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ABSTRACT
There is intense and widespread interest in developing monoclonal antibodies as therapeutic agents to 
treat diverse human disorders. During early-stage antibody discovery, hundreds to thousands of lead 
candidates are identified, and those that lack optimal physical and chemical properties must be dese-
lected as early as possible to avoid problems later in drug development. It is particularly challenging to 
characterize such properties for large numbers of candidates with the low antibody quantities, concen-
trations, and purities that are available at the discovery stage, and to predict concentrated antibody 
properties (e.g., solubility, viscosity) required for efficient formulation, delivery, and efficacy. Here we 
review key recent advances in developing and implementing high-throughput methods for identifying 
antibodies with desirable in vitro and in vivo properties, including favorable antibody stability, specificity, 
solubility, pharmacokinetics, and immunogenicity profiles, that together encompass overall drug devel-
opability. In particular, we highlight impressive recent progress in developing computational methods for 
improving rational antibody design and prediction of drug-like behaviors that hold great promise for 
reducing the amount of required experimentation. We also discuss outstanding challenges that will need 
to be addressed in the future to fully realize the great potential of using such analysis for minimizing 
development times and improving the success rate of antibody candidates in the clinic.
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Introduction

While antibodies have long been considered to be promising 
therapeutics, this promise has only been realized in the clinic in 
the past few decades.1–5 During this time, monoclonal antibodies 
(mAbs) have garnered widespread attention as therapeutics due 
to their many favorable properties that confer high bioactivity 
via their high affinities, specificities and, in some cases, potent 
effector functions. In the clinic, mAbs have shown efficacy for 
neutralizing pathogens, inactivating endogenous molecules, and 
modulating the immune system. mAbs have also succeeded as 
therapeutics because of their favorable safety profiles, including 
low immunogenicity for human or humanized antibodies as well 
as low toxicities.6,7 Another key reason for the success of anti-
body therapeutics is their favorable developability properties, 
including typically high solubilities, low aggregation propensi-
ties, low viscosities, and slow clearance rates.8,9

Nevertheless, most antibody lead candidates identified using 
either in vivo or in vitro discovery methods are not immediately 
suitable for therapeutic use and require additional protein engi-
neering to increase affinity or specificity, reduce immunogeni-
city, and/or reduce physical and chemical liabilities.10,11 This 
optimization process is difficult and expensive, and it is compli-
cated by common trade-offs between important properties due 
to their highly interrelated nature.12,13 One particularly notable 
challenge that further complicates this process is the inability to 
measure many key antibody developability properties until later 

stages of the development process when sufficient amounts of 
high-purity antibody are available for evaluation. This delayed 
diagnosis of issues related to antibody developability greatly 
reduces the success and throughput of generating drug-like 
antibodies with increased likelihood of success in the clinic.

Therefore, there is substantial interest in developing meth-
ods to predict or measure antibody developability properties 
much earlier in the development process, and particularly 
during the discovery stage (Figure 1). This review focuses on 
advances in this area, prioritizing advances in computational 
prediction and rational design of antibodies and antibody 
mutants with drug-like properties, as well as the high-through-
put experimental identification of antibodies with such proper-
ties. We focus on the latest advances and outstanding 
challenges related to predicting and screening antibody proper-
ties that are of particular importance to the generation of drug- 
like antibodies, including antibody folding stability, self-asso-
ciation, off-target binding, solubility, aggregation, pharmaco-
kinetics (PK), and immunogenicity.

Folding stability

High conformational (folding) stability is vital for antibody 
therapeutics to maintain their conformational integrity during 
diverse manufacturing, formulation, and physiological 
conditions.14–16 Antibody unfolding can result in the loss of 
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protein activity and formation of protein aggregates that can be 
immunogenic or even toxic.17,18 In general, antibodies are 
highly stable, and there are well-established experimental 
methods for high-throughput screening and selection of stable 
drug candidates during early stage evaluation of large panels or 
libraries of natural and synthetic antibodies.19,20 However, 
these initial lead candidates often require further optimization 
of other properties such as affinity or immunogenicity, which 
can result in a significant loss of folding stability due to the 
intrinsic trade-offs between such biophysical properties.12,13 

Conventional trial-and-error approaches for re-engineering 
unstable antibodies often have low success rates and require 
multiple rounds of the time- and resource-intensive produc-
tion, purification, and experimental evaluation of soluble pro-
tein variants. Therefore, the development of novel 
methodologies for the rational design of stable antibodies is 
vital, especially for  affinity maturation and humanization 
applications given the potential of these methods to promote 
antibody destabilization.

Conventional strategies for affinity maturation have focused 
primarily on the mutation of surface residues, often those 
within or adjacent to the antigen-binding site.21–23 However, 
a recent study demonstrated the utility of mutagenizing sites in 
the VH/VL interface for improving antibody affinity and 
stability.24 The study identified a cluster of eight residues at 
the VH/VL interface of an anti-lysozyme single-chain variable 
fragment (scFv) that were tolerant to mutations via a deep 

mutational scan. The VH/VL interfacial area is known to med-
iate antibody assembly and can have a large impact on the 
flexibility of the variable region, conformation of the binding 
loops, and packing efficiency of the two domains. Therefore, it 
was hypothesized that optimization of the interface could sig-
nificantly enhance multiple antibody properties. The scFv was 
re-engineered with mutations introduced at all eight sites, and 
the resulting variant was found to have greatly improved affi-
nity and folding stability, indicating promise for this method of 
antibody optimization.

To remove the need for experimental deep mutational 
scans, a computational approach was used to identify favorable 
mutations at the VH/VL interface.24 Changes in the native-state 
energy (ΔΔG) for each of the 19 possible amino acid substitu-
tions for all residues located at the VH/VL interface were 
calculated. This information was combined with an evolution-
ary conservation score (position-specific scoring matrix 
(PSSM)) that represents the site-specific frequencies of each 
amino acid in natural antibodies to inform selection of multi-
ple mutations that are predicted to cooperatively enhance anti-
body properties. This approach, named AbLIFT, was then fully 
automated and made available via a web server for accessible 
and widespread use. AbLIFT was validated by successfully 
predicting affinity- and stability-enhancing mutations for two 
additional antibodies. Calculations for all combinations of the 
predicted mutations were modeled in Rosetta and ranked 
based on their energies. Several of the best predicted antibody 

Figure 1. The development process for antibody therapeutics is being improved by early assessment of antibody developability using emerging high-throughput 
experimental and computational methods. The development pipeline for antibody therapeutics is limited by the difficulty in assessing key biophysical properties at the 
antibody discovery and protein engineering stages to identify drug-like antibodies with increased likelihood of success in the clinic. These experimental limitations stem 
from extremely limited quantities of high-quality (purified) protein available for analysis, especially at the stage of antibody discovery. This has motivated recent 
advances in high-throughput experimental methods that are compatible with extremely dilute antibody solutions, as well as computational methods for evaluating 
antibody properties and designing antibody variants with improved properties. These advances stand to substantially improve the development of efficacious 
therapeutic antibodies. Each developability property is highlighted at one or more stages at which it is typically evaluated.
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variants were produced as soluble scFvs and experimentally 
evaluated, with many demonstrating improved behavior for 
both affinity and stability. These improvements also persisted 
after reformatting the scFvs into IgGs. These successes demon-
strate the power of AbLIFT toward guiding the rational design 
of antibody variants with improved biophysical properties. 
Nevertheless, this approach can also be computationally 
demanding, requiring thousands of CPU hours, which may 
limit its widespread application. Regardless, this approach 
could be used to improve the rational affinity maturation of 
antibodies while maintaining high folding stability.

Similar to affinity maturation, the process of humanization, 
a requisite for reducing the immunogenicity of antibodies 
discovered via animal immunization, often results in reduced 
folding stability.25,26 Humanization presents a key challenge by 
requiring major perturbations to the antibody structure while 
seeking to maintain other functional and biophysical proper-
ties such as affinity and stability. This is a difficult task that is 
further complicated by low-throughput methods for repetitive 
antibody cloning, expression, purification, and evaluation. To 
address this challenge, a computational approach was devel-
oped that requires only antibody homology models for pre-
dicting humanizing mutations that maintain folding stability. 
This approach, Computationally Driven Antibody 
Humanization (CoDAH), is an algorithm that uses structural 

energy information from homology models to identify huma-
nizing mutations that minimally affect folding stability. 
CoDAH uses a human string content (HSC) score, based on 
the number of times a nine amino acid scanning window 
matches perfectly with the analogous region of the most similar 
human germline antibody, for an evaluation of humanness. 
Pareto optimization of the humanness score and homology 
model-derived structural energies facilitates identification of 
humanizing mutations that are predicted to maintain folding 
stability. When applied to a murine (anti-tumor antigen) anti-
body, CoDAH was successful at predicting sets of humanizing 
mutations for antibodies that retained both binding affinity 
and stability. In contrast, a variant of the antibody humanized 
with a more conventional approach of grafting complementar-
ity-determining regions (CDRs) failed to express, likely due to 
poor stability. Further validation came from evaluation of 
CoDAH-guided humanization of cetuximab (Figure 2).27 In 
this study, CoDAH-informed designs were successful in huma-
nizing the parental murine antibody while maintaining high 
stability. Although several mutation sites overlapped between 
the two methods (Figure 2a), CoDAH designs consistently 
outperformed CDR grafting, achieving humanization while 
maintaining rotomeric and thermal stability (Figure 2b, c). In 
addition, CoDAH designs better maintained affinity while 
CDR grafted designs often exhibited dramatic losses in affinity 

Figure 2. Computational design methods for minimizing stability trade-offs during antibody humanization. (a) A novel computational design method (CoDAH) for 
humanizing antibodies was used to predict humanizing mutations (green) for a murine antibody that otherwise would not be mutated using traditional CDR grafting 
humanizing designs (purple), as well as additional mutations common to both methods (blue). (b) Both traditional CDR grafting and CoDAH humanization results in 
antibodies with improved humanness, but the CoDAH designs also maintain, and even improve, rotomeric stability. (c) CoDAH designs also generally exhibit similar or 
improved thermal stability. (d) Both humanization methods result in antibody variants with similar affinity as the parental antibody, although several CDR grafting 
designs display reduced affinity. The figure is adapted with permission from a previous publication.27
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binding (Figure 2d), demonstrating the usefulness of this com-
putational method for informing the rational design of huma-
nized antibody candidates.

