom correspondence should be addressed: yyoung@njit.edu

ABSTRACT

There is growing interest in the development of artificial microscopic machines that can perform complex maneuvers like swimming
microorganisms for potential biomedical applications. At the microscopic scales, the dominance of viscous over inertial forces imposes
stringent constraints on locomotion. In the absence of inertia, Purcell first proposed an elegant way to generate net translation using
kinematically irreversible motions [E. M. Purcell, “Life at low Reynolds number,” Am. J. Phys. 45, 3-11 (1977)]. In addition to net
translation, a more recent prototype known as Purcell’s “rotator” has been proposed in Dreyfus et al. [“Purcell’s “rotator”: Mechanical
rotation at low Reynolds number,” Eur. Phys. J. B 47, 161-164 (2005)] as a mechanical implementation of net rotation at low Reynolds
numbers. These ingenious designs rely on knowledge of the surrounding environment and the physics of locomotion within the
environment, which may be incomplete or unclear in more complex scenarios. More recently, reinforcement learning has been used as an
alternative approach to enable a machine to learn effective locomotory gaits for net translation based on its interaction with the
surroundings. In this work, we demonstrate the use of reinforcement learning to generate net mechanical rotation at low Reynolds numbers
without requiring prior knowledge of locomotion. For a three-sphere configuration, the reinforcement learning recovers the strategy pro-
posed by Dreyfus et al. As the number of spheres increases, multiple effective rotational strategies emerge from the learning process.
However, given sufficiently long learning processes, all machines considered in this work converge to a single type of rotational policies that
consist of traveling waves of actuation, suggesting its optimality of the strategy in generating net rotation at low Reynolds numbers.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0053563

I. INTRODUCTION

Swimming microorganisms inhabit a world dominated by viscous
force. The Reynolds number, Re = pU¥/u (where ¢ and U represent
the characteristic length and speed of the swimmer and p and u are
fluid density and dynamic viscosity, respectively), falls in the range of

design micromachines for complex maneuvers in the viscously domi-
nated flow limit."’

Purcell's work popularized the fundamental fluid dynamical
aspects of swimming at low Reynolds numbers.'' In particular, his scal-
lop theorem rules out any reciprocal motion-sequence of motions with

107#-10"2 for swimming bacteria and spermatozoa. * The inertial
force is therefore negligible compared with the viscous force. At such
low Reynolds numbers, common swimming strategies based on inertia
at the macroscopic scales become largely ineffective.”” Microorganisms
have evolved different strategies, including the use of flagellar rotary
motors” or the action of molecular motors within ﬂagella,7 to swim
effectively in their microscopic world. There is growing interest in
developing artificial microscopic machines that can self-propel like
their biological counterparts for potential biomedical and environmen-
tal applications.”” However, without sophisticated biological molecular
machines possessed by microorganisms, it remains a challenge to

time-reversal symmetry (e.g., opening and closing the hinge of a single-
hinged scallop) for self-propulsion without inertia. To escape from the
constraints by the scallop theorem, Purcell designed a three-link swim-
mer that can perform kinematically irreversible cyclic motions for net
translation.'"”'” Najafi and Golestanian'’ proposed another ingenious
design consisting of three linked spheres, which can translate by modu-
lating the distances between the spheres; the mechanism inspired a
wide variety of variants."*** In addition to net translation, the design
of mechanisms that can produce net rotation at the microscale is
important to the development of micromachines. To this end, Dreyfus
et al. proposed a mechanism (also known as Purcell’s rotator),”” which
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consists of three spheres linked like the spokes on a wheel (Fig. 1) as the
rotational analog of Purcell's three-link swimmer for translation.
The rotator performs a prescribed sequence of motions that exploit the
hydrodynamic interaction between the spheres to produce net rotation.
The mechanism of Purcell’s rotator shares similarity with the conforma-
tional changes of some molecular motors undergoing ATP (adenosine
triphosphate) or photochemically driven rotational movements.”” >

These ingenious designs rely on knowledge of the surrounding
environment and the physics of locomotion within the environment,
which may not be complete or clear in more complex scenarios. In
particular, for biological applications, the properties of some highly
complex, heterogeneous biological environments may not be known a
priori, posing additional challenges on the design of effective self-
propelled micromachines. Recent approaches have exploited the
prowess of machine learning in the studies of different aspects of loco-
motion in fluids,”**’ including individual and collective motions of
fish™® " and birds,”** as well as different navigation” ** and cloak-
ing"® problems of self-propelled objects. In particular, an alternative
framework based on reinforcement learning has enabled a micro-
swimmer to learn effective locomotory gaits based on its interactions
with the surrounding low Reynolds number environment.”” Without
any prior knowledge of locomotion, such a “self-learning” micro-
swimmer is able to acquire a previously known propulsion strategy by
Najafi and Golestanian'” for net translation and adapt its locomotory
gaits in different media.

