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ABSTRACT

There is intense and widespread interest in developing monoclonal antibodies as therapeutic agents to
treat diverse human disorders. During early-stage antibody discovery, hundreds to thousands of lead
candidates are identified, and those that lack optimal physical and chemical properties must be dese-
lected as early as possible to avoid problems later in drug development. It is particularly challenging to
characterize such properties for large numbers of candidates with the low antibody quantities, concen-
trations, and purities that are available at the discovery stage, and to predict concentrated antibody
properties (e.g., solubility, viscosity) required for efficient formulation, delivery, and efficacy. Here we
review key recent advances in developing and implementing high-throughput methods for identifying
antibodies with desirable in vitro and in vivo properties, including favorable antibody stability, specificity,
solubility, pharmacokinetics, and immunogenicity profiles, that together encompass overall drug devel-
opability. In particular, we highlight impressive recent progress in developing computational methods for
improving rational antibody design and prediction of drug-like behaviors that hold great promise for
reducing the amount of required experimentation. We also discuss outstanding challenges that will need
to be addressed in the future to fully realize the great potential of using such analysis for minimizing
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development times and improving the success rate of antibody candidates in the clinic.

Introduction

While antibodies have long been considered to be promising
therapeutics, this promise has only been realized in the clinic in
the past few decades.' > During this time, monoclonal antibodies
(mAbs) have garnered widespread attention as therapeutics due
to their many favorable properties that confer high bioactivity
via their high affinities, specificities and, in some cases, potent
effector functions. In the clinic, mAbs have shown efficacy for
neutralizing pathogens, inactivating endogenous molecules, and
modulating the immune system. mAbs have also succeeded as
therapeutics because of their favorable safety profiles, including
low immunogenicity for human or humanized antibodies as well
as low toxicities.>” Another key reason for the success of anti-
body therapeutics is their favorable developability properties,
including typically high solubilities, low aggregation propensi-
ties, low viscosities, and slow clearance rates.®

Nevertheless, most antibody lead candidates identified using
either in vivo or in vitro discovery methods are not immediately
suitable for therapeutic use and require additional protein engi-
neering to increase affinity or specificity, reduce immunogeni-
city, and/or reduce physical and chemical liabilities.'”"" This
optimization process is difficult and expensive, and it is compli-
cated by common trade-offs between important properties due
to their highly interrelated nature.'>'> One particularly notable
challenge that further complicates this process is the inability to
measure many key antibody developability properties until later

stages of the development process when sufficient amounts of
high-purity antibody are available for evaluation. This delayed
diagnosis of issues related to antibody developability greatly
reduces the success and throughput of generating drug-like
antibodies with increased likelihood of success in the clinic.

Therefore, there is substantial interest in developing meth-
ods to predict or measure antibody developability properties
much earlier in the development process, and particularly
during the discovery stage (Figure 1). This review focuses on
advances in this area, prioritizing advances in computational
prediction and rational design of antibodies and antibody
mutants with drug-like properties, as well as the high-through-
put experimental identification of antibodies with such proper-
ties. We focus on the latest advances and outstanding
challenges related to predicting and screening antibody proper-
ties that are of particular importance to the generation of drug-
like antibodies, including antibody folding stability, self-asso-
ciation, off-target binding, solubility, aggregation, pharmaco-
kinetics (PK), and immunogenicity.

Folding stability

High conformational (folding) stability is vital for antibody
therapeutics to maintain their conformational integrity during
diverse manufacturing, formulation, and physiological
conditions.'*'® Antibody unfolding can result in the loss of
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Figure 1. The development process for antibody therapeutics is being improved by early assessment of antibody developability using emerging high-throughput
experimental and computational methods. The development pipeline for antibody therapeutics is limited by the difficulty in assessing key biophysical properties at the
antibody discovery and protein engineering stages to identify drug-like antibodies with increased likelihood of success in the clinic. These experimental limitations stem
from extremely limited quantities of high-quality (purified) protein available for analysis, especially at the stage of antibody discovery. This has motivated recent
advances in high-throughput experimental methods that are compatible with extremely dilute antibody solutions, as well as computational methods for evaluating
antibody properties and designing antibody variants with improved properties. These advances stand to substantially improve the development of efficacious
therapeutic antibodies. Each developability property is highlighted at one or more stages at which it is typically evaluated.

protein activity and formation of protein aggregates that can be
immunogenic or even toxic.'”'® In general, antibodies are
highly stable, and there are well-established experimental
methods for high-throughput screening and selection of stable
drug candidates during early stage evaluation of large panels or
libraries of natural and synthetic antibodies.'”*° However,
these initial lead candidates often require further optimization
of other properties such as affinity or immunogenicity, which
can result in a significant loss of folding stability due to the
intrinsic trade-offs between such biophysical properties.'>'?
Conventional trial-and-error approaches for re-engineering
unstable antibodies often have low success rates and require
multiple rounds of the time- and resource-intensive produc-
tion, purification, and experimental evaluation of soluble pro-
tein variants. Therefore, the development of novel
methodologies for the rational design of stable antibodies is
vital, especially for affinity maturation and humanization
applications given the potential of these methods to promote
antibody destabilization.

Conventional strategies for affinity maturation have focused
primarily on the mutation of surface residues, often those
within or adjacent to the antigen-binding site.' >* However,
a recent study demonstrated the utility of mutagenizing sites in
the Vy/Vy interface for improving antibody affinity and
stability.** The study identified a cluster of eight residues at
the Vy/Vy, interface of an anti-lysozyme single-chain variable
fragment (scFv) that were tolerant to mutations via a deep

mutational scan. The Vy/Vy interfacial area is known to med-
iate antibody assembly and can have a large impact on the
flexibility of the variable region, conformation of the binding
loops, and packing efficiency of the two domains. Therefore, it
was hypothesized that optimization of the interface could sig-
nificantly enhance multiple antibody properties. The scFv was
re-engineered with mutations introduced at all eight sites, and
the resulting variant was found to have greatly improved affi-
nity and folding stability, indicating promise for this method of
antibody optimization.