In addition to rational protein design, direct prediction of 
folding stability also holds great promise, especially through 
the use of machine learning algorithms. Of particular impor-
tance are artificial neural networks (ANNs), which are adept at 
recognizing patterns within highly non-linear data. ANNs are a 
collection of connected artificial neurons that receive inputs 
and produce outputs based on weights associated with each 
neuron. During the training process, penalties accrued from 
inaccurate predictions are backpropagated to update the 
weights and improve the accuracies of the predictions. This 
allows neural networks to efficiently converge on accurate 
models, making them extremely valuable. However, neural 
networks are also prone to overfitting, which can limit their 
ability to predict accurate values for new data. This limitation 
has plagued the biopharmaceutical field due to the limited 
quantity and diversity of available data.

The problem of overfitting was addressed in recent work by 
simplifying protein features and the structure of an ANN for 
the prediction of antibody biophysical properties indicative of 
folding stability at various formulation conditions.28 To reduce 
collinearity of features and overfitting of the algorithm, only 
the count of each amino acid in the antibody sequence and the 
solution conditions of the viscosity measurements were used as 
features. The algorithm was then constructed with just five 
nodes in a single layer. The simplicity of the algorithm facil-
itates knowledge transfer from the fitting process, as the final 
weights of the nodes could be used to identify the amino acids 
and formulation conditions that contribute most to the pre-
diction of the biophysical properties. Fifteen ANNs were 
trained on 144 data points (six IgGs at eight pH conditions 
with three salt concentrations) with cross-validation using a 
‘leave-two-proteins-out’ method. Prediction of melting tem-
peratures was highly accurate, with only one model having 
test accuracy less than 85%, while predictions of aggregation 
onset temperatures and diffusion interaction parameters (kD) 
were more variable with lower average test accuracies (~80%), 
which may be partially due to data imbalance. Knowledge 
transfer methods revealed that formulation conditions were 
important features for the prediction of all three biophysical 
properties, indicating the importance of choosing antibody 
formulations with care. However, this result could be heavily 
influenced by the greater diversity in formulation conditions 
(24) than antibody variants (six) in this study. As larger and 
more comprehensive datasets become available, these simpli-
fied neural net approaches should be revisited as they may 
generate even more accurate predictions of antibody folding 
stability.

Antibody self- and nonspecific interactions

Antibody colloidal interactions are also important indicators of 
developability and drug-like behavior. It was recently found 
that measurements of two colloidal properties, self-association 
and nonspecific interactions, could statistically discriminate 
between approved antibody therapeutics and those antibodies 
that either failed or were still in clinical development.29 These 

important colloidal interactions are commonly associated with 
two different aspects of drug developability, namely in vitro 
antibody formulation behavior (solubility, viscosity, and 
opalescence)30,31 and in vivo antibody bioavailability (PK).32,33

Therapeutic antibodies are formulated at variable concen-
trations (~1-200 mg/mL) dictated by the route of administra-
tion; high antibody concentrations (>50-100 mg/mL) are a 
common requirement for subcutaneous or intraocular 
applications.31,34,35 Self-association under these conditions 
can result in the formation of reversible entangled networks, 
facilitated by the bivalent nature of antibodies, that can result 
in highly viscoelastic solutions that are challenging to manu-
facture and administer.36,37 While desirable viscosity profiles 
are vital to the success of antibody therapeutics, they are 
extremely challenging to assess during early stage antibody 
development due to very limited quantities and concentrations 
of purified antibody that are incompatible with the require-
ments for viscosity measurements. To address this limitation, 
studies have sought to evaluate antibody self-association at 
lower antibody concentrations (<10 mg/mL) to identify either 
antibody variants or formulation conditions that minimize 
attractive antibody self-interactions and the corresponding 
viscous behaviors when antibodies are formulated at high 
concentration (>100 mg/mL).38–43

One notable recent study demonstrated the value of measur-
ing colloidal self-association at lower antibody concentrations 
to identify antibody variants with favorable solution properties 
at high formulation concentrations (~150 mg/mL).43 At such 
high concentrations, the investigators found that a diverse set of 
59 antibodies displayed variable solution properties, as some 
mAbs solutions became viscous (>30 cP) while others 
became opalescent (>12 NTU). Interestingly, the behaviors 
seemed to be exclusive, with no mAbs exhibiting both 
behaviors. Moreover, the investigators found that the diffusion 
interaction parameter (kD), which measures colloidal self-inter-
actions and hydrodynamic interactions, was the best single pre-
dictor of high-concentration solution behaviors (viscosity and 
opalescence). Positive values or slightly negative values of kD 
generally reflect repulsive antibody self-interactions, while more 
negative values generally reflect attractive antibody self- 
interactions.42–45 Impressively, a kD cutoff of >+20 mL/g could 
identify poorly behaved antibodies (viscosity >30 cP or opales-
cence >12 NTU at pH 6 and 10 mM histidine) with 95% 
accuracy. This result suggests that strong, long-range electro-
static repulsive interactions govern favorable solution properties 
at high antibody concentrations typical of formulation condi-
tions (pH 6 and 10 mM histidine). Comparison of kD with 
several experimental and calculated descriptors revealed that 
antibody isoelectric point (pI) and net charge displayed the 
highest positive correlations, further demonstrating the key 
role of repulsive electrostatic interactions in high-concentration 
antibody solution behavior. While this study substantially 
advances our understanding of mediators of colloidal solution 
behaviors, a limitation is that it is not possible to perform 
measurements of the diffusion interaction parameter during 
the early-stage discovery of antibody candidates due to the 
requirements for relatively high-protein concentrations (1– 
10 mg/mL). Therefore, this study highlights the need for meth-
ods for measuring the diffusion interaction parameter or 
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surrogates thereof at much lower antibody concentrations 
(<0.1 mg/mL).

One promising approach to address this need for these low- 
concentration measurements is affinity-capture self-interaction 
nanoparticle spectroscopy (AC-SINS),46–48 which uses gold 
nanoparticles that display shifts in their plasmon wavelength 
due to interactions between the particles. Anti-human capture 
antibodies are first adsorbed onto the particles, which are then 
stabilized by thiolated polyethylene glycol. These conjugates are 
then used to capture human mAbs. The immunogold conjugates 
interact according to the degree of self-association exhibited by 
the immobilized mAbs, as judged by shifts in the plasmon 
wavelengths. These measurements have been shown to correlate 
with other experimental measurements, such as diffusion inter-
action parameters, solubilities, and viscosities.47,49,50 

Nevertheless, it is challenging to perform AC-SINS measure-
ments at typical formulation conditions (low ionic strength 
solutions at pH 5–6) due to the low stability of the conjugates 
at such conditions. Therefore, future work should focus on 
further refining the AC-SINS method and evaluating its ability 
to robustly identify antibody variants with desirable viscosity 
properties in concentrated antibody formulations.