Similar in spirit, in this work, we employ a reinforcement learn-
ing approach to generate mechanical rotation at low Reynolds num-
bers. We adopt the mechanical configuration of Purcell’s rotator
shown in Fig. 1;”" however, instead of prescribing the locomotory gaits
of Purcell’s rotator, we allow the machine to progressively learn how
to exploit hydrodynamic interactions to produce net rotation via rein-
forcement learning on its own. We will examine the locomotion strate-
gies acquired by the learning process and consider more complex
scenarios when the number of spheres in the machine increases. The
paper is organized as follows: in Sec. I, we present the geometric setup
(Sec. IT'A) formulation of the hydrodynamic (Sec. IIB) and the rein-
forcement learning (Sec. I1 C) problems used in this work. We discuss
the results in Sec. III for a three-sphere rotator (Sec. III A) before

contract
032

FIG. 1. Schematic diagram and notations of a mechanical setup based on Purcell's
rotator by Dreyfus et al.”* The machine consists of three spheres of radius R con-
nected to the center P with connecting rods of length L. The spheres are connected
to the center of the circle P with connecting rods. (a) In its initial configuration, the
three spheres have equal angular spacing, 0, = 27/3. There exist active elements
that can contract the angle 0,4 or O3, by an amount ¢ or expand by the same
amount to return to the value 0. In (b), we illustrate the configuration of the
machine after it contracts the angle 03, which results in an overall change of the
angular centroid of the machine, 0 (indicated by the red dashed lines).
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extending the studies to configurations with a higher number of
spheres (Sec. 111 B). We conclude the investigation with some remarks
in Sec. I'V.

Il. FORMULATION
A. Geometric setup

We first illustrate the geometric setup using a three-sphere con-
figuration similar to Purcell’s rotator [Fig. 1(a)] before considering sys-
tems with an increased number of spheres. We place three spheres of
radius R on an imaginary circle of radius L. The spheres are individu-
ally connected to the center of the circle P with connecting rods.
Figure 1 shows an initial configuration with equal angular spacing
(0. = 21/3) between the spheres, where the angle between spheres 2
and 1 (0,;) and the angle between spheres 3 and 2 (03,) attain their
fully extended values (05; = 03, = 0,). There exist two internal active
elements that can contract 0, or 03, (referred to as active angles here)
by an amount ¢ [Fig. 1(b)] or expand an angle back to its fully
extended value 0,. The remaining angle between spheres 3 and 1 (0;3)
only reacts passively to the contraction and expansion. To measure the
net rotation of the machine, we define the angular centroid
0 = >_7 0;/3, which is the average of the angles of all spheres ; mea-
sured from the x-axis. The angular centroid of the initial configuration
shown in Fig. 1(a) is given by 0 = 2n/3, as indicated by the red
dashed line. Actuating (contracting or expanding) any of the active
angles will alter the angular centroid of the machine as illustrated in
Fig. 1(b). The goal of the machine is to generate net rotation (i.e., a net
increase in the angular centroid 0) in the anticlockwise direction by
choosing different actions of the active elements. Without requiring
prior knowledge of low Reynolds number locomotion, we will dem-
onstrate a reinforcement learning approach in achieving this goal.
We next present the formulation of the hydrodynamic problem in
Sec. 11 B and its integration with a reinforcement learning algorithm
in Sec. [1 C.