To remove the need for experimental deep mutational
scans, a computational approach was used to identify favorable
mutations at the Vi;/V| interface.** Changes in the native-state
energy (AAG) for each of the 19 possible amino acid substitu-
tions for all residues located at the Vy/Vy interface were
calculated. This information was combined with an evolution-
ary conservation score (position-specific scoring matrix
(PSSM)) that represents the site-specific frequencies of each
amino acid in natural antibodies to inform selection of multi-
ple mutations that are predicted to cooperatively enhance anti-
body properties. This approach, named AbLIFT, was then fully
automated and made available via a web server for accessible
and widespread use. AbLIFT was validated by successfully
predicting affinity- and stability-enhancing mutations for two
additional antibodies. Calculations for all combinations of the
predicted mutations were modeled in Rosetta and ranked
based on their energies. Several of the best predicted antibody



variants were produced as soluble scFvs and experimentally
evaluated, with many demonstrating improved behavior for
both affinity and stability. These improvements also persisted
after reformatting the scFvs into IgGs. These successes demon-
strate the power of AbLIFT toward guiding the rational design
of antibody variants with improved biophysical properties.
Nevertheless, this approach can also be computationally
demanding, requiring thousands of CPU hours, which may
limit its widespread application. Regardless, this approach
could be used to improve the rational affinity maturation of
antibodies while maintaining high folding stability.

Similar to affinity maturation, the process of humanization,
a requisite for reducing the immunogenicity of antibodies
discovered via animal immunization, often results in reduced
folding stability.”>** Humanization presents a key challenge by
requiring major perturbations to the antibody structure while
seeking to maintain other functional and biophysical proper-
ties such as affinity and stability. This is a difficult task that is
further complicated by low-throughput methods for repetitive
antibody cloning, expression, purification, and evaluation. To
address this challenge, a computational approach was devel-
oped that requires only antibody homology models for pre-
dicting humanizing mutations that maintain folding stability.
This  approach, Computationally Driven  Antibody
Humanization (CoDAH), is an algorithm that uses structural
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energy information from homology models to identify huma-
nizing mutations that minimally affect folding stability.
CoDAH uses a human string content (HSC) score, based on
the number of times a nine amino acid scanning window
matches perfectly with the analogous region of the most similar
human germline antibody, for an evaluation of humanness.
Pareto optimization of the humanness score and homology
model-derived structural energies facilitates identification of
humanizing mutations that are predicted to maintain folding
stability. When applied to a murine (anti-tumor antigen) anti-
body, CoDAH was successful at predicting sets of humanizing
mutations for antibodies that retained both binding affinity
and stability. In contrast, a variant of the antibody humanized
with a more conventional approach of grafting complementar-
ity-determining regions (CDRs) failed to express, likely due to
poor stability. Further validation came from evaluation of
CoDAH-guided humanization of cetuximab (Figure 2).*” In
this study, CoDAH-informed designs were successful in huma-
nizing the parental murine antibody while maintaining high
stability. Although several mutation sites overlapped between
the two methods (Figure 2a), CoDAH designs consistently
outperformed CDR grafting, achieving humanization while
maintaining rotomeric and thermal stability (Figure 2b, c). In
addition, CoDAH designs better maintained affinity while
CDR grafted designs often exhibited dramatic losses in affinity
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Figure 2. Computational design methods for minimizing stability trade-offs during antibody humanization. (a) A novel computational design method (CoDAH) for
humanizing antibodies was used to predict humanizing mutations (green) for a murine antibody that otherwise would not be mutated using traditional CDR grafting
humanizing designs (purple), as well as additional mutations common to both methods (blue). (b) Both traditional CDR grafting and CoDAH humanization results in
antibodies with improved humanness, but the CoDAH designs also maintain, and even improve, rotomeric stability. (c) CoODAH designs also generally exhibit similar or
improved thermal stability. (d) Both humanization methods result in antibody variants with similar affinity as the parental antibody, although several CDR grafting
designs display reduced affinity. The figure is adapted with permission from a previous publication.?”
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binding (Figure 2d), demonstrating the usefulness of this com-
putational method for informing the rational design of huma-
nized antibody candidates.

In addition to rational protein design, direct prediction of
folding stability also holds great promise, especially through
the use of machine learning algorithms. Of particular impor-
tance are artificial neural networks (ANNs), which are adept at
recognizing patterns within highly non-linear data. ANNs are a
collection of connected artificial neurons that receive inputs
and produce outputs based on weights associated with each
neuron. During the training process, penalties accrued from
inaccurate predictions are backpropagated to update the
weights and improve the accuracies of the predictions. This
allows neural networks to efficiently converge on accurate
models, making them extremely valuable. However, neural
networks are also prone to overfitting, which can limit their
ability to predict accurate values for new data. This limitation
has plagued the biopharmaceutical field due to the limited
quantity and diversity of available data.