These and other limitations of early-stage experimental 
analysis of antibodies highlight the need for computational 
methods for predicting these properties. Recent advances in 
the rational design of proteins with decreased levels of self- 
association have involved identifying self-association motifs 
and hotspots via computational methodologies.49,51–53 Local 
electrostatic and hydrophobic interactions, amplified by mole-
cular crowding in highly concentrated solutions, have often 
been implicated in antibodies that display high self-association 
and viscosity.54–57 In-depth investigations of individual anti-
bodies have provided some insight into possible mechanisms 
of self-association, and can help to inform their computational 
identification and motivate rational protein design. For exam-
ple, the presence and distribution of charged residues in the 
antigen-binding site have been implicated in the unacceptably 
high viscosity of a well-studied antibody (omalizumab).56,58,59 

It has been shown that disruption of patches of negatively and 
positively charged residues decreases charge asymmetry and 
reduces viscosity.51,56,60 This is theorized to result from 
reduced attraction between oppositely charged patches, which 
is especially important at low ionic strength conditions and 
formulation pHs near the antibody pI.56,61

However, the complexities of how attractive antibody self- 
interactions promote high antibody viscosity go well beyond 
electrostatic interactions. This was elegantly demonstrated for 
a highly associative antibody exhibiting abnormally high visc-
osity at antibody concentrations as low as 10 mg/mL.62 In 
particular, the investigators evaluated the role of hydrophobic 
residues in antibody variable regions on self-association. They 
designed several charged and non-charged point mutations 
based on self-association hotspots identified by hydrogen-deu-
terium exchange (HDX)63 and computational analysis.62 

Experimental evaluation showed that decreased number of 
hydrophobic residues in the variable domains reduced hydro-
phobicity and self-association both directly due to solvent- 
exposed mutations and indirectly due to buried mutations 
that presumably altered protein conformation. Additional 

experimental and computational modeling analysis revealed 
that two distinct hydrophobic patches – one in VH and the 
other in VL – together mediated self-association. Disruption of 
either hydrophobic patch with a single mutation resulted in an 
approximate four-fold reduction of viscosity, revealing the 
significant impact of subtle changes in antibody CDR compo-
sition on antibody viscosity. A notable limitation of this study 
is that the viscosity-reducing mutations also significantly 
reduced affinity by one to two orders of magnitude, which is 
consistent with other reports of trade-offs between antibody 
affinity and multiple biophysical properties.12,13,64–68

A recent bioinformatics study of >100 clinical-stage mAbs 
highlighted the potential importance of hydrophobic residues 
in antibody CDRs in mediating self-association and nonspeci-
fic binding.69 The use of phage display as a discovery technol-
ogy has been linked to the production of antibodies with 
suboptimal biophysical properties relative to those produced 
by the immune system due to reduced quality control during in 
vitro selection relative to in vivo generation.29,70–72 In particu-
lar, it was posited that antibodies discovered via phage display 
generally contain elevated levels of hydrophobic residues in the 
CDRs. Interestingly, the authors found that particular CDRs in 
the heavy chain (HCDR2 and HCDR3) and light chain 
(LCDR3) contained increased levels of aliphatic residues for 
antibodies generated using phage display. These results may 
explain, at least in part, why the phage display-derived anti-
bodies have higher average levels of self-association relative to 
the immunization-derived antibodies.29 More generally, these 
and other results suggest that the presence of hydrophobic and 
charged patches in antigen-binding sites are important to con-
sider during the design of antibody mutants with reduced self- 
association, but their relative importance is highly specific to 
the individual molecule. In addition, self-association motifs are 
often key mediators of antigen binding, indicating that simply 
eliminating charged and/or hydrophobic residues is insuffi-
cient for the robust design of optimized antibody variants.73

While rational design and computational methods can be 
used to inform selections of mutations that may reduce self- 
association and viscosity of particular antibodies with abnor-
mal properties, it is much more difficult to predict the risk of 
new antibodies for displaying abnormally high levels of self- 
association and/or viscosity based only on their sequences and 
corresponding predicted three-dimensional structures. This is 
particularly important during early-stage discovery when the 
large numbers of variants limit the feasibility of extensive 
experimentation. Therefore, in silico predictors of antibodies 
with increased risk for abnormally high viscosity have been 
developed that only require antibody sequences or, in some 
cases, predicted structures.74,75 One such method, referred to 
as the Sharma method, is based on the hypothesis that electro-
static and hydrophobic interactions dominate antibody viscoe-
lastic behavior.74 In particular, the authors evaluated three 
sequence-based properties of antibody variable regions, 
namely the Fv net charge (pH 5.5), the product of the net 
charges of VH and VL (charge symmetry at pH 5.5), and a 
measure of the hydrophobicity of antibody CDRs and other 
regions within the Fv (hydrophobicity index). They found that 
viscosity is correlated with the Fv net charge (r of −0.8) and 
charge symmetry (r of −0.8) for a panel of 14 mAbs. This 
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suggests that charge repulsion reduces viscosity and charge 
asymmetry (e.g., oppositely charged variable regions) increases 
viscosity, which is consistent with other findings.56 The corre-
lation of viscosity with hydrophobicity was weaker (r of 0.6), 
which suggests that electrostatic interactions are generally 
more important than hydrophobic interactions in mediating 
abnormally high viscosity, although exceptions have been 
observed.51,62 Principal component regression of these three 
parameters resulted in a linear equation for calculating anti-
body viscosities at 180 mg/mL (pH 5.5 and 200 mM arginine- 
HCl) that are strongly correlated with experimental viscosity 
measurements for the set of 14 antibodies (r of 0.9).

The findings of the Sharma study74 have since been 
expanded upon in a second computational approach to visc-
osity prediction based on molecular features such as antibody 
negative charge and charge asymmetry.76 In this method, 
homology models are used to calculate a spatial charge map 
(SCM) of the antibody variable region surface. An SCM score is 
calculated for each atom in the variable regions by summing 
partial charges for all atoms of amino acid side chains that are 
solvent exposed and predicted to be located within 10 Å. An 
SCM score is calculated for the variable regions via the absolute 
value of the sum of all negative atom SCM scores, fundamen-
tally representing the negatively charged and exposed surface 
area in the variable regions. High variable region SCM scores 
are considered high risk for viscosity issues, although an exact 
SCM cutoff was not reported. This method was used to cor-
rectly identify five high viscosity antibodies from a 19 antibody 
dataset. However, three independent SCM cutoffs were chosen 
to correctly classify subgroups of antibodies from different 
companies. While demonstrating validation of features such 
as negative charge and charge asymmetry as important culprits 
of suboptimal antibody viscoelastic behavior, future work 
should address the need for more general cutoffs to accurately 
classify viscous antibodies using this method.

A related method for predicting antibody viscosity, 
referred to as the Tomar method, was developed to predict 
concentration-dependent antibody viscosity values instead 
of viscosities at a single antibody concentration.75 This 
method is based on the observation that the exponential 
concentration dependence of solution viscosity can be lin-
earized as [ln (normalized viscosity) = lnA+B*(mAb con-
centration)], and that the coefficient A is relatively constant 
while the coefficient B is variable for different antibodies. 
Coefficient A represents the theoretical relative viscosity at 
infinite dilution and was modeled by the average fit value 
for 16 experimentally measured viscosity curves. Coefficient 
B represents the exponential dependence of viscosity on 
antibody concentration. Interestingly, the investigators 
developed an equation for the coefficient B that was a linear 
combination of eight structure-based parameters, including 
charge (VH, VL and hinge net charge at pH 5.8) and 
hydrophobicity (IgG hydrophobic surface area). The struc-
ture-based parameters were obtained through full-length 
homology models of the antibodies, eliminating the need 
for crystal structures. The final model demonstrated good 
performance for predicting the measured viscosity curves of 
16 antibodies (p-value < 0.05).

A more recent study highlighted key challenges in developing 
methods that are generally applicable for predicting antibody 
viscosity.77 In hopes of remedying unacceptably high viscosity 
(>20 cP for mAb concentrations > 80 mg/mL) for an antibody 
specific for platelet-derived growth factor (PDGF), the investi-
gators performed two iterative rounds of structure-guided muta-
genesis and property evaluation (Figure 3). In the first round, a 
highly accurate homology model was used to identify potentially 
beneficial mutations that would not reduce affinity, focusing on 
reducing the number of negatively charged residues or patches 
in the Fv region without introducing rare residues (based on 
natural human diversity) at conserved framework positions 
(Figure 3a). Sharma74 and Tomar75 viscosity scores were also 
calculated for selected combinations of mutations and only those 
with improved scores were produced and evaluated. Of the 18 
mutants that were tested experimentally, two had a common 
mutation in light chain CDR2 and showed modestly improved 
viscoelastic behavior. However, the most improved variant with 
this beneficial mutation was found to have low chemical stability, 
which was improved by altering the lambda germline to produce 
the Round 2 parental antibody (Figure 3b). The new parental 
variant was taken into a second round of optimization, but due 
to this low rate of success in the first round, design constraints 
were relaxed and mutations were biased toward those disrupting 
negatively charged patches in VH and VL (near the beneficial 
mutation in light chain CDR2 from round 1) without reducing 
the predicted affinity. Of the 22 variants produced and evaluated 
following the second round of design, two variants displayed the 
desired viscosity properties (<20 cP at 150 mg/mL mAb) and 
could be formulated at >150 mg/mL. These variants also dis-
played similar affinities (KD of ~100-300 pM) as wild type (KD of 
95 pM). It is also particularly interesting that several similar 
types of charged mutations, which resulted in similar increases 
in antibody positive charge or reduction in negative charge, 
failed to alter the viscosity (Figure 3c). This underscores the 
surprisingly specific nature of protein–protein interactions that 
mediate antibody viscosity and raises concerns about the pre-
dictive power of methods that only consider general antibody 
properties (e.g., VL charge). Indeed, the investigators showed 
that multiple previous methods, including the Sharma and 
Tomar methods, had only modest ability to predict the relatively 
large differences in viscosity for closely related antibody variants 
in this study. This highlights both substantial challenges and 
opportunities for improving antibody viscosity predictions, 
which are critical for improving early-stage antibody develop-
ability analysis.