B. Low Reynolds number hydrodynamics

We consider the hydrodynamics governed by the Stokes equation
(Vp = uV?u, V - u = 0) in the low Reynolds number regime, where
p and u represent, respectively, the pressure and velocity fields. Here
we neglect the hydrodynamic influence of the connecting rods and
account for the leading-order hydrodynamic interaction between the
spheres in the fluid via the Oseen tensor'****® in the limit R/L < 1.
The forces F; and velocities V; of the spheres (i = 1, 2, 3) are related as

3
F; = ZHijVj7 1
=1
where
—6muR 1, if i=j,
= 3R P
Hi =9 6mur (1 ¥ Rl,Rij)7 if ], &)
4R;
and R; = |[r; — rj||, r; is the position of sphere i from the center P,

Rj = (r; — rj) /Ry, and I is the identity matrix. The torque about the
origin in the laboratory frame is given by I'; =D; x F; =D;
X Z;Zl H;;V;j, where D; is the position vector of each spheres in the
laboratory frame. Here we focus on pure rotation of the machine and
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thus fix its center P to the origin in the laboratory frame. If the center
is not kept fixed, the machine can undergo both translation and rota-
tion.”” The velocity of the spheres V; = L0; &y is therefore purely tan-
gential to the imaginary circle, where € is the unit vector tangent to
the circle. In the absence of an external torque, the system is torque-
free,

i=1

The machine is allowed to actuate any one of the active elements
in each step to contract or expand the angle at a rate . For instance,
in Fig. 1 from (a) to (b), the machine contracts the angle 03, by an
amount ¢ (i.e, 03 — 0, = —w) while maintaining the angle 0,, fixed
(i.e., 0, = 0;). Such action results in an overall change of the angular
centroid of the machine, 0 (indicated by the red dashed lines in
Fig. 1). These kinematic constraints close the system of equations,
which can be numerically solved to determine the rotational dynamics
of the machine for each action taken. We remark that the linearity and
time-independence of the Stokes equation lead to the property of rate
independence:”'" any translational or rotational displacement of the
machine resulting from its configurational changes (contraction/
expansion of active angles) does not depend on the rate of configura-
tional changes but only on the sequence of the changes. We, therefore,
follow Dreyfus et al.”” and assume a uniform rate of expansion and
contraction @ in this work. We also consider small actuation angles ¢
in order for the far-field hydrodynamic description to be valid.

C. Reinforcement learning

In this work, we define a stroke as an action between two config-
uration states, and a cycle as a sequence of strokes that starts and ends
with the same configuration state. The goal of the machine is to gener-
ate net rotation by performing an effective sequence of strokes. Instead
of prescribing the sequence of strokes in the conventional approach,
here we use a simple reinforcement learning algorithm to enable the
machine to acquire effective locomotion strategies by itself. Such an
approach does not rely on prior knowledge of locomotion but allows
the machine to learn and adapt its locomotion strategies based on its
experience interacting with the surroundings. Here we implement the
Q-learning algorithm for its simplicity and expressiveness compared
with other reinforcement learning algorithms."’

In a given learning step in Q-learning (for example, the nth step
in Fig. 2) the machine performs an action (a,, contracting or expand-
ing one of the active angles) taking the machine from the current con-
figuration state (s,) to the next state (s,1). The “success” of action a,,
is measured by reward r,, which is defined as the resulting difference
of the angular centroid (i.e., r, = 01 — 0,). The expected long-term
reward for taking the action a, given the state s, is quantified by the
Q-matrix, Q(sy,a,), which is an action-value function that encodes
the adaptive decision-making intelligence of the machine. After each
learning step, the Q-matrix evolves based on the experience gained by
the machine,

Q(Sl’lual’l) — Q(Sman) +o|ry, +7maXQ(5n+laan+1) - Q(5n7an)i|u

)
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FIG. 2. Mechanical rotation at low Reynolds numbers via reinforcement learning.
The goal of the machine is to generate net rotation by performing different configu-
rational changes. Instead of designing a sequence of locomotory gaits in advance,
here we leverage a simple reinforcement learning algorithm (Q-leamning) to enable
the machine to acquire an effective locomotion strategy based on its interaction
with the surroundings. In each learning step, the machine performs an action a,
(contracting or expanding on the active angles) to transform from one configuration
state s, to the next s,4. The reward r,, defined as the resulting difference of the
angular centroid (0,1 — 0,) measures the success of each action. The reinforce-
ment learning process progressively updates the Q-matrix, which encodes the
adaptive decision-making intelligence of the machine.*’