The problem of overfitting was addressed in recent work by
simplifying protein features and the structure of an ANN for
the prediction of antibody biophysical properties indicative of
folding stability at various formulation conditions.”® To reduce
collinearity of features and overfitting of the algorithm, only
the count of each amino acid in the antibody sequence and the
solution conditions of the viscosity measurements were used as
features. The algorithm was then constructed with just five
nodes in a single layer. The simplicity of the algorithm facil-
itates knowledge transfer from the fitting process, as the final
weights of the nodes could be used to identify the amino acids
and formulation conditions that contribute most to the pre-
diction of the biophysical properties. Fifteen ANNs were
trained on 144 data points (six IgGs at eight pH conditions
with three salt concentrations) with cross-validation using a
‘leave-two-proteins-out’ method. Prediction of melting tem-
peratures was highly accurate, with only one model having
test accuracy less than 85%, while predictions of aggregation
onset temperatures and diffusion interaction parameters (kp)
were more variable with lower average test accuracies (~80%),
which may be partially due to data imbalance. Knowledge
transfer methods revealed that formulation conditions were
important features for the prediction of all three biophysical
properties, indicating the importance of choosing antibody
formulations with care. However, this result could be heavily
influenced by the greater diversity in formulation conditions
(24) than antibody variants (six) in this study. As larger and
more comprehensive datasets become available, these simpli-
fied neural net approaches should be revisited as they may
generate even more accurate predictions of antibody folding
stability.

Antibody self- and nonspecific interactions

Antibody colloidal interactions are also important indicators of
developability and drug-like behavior. It was recently found
that measurements of two colloidal properties, self-association
and nonspecific interactions, could statistically discriminate
between approved antibody therapeutics and those antibodies
that either failed or were still in clinical development.”® These

important colloidal interactions are commonly associated with
two different aspects of drug developability, namely in vitro
antibody formulation behavior (solubility, viscosity, and
opalescence)’™’! and in vivo antibody bioavailability (PK).*>??

Therapeutic antibodies are formulated at variable concen-
trations (~1-200 mg/mL) dictated by the route of administra-
tion; high antibody concentrations (>50-100 mg/mL) are a
common requirement for subcutaneous or intraocular
applications.”’**?> Self-association under these conditions
can result in the formation of reversible entangled networks,
facilitated by the bivalent nature of antibodies, that can result
in highly viscoelastic solutions that are challenging to manu-
facture and administer.’>*” While desirable viscosity profiles
are vital to the success of antibody therapeutics, they are
extremely challenging to assess during early stage antibody
development due to very limited quantities and concentrations
of purified antibody that are incompatible with the require-
ments for viscosity measurements. To address this limitation,
studies have sought to evaluate antibody self-association at
lower antibody concentrations (<10 mg/mL) to identify either
antibody variants or formulation conditions that minimize
attractive antibody self-interactions and the corresponding
viscous behaviors when antibodies are formulated at high
concentration (>100 mg/mL).3 8-43

One notable recent study demonstrated the value of measur-
ing colloidal self-association at lower antibody concentrations
to identify antibody variants with favorable solution properties
at high formulation concentrations (~150 mg/mL).*> At such
high concentrations, the investigators found that a diverse set of
59 antibodies displayed variable solution properties, as some
mADbs solutions became viscous (>30 cP) while others
became opalescent (>12 NTU). Interestingly, the behaviors
seemed to be exclusive, with no mAbs exhibiting both
behaviors. Moreover, the investigators found that the diffusion
interaction parameter (kp), which measures colloidal self-inter-
actions and hydrodynamic interactions, was the best single pre-
dictor of high-concentration solution behaviors (viscosity and
opalescence). Positive values or slightly negative values of kp
generally reflect repulsive antibody self-interactions, while more
negative values generally reflect attractive antibody self-
interactions.*””** Impressively, a kp cutoff of >+20 mL/g could
identify poorly behaved antibodies (viscosity >30 cP or opales-
cence >12 NTU at pH 6 and 10 mM histidine) with 95%
accuracy. This result suggests that strong, long-range electro-
static repulsive interactions govern favorable solution properties
at high antibody concentrations typical of formulation condi-
tions (pH 6 and 10 mM histidine). Comparison of kp with
several experimental and calculated descriptors revealed that
antibody isoelectric point (pI) and net charge displayed the
highest positive correlations, further demonstrating the key
role of repulsive electrostatic interactions in high-concentration
antibody solution behavior. While this study substantially
advances our understanding of mediators of colloidal solution
behaviors, a limitation is that it is not possible to perform
measurements of the diffusion interaction parameter during
the early-stage discovery of antibody candidates due to the
requirements for relatively high-protein concentrations (1-
10 mg/mL). Therefore, this study highlights the need for meth-
ods for measuring the diffusion interaction parameter or



surrogates thereof at much lower antibody concentrations
(<0.1 mg/mL).

One promising approach to address this need for these low-
concentration measurements is affinity-capture self-interaction
nanoparticle spectroscopy (AC-SINS),**™** which uses gold
nanoparticles that display shifts in their plasmon wavelength
due to interactions between the particles. Anti-human capture
antibodies are first adsorbed onto the particles, which are then
stabilized by thiolated polyethylene glycol. These conjugates are
then used to capture human mAbs. The immunogold conjugates
interact according to the degree of self-association exhibited by
the immobilized mAbs, as judged by shifts in the plasmon
wavelengths. These measurements have been shown to correlate
with other experimental measurements, such as diffusion inter-
action  parameters, solubilities, and viscosities,*”450
Nevertheless, it is challenging to perform AC-SINS measure-
ments at typical formulation conditions (low ionic strength
solutions at pH 5-6) due to the low stability of the conjugates
at such conditions. Therefore, future work should focus on
further refining the AC-SINS method and evaluating its ability
to robustly identify antibody variants with desirable viscosity
properties in concentrated antibody formulations.