In addition to antibody self-association and the resulting 
viscoelastic behaviors, nonspecific interactions can signifi-
cantly affect the developability and in vivo efficacy of antibody 
therapeutics. High levels of nonspecific interactions have been 
shown to correlate with abnormally high clearance rates, and 
such interactions significantly impact drug distribution within 
the body and can reduce bioavailability as well as therapeutic 
efficacy.78–80 Additionally, antibody off-target binding 
decreases the opportunity for binding to the therapeutic target, 
which can reduce efficacy and potentially induce adverse 
effects. As observed for antibody self-association, investiga-
tions of antibody polyreactivity have revealed that these 
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undesirable off-target interactions also are mediated by hydro-
phobic and electrostatic interactions.81–84

To identify developability issues that could give rise to 
detrimental antibody properties, including self- and non-
specific interactions, the Therapeutic Antibody Profiler 
(TAP) was developed to easily analyze antibody sequence 
data and evaluate levels of risk relative to other clinical- 
stage therapeutics.85 TAP uses five features that describe 
properties of antibodies linked to nonspecific interactions 
(electrostatics82–84), self-interactions (charge asymmetry-
56,81), aggregation (hydrophobicity86,87), and antigen bind-
ing (CDR loop length88). The five TAP features identified 
were: (1) total CDR loop length; (2) surface hydrophobicity 
near the CDRs; (3) patches of positive charge near the 
CDRs; (4) patches of negative charges near the CDRs; and 
(5) variable region charge asymmetry. The thresholds were 
set by evaluating current clinical-stage antibodies with the 
assumption that candidates in Phase 2 and 3 clinical trials 
generally possess favorable properties. Antibodies predicted 
to be at high risk for developability issues are those with 
property values outside the ranges observed for the clinical- 
stage antibodies, while antibodies with moderate risk are 
those with properties that are within, but near the extremes 
of, the ranges observed for the clinical-stage antibodies. 
This approach is simple and fast, which makes it a logical 

first step in assessing potential developability risks for anti-
body therapeutics.

More recently, methods were reported that predict the rela-
tive risk for abnormal levels of nonspecific and self-interactions 
based on antibody variable region sequences and predicted 
site-specific solvent accessibilities.53 The investigators found 
that over enrichment of specific types of positively charged 
(e.g., Arg) and non-charged (e.g., Gln, Tyr and Pro) residues 
and underrepresentation of specific types of negatively charged 
(e.g., Asp) and non-charged (e.g., Asn) residues, especially in 
the CDRs, was linked to increased risk for self-association and 
nonspecific binding. By combining 12 chemical rules that limit 
the minimum and maximum number of solvent-exposed resi-
dues in antibody CDRs and variable domains, the investiga-
tors were able to flag most clinical-stage antibodies (78%) with 
the highest levels of nonspecific and self-interactions while 
flagging few antibodies (8%) with the lowest levels of nonspe-
cific and self-interactions. Interestingly, this methodology was 
also used to guide the re-engineering of a clinical-stage anti-
body (emibetuzumab) with high levels of nonspecific and self- 
interactions. The investigators identified key CDR sites pre-
dicted to mediate nonspecific and self interactions, diversified 
them with combinations of mutations predicted to increase 
antibody specificity, sorted the resulting libraries for low levels 
of nonspecific binding using yeast surface display, and 

Figure 3. Evaluation of mutations that reduce viscosity at high antibody concentrations. (a) The impact of Fv mutations that modify antibody charge on viscosity was 
systematically evaluated to test the role of charge-related properties in mediating viscous antibody behavior. Systematic alteration of Fv charge in an anti-PDGF 
antibody rarely resulted in reduced viscosity, even when predicted to reduce viscosity by multiple conventional scoring methods. (b) Antibody variants with modest 
reductions in viscosity achieved in Round 1 (green) were further optimized in Round 2 through mutagenesis of negatively charged patches in the variable regions, which 
produced two antibody mutants that could be concentrated above 150 mg/mL while maintaining low viscosity (<20 cP). (c) Fv charge partially but incompletely 
describes the viscosity behavior, demonstrating the complicated relationship between antibody viscosity and charge properties. The figure is adapted with permission 
from a previous publication.77
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performed deep sequencing of large panels of selected antibo-
dies. Encouragingly, the selected antibody variants with sig-
nificant reductions in nonspecific binding were well described 
by the chemical rules, as the experimentally selected variants 
with high specificity showed reduced numbers of violations of 
the chemical rules. Moreover, all of the best sets of mutations 
that reduced antibody nonspecific binding resulted in the 
introduction of at least one negatively charged CDR residue, 
suggesting that moderate levels of negatively charged residues 
in the CDRs can be beneficial for specificity. However, abnor-
mally high levels of negative charge in antibody CDRs, which 
are rarely observed in clinical-stage antibodies,53 can result in 
elevated levels of self-association, leading to high viscosity and 
nonspecific interactions.56,58,59

Other powerful approaches to predict antibody nonspecific 
interactions have also been reported. A recent model was 
developed for the prediction of cross-interaction chromatogra-
phy (CIC) retention times from antibody primary sequence.89 

CIC is an experimental method, first reported for characteriza-
tion of globular proteins and then applied to antibodies,90–92 

that measures the interaction of proteins of interest (e.g., 
mAbs) with a second protein (e.g., a second mAb) or protein 
mixture (e.g., polyclonal antibody mixture) immobilized on 
chromatography column matrices. Antibodies with high levels 
of nonspecific interactions have been shown to associate with 
immobilized human polyclonal antibodies and display long 
retention times relative to those with low levels of nonspecific 
interactions.90 Nonspecific interaction measurements obtained 
using this approach have been shown to correlate with aggre-
gation propensity, solubility, and in vivo clearance rates.90,93 A 
quantitative structure–activity relationship (QSAR) model was 
developed using multiple types of sequence-based descriptors 
for the prediction of cross-interaction measurements using 
data from 46 humanized IgG1s. Antibody sequences were 
aligned and descriptors were generated using multiple compu-
tational programs (eMBOSS, Pepstat and ProtDCal) in addi-
tion to three amino acid scales (Z-scale, T-scale, and MS- 
WHIM). The best resulting model was found to use descriptors 
calculated from the running sum of a 13-amino acid scanning 
window and displayed high correlation when evaluated on a 
hold-out test set of antibodies (R2 of 0.99 and RMSE of 0.13). 
These findings support previous work demonstrating the 
importance of localized hydrophobic and charged patches 
resulting from the clustering of multiple residues that mediate 
undesirable antibody interactions.67,74,94,95 While the use of 
homology modeling has previously been shown to enable the 
discovery of such nonspecific interaction patches,76 these find-
ings demonstrate that they can also be effectively represented 
using only primary amino acid sequences. Therefore, this 
computational method can be used to analyze extremely large 
sets of antibodies for which structural modeling would be too 
computationally intensive, especially if such models are trained 
on larger and more diverse antibody datasets in the future.

Antibody aggregation and solubility

Antibody solubility and aggregation propensity are also key 
concerns during therapeutic development, especially during 
drug manufacturing and storage.96 Formation of high molecular 

weight species is particularly concerning due to the potential 
ability of aggregates to elicit immunogenic responses in patients 
that can lead to accelerated clearance and pose serious safety 
concerns.97,98 While there are well-established analytical meth-
ods like size-exclusion chromatography (SEC) and dynamic light 
scattering for characterizing existing aggregates, there is still a 
great need for high-throughput screening methods for evaluat-
ing the aggregation potential of large numbers of antibodies 
available at the low concentrations, quantities and purities avail-
able during early-stage discovery and development.

A number of innovative experimental methods have been 
reported for identifying aggregation-prone antibodies. For 
example, a high-throughput protein conformational array 
based on Luminex multiplexing technology has been reported 
for investigating antibody aggregation. 99 In this assay, an array 
of 34 polyclonal antibodies that bind unique and typically 
buried epitopes in the antibody framework are immobilized 
on beads doped with unique combinations of dyes. The array is 
used to bind mAbs of interest under various conditions. 
Binding events are analyzed through detection of the dyes on 
beads, representing both reversible and irreversible unfolding 
of specific antibody regions that can associate to form aggre-
gates. The assay was successfully applied to the identification of 
aggregation-prone antibody regions, thus enabling targeted 
antibody engineering. Additionally, this assay also was used 
to detect antibody aggregation for the myriad of possible solu-
tion conditions (buffer type, pH, temperature, and ionic 
strength) that antibodies are subjected to during manufactur-
ing, storage, and administration. The high-throughput nature 
of this assay was demonstrated to be amenable to screening 
multiple formulation conditions and could also be easily 
adapted for parallel screening of the unfolding and aggregation 
behaviors of panels of early-stage lead candidates in standard 
manufacturing and formulation conditions. In addition, only 
small quantities (~0.01 mg) of antibody at relatively dilute 
concentrations (~0.1 mg/mL) are required for this assay.