where o is the learning rate (0 < o < 1) that determines to what
extent new information overrides old information and therefore con-
trols the learning speed of the machine. Here we fixed « =1 to maxi-
mize the learning speed. The discount factor y (0 < y < 1) determines
the trade-off between immediate reward r, and maximum future
reward at the next state max,,,, Q(Syt1, @n+1). When y is small, the
machine is shortsighted and tends to maximize the immediate reward;
when 7 is large, the swimmer is farsighted and takes actions that maxi-
mize the long-term reward. In order to avoid the machine from being
trapped in locally optimal policies, we implemented an ¢-greedy selec-
tion scheme: In each learning step, the machine chooses the best action
recommended by the Q-matrix with a probability 1 — ¢ or takes a ran-
dom action with a small probability &, which allows the machine to
explore new solutions.

As a remark, the configuration states considered here correspond
to the shape space in the literature, which contains all possible shapes
of the machine without considering the positions and orientations of
the rotator.

Ill. RESULTS AND DISCUSSION
A. Three-sphere rotator

We first consider a three-sphere configuration in this section.
Instead of prescribing any sequence of strokes, we allow the rotator to
take an action based on the Q-matrix (Sec. II C) and use the resulting
reward to update the Q-matrix, informing the next action. We mea-
sure the net rotation of the machine AQ = 0,, — 0 by comparing the
angular centroid at the n-th learning step (0,,) with the initial angular
centroid (0,). Figure 3(a) shows a typical learning process of a three-
sphere rotator: the rotator takes the initial steps to explore the viscous
environment [Fig. 3(b)] without forming an effective rotational strat-
egy yet. As the machine learns from its interaction with the environ-
ment progressively, it eventually repeats the same sequence of cyclic
motions that produce net rotation in the anticlockwise direction
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FIG. 3. Reinforcement learning of a three-sphere (N = 3) rotator. (a) The net rotation of the machine, measured by the change of angular centroid A0, generated by a series
of actions at different learning steps n. (b) The rotator undergoes an initial learning stage by performing different actions to interact with the surrounding environment and learn
from the resulting rewards. (c) Via reinforcement learning, the machine eventually repeats a sequence of cyclic motions that produce net rotation in the anticlockwise direction.
The strategy acquired through reinforcement learning here coincides with that used for Purcell’'s rotator by Dreyfus et al.”* Inset in (a): the &-greedy scheme allows a small
probability ¢ for the machine to act against the Q-matrix and perform a random action for exploration. Here we set ¢ = n/6, y = 0.9, ¢ = 0.05, and R/L = 0.1. The rigid
body rotation illustrated in panels (b) and (c) is magnified by twenty times for better visualization of the rotational motion.

[Fig. 3(c)]. We note that the policy harvested by reinforcement learning
here coincides with the mechanism proposed by Dreyfus et al. for
Purcell’s rotator.”” As the analog of the self-learning swimmer that produ-
ces net translation,”” our example here demonstrates the first use of rein-
forcement learning to generate net mechanical rotation in a low Reynolds
number environment, without requiring prior knowledge of locomotion.

As a remark, even when the machine is informed by the Q-
matrix to repeat the same sequence of strokes after sufficient learning
steps [Fig. 3(a), inset], the use of the ¢-greedy selection scheme allows
a small but nonzero probability ¢ for the machine to act against the Q-
matrix and perform a random action for exploration. The sequence of
strokes is therefore sometimes interrupted with random actions as
shown in the inset. Such a mechanism avoids being trapped around
only locally optimal policies. For the three-sphere configuration, the
machine eventually returns to Purcell’s rotator sequence after the ran-
dom actions. We will examine the effect of the magnitude of ¢ with
more complex examples in Sec. [11 B.

B. N-sphere rotator

We next extend the analysis beyond the three-sphere configura-
tion. For a configuration with N spheres, the description of the hydro-
dynamic force and velocity via the Oseen tensor on sphere i can be
readily extended from Eq. (1) as F; = ZJIL H;;V;. Similarly, the
torque-free  condition now  reads Zil I';=0, where
I';=D; x Z]Iil H;V;. Similar to the case of three spheres, there are
N — 1 active elements that can contract or expand any one of the
angles between two neighboring spheres by an amount ¢, except for
the angle 0y, which only reacts passively to the contraction and
expansion of other angles. At each step, the Q-learning algorithm
informs one pair of neighboring spheres (e.g., the i and i+ 1 spheres)

to extend or contract their angle at a uniform rate w: 001 — 0,
= *wm, while keeping other angles fixed (ie, 0; =0; for j=1,
2,..,i—1and 0; =0, for j=i+2,i+3,...,N). The goal is to
learn effective strategies to generate net rotation based on the
machine’s interaction with the viscous environment.