These and other limitations of early-stage experimental
analysis of antibodies highlight the need for computational
methods for predicting these properties. Recent advances in
the rational design of proteins with decreased levels of self-
association have involved identifying self-association motifs
and hotspots via computational methodologies.*>”'">* Local
electrostatic and hydrophobic interactions, amplified by mole-
cular crowding in highly concentrated solutions, have often
been implicated in antibodies that display high self-association
and viscosity.”* ™ In-depth investigations of individual anti-
bodies have provided some insight into possible mechanisms
of self-association, and can help to inform their computational
identification and motivate rational protein design. For exam-
ple, the presence and distribution of charged residues in the
antigen-binding site have been implicated in the unacceptably
high viscosity of a well-studied antibody (omalizumab).>*>*>°
It has been shown that disruption of patches of negatively and
positively charged residues decreases charge asymmetry and
reduces viscosity.””*® This is theorized to result from
reduced attraction between oppositely charged patches, which
is especially important at low ionic strength conditions and
formulation pHs near the antibody pI.>*®'

However, the complexities of how attractive antibody self-
interactions promote high antibody viscosity go well beyond
electrostatic interactions. This was elegantly demonstrated for
a highly associative antibody exhibiting abnormally high visc-
osity at antibody concentrations as low as 10 mg/mL.** In
particular, the investigators evaluated the role of hydrophobic
residues in antibody variable regions on self-association. They
designed several charged and non-charged point mutations
based on self-association hotspots identified by hydrogen-deu-
terium exchange (HDX)* and computational analysis.®”
Experimental evaluation showed that decreased number of
hydrophobic residues in the variable domains reduced hydro-
phobicity and self-association both directly due to solvent-
exposed mutations and indirectly due to buried mutations
that presumably altered protein conformation. Additional
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experimental and computational modeling analysis revealed
that two distinct hydrophobic patches - one in Vi and the
other in V; - together mediated self-association. Disruption of
either hydrophobic patch with a single mutation resulted in an
approximate four-fold reduction of viscosity, revealing the
significant impact of subtle changes in antibody CDR compo-
sition on antibody viscosity. A notable limitation of this study
is that the viscosity-reducing mutations also significantly
reduced affinity by one to two orders of magnitude, which is
consistent with other reports of trade-offs between antibody
affinity and multiple biophysical properties.'>!>%*

A recent bioinformatics study of >100 clinical-stage mAbs
highlighted the potential importance of hydrophobic residues
in antibody CDRs in mediating self-association and nonspeci-
fic binding.”” The use of phage display as a discovery technol-
ogy has been linked to the production of antibodies with
suboptimal biophysical properties relative to those produced
by the immune system due to reduced quality control during in
vitro selection relative to in vivo generation.”>”%”’? In particu-
lar, it was posited that antibodies discovered via phage display
generally contain elevated levels of hydrophobic residues in the
CDRs. Interestingly, the authors found that particular CDRs in
the heavy chain (HCDR2 and HCDR3) and light chain
(LCDR3) contained increased levels of aliphatic residues for
antibodies generated using phage display. These results may
explain, at least in part, why the phage display-derived anti-
bodies have higher average levels of self-association relative to
the immunization-derived antibodies.”” More generally, these
and other results suggest that the presence of hydrophobic and
charged patches in antigen-binding sites are important to con-
sider during the design of antibody mutants with reduced self-
association, but their relative importance is highly specific to
the individual molecule. In addition, self-association motifs are
often key mediators of antigen binding, indicating that simply
eliminating charged and/or hydrophobic residues is insuffi-
cient for the robust design of optimized antibody variants.”

While rational design and computational methods can be
used to inform selections of mutations that may reduce self-
association and viscosity of particular antibodies with abnor-
mal properties, it is much more difficult to predict the risk of
new antibodies for displaying abnormally high levels of self-
association and/or viscosity based only on their sequences and
corresponding predicted three-dimensional structures. This is
particularly important during early-stage discovery when the
large numbers of variants limit the feasibility of extensive
experimentation. Therefore, in silico predictors of antibodies
with increased risk for abnormally high viscosity have been
developed that only require antibody sequences or, in some
cases, predicted structures.”*”> One such method, referred to
as the Sharma method, is based on the hypothesis that electro-
static and hydrophobic interactions dominate antibody viscoe-
lastic behavior.”* In particular, the authors evaluated three
sequence-based properties of antibody variable regions,
namely the Fv net charge (pH 5.5), the product of the net
charges of Vi and Vi (charge symmetry at pH 5.5), and a
measure of the hydrophobicity of antibody CDRs and other
regions within the Fv (hydrophobicity index). They found that
viscosity is correlated with the Fv net charge (r of —0.8) and
charge symmetry (r of —0.8) for a panel of 14 mAbs. This
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suggests that charge repulsion reduces viscosity and charge
asymmetry (e.g., oppositely charged variable regions) increases
viscosity, which is consistent with other findings.”® The corre-
lation of viscosity with hydrophobicity was weaker (r of 0.6),
which suggests that electrostatic interactions are generally
more important than hydrophobic interactions in mediating
abnormally high viscosity, although exceptions have been
observed.”"®* Principal component regression of these three
parameters resulted in a linear equation for calculating anti-
body viscosities at 180 mg/mL (pH 5.5 and 200 mM arginine-
HCI) that are strongly correlated with experimental viscosity
measurements for the set of 14 antibodies (r of 0.9).

The findings of the Sharma study’® have since been
expanded upon in a second computational approach to visc-
osity prediction based on molecular features such as antibody
negative charge and charge asymmetry.”® In this method,
homology models are used to calculate a spatial charge map
(SCM) of the antibody variable region surface. An SCM score is
calculated for each atom in the variable regions by summing
partial charges for all atoms of amino acid side chains that are
solvent exposed and predicted to be located within 10 A. An
SCM score is calculated for the variable regions via the absolute
value of the sum of all negative atom SCM scores, fundamen-
tally representing the negatively charged and exposed surface
area in the variable regions. High variable region SCM scores
are considered high risk for viscosity issues, although an exact
SCM cutoft was not reported. This method was used to cor-
rectly identify five high viscosity antibodies from a 19 antibody
dataset. However, three independent SCM cutoffs were chosen
to correctly classify subgroups of antibodies from different
companies. While demonstrating validation of features such
as negative charge and charge asymmetry as important culprits
of suboptimal antibody viscoelastic behavior, future work
should address the need for more general cutofts to accurately
classify viscous antibodies using this method.

