Gulf and Caribbean Research

Volume 31 | Issue 1

2020

Nursery Exposure of Oyster Spat to Different Predators
Strengthens Oyster Shells

Melanie Ponce
Dauphin Island Sea Lab

Benjamin Belgrad
Dauphin Island Sea Lab, bbelgrad@disl.org

William Walton
Auburn University

Lee Smee
Dauphin Island Sea Lab, Ismee@disl.org

Follow this and additional works at: https://aquila.usm.edu/gcr

b Part of the Marine Biology Commons
To access the supplemental data associated with this article, CLICK HERE.

Recommended Citation

Ponce, M., B. Belgrad, W. Walton and L. Smee. 2020. Nursery Exposure of Oyster Spat to Different Predators Strengthens Oyster
Shells. Gulf and Caribbean Research 31 (1): SC36-SC40.

Retrieved from https://aquila.usm.edu/gcr/vol31/iss1/14

DOI: https://doi.org/10.18785/gcr.3101.14

This Short Communication is brought to you for free and open access by The Aquila Digital Community. It has been
accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For
more information, please contact Joshua.Cromwell@usm.edu.


https://aquila.usm.edu/gcr
https://aquila.usm.edu/gcr/vol31
https://aquila.usm.edu/gcr/vol31/iss1
https://aquila.usm.edu/gcr?utm_source=aquila.usm.edu%2Fgcr%2Fvol31%2Fiss1%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1126?utm_source=aquila.usm.edu%2Fgcr%2Fvol31%2Fiss1%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/gcr/vol31/iss1/14
https://doi.org/10.18785/gcr.3101.14
mailto:Joshua.Cromwell@usm.edu

GULF AND CARIBBEAN

R E S E A R C H

Volume 31

2020
ISSN: 2572-1410

ﬁ Published by
THE UNIVERSITY OF

T SOUTHERN MISSISS

GULF COAST RESEARCH LA RATORY
Ocean Springs, Mississippi

—a
—a




Gulf and Caribbean Research Vol 31, SC36-SC40, 2020
DOI: 10.18785/gcr.3101.14

Manuscript received September 14, 2020; accepted October 20, 2020

SHORT COMMUNICATION

NURSERY EXPOSURE OF OYSTER SPAT TO DIFFERENT PREDATORS

STRENGTHENS OYSTER SHELLS?
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INTRODUCTION

Inducible defenses are common in many organisms and
allow potential prey to balance reducing predation risk with
critical life history processes such as growth and reproduction
(Kats and Dill 1998, Cronin 2001, Weissburg et al. 2014). Bi-
valves are preyed upon by a suite of predators and many can
modify their behaviors (e.g., feeding or burrowing, Smee and
Weissburg 2006, Flynn and Smee 2010) or morphology (e.g.,
shell size or shape, Leonard et al. 1999, Nakaoka 2000, Scher-
er et al. 2016) to reduce predation risk. For example, reduced
feeding can help hard clams (Mercenaria mercenaria) avoid
detection by potential predators (Smee and Weissburg 2006)
while soft—shell clams (Mya arenaria) burrow deeper when
green crabs (Carcinus maenas) are nearby, making it harder for
crabs to capture them (Flynn and Smee 2010). Morphologi-
cal changes include shell strengthening by the Eastern oyster
(Crassostrea virginica) (Lord and Whitlatch 2012, Robinson et
al. 2014) and increasing both shell thickness and byssal thread
production by blue mussels (Mytilus edulis; Leonard et al. 1999).

Eastern oysters, hereafter referred to as oysters, are ecologi-
cally and economically important, providing a host of benefits
such as shoreline protection, water filtration, and habitat cre-
ation (Grabowski and Peterson 2007). Additionally, oysters are
an important commercial fishery and are a critical part of the
economy and culture of local communities surrounding the
Gulf of Mexico (GOM; Posadas 2017). Yet, oyster reefs are one
of the most degraded marine habitats, with ~85% of oyster
habitats lost worldwide (Beck et al. 2011). The GOM has expe-
rienced significant declines in the oyster fishery accompanied
by loss of benefits oysters provide (zu Ermgassen et al. 2013),
and there is considerable interest in restoring oysters to recover
these ecological, economic, and cultural benefits. However, it
is not uncommon for reef restoration efforts to fail (Mann and
Powell 2007, La Peyre et al. 2014) as predators are a common
source of mortality in juvenile oysters (Bisker and Castagna
1987), and yearly age—specific mortality rates can exceed 70%
in some locations (Mann and Powell 2007). The purpose of
this study was to ascertain if oyster susceptibility to predation

could be decreased by artificially inducing defenses while in an
aquaculture production facility.