For evaluation of native antibody aggregation, the tri-
partite TEM β-lactamase enzyme assay was adapted to link 
aggregation to E. coli cell growth.100 For this assay, scFvs 
were inserted between two domains of the β-lactamase 
enzyme. Expression of the resulting tripartite fusion protein 
resulted in antibiotic resistance if the scFv remained soluble 
and did not disrupt folding of the enzyme. It was found 
that antibiotic resistance, measured via cell growth, was 
inversely correlated with scFv aggregation propensity, as 
measured by SEC and AC-SINS. This assay is also compa-
tible with antibody library screening, making it a high- 
throughput deselection tool for aggregation-prone antibo-
dies. However, the assay appears to primarily deselect anti-
bodies prone to native aggregation, which does not address 
aggregation induced by chemical or thermal stresses com-
mon in antibody production and manufacturing processes. 
Nevertheless, these and other important findings99,101,102 

have made it easier to experimentally evaluate antibody 
aggregation at early stages of antibody drug discovery for 
larger numbers of candidates (>100-1000 mAbs).

In addition, the rational design of antibodies with increased 
resistance to aggregation has been extensively addressed in 
recent years using various computational methods, which 
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reduces the need for extensive experimentation.89,103–106 New 
algorithms for predicting aggregation-prone regions have been 
developed and existing methods have been significantly 
improved. For example, a recent combination of older tools 
for predicting aggregation-prone regions (TANGO and FoldX) 
resulted in the development of a new algorithm, Solubis, which 
has improved prediction accuracy due to the addition of struc-
tural information for distinguishing between surface exposed 
and buried aggregation-prone regions.104,105,107,108 Solubis uses 
the ability of TANGO to predict aggregation-prone regions 
that are at risk of β-strand amyloid aggregation in peptides 
and proteins103 based on biophysical parameters such as 
hydrophobicity, charge, and β-strand propensity. TANGO pre-
dictions of aggregation-prone regions are then combined with 
calculations of local free energies of folding stability (ΔGcontrib) 
assuming that aggregation-prone regions are only at risk for 
promoting aggregation if they are located in unstable regions.

Solubis was validated for the prediction of aggregation hot-
spots in an aggregation-prone antibody (Figure 4).107 Two 
critical aggregation hotspots were identified in the CDRs, one 
in light chain CDR2 (L2) and one in heavy chain CDR3 (H3) 
(Figure 4a, b). Changes in aggregation propensity and stability 
were calculated for mutations at each residue located in the 
wild-type aggregation-prone regions. Mutations predicted to 
disrupt aggregation as well as enhance local stability without 

disturbing the protein globally were selected for production 
and evaluation (Figure 4c). Several mutations for both CDRs 
were found to be beneficial, resulting in further reduction of 
aggregation when combined. The variants engineered with 
mutations that disrupt aggregation hotspots identified by 
Solubis generally displayed increased aggregation temperatures 
that approached the corresponding melting temperatures 
(Figure 4d), as well as other improved biophysical properties 
such as increased monomer content and expression titers. 
However, the variants with the greatest reduction in aggrega-
tion also demonstrated a total loss of antigen binding, exem-
plifying the difficulties of co-optimizing multiple antibody 
properties. Considering both antibody aggregation propensity 
and affinity, the best variant showed modest improvement in 
aggregation temperature, maintenance of antigen binding, and 
dramatically increased expression titer. Overall, this study 
demonstrates the power of combining structural features, 
including those obtained from homology models, and 
TANGO predictions of aggregation-prone regions for improv-
ing the design and selection of aggregation-resistant 
antibodies.

In addition to Solubis, another powerful method has been 
developed for calculating the relative aggregation propensity of 
proteins in terms of a spatial aggregation propensity (SAP) 
score.106 This approach predicts aggregation hotspots by 

Figure 4. A computational method (Solubis) for predicting and remediating antibody aggregation hotspots. (a) Solubis identified two aggregation hotspots in an anti- 
VEGF antibody (PDB: 2FJF), namely one in light chain CDR2 (L2; blue) and one in heavy chain CDR3 (H3; green). (b) The two regions (circled in red) were predicted to be 
aggregation prone (high TANGO Score) and unstable (less negative free energy of folding). (c) Mutations in both CDRs L2 and H3 that were predicted to reduce 
aggregation (reduced TANGO Score) and improve folding stability (larger negative change in the free energy of folding) were selected to be evaluated. (d) Experimental 
evaluation of the antibody mutants revealed increased resistance to aggregation, as judged by increased aggregation temperatures that approached the antibody 
melting temperatures, particularly for variants with mutations in both CDRs. The figure is adapted with permission from a previous publication.107
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summing hydrophobicities of amino acids (weighted by sol-
vent accessibility) within a defined radius of residues to calcu-
late SAP scores for specific protein regions. High SAP scores 
indicate high risk for aggregation, which can be used to identify 
optimal regions for targeted mutagenesis. Recently, SAP was 
used to rationally design a biobetter of bevacizumab, an anti- 
vascular endothelial growth factor antibody used in the treat-
ment of cancer and macular degeneration.109 This mAb is 
aggregation prone, which limits the concentration of its ther-
apeutic formulation and requires particular care during admin-
istration to avoid aggregation events. For these reasons, it is 
attractive to develop biobetter versions of this antibody. The 
high aggregation propensity of bevacizumab was addressed 
through SAP analysis, leading to the identification of ten 
high-risk residues in the antigen-binding fragment. Six of 
those residues were mutated in a rational protein design 
scheme, avoiding proline as well as residues in the antigen- 
binding site. Most of these selected residues were mutated to 
lysine to disrupt a hydrophobic patch predicted to mediate 
antibody aggregation. Encouragingly, all of the variants dis-
played reduced aggregation during accelerated stability stu-
dies and increased folding stability without reducing binding 
affinity. Bevacizumab variants were also generated by intro-
ducing glycosylation sites to disrupt four aggregation hot-
spots identified by SAP. The glycovariants displayed lower 
levels of aggregation, although they did not have improved 
folding stability as observed for the lysine variants. Overall, 
this study further validates the ability of SAP analysis to 
successfully guide the efficient rational design of aggrega-
tion-resistant mAbs.

Despite the power of rational design methods, most current 
approaches require antibody structural information in the 
form of crystal structures or homology models. This limits 
the throughput of such computational methods and their 
application to screening aggregation propensities of large num-
bers of early-stage mAb candidates. One approach developed 
to address this problem combines high-throughput experimen-
tal assays and machine learning methods to predict aggregation 
propensites using only antibody primary sequences.86 This 
approach uses an aggregation screening assay in an ELISA- 
based format. In this method, the capture and detection anti-
bodies are the same, preventing detection antibodies from 
binding to captured proteins unless multiple, higher-order 
species of the target protein are bound simultaneously. 
Importantly, this assay is well correlated with SEC results. 
The high-throughput nature of this assay enabled the genera-
tion of an aggregation dataset with >450 antibodies represent-
ing high sequence and structural diversity.

Next, machine learning models were developed to predict 
the measured antibody aggregation behavior based only on 
antibody sequence information.86 These models used QSAR 
features extracted from antibody primary sequences, which 
consisted of several amino acid characteristics summed over a 
seven amino acid sliding window. These features were used to 
predict binary classification of aggregation behavior deter-
mined by a set threshold for the ELISA aggregation assay. It 
was found that specific machine learning methods (e.g., 
AdaBoost algorithm) performed best and achieved 75–78% 
accuracy (area under the curve of 0.76). Furthermore, the 

model outperformed a structure-based method 
(Developability Index) that combines SAP scores and antibody 
net charge for a set of 45 antibodies (84% accuracy for the 
machine learning models versus 53% accuracy for the 
Developability Index method).87 These experimental and com-
putational results show promise for the generation of large data 
sets and the prediction of aggregation propensites, especially at 
early stages of antibody drug development.

In addition to low aggregation propensity, high antibody 
solubility is also vital to meet formulation and manufacturing 
requirements. For many routes of administration (e.g., subcu-
taneous and intraocular), therapeutic antibodies must be solu-
ble enough to be formulated at high concentrations (>100 mg/ 
mL) in order to deliver sufficiently large doses with limited 
injection volume and frequency to ensure patient compliance 
and comfort. In addition, therapeutics must remain soluble at 
high antibody concentrations during the various processing 
steps encountered during the manufacturing process that can 
promote protein precipitation. To further complicate matters, 
hydrophobic and charged residues in the CDRs that are often 
implicated in reduced solubility are typically important for 
affinity and cannot be easily altered without loss of antigen 
binding. Therefore, it is important to develop computational 
tools that can efficiently guide the rational design of highly 
soluble antibodies as well as predict the solubility behavior of 
antibodies.