A related method for predicting antibody viscosity,
referred to as the Tomar method, was developed to predict
concentration-dependent antibody viscosity values instead
of viscosities at a single antibody concentration.”> This
method is based on the observation that the exponential
concentration dependence of solution viscosity can be lin-
earized as [In (normalized viscosity) = InA+B*(mAb con-
centration)], and that the coefficient A is relatively constant
while the coefficient B is variable for different antibodies.
Coeflicient A represents the theoretical relative viscosity at
infinite dilution and was modeled by the average fit value
for 16 experimentally measured viscosity curves. Coeflicient
B represents the exponential dependence of viscosity on
antibody concentration. Interestingly, the investigators
developed an equation for the coefficient B that was a linear
combination of eight structure-based parameters, including
charge (Vyg, Vi and hinge net charge at pH 5.8) and
hydrophobicity (IgG hydrophobic surface area). The struc-
ture-based parameters were obtained through full-length
homology models of the antibodies, eliminating the need
for crystal structures. The final model demonstrated good
performance for predicting the measured viscosity curves of
16 antibodies (p-value < 0.05).

A more recent study highlighted key challenges in developing
methods that are generally applicable for predicting antibody
viscosity.”” In hopes of remedying unacceptably high viscosity
(>20 cP for mAb concentrations > 80 mg/mL) for an antibody
specific for platelet-derived growth factor (PDGF), the investi-
gators performed two iterative rounds of structure-guided muta-
genesis and property evaluation (Figure 3). In the first round, a
highly accurate homology model was used to identify potentially
beneficial mutations that would not reduce affinity, focusing on
reducing the number of negatively charged residues or patches
in the Fv region without introducing rare residues (based on
natural human diversity) at conserved framework positions
(Figure 3a). Sharma’* and Tomar’” viscosity scores were also
calculated for selected combinations of mutations and only those
with improved scores were produced and evaluated. Of the 18
mutants that were tested experimentally, two had a common
mutation in light chain CDR2 and showed modestly improved
viscoelastic behavior. However, the most improved variant with
this beneficial mutation was found to have low chemical stability,
which was improved by altering the lambda germline to produce
the Round 2 parental antibody (Figure 3b). The new parental
variant was taken into a second round of optimization, but due
to this low rate of success in the first round, design constraints
were relaxed and mutations were biased toward those disrupting
negatively charged patches in Vi and Vi, (near the beneficial
mutation in light chain CDR2 from round 1) without reducing
the predicted affinity. Of the 22 variants produced and evaluated
following the second round of design, two variants displayed the
desired viscosity properties (<20 cP at 150 mg/mL mAb) and
could be formulated at >150 mg/mL. These variants also dis-
played similar affinities (K, of ~100-300 pM) as wild type (Kp of
95 pM). It is also particularly interesting that several similar
types of charged mutations, which resulted in similar increases
in antibody positive charge or reduction in negative charge,
failed to alter the viscosity (Figure 3c). This underscores the
surprisingly specific nature of protein—protein interactions that
mediate antibody viscosity and raises concerns about the pre-
dictive power of methods that only consider general antibody
properties (e.g., Vi charge). Indeed, the investigators showed
that multiple previous methods, including the Sharma and
Tomar methods, had only modest ability to predict the relatively
large differences in viscosity for closely related antibody variants
in this study. This highlights both substantial challenges and
opportunities for improving antibody viscosity predictions,
which are critical for improving early-stage antibody develop-
ability analysis.

In addition to antibody self-association and the resulting
viscoelastic behaviors, nonspecific interactions can signifi-
cantly affect the developability and in vivo efficacy of antibody
therapeutics. High levels of nonspecific interactions have been
shown to correlate with abnormally high clearance rates, and
such interactions significantly impact drug distribution within
the body and can reduce bioavailability as well as therapeutic
efficacy.”*®  Additionally, antibody off-target binding
decreases the opportunity for binding to the therapeutic target,
which can reduce efficacy and potentially induce adverse
effects. As observed for antibody self-association, investiga-
tions of antibody polyreactivity have revealed that these
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Figure 3. Evaluation of mutations that reduce viscosity at high antibody concentrations. (a) The impact of Fv mutations that modify antibody charge on viscosity was
systematically evaluated to test the role of charge-related properties in mediating viscous antibody behavior. Systematic alteration of Fv charge in an anti-PDGF
antibody rarely resulted in reduced viscosity, even when predicted to reduce viscosity by multiple conventional scoring methods. (b) Antibody variants with modest
reductions in viscosity achieved in Round 1 (green) were further optimized in Round 2 through mutagenesis of negatively charged patches in the variable regions, which
produced two antibody mutants that could be concentrated above 150 mg/mL while maintaining low viscosity (<20 cP). (c) Fv charge partially but incompletely
describes the viscosity behavior, demonstrating the complicated relationship between antibody viscosity and charge properties. The figure is adapted with permission

from a previous publication.”’

undesirable off-target interactions also are mediated by hydro-
phobic and electrostatic interactions.®' ~**