We remark that as the number of sphere N in the machine
increases, the angle between the spheres in its initial (equally spaced)
configuration reduces accordingly as 6, = 27/N. This also limits the
angle of contraction (¢) allowed as the number of spheres increases in
the machine. In order for ¢ to not exceed the maximum angle between
the spheres (0), we set ¢ = 0,/4 = n/(2N) in our simulations for a
N-sphere system. In other words, the machine uses a fixed portion of
0, for contraction. The machine, hence, has a smaller angle of contrac-
tion as the number of sphere increases. We note that only a small por-
tion (1/4) of 0, is used for contraction here to ensure that the spheres
are sufficiently far apart for the hydrodynamic description via the
Oseen tensor to be valid (see Sec. 11 B).

When we have a larger number of spheres N in the machine, the
increased degree of freedom allows multiple effective strategies to
emerge. The policy identified by reinforcement learning largely
depends on different learning parameters, including the discount fac-
tor, the number of learning steps, and the value of ¢ in the ¢-greedy
scheme. We illustrate some general characteristics using a four-sphere
(N=4) configuration. Figure 4(a) shows that, for a fixed number of
learning steps, a four-sphere machine evolves different rotational poli-
cies depending on the value of ¢ in the ¢-greedy scheme. We can mea-
sure the performance of different policies by the angular displacement
per cycde (AOc) or the displacement per cycle per stroke
(AOg = ADc /Ns); the latter measure divides the angular displacement
per cycle by the number of strokes involved in the cycle, N, to account
for the difference in the number of strokes in individual policies.
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FIG. 4. Reinforcement learning of a four-sphere (N = 4) rotator. (a) The net rotation of the machine, measured by the change of angular centroid A0, generated by a series of
actions at different learning steps n. The value of ¢ in the e-greedy scheme affects the policies acquired by the machine at the end of the learning process. (b) With ¢ = 0.05,
the machine has learned four-stroke cyclic motion same as that in the three-sphere rotator [Fig. 3(b)] without utilizing the active angle 043. The angular displacement per cycle
Al¢ = 0.008; the angular displacement per cycle per stroke A0s = 0.002. (c) With ¢ = 0.1, the machine has learned an improved but suboptimal six-stroke cyclic motion
with Af¢ = 0.0161 and Afs = 0.0027. (d) With & = 0.2, the machine further improves the performance with another six-stroke cyclic motion with Af¢ = 0.0238 and
Als = 0.004. The motion involves a sequential contraction of all active angles 0;.1; from i=1 to i=3, followed by a sequential expansion of all active angles 0;.1; from
i=1to i=3. This policy, which consists of traveling waves of actuation propagating in the anticlockwise direction, represents an extension of the strategy in Purcell’'s rotator
to the case four spheres with all active angles utilized in the sequence. As a remark, the policy obtained with ¢ = 0.3 is the same as that with ¢ = 0.2; yet the more frequent
interruptions by the random actions with ¢ = 0.3 leads to a smaller net rotation overall compared with the case with ¢ = 0.2 as shown in (a). In these simulations,
¢ =m/8,»=0.9 and R/L = 0.1. The rigid body rotation illustrated in panels (b)-(d) is magnified by twenty times for better visualization of the rotational motion.