One such approach (CamSol) was developed to computa-
tionally screen potential antibody (and other protein) variants 
and select mutations predicted to enhance solubility while 
maintaining binding affinity and folding stability.110 The algo-
rithm calculates an intrinsic solubility profile from the protein 
sequence using a linear combination of physicochemical 
descriptors for each residue while considering the nature of 
neighboring residues. This solubility profile is then further 
corrected using structural information to account for solvent 
accessibility. Additional incorporation of structural informa-
tion allows the deprioritization of residues predicted to be 
insoluble that are critical for proper folding, thus minimizing 
potential effects on folding stability. After identification of 
promising residues, the intrinsic solubility profiles are used to 
rapidly evaluate and rank all possible substitutions and inser-
tions at the identified sites. When applied to a single-domain 
(VH) antibody, all seven of the CamSol-designed variants dis-
played increased solubility in a manner well correlated with the 
calculated solubility scores (R2 = 0.98). Notably, this was also 
accomplished without significantly affecting antigen-binding 
activity. CamSol has additionally been demonstrated to accu-
rately predict the solubility of an IgG and eight of its mutants 
isolated during affinity maturation using phage display.111 

After removal of an outlier antibody, the calculated solu-
bility scores correlated well with experimental solubility 
measurements (Pearson correlation coefficients of 0.93– 
0.97). Despite the limited number and diversity of anti-
bodies used to validate CamSol, the results to date show 
promise for computational evaluation of antibody solubi-
lity. Moreover, the minimal computational expense of 
CamSol enables rapid and efficient analysis of large anti-
body panels for selecting leads or designing improved 
antibody variants.

e1895540-10 E. K. MAKOWSKI ET AL.



In addition to CamSol, several machine learning models 
that predict protein solubility have been developed, most of 
which were trained on a dataset compiled from the Protein 
expression purification and crystallization Data Base (PepcDB) 
and Protein Data Bank (PDB).112–115 This dataset consists of 
>82,000 proteins classified as ‘soluble’ or ‘insoluble’, although 
the classifications are determined by the databases using unde-
fined criteria, resulting in uncertainty regarding the extent of 
solubilities for the proteins in the database. This is particularly 
problematic when attempting to predict solubility at extremely 
high concentrations. Despite this shortcoming, the dataset is 
quite extensive and provides an excellent opportunity to apply 
machine learning techniques for classifying protein solubilities 
and the elucidation of factors that mediate protein solubility. 
One of the developed algorithms, PaRSnIP (Protein Solubility 
Predictor), is a gradient boosting machine learning algorithm 
trained on a subset of this dataset (~70,000 after removing 
sequences with high sequence similarity) for solubility classifi-
cation and feature extraction.114 The algorithm is a nonlinear 
ensemble of regression trees trained on over 8,000 protein 
features with the final model achieving a test accuracy of 0.87 
and a Matthews correlation coefficient of 0.74. Feature extrac-
tion additionally revealed that the features related to the frac-
tion of highly solvent exposure residues (>65%) and the 
frequency of specific tripeptide combinations (particularly 
IHH) were the best predictors of poor protein solubility. A 
similar solubility predictor, DeepSol, was recently developed by 
training a convolutional neural network on the same dataset 
and achieved comparable classification accuracy and 
Matthew’s correlation coefficient relative to PaRSnIP on an 
independent test set.113 Both models performed better than 
the previous state-of-the-art prediction algorithm, PROSO II, 
a support vector machine trained on the same dataset.112

The same dataset was used in the development of another 
machine learning-based tool for predicting protein solubility, 
named SKADE.115 SKADE is a neural network designed with 
neural attention architecture that enables highly accurate clas-
sification of solubility behavior and identification of features 
important for classification with more transparency than tradi-
tional neural networks. It also facilitates the identification of 
promising mutagenesis sites for the improvement of solubility 
behavior, making it particularly attractive for antibody appli-
cations. SKADE is composed of two neural network branches 
that both consist of two layers of bidirectional Gated Recurrent 
Networks (GRUs). The final layer of the networks use 
LeakyReLU to learn residue-specific solubility contributions 
or SoftMax to learn region-specific solubility contributions as 
the activation functions for the prediction and attention 
branches, respectively. The primary protein sequence is fed 
into the algorithm, translated into a 20-dimensional embed-
ding that represents the 20 amino acids, and passed to both 
branches for analysis by the GRU layers. The outputs from 
both branches are tensors that are combined to generate a final 
scalar prediction. The algorithm was then trained on the pro-
tein dataset and tested on an independent test set with 2,000 
sequences. SKADE performed comparably or slightly worse 
than DeepSol113 and PaRSnIP114 in predicting protein solubi-
lity and worse than CamSol110 in predicting the impact of 
mutations on solubility. However, SKADE is only trained on 

sequence data, and therefore can be applied more broadly than 
the other algorithms. Additionally, SKADE was able to predict 
β-sheet aggregation in a similar manner as tools developed 
specifically to predict β-sheet aggregation, demonstrating 
enhanced generalizability. Additional analysis of the neural 
attention architecture revealed that protein termini were by 
far the most important regions for solubility classification, and 
therefore are good targets for protein engineering to improve 
solubility. While methodologies may be used for enhanced 
rational design of antibody therapeutics, the algorithms have 
yet to be validated on antibodies.

Another important aspect of the solubility of antibody ther-
apeutics was addressed by the development of the algorithm 
SODA.116 SODA is an algorithm designed to predict the 
change in solubility upon mutation. The algorithm uses a 
linear combination of amyloid structure aggregation energy 
(PASTA), ESpritz disorder propensity, negative Kyte– 
Doolittle hydrophobicity profile, α-helix structure propensity, 
and β-sheet structure propensity. Coefficients for the linear 
regression model were trained on a dataset of 443 amino acid 
substitutions in 71 proteins.117 The model predicted solubility 
decreases with higher accuracy than solubility increases, which 
was hypothesized to be a result of the strong contribution of 
aggregation propensity descriptors to the predictions. The 
algorithm also performed comparably to CamSol110 and 
PROSO II.112 A web server was developed to automate predic-
tions of solubility changes for various protein mutations. 
Implementation of the web server was demonstrated, but not 
experimentally validated, on a human germline antibody. 
While these methods show great promise, there is still much 
work needed to extend them to diverse types of antibodies and 
to apply them to address problems specific to the field of anti-
body development.

Antibody pharmacokinetics

PK properties strongly influence the therapeutic efficacy of a 
drug by determining its residence time in the body and ability 
to reach desired targets. While mAbs are well known for having 
relatively long half-lives, there are several reported examples of 
abnormally fast antibody clearance,80,82,118 which may necessi-
tate more frequent dosing. This is inconvenient and undesir-
able for patients and can reduce compliance. Fast clearance 
rates may even prevent efficient drug extravasation and dis-
tribution, thereby reducing bioavailability and target binding. 
Antibody clearance rates are known to be influenced by anti-
body charge, hydrophobicity, glycosylation, and receptor bind-
ing, all of which affect nonspecific and target-mediated 
clearance.119–121 PK profiles are important to evaluate during 
drug development, but are also prohibitively slow and costly to 
directly measure during early-stage development due to the 
large required amount of drug product. Animal models are also 
complicated, and in some cases, incompatible with the human 
mAbs of interest. Additionally, even the most advanced in vivo 
models may not translate well to humans due to shortcomings 
in allometric scaling and discrepancies between animal and 
human physiology. Efficient methods of in vitro experimenta-
tion and computational modeling are needed for evaluation of 
PK properties early in drug development but suffer from many 
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of the same issues as in vivo analysis, such as low throughput 
and poor translation to humans. Recent advances in experi-
mental methods have addressed these challenges with some 
success,120–122 enabling the generation of larger datasets for the 
eventual development of predictive computational tools.

Antibody Fc interaction with the neonatal receptor (FcRn) 
has been studied in depth due to its involvement in antibody 
recycling and transcytosis pathways and influence on antibody 
clearance.123 Antibodies that are internalized into cells non-
specifically can bind to FcRn in a pH-dependent manner in 
endosomes and be released back into solution to avoid degra-
dation. Failure to efficiently bind or release FcRn can accelerate 
clearance.124,125 Transcytosis assays have been developed that 
measure the pH-dependent transport of antibodies across a 
thin layer of Madin–Darby canine kidney (MDCK) cells engi-
neered to express human FcRn. These assays have been used to 
measure differences in FcRn binding between antibodies with 
engineered and non-engineered Fc regions.126 While the trans-
cytosis measurements of antibody Fc variants correlate well 
with their PK profiles, measurements of antibodies with a wide 
range of antibody Fc regions have not shown similar agree-
ment. An improved assay has been developed using stably 
transfected MDCK cells and the evaluation of transcytosis in 
more physiologically relevant conditions (Figure 5a).121 The 
assay is conducted in media containing bovine serum albumin, 
which is also recycled by FcRn, but has a poorly understood 
influence on the binding of antibodies.127 Additionally, condi-
tions were altered such that antibody uptake primarily occurs 
by pinocytosis121 rather than pH-dependent FcRn binding that 
dominated uptake in the original assay.126 These changes more 

accurately recreate the in vivo processes that influence 
antibody PK. A panel of 53 mAbs with diverse Fc regions was 
evaluated with this improved assay, and measured rates of 
transcytosis were well correlated in a positive manner with 
human clearance data (i.e., faster clearance correlated with 
greater transcytosis; R2 > 0.8) (Figure 5b).121 Interestingly, 
transcytosis measurements poorly correlated with FcRn affinity 
and nonspecific-binding measurements evaluated using the 
baculovirus particle-binding assay, suggesting that the in vitro 
transcytosis assay captures the combined effects of multiple 
events that accurately reflect in vivo recycling and transcytosis 
pathways. Notably, mAbs with high pIs (>8.5) displayed a 
higher risk for fast antibody clearance than lower pI mAbs 
(Figure 5c). This assay represents a substantial advance for in 
vitro screening, and can be used to evaluate a much wider 
variety of candidate antibodies than would be practical to 
evaluate in vivo.