To identify developability issues that could give rise to
detrimental antibody properties, including self- and non-
specific interactions, the Therapeutic Antibody Profiler
(TAP) was developed to easily analyze antibody sequence
data and evaluate levels of risk relative to other clinical-
stage therapeutics.”> TAP uses five features that describe
properties of antibodies linked to nonspecific interactions
(electrostatics®*®*), self-interactions (charge asymmetry-
>081) aggregation (hydrophobicity®>®), and antigen bind-
ing (CDR loop length®). The five TAP features identified
were: (1) total CDR loop length; (2) surface hydrophobicity
near the CDRs; (3) patches of positive charge near the
CDRs; (4) patches of negative charges near the CDRs; and
(5) variable region charge asymmetry. The thresholds were
set by evaluating current clinical-stage antibodies with the
assumption that candidates in Phase 2 and 3 clinical trials
generally possess favorable properties. Antibodies predicted
to be at high risk for developability issues are those with
property values outside the ranges observed for the clinical-
stage antibodies, while antibodies with moderate risk are
those with properties that are within, but near the extremes
of, the ranges observed for the clinical-stage antibodies.
This approach is simple and fast, which makes it a logical

first step in assessing potential developability risks for anti-
body therapeutics.

More recently, methods were reported that predict the rela-
tive risk for abnormal levels of nonspecific and self-interactions
based on antibody variable region sequences and predicted
site-specific solvent accessibilities.”> The investigators found
that over enrichment of specific types of positively charged
(e.g., Arg) and non-charged (e.g., Gln, Tyr and Pro) residues
and underrepresentation of specific types of negatively charged
(e.g., Asp) and non-charged (e.g., Asn) residues, especially in
the CDRs, was linked to increased risk for self-association and
nonspecific binding. By combining 12 chemical rules that limit
the minimum and maximum number of solvent-exposed resi-
dues in antibody CDRs and variable domains, the investiga-
tors were able to flag most clinical-stage antibodies (78%) with
the highest levels of nonspecific and self-interactions while
flagging few antibodies (8%) with the lowest levels of nonspe-
cific and self-interactions. Interestingly, this methodology was
also used to guide the re-engineering of a clinical-stage anti-
body (emibetuzumab) with high levels of nonspecific and self-
interactions. The investigators identified key CDR sites pre-
dicted to mediate nonspecific and self interactions, diversified
them with combinations of mutations predicted to increase
antibody specificity, sorted the resulting libraries for low levels
of nonspecific binding using yeast surface display, and
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performed deep sequencing of large panels of selected antibo-
dies. Encouragingly, the selected antibody variants with sig-
nificant reductions in nonspecific binding were well described
by the chemical rules, as the experimentally selected variants
with high specificity showed reduced numbers of violations of
the chemical rules. Moreover, all of the best sets of mutations
that reduced antibody nonspecific binding resulted in the
introduction of at least one negatively charged CDR residue,
suggesting that moderate levels of negatively charged residues
in the CDRs can be beneficial for specificity. However, abnor-
mally high levels of negative charge in antibody CDRs, which
are rarely observed in clinical-stage antibodies,” can result in
elevated levels of self-association, leading to high viscosity and
nonspecific interactions.’*>*>’

Other powerful approaches to predict antibody nonspecific
interactions have also been reported. A recent model was
developed for the prediction of cross-interaction chromatogra-
phy (CIC) retention times from antibody primary sequence.*”
CIC is an experimental method, first reported for characteriza-
tion of globular proteins and then applied to antibodies,”® >
that measures the interaction of proteins of interest (e.g.,
mADbs) with a second protein (e.g., a second mAb) or protein
mixture (e.g., polyclonal antibody mixture) immobilized on
chromatography column matrices. Antibodies with high levels
of nonspecific interactions have been shown to associate with
immobilized human polyclonal antibodies and display long
retention times relative to those with low levels of nonspecific
interactions.”® Nonspecific interaction measurements obtained
using this approach have been shown to correlate with aggre-
gation propensity, solubility, and in vivo clearance rates.”””*> A
quantitative structure-activity relationship (QSAR) model was
developed using multiple types of sequence-based descriptors
for the prediction of cross-interaction measurements using
data from 46 humanized IgGls. Antibody sequences were
aligned and descriptors were generated using multiple compu-
tational programs (eMBOSS, Pepstat and ProtDCal) in addi-
tion to three amino acid scales (Z-scale, T-scale, and MS-
WHIM). The best resulting model was found to use descriptors
calculated from the running sum of a 13-amino acid scanning
window and displayed high correlation when evaluated on a
hold-out test set of antibodies (R* of 0.99 and RMSE of 0.13).
These findings support previous work demonstrating the
importance of localized hydrophobic and charged patches
resulting from the clustering of multiple residues that mediate
undesirable antibody interactions.®”””****> While the use of
homology modeling has previously been shown to enable the
discovery of such nonspecific interaction patches,”® these find-
ings demonstrate that they can also be effectively represented
using only primary amino acid sequences. Therefore, this
computational method can be used to analyze extremely large
sets of antibodies for which structural modeling would be too
computationally intensive, especially if such models are trained
on larger and more diverse antibody datasets in the future.

Antibody aggregation and solubility

Antibody solubility and aggregation propensity are also key
concerns during therapeutic development, especially during
drug manufacturing and storage.”® Formation of high molecular

weight species is particularly concerning due to the potential
ability of aggregates to elicit immunogenic responses in patients
that can lead to accelerated clearance and pose serious safety
concerns.”””® While there are well-established analytical meth-
ods like size-exclusion chromatography (SEC) and dynamic light
scattering for characterizing existing aggregates, there is still a
great need for high-throughput screening methods for evaluat-
ing the aggregation potential of large numbers of antibodies
available at the low concentrations, quantities and purities avail-
able during early-stage discovery and development.