Similar to the case for translation,”” the value of ¢ in the ¢-greedy
scheme plays an important role in the learning process. When there is
not any exploration scheme (¢ =0) the machine frequently gets
trapped going back and forth between two states, resulting in recipro-
cal motion that does not yield net rotation.”” With a small
& =0.05 [blue line in Fig. 4(a)], the machine is able to identify an
effective but suboptimal policy for net rotation [Fig. 4(b)]; indeed the
four-stroke policy follows the same sequence of strokes as a three-
sphere Purcell’s rotator in Fig. 3(c), with the angle 0,3 not participating
in the gait at all (sphere 4 thus acts essentially like a passive cargo).
The angular displacement per cycle for this policy is given by
AO¢c = 0.008 and AOg = Aac/4 = 0.002 on a per stroke basis. As we
increase the exploration rate [¢ = 0.1, red line in Fig. 4(a)], the
machine learns an improved six-stroke policy [Fig. 4(c)] with larger
AO¢c = 0.0161 and AOg = Al¢/6 = 0.0027. For ¢ = 0.2 [green line
in Fig. 4(a)], the machine acquires another six-stroke policy as shown
in Fig. 4(d) with further improved AOc =0.0238 and
Abg = Al /6 = 0.004. This policy here consists of contraction of all
active angles in a sequential manner starting from 0,, in the anticlock-
wise direction, followed by expansion of all active angles again in a
sequential manner starting from 0,;. More generally, we define such
type of policies as traveling wave policies, which consist of a sequential

contraction of angles 0;;,; from i=1 to i = N — 1 followed by a
sequential expansion of angles 0,1 ; from i=1to i = N — 1, because
the sequence of action corresponds to propagation of traveling wave of
actuation in the anticlockwise direction. The sequential actuation of a
N-sphere system with a traveling wave policy is illustrated below,

0 — 03 — -+

= 01— -

— OnNa1 (5)
|

These traveling wave policies, therefore, consist of 2(N — 1)
strokes; indeed, the sequence of strokes in Purcell’s rotator (N=3) in
Fig. 3(c) and the N =4 policy in Fig. 4(d) are both traveling wave poli-
cies. As a remark, with an even higher exploration rate (¢ = 0.3), the
machine also learns the traveling wave policy [black line, Fig. 4(a)];
yet, the overall displacement of the angular centroid is less compared
with the case with & = 0.2 (green line) due to frequent interruptions
by the random actions at the higher value of ¢.

Next, we further increase the number of spheres in the system up
to N=9. Similar to the case of translation,”” the learning parameters
o, 7, and the number of learning steps affect the policy eventually
adopted by the machine. For a system with a large number of spheres
(e.g, N=9), a sufficiently large discount factor y and maximized
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learning rate o is generally required for effective performance (see the
supplementary material). Unless otherwise stated, we set =1 and
7 = 0.9 in the simulations. We examine the number of different poli-
cies obtained by reinforcement learning for systems with different
numbers of spheres, N. The policy eventually adopted by the machine
largely depends on the number of learning steps allowed. In Fig. 5(a),
we show the number of different policies adopted by the machine
when its rotation has reached a certain target angular displacement,
A@T, in different sample runs. For instance, when the machine is
allowed to learn up to a target angular displacement of A0 = 27 [top
panel, Fig. 4(a)], all trials for N=3 and N =4 machines converge to a
single policy—the traveling wave policy. However, increasingly more
policies emerge in the trials for machines with a larger number of
spheres. When more learning is allowed by increasing the target angu-
lar displacement to A0 = 507 [middle panel in Fig. 5(a)] more con-
figurations converge to the traveling wave policies (N=3 to N=6)
with lower number of policies appearing in the trials for N >7. Finally,
when sufficient amount of learning is allowed [e.g., A0 = 3507, bot-
tom panel in Fig. 5(a)], all configurations considered converge to a sin-
gle policy, namely, the traveling wave policy. These results
demonstrate that the larger the target angular displacement, the more
chance the machine can learn to converge to the traveling wave policy,
suggesting its optimality in generating net rotation at low Reynolds
number. We also note that the same trend applies to swimmers con-
sisting of linear chains of spheres for net translation:"” given sufficient
amount of learning, the swimmers with different numbers of spheres
all converge to the same type of traveling wave policy via reinforce-
ment learning.

In Fig. 5(b), we quantify the performance of the traveling wave
policy for different values of N in terms of the angular displacement
per cycle A and the angular displacement per cycle per stroke A0

(a) 20
10t

1..
20

Abr = 507
N, 10}

20 ———
Afp = 3507
10}
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(inset). As the number of sphere N increases, the traveling wave policy
generates more displacement per cycle A0c. Even though the number
of strokes in the traveling wave policy also increases as 2(N — 1)
machines with a higher number of spheres still produce a larger dis-
placement per cycle per stroke, Als=A0¢/2(N — 1), as shown in
the inset.