Opysters are known to increase shell hardness in response to
blue crab (Callinectes sapidus) and mud crab (Panopeus herbstii)
exudates (Newell et al. 2007, Robinson et al. 2014, Scherer
et al. 2016, Scherer and Smee 2017), which makes them less
susceptible to mud crab predators (Robinson et al. 2014).
However, it is not well understood which predators induce the
strongest defense in flow—through systems or how these de-
fenses improve survival among different predators (Combs et
al. 2019). Here, we tested oyster morphological responses to ex-
udates from oyster drills (Stramonita haemastoma), a species be-
lieved by farmers to be the predominant predator of oysters in
the northern GOM (Grice and Walton 2017), and compared
their response to blue crab exudates when raised in a nurs-
ery. Then, oysters were used in laboratory feeding assays with
both blue crabs and oyster drills to determine how changes in
shell characteristics influenced survival among these different
predators. Oysters exposed to exudates from both oyster drills
and blue crabs produced stronger shells than those in controls
without predator exudates. Oysters from control treatments
were consumed more often than those reared with predators,
indicating that shell induction effectively reduces predation
risk from both oyster drill and crab predators.

MATERIALS AND METHODS

Nursery rearing

Opyster larvae were allowed to settle onto 2.5 cm x 2.5 cm
granite tiles at the Auburn University Shellfish Laboratory on
Dauphin Island, AL in May 2020. Following settlement and
metamorphosis into spat, oysters were placed into a flow—
through unfiltered seawater system at the Dauphin Island Sea
Lab which pumped water directly from Mobile Bay and main-
tained natural abiotic water conditions. Oyster spat were ex-
posed to predation risk from either oyster drills, blue crabs, or
a control of no predators in 12 flow through mesocosms (2.0
m diameter, water depth = 0.4 m) with water flow ~20 L/min.
Within each tank, oyster spat were held in 5 plastic cages (64
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x 23 x 14 cm), and each cage contained 65 tiles with oyster spat
(325 tiles per tank, 4,380 total tiles). The number of oyster spat
per tile varied greatly from 0-50, and we elected to maintain
this variation to mimic natural settlement and reef restoration
practices. Cages were suspended above the substrate to reduce
sediment build—up. Tanks were drained daily, and oysters
rinsed to remove sediment. Four tanks contained adult blue
crabs (6 crabs per tank in 3 cages that partitioned individuals
apart), 4 tanks contained oyster drills, (30 per tank, caged in 3
groups of 10), and 4 control tanks without predators. Predator
cages were distributed evenly along the tank edges. Crabs and
oyster drills were fed recently shucked oyster tissue 3 times per
week (6, ~5.0 cm oysters were used per tank). Crabs and oyster
drills were replaced during the experiment as needed due to
mortality. Oyster cages were rotated daily within their respec-
tive tank to prevent tank placement artifacts.

Shell morphology measurements

After 4 weeks, 2 tiles from each cage were haphazardly select-
ed and 2 oysters from each tile were measured (4 oyster spat/
cage, 20 oysters/tank; 80 oysters/cue treatment). At this size,
oysters are roughly round, and shell diameter was measured to
the nearest hundredth of a mm using digital calipers from the
umbo to the outer shell edge. We then quantified the force
needed to break each oyster shell using a penetrometer (Kis-
tler force sensor 9203 and a Kistler charge amplifier 5995). A
small blunt probe was placed centrally to be equidistant from
the shell edges and perpendicular to shell surface. Gentle and
consist pressure was applied until the shell cracked, and the
maximum force (N) needed to break the shell recorded, which
is a standard proxy for shell hardness (Robinson et al. 2014).
Because larger individuals have a stronger shell as a byproduct
of their size, we divided shell crushing force by shell diameter
to produce a size—standardized metric of shell strength (i.e.,
standardized crushing force). Care was taken to avoid measur-
ing oysters surrounded by cohorts to ensure shell growth or
shape was not limited by space.

We compared standardized oyster shell strength among
those grown with blue crabs, oyster drills, and controls using
ANOVA with predator treatment as a fixed factor and tank as
a random factor. Tukey’s multiple comparison test was used to
determine pairwise differences in shell strength. Oyster shell
length was analyzed similarly. All statistical analyses were con-
ducted in R version 4.0.0 (R Core Development Team 2020).

Predator choice experiment

To ascertain if oyster shell changes were effective at reducing
predation risk, we also performed laboratory feeding assays us-
ing oyster drills and blue crabs, 2 common predators of newly
settled oysters in Alabama. We thinned oysters so that 10 spat
were present on each tile. Feeding assays consisted of 3 oyster
tiles, each containing 10 oyster spat, from each of the predator
treatments (blue crab exposed, oyster drill exposed, control).
Tiles were placed in a plastic bucket measuring 20 cm diameter
and containing 2L of ambient seawater to a depth of 7 cm (30
spat total/bucket). Ten buckets received either a single oyster
drill (size [mean * sd] = 3.2 + 0.5 cm), a single juvenile blue crab

(5.1 £ 1.5 cm), or no predator to control for mortality due to
environmental stress (30 buckets). Predators were starved for 48
h prior to commencing the experiment to standardize hunger
levels (Hill and Weissburg 2013). The number of oysters alive
was checked daily between 0830 - 1030 and between 1630 -
1830 for one week. A second experimental trial was completed
using the same setup immediately after the conclusion of the
first. All predators were only used once.