A number of innovative experimental methods have been
reported for identifying aggregation-prone antibodies. For
example, a high-throughput protein conformational array
based on Luminex multiplexing technology has been reported
for investigating antibody aggregation. °° In this assay, an array
of 34 polyclonal antibodies that bind unique and typically
buried epitopes in the antibody framework are immobilized
on beads doped with unique combinations of dyes. The array is
used to bind mAbs of interest under various conditions.
Binding events are analyzed through detection of the dyes on
beads, representing both reversible and irreversible unfolding
of specific antibody regions that can associate to form aggre-
gates. The assay was successfully applied to the identification of
aggregation-prone antibody regions, thus enabling targeted
antibody engineering. Additionally, this assay also was used
to detect antibody aggregation for the myriad of possible solu-
tion conditions (buffer type, pH, temperature, and ionic
strength) that antibodies are subjected to during manufactur-
ing, storage, and administration. The high-throughput nature
of this assay was demonstrated to be amenable to screening
multiple formulation conditions and could also be easily
adapted for parallel screening of the unfolding and aggregation
behaviors of panels of early-stage lead candidates in standard
manufacturing and formulation conditions. In addition, only
small quantities (~0.01 mg) of antibody at relatively dilute
concentrations (~0.1 mg/mL) are required for this assay.

For evaluation of native antibody aggregation, the tri-
partite TEM [B-lactamase enzyme assay was adapted to link
aggregation to E. coli cell growth.'® For this assay, scFvs
were inserted between two domains of the P-lactamase
enzyme. Expression of the resulting tripartite fusion protein
resulted in antibiotic resistance if the scFv remained soluble
and did not disrupt folding of the enzyme. It was found
that antibiotic resistance, measured via cell growth, was
inversely correlated with scFv aggregation propensity, as
measured by SEC and AC-SINS. This assay is also compa-
tible with antibody library screening, making it a high-
throughput deselection tool for aggregation-prone antibo-
dies. However, the assay appears to primarily deselect anti-
bodies prone to native aggregation, which does not address
aggregation induced by chemical or thermal stresses com-
mon in antibody production and manufacturing processes.
Nevertheless, these and other important findings®®'*"!*?
have made it easier to experimentally evaluate antibody
aggregation at early stages of antibody drug discovery for
larger numbers of candidates (>100-1000 mAbs).

In addition, the rational design of antibodies with increased
resistance to aggregation has been extensively addressed in
recent years using various computational methods, which
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algorithms for predicting aggregation-prone regions have been
developed and existing methods have been significantly
improved. For example, a recent combination of older tools
for predicting aggregation-prone regions (TANGO and FoldX)
resulted in the development of a new algorithm, Solubis, which
has improved prediction accuracy due to the addition of struc-
tural information for distinguishing between surface exposed
and buried aggregation-prone regions.'**'*>1%71%® Solubis uses
the ability of TANGO to predict aggregation-prone regions
that are at risk of p-strand amyloid aggregation in peptides
and proteins'® based on biophysical parameters such as
hydrophobicity, charge, and B-strand propensity. TANGO pre-
dictions of aggregation-prone regions are then combined with
calculations of local free energies of folding stability (AG=""")
assuming that aggregation-prone regions are only at risk for
promoting aggregation if they are located in unstable regions.

Solubis was validated for the prediction of aggregation hot-
spots in an aggregation-prone antibody (Figure 4).'”” Two
critical aggregation hotspots were identified in the CDRs, one
in light chain CDR2 (L2) and one in heavy chain CDR3 (H3)
(Figure 4a, b). Changes in aggregation propensity and stability
were calculated for mutations at each residue located in the
wild-type aggregation-prone regions. Mutations predicted to
disrupt aggregation as well as enhance local stability without
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disturbing the protein globally were selected for production
and evaluation (Figure 4c). Several mutations for both CDRs
were found to be beneficial, resulting in further reduction of
aggregation when combined. The variants engineered with
mutations that disrupt aggregation hotspots identified by
Solubis generally displayed increased aggregation temperatures
that approached the corresponding melting temperatures
(Figure 4d), as well as other improved biophysical properties
such as increased monomer content and expression titers.
However, the variants with the greatest reduction in aggrega-
tion also demonstrated a total loss of antigen binding, exem-
plifying the difficulties of co-optimizing multiple antibody
properties. Considering both antibody aggregation propensity
and affinity, the best variant showed modest improvement in
aggregation temperature, maintenance of antigen binding, and
dramatically increased expression titer. Overall, this study
demonstrates the power of combining structural features,
including those obtained from homology models, and
TANGO predictions of aggregation-prone regions for improv-
ing the design and selection of aggregation-resistant
antibodies.

In addition to Solubis, another powerful method has been
developed for calculating the relative aggregation propensity of