IV. CONCLUDING REMARKS

In this work, we demonstrate the first use of reinforcement learn-
ing to generate mechanical rotation at low Reynolds numbers. This
alternative approach diverges from the conventional way of prescrib-
ing a predefined sequence of strokes based on knowledge of locomo-
tion; instead, we exploit a simple reinforcement learning algorithm
(Q-learning) to enable a machine to identify effective rotational poli-
cies based on its interaction with the surroundings, without requiring
prior knowledge of locomotion. When the machine has the minimum
degrees of freedom for net rotation (N=3), it recovers the strategy
identified by Dreyfus et al. for Purcell’s rotator, which shares similarity
with the conformational changes of some molecular motors undergo-
ing ATP or photochemically driven rotational movements.”” ** For an
increased number of spheres (N >4), the machine is capable of identi-
fying multiple effective policies for net rotation, depending on different
learning parameters in the system. However, when sufficient learning
steps are allowed, the machine eventually evolves to a single policy—
the traveling wave policy. The traveling wave policy enables the
machine to generate net rotation by a sequential contraction (and then
expansion) of active angles in the machine. The sequence of strokes in
Purcell’s rotator is a special case of this family of traveling wave poli-
cies. As a remark, in this work, only one degree of freedom is allowed
to change in each learning step. More effective locomotion strategies
may emerge if multiple degrees of freedom are allowed to change in
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FIG. 5. Mechanical rotation of a N-sphere rotator via reinforcement learning. (a) The number of different policies N, adopted by a N-sphere rotator when the learning process
is stopped at different values of target angular displacement, A07, in 20 sample runs. For each run, the machine continues to learn until the net angular rotation A0, reaches
A07. With a relatively short learning process (A0 = 2r; top panel), the three-sphere and four-sphere rotators converge to a single policy in all runs (red bars), which corre-
spond to the traveling wave policies. For N> 4, the machine adopts a wider variety of different policies as N increases (blue bars). With a longer training process
(AO7 = 50m; middle panel), more rotators converge to the traveling wave policies at the end of the learning process (red bars) with a reduced number of policies for N > 7.
With a sufficiently long learning process (67 = 350; bottom panel) all rotators converge to the traveling wave policies. (b) Characterization of the performance of the traveling
wave policies of individual N-sphere rotators by the net angular displacement per cycle Afc and the net angular displacement per cycle per stroke (inset)
AOs = AOc/2(N — 1), where 2(N —1) is the number of strokes in the traveling wave policies. Both Afc and Afs increase with N. In these simulations,

¢ =m/(2N), 7 =09, ¢ = 0.15,and R/L = 0.1.
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each learning step. Our preliminary studies with the three-sphere
model have shown that the rotator still evolves to the same traveling
wave policy even if both angles are allowed to change in one learning
step, suggesting the optimality of the policy at least for the three-
sphere system. A more extensive study toward this direction would be
an interesting extension of this work. Finally, we also remark that the
change in the angular centroid is used as the reward in reinforcement
learning here based on the goal to maximize net rotation of the
machine. Rewards accounting for energy consumption due to different
actions may also be considered in future work for optimization based
on energetic considerations. Recent works have also suggested travel-
ing wavelike deformations to be energy-optimal strokes for
locomotion.' > **

The alternative approach in this work is particularly desirable
when a machine explores an environment with unknown properties
or when the knowledge of locomotion remains incomplete in more
complex environments. The approach based on reinforcement learn-
ing bypasses the challenging of designing locomotory gaits in advance
in these situations. As a proof of concept, we adopt a standard Q-
learning algorithm for its simplicity and expressiveness. There exists a
vast potential in the use of more advanced machine learning
approaches™ ** to improve the learning performance. Taken together,
this work combines with previous work on translation to lay the foun-
dation for the use of machine learning techniques in generating more
complex, three-dimensional maneuvers in future works.

SUPPLEMENTARY MATERIAL

See the supplementary material for illustrating the effect of other
learning parameters. Specifically, we illustrate that the effect of learn-
ing rate (o) and discount factor () become more apparent for systems
with an increased number of spheres. Based on these findings, we set
o= 1andy = 0.9 in the simulations presented in the main text.
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