PK profiles can also be mechanistically modeled with phy-
siologically based pharmacokinetic (PBPK) models using input 
parameters describing tissue distribution.128 While such para-
meters are most accurately obtained from in vivo animal mod-
els, these experiments are again extremely difficult and costly, 
thus limiting the utility of such models. However, a recent 
study has revealed relationships between in vivo measurements 
with those obtained from in vitro experimental assays that are 
much higher throughput, greatly expanding the utility of PBPK 
models.79 In particular, AC-SINS has been shown to be corre-
lated with rates of antibody clearance in humans, possibly 
through detection of nonspecific binding that contributes to 
antibody clearance. Recently, researchers have generated PBPK 

Figure 5. Cell culture-based evaluation of FcRn-mediated antibody transcytosis correlates well with antibody clearance in vivo. (a) An in vitro transcytosis assay involves 
growing a monolayer of Madin–Darby canine kidney (MDCK) cells that overexpress human FcRn and measuring the amount of IgG in the outer chamber after extended 
incubation with excess IgG loaded in the inner chamber. (b) Measured rates of in vitro antibody transcytosis correlate with antibody clearance measured in humans 
(Pearson’s r = 0.90 and Spearman’s ρ = 0.77). (c) For a subset of antibodies that have been further experimentally characterized, isoelectric point (pI) displays some 
correlation with in vivo antibody clearance rates, as antibodies with high pIs have increased risk for fast antibody clearance (Pearson’s r = 0.57 and Spearman’s ρ = 0.57). 
The figure is adapted with permission from a previous publication.121
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models using only experimental measurements of AC-SINS, 
FcRn binding affinity, and physiological parameters to predict 
the in vivo clearance of 31 mAbs measured in mouse models.129 

A 16 compartment PBPK model was constructed with one 
plasma compartment and 15 tissue compartments, each con-
sisting of six sub-compartments representing organs that can 
be modeled with single-cell mechanistic models of FcRn traf-
ficking. Calibrated predictions showed significant agreement 
with PK profiles measured in mouse models with high accuracy 
for predicting problematic PK parameters such as half-life 
(90%), volume of distribution (90%) and clearance rates 
(71%). This PBPK model and the transcytosis assay121 repre-
sent substantial advances in accurately predicting antibody PK 
profiles that require much less time and protein than in vivo 
models. However, the need for purified protein and limited 
throughput (particularly for the cell-based transcytosis assay) 
still do not allow for the early screening of large antibody 
panels to identify PK-related risks in early discovery. 
Therefore, further development of high-throughput experi-
mental screens is necessary, in addition to improved under-
standing of the underlying mechanisms of poor PK behavior. 
Such advances would inform the design of in vitro systems that 
efficiently and accurately represent complex human physiology 
and the rational design of antibodies with improved PK 
profiles.

Recent studies have also investigated individual problematic 
antibodies as well as larger sets of more diverse mAbs and 
revealed various physicochemical properties that are associated 
with poor PK profiles.74,118,130 Evaluation of an extensive data-
set of 61 antibodies and their measured clearance rates in 
cynomolgus monkeys confirmed previous reports that anti-
body IgG properties such as pI and hydrophobic index were 
weakly correlated with clearance values.74 However, the sum of 
CDRs L1, L3, and H3 hydrophobic index scores and the charge 
of the variable regions at pH 5.5 were found to discriminate 
between antibodies with high and low clearance with 75–86% 
accuracy. Well-behaved antibodies generally had hydrophobic 
index scores <4 and Fv charges between 0 and +6, highlighting 
the importance of electrostatic and hydrophobic interactions 
on nonspecific clearance. This classification model was further 
used to guide the rational design of two test antibodies, one 
with desirable clearance rates and a second one with rapid 
clearance.131 Introduction of mutations that altered the hydro-
phobic index scores of CDRs L1, L3, and H3 as well as the Fv 
net charge significantly altered the measured cynomolgus 
clearance rates of several variants. Mutants with Fv net 
charge increased beyond the recommended range exhibited 
more rapid clearance for both antibodies, while mutants 
with Fv charge decreased toward the center of the recom-
mended range exhibited greatly reduced clearance for a 
mAb that displayed fast clearance. These results confirm 
that Fv and CDR charge and hydrophobicity are important 
determinants of antibody developability, but the study is 
limited by the relatively small panel of analyzed antibodies. 
Improvements in experimental assays to more efficiently 
measure clearance rates and other PK properties would 
enable the generation of much larger and more extensive 
datasets for the development of generalizable computational 
models.

In addition to antibody clearance, bioavailability is extre-
mely important for the efficacy of antibody drugs delivered 
through subcutaneous injection, which is the most desired 
route of administration due to patient convenience. 
Subcutaneous bioavailability describes the fraction of injected 
antibody that reaches systemic circulation for distribution to 
the target tissues and is difficult to predict due to the current 
deficits in mechanistic understanding of the various transport 
processes. Based on previous studies that found connections 
between antibody properties and bioavailability,132–134 six anti-
bodies were recently investigated in depth.130 Multiple anti-
body properties were found to affect subcutaneous 
bioavailability, including polyspecificity, aggregation propen-
sity, and thermal stability. Additionally, antibody variants with 
reduced local positive charge, higher specificity, higher thermal 
stability, and reduced aggregation potential had more favorable 
measured bioavailability. Protein engineering efforts to 
improve several of the undesirable biophysical properties of a 
suboptimal mAb, including self-association, precipitation, and 
poor expression, have provided additional evidence that poor 
PK can be related to various biophysical properties.118 

Systematic mutation of three highly interactive hydrophobic 
residues implicated in self-association resulted in a variant with 
significantly reduced aggregation propensity, increased half- 
life in vivo, and reduced nonspecific binding various tissues 
without loss of antigen binding. Overall, the improvement of 
multiple biophysical and PK properties suggests that the mole-
cular determinants of poor PK behavior can also impact anti-
body aggregation and nonspecific binding. While various 
developability criteria have been presented as disparate proper-
ties, they are highly interconnected, especially for in vivo prop-
erties such as PK. Encouragingly, these findings suggest that 
the simultaneous consideration of multiple biophysical proper-
ties such as aggregation and nonspecific binding can guide the 
evaluation and improvement of complex, in vivo PK 
properties.

Antibody immunogenicity

The immunogenicity of antibodies, defined as their propensity 
to elicit immune responses, is also an important property of 
therapeutic proteins that affects their developability.135 Such 
immune responses generally occur due to the recognition of 
antibodies as foreign substances in the body, resulting in their 
rapid removal and development of immune system memory. 
Antibodies discovered through animal immunization often are 
recognized by the human immune system as foreign due to 
differences in their sequences and structures between species. 
Early efforts in decreasing immunogenicity generally involved 
humanization of these foreign, often murine-derived, antibo-
dies through grafting of the desired CDR loops onto human 
antibody frameworks.136 However, this process often leads to 
reduction in function and folding stability. Recent advances 
have focused on improving the rational design of variants with 
increased humanness and high affinity.26 For example, scoring 
methods for quantifying the level of humanness that evaluate 
correlations between residues at different positions during the 
humanization process have been improved.137 Advances have 
also been made in animal immunization techniques through 
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the development of transgenic mice with humanized immune 
systems that produce fully human antibodies.136 However, a 
recent study found that mAbs from such mice are prone to rare 
mutations in framework regions due to somatic hypermutation 
that compromise their biophysical properties and immuno-
genicity profiles.138 Antibody display methods, such as phage 
and yeast display, are also important for generating and screen-
ing of fully human synthetic libraries, thus eliminating the 
need for antibody humanization.139,140 Most recently, there is 
great interest in using human-derived B-cells in conjunction 
with next-generation sequencing technologies for rapid and 
efficient generation of fully human mAbs.141–143 However, 
these discovery platforms lack efficient negative selection pro-
cesses to deselect for self-reactivity relative to naturally derived 
antibodies, and therefore are at higher risk for immunogenicity 
problems. The ubiquity of this issue demonstrates a great need 
for experimental and computational approaches for diagnosing 
and reducing the immunogenicity of antibody candidates.

Immunogenicity is a difficult property to experimentally 
measure because adverse reactions are caused by a cascade of 
immunological events that vary greatly even between different 
individuals.135 These events are controlled by complex and 
poorly understood feedback mechanisms that are difficult to 
represent through experimentation. One of the main immuno-
genic risks for antibody therapeutics, particularly for treating 
chronic illnesses that require repeated and long-term antibody 
administration, is the development of anti-drug antibodies 
(ADAs). ADAs are formed after professional antigen-present-
ing cells, such as dendritic cells, interact with and endocytose 
antibody drugs. The cells then cleave the antibody drugs into 
short peptides, some of which may be displayed by major 
histocompatibility complex class II (MHCII) molecules on 
the cell surface.144–146 T cells must then recognize these pre-
sented peptides as foreign and become activated, initiating 
various immune responses that include the generation of 
ADAs, which circulate in the body as part of the adaptive 
immune memory and neutralize subsequent doses of the ther-
apeutic (Figure 6). This neutralization accelerates drug clear-
ance and decreases drug efficacy due to the inability of the 
therapeutic to bind its target.147 Prediction of immunogenic 
responses to antibody therapeutics is vital, as adverse reactions 
can render antibody therapeutics inactive or harmful, depend-
ing on many coalescing factors in a complicated and unpre-
dictable manner.