proteins in terms of a spatial aggregation propensity (SAP)
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Figure 4. A computational method (Solubis) for predicting and remediating antibody aggregation hotspots. (a) Solubis identified two aggregation hotspots in an anti-
VEGF antibody (PDB: 2FJF), namely one in light chain CDR2 (L2; blue) and one in heavy chain CDR3 (H3; green). (b) The two regions (circled in red) were predicted to be
aggregation prone (high TANGO Score) and unstable (less negative free energy of folding). (c) Mutations in both CDRs L2 and H3 that were predicted to reduce
aggregation (reduced TANGO Score) and improve folding stability (larger negative change in the free energy of folding) were selected to be evaluated. (d) Experimental
evaluation of the antibody mutants revealed increased resistance to aggregation, as judged by increased aggregation temperatures that approached the antibody
melting temperatures, particularly for variants with mutations in both CDRs. The figure is adapted with permission from a previous publication.'”’
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summing hydrophobicities of amino acids (weighted by sol-
vent accessibility) within a defined radius of residues to calcu-
late SAP scores for specific protein regions. High SAP scores
indicate high risk for aggregation, which can be used to identify
optimal regions for targeted mutagenesis. Recently, SAP was
used to rationally design a biobetter of bevacizumab, an anti-
vascular endothelial growth factor antibody used in the treat-
ment of cancer and macular degeneration.'® This mAb is
aggregation prone, which limits the concentration of its ther-
apeutic formulation and requires particular care during admin-
istration to avoid aggregation events. For these reasons, it is
attractive to develop biobetter versions of this antibody. The
high aggregation propensity of bevacizumab was addressed
through SAP analysis, leading to the identification of ten
high-risk residues in the antigen-binding fragment. Six of
those residues were mutated in a rational protein design
scheme, avoiding proline as well as residues in the antigen-
binding site. Most of these selected residues were mutated to
lysine to disrupt a hydrophobic patch predicted to mediate
antibody aggregation. Encouragingly, all of the variants dis-
played reduced aggregation during accelerated stability stu-
dies and increased folding stability without reducing binding
affinity. Bevacizumab variants were also generated by intro-
ducing glycosylation sites to disrupt four aggregation hot-
spots identified by SAP. The glycovariants displayed lower
levels of aggregation, although they did not have improved
folding stability as observed for the lysine variants. Overall,
this study further validates the ability of SAP analysis to
successfully guide the efficient rational design of aggrega-
tion-resistant mAbs.

Despite the power of rational design methods, most current
approaches require antibody structural information in the
form of crystal structures or homology models. This limits
the throughput of such computational methods and their
application to screening aggregation propensities of large num-
bers of early-stage mAb candidates. One approach developed
to address this problem combines high-throughput experimen-
tal assays and machine learning methods to predict aggregation
propensites using only antibody primary sequences.*® This
approach uses an aggregation screening assay in an ELISA-
based format. In this method, the capture and detection anti-
bodies are the same, preventing detection antibodies from
binding to captured proteins unless multiple, higher-order
species of the target protein are bound simultaneously.
Importantly, this assay is well correlated with SEC results.
The high-throughput nature of this assay enabled the genera-
tion of an aggregation dataset with >450 antibodies represent-
ing high sequence and structural diversity.

Next, machine learning models were developed to predict
the measured antibody aggregation behavior based only on
antibody sequence information.*® These models used QSAR
features extracted from antibody primary sequences, which
consisted of several amino acid characteristics summed over a
seven amino acid sliding window. These features were used to
predict binary classification of aggregation behavior deter-
mined by a set threshold for the ELISA aggregation assay. It
was found that specific machine learning methods (e.g.,
AdaBoost algorithm) performed best and achieved 75-78%
accuracy (area under the curve of 0.76). Furthermore, the

model  outperformed a  structure-based = method
(Developability Index) that combines SAP scores and antibody
net charge for a set of 45 antibodies (84% accuracy for the
machine learning models versus 53% accuracy for the
Developability Index method).”” These experimental and com-
putational results show promise for the generation of large data
sets and the prediction of aggregation propensites, especially at
early stages of antibody drug development.

In addition to low aggregation propensity, high antibody
solubility is also vital to meet formulation and manufacturing
requirements. For many routes of administration (e.g., subcu-
taneous and intraocular), therapeutic antibodies must be solu-
ble enough to be formulated at high concentrations (>100 mg/
mL) in order to deliver sufficiently large doses with limited
injection volume and frequency to ensure patient compliance
and comfort. In addition, therapeutics must remain soluble at
high antibody concentrations during the various processing
steps encountered during the manufacturing process that can
promote protein precipitation. To further complicate matters,
hydrophobic and charged residues in the CDRs that are often
implicated in reduced solubility are typically important for
affinity and cannot be easily altered without loss of antigen
binding. Therefore, it is important to develop computational
tools that can efliciently guide the rational design of highly
soluble antibodies as well as predict the solubility behavior of
antibodies.

One such approach (CamSol) was developed to computa-
tionally screen potential antibody (and other protein) variants
and select mutations predicted to enhance solubility while
maintaining binding affinity and folding stability.''® The algo-
rithm calculates an intrinsic solubility profile from the protein
sequence using a linear combination of physicochemical
descriptors for each residue while considering the nature of
neighboring residues. This solubility profile is then further
corrected using structural information to account for solvent
accessibility. Additional incorporation of structural informa-
tion allows the deprioritization of residues predicted to be
insoluble that are critical for proper folding, thus minimizing
potential effects on folding stability. After identification of
promising residues, the intrinsic solubility profiles are used to
rapidly evaluate and rank all possible substitutions and inser-
tions at the identified sites. When applied to a single-domain
(Vy) antibody, all seven of the CamSol-designed variants dis-
played increased solubility in a manner well correlated with the
calculated solubility scores (R* = 0.98). Notably, this was also
accomplished without significantly affecting antigen-binding
activity. CamSol has additionally been demonstrated to accu-
rately predict the solubility of an IgG and eight of its mutants
isolated during affinity maturation using phage display.'"'
After removal of an outlier antibody, the calculated solu-
bility scores correlated well with experimental solubility
measurements (Pearson correlation coefficients of 0.93-
0.97). Despite the limited number and diversity of anti-
bodies used to validate CamSol, the results to date show
promise for computational evaluation of antibody solubi-
lity. Moreover, the minimal computational expense of
CamSol enables rapid and efficient analysis of large anti-
body panels for selecting leads or designing improved
antibody variants.



In addition to CamSol, several machine learning models
that predict protein solubility have been developed, most of
which were trained on a dataset compiled from the Protein
expression purification and crystallization Data Base (PepcDB)