We performed a mixed—effects Cox proportional hazards
model (i.e., survival analysis) to test whether oyster survival
was governed by the fixed—effects predator species presence
and cue exposure treatment. Holding bucket nested in experi-
mental trial were treated as mixed—effects to account for non—
independence among oysters exposed to the same individual
predator.

ResuLts AND DiscussioN

Opyster spat shells were significantly harder when reared with
predators compared to those grown in control tanks without
predators (F,, = 14.81, p = 0.001, Figure 1A), consistent with
previous findings (Robinson et al. 2014). Additionally, oyster
spat were 15% larger in blue crab treatments than controls

while those exposed to oyster drills were 5% larger than con-
trols (F, y= 3.75, p = 0.065, Figure 1B). Shell hardness of oysters
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FIGURE 1. Oyster spat shell characteristics when reared with either blue
crabs, oyster drills, or no predators (control). A. Mean + se oyster shell
hardness standardized by shell diameter (N/mm). B. Mean + se shell di-
ameter (mm). Letters denote significant pairwise differences from Tukey’s
post-hoc tests (n = 80, p < 0.05).
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was not significantly affected by the specific predator species
used to provide cues.

In feeding assays, 573 (out of 1,200) oysters died when
predators were present, while only 7 (out of 600) oysters died
in control containers with no predators (coef = 4.41, Z,y 45,5 =
6.20, p <0.001, Figure 2), indicating that predators were active-
ly consuming oysters and that oyster mortality was caused by
predators. There was not a significant difference in consump-
tion rate between the 2 predator species (coef = 0.57, Z,; 4575 =
1.17, p = 0.240). Throughout the experiment, prior exposure
to either blue crab or oyster drill predator cues significantly
increased oyster survival compared to controls with no prior
predator exposure (coef = —0.90, Z,, 45,5 = —7.88, p < 0.00%;
coef = —0.89, Z 45,5 = —8.05, p < 0.001, respectively). Spat
exposed to blue crab cues had 58% higher survival than spat
with no prior cue exposure while oyster drill cues increased
spat survival by 39% over controls. However, the survival ben-
efits provided by these 2 cue sources were not significantly dif-
ferent at the conclusion of the experiment (coef = —0.26, Z,,
475 = —1.34, p = 0.180; Figure 2A,B). The interaction between
predator species present and prior cue exposure treatment
was above alpha = 0.05 but likely ecologically relevant (coef
= 0.46, Z1o, 4515 1.83, p = 0.067). Survival benefits from prior
cue exposure were 12% greater for spat when in the presence
of blue crabs than when oyster drills were present. During the
first 72 h, the predator cue source which provided the greatest
increase in survival for oysters corresponded to the predator
currently consuming the oysters, but this trend did not last for
the duration of the experiment (Figure 2A,B). This trend likely
did not persist because predators were becoming limited in
their prey options in this enclosed system. Field experiments

are needed to test how prior cue exposure affects survival to
a natural suite of predators. Further, we cannot ascertain if
the increase in survival was due to predators handling oysters

and then being able to consume the weaker, control oysters
or if predators could determine these differences outright and
selected the control oysters. Additional experiments are also
needed to tease out the survival mechanism(s).

Avoiding being consumed is critical for prey survival, and
prey may adjust their behavior or morphology to reduce preda-
tion risk (Preisser et al. 2005, Weissburg et al. 2014, Scherer
and Smee 2016). Yet, responding to predators, while necessary,
can incur costs of lower growth and fecundity for prey (Re-
lyea 2002, Miner et al. 2005). To minimize predator avoidance
costs, many organisms use chemical cues to evaluate predation
risk, and then limit responses to predators when risk of being
consumed is high (Preisser et al. 2005, Weissburg et al. 2014,
Scherer and Smee 2016). A growing body of literature suggests
that while costly, changing morphology to deter predators can
effectively increase survival (Smee and Weissburg 2006, Flynn
and Smee 2010, Robinson et al. 2014). Our results indicate
that oysters responded to both blue crabs and oyster drills,
2 common predators in the GOM, and increased their shell
hardness to successfully deter both predators.

Opyster restoration is critical for reestablishing oyster reef
habitat, and remote setting of spat—on—shell is often used for
reef restoration and enhancement. Yet, many oyster restora-
tions fail (La Peyre et al. 2014), in part due to high predation
from crabs and oyster drills. Our findings may be useful for
improving reef restoration efforts by modifying nursery tech-
niques to produce stronger, tougher oysters that are more
predator resistant. Within 4 weeks, oysters were harder and
less susceptible to 2 common predators. Thus, using predator
cues in hatcheries may increase the efficiency of restoration ef-
forts by enabling more oysters to reach adulthood. Additional
studies are needed to explore the feasibility of this technique
and determine if changes in oyster morphology are similarly
effective in enhancing survival in the field.
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