While an accurate picture of the immunogenicity profile of 
antibody candidates cannot be constructed before it has been 
administered and monitored long term in a large and diverse 
population, several experimental techniques have been devel-
oped for preclinical risk assessment.148–150 These techniques 
generally involve the assessment of known key steps in the 
initial immune response, such as MHCII binding and T-cell 
activation, through ex vivo cellular assays. MHCII binding is 
evaluated through MHC-associated peptide proteomics 
(MAPPs) in which mAbs are incubated with human-derived 
dendritic cells and the displayed peptides are identified with 
mass spectrometry to determine antibody regions with high 
immunogenic risk.148,149 This assay has been demonstrated to 
successfully identify immunogenic sequences of problematic 
antibodies such as infliximab149 and describe the likelihood of 

ADA development.148 T-cell activation can be assessed 
through measurement of cell proliferation (via flow cytometry 
or [3H]-thymidine incorporation) and production of cytokines 
such as interleukin-2 (IL-2) or interferon (IFN)-γ (via enzyme- 
linked immunospot or ELISpot assays) following co-incuba-
tion of donor-derived T cells with antigen-presenting cells 
(APCs; naïve or pre-incubated with therapeutic mAb). Both 
T-cell proliferation and cytokine secretion have been shown to 
relate to rates of clinical immunogenicity.150 This importance 
of assessing T-cell activation in addition to MHCII peptide 
presentation was highlighted in a recent study of two mAbs 
(secukinumab and ixekizumab) with the same target antigen, 
but with different rates of clinical immunogenicity.151 While 
the MAPPs assay identified similar numbers of potentially 
antigenic peptides for the two mAbs, subsequent T-cell assays 
(IFN-γ ELISpot) revealed that only those of ixekizumab acted 
as T-cell epitopes, leading to increased frequency of mAb- 
specific T cells. The major limitation of these experimental 
assays is the necessary usage of donor-derived cells, which 
requires careful and extensive processing and represents a 
small fraction of patient diversity. Similar to preclinical animal 
trials, these cellular assays provide vital experimental risk 
assessment but are impractical for screening large numbers of 
candidate mAbs in early discovery.

To broaden screening capabilities, computational tools have 
been developed that identify regions in protein sequences that 

Figure 6. Repeated administration of therapeutic antibodies can lead to the 
development of anti-drug antibodies and immunogenicity. Antibody therapeutics 
are first internalized by APCs and processed into peptides, some of which are 
presented by the major histocompatibility complex II (MHCII) as foreign antigens 
to naïve T cells (top). Activated T cells then proliferate, release chemokines, and 
activate naïve B-cells (middle). Activated B-cells mature into plasma cells and 
produce ADAs in large quantities, leading to immunogenicity (bottom). While 
there are currently no reported assays for directly predicting clinical immuno-
genicity, various steps in the ADA development process can be modeled and 
predicted.
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are at high risk for recognition by MHCII molecules with 
relatively high accuracy and which can be used in screening 
or rational design of mAbs.152–154 These tools are built with 
binding data specific to the major alleles for MHCII molecules, 
thus covering the majority of the population while also 
enabling customization based on the target population. 
Recently, the computational tool EpiSweep was developed for 
the rational design of functional protein variants and libraries 
with decreased immunogenicity.154 EpiSweep uses existing 
tools for identifying immunogenic epitopes to mutate and 
predict immunogenicity following mutation. This program 
also evaluates the effects of these epitope-deleting mutations 
on function and stability using sequence- or structure-based 
scoring methods. This enables the identification of a series of 
variants or library designs on the Pareto frontier that represent 
the trade-offs minimal possible  between immunogenicity and 
function. β-lactamase variants with several mutations designed 
with EpiSweep demonstrated markedly decreased immuno-
genic potential (based on degree of MHCII binding to wild- 
type versus mutated peptides) with similar or slightly decreased 
activity and thermostability as the wild type.155,156 

Additionally, a combinatorial β-lactamase library with several 
mutations at the ‘elbow’ of the Pareto frontier designed by 
EpiSweep displayed decreased MHCII peptide binding and 
high overall activity and stability. The highest performing 
individual variants were isolated from a designed library with 
up to 30 mutations. One of these variants contained 14 muta-
tions, displayed the same melting temperature and better enzy-
matic activity than wild type, and only showed significant 
T-cell activation (measured via IL-2 ELISpot) for one of the 
18 donors, as compared to eight of 18 donors for the wild 
type.157

An additional computational tool, TCPro, has been devel-
oped to assess the immunogenicity profiles of therapeutic pro-
teins in silico.153 Predicting the clinical immune response 
(especially ADA development) is complicated because it involves 
protein processing, antigen presentation by MHCII molecules, 
T-cell activation, and ultimately B-cell activation. Nevertheless, 
TCPro uses recent advances in computational methods to incor-
porate analyses of different genotypes present among the popu-
lation, which enables coverage of a greater and more relevant 
amount of genetic diversity than is possible experimentally. 
TCPro simulates T-cell proliferation and IL-2 secretion assays 
using non-linear ordinary differential equations.153 Predictions 
are generated using three user inputs: 1) amino acid sequences of 
the therapeutic proteins; 2) ratios of CD4+ cells that will bind to 
the drugs (FP); and 3) MHCII genotypes of the individual or 
populations of interest. MHCII binding affinities (predicted by 
NetMCHIIpan), randomly assigned counts of various cell types 
(within reported ranges), and drug concentrations are then input 
to the system of differential equations that model the time- 
dependent dynamics of the T-cell populations. Individuals pre-
dicted to have significantly greater T-cell proliferation and IL-2 
secretion in the presence of protein drugs are considered immu-
nogenic. User-defined populations of specified size are modeled 
by simulating individuals with the same genotype distribution as 
the population of interest, with the percentage of responders 
given as the final output. TCPro was able to predict the percen-
tage of donors responding in both ex vivo assays for 

experimentally characterized peptide fragments from a blood 
clotting factor and three control proteins with mean absolute 
percent error of 4.2%. TCPro predictions for 15 therapeutic 
antibodies and other proteins were generally found to correlate 
with rates of clinically observed immunogenicity, often better 
than ex vivo experimental assays.

While these computational tools were developed for appli-
cation toward diverse types of therapeutic proteins, they can 
easily be applied to mAbs. However, the frequency of uptake 
and processing by APCs may differ between mAbs and other 
therapeutic proteins, thereby affecting the likelihood of devel-
oping ADAs. Both experimental and computational methods 
rely on simulating simplified versions of several key steps in 
ADA development for the prediction of clinical immunogeni-
city, which do not fully represent the complex cascade of events 
performed by diverse immune cells involved in a true immune 
response. Advancements in this field will need to consider the 
function of B cells, which interact with activated T cells to 
produce ADAs but also act as APCs, though less efficiently 
than professional APCs such as dendritic cells. Additionally, 
ADAs are most problematic upon repeated drug administra-
tion, but none of the existing methods discussed here considers 
the effects of immunological memory. Nevertheless, preclinical 
experimental assessment is vital toward ensuring patient safety, 
and computational tools such as EpiSweep154 and TCPro153 

represent substantial advances in screening candidates and 
guiding rational protein engineering.

Conclusions

Despite the impressive advances in using mAbs as potent 
therapeutics, there are still many challenges that continue to 
frustrate their efficient development. There remains great need 
for high-throughput experimental techniques that facilitate the 
evaluation of biophysical properties at extremely low concen-
trations and which require low quantities of protein available at 
the antibody discovery stage. This is of particular importance 
for in vivo properties, such as PK and immunogenicity, that 
suffer from a critical lack of key experimental data and may be 
evaluated as late as after the initiation of clinical trials. In 
addition, the systematic generation of high-quality data from 
these high-throughput techniques will be invaluable to further 
the understanding of biophysical properties for enhanced 
rational design and computational de-risking of candidate 
molecules. This data will be critical for improving computa-
tional methods that show great promise for enhancing anti-
body developability yet have been limited to date by the lack of 
sufficiently large datasets. It will be important to broaden the 
scope of these computational methods to include full-length 
IgG modeling, as well as protein dynamics to mimic real for-
mulation conditions. Increasing the application of machine 
learning methods for the analysis of emerging experimental 
datasets may yield great advances and warrants attention for 
future work to address the remaining challenges hindering the 
development of antibody therapeutics. Importantly, these 
methods will rely on improvements in feature extraction to 
accurately describe characteristics of antibodies that are deter-
ministic of their developability properties, which is possibly the 
greatest remaining challenge. If the rapid progress in the field 
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continues at the current pace, we expect that advances in the 
coming years related to evaluating and predicting antibody 
developability properties will substantially reduce late-stage 
failures and provide more effective and safer therapeutics for 
patients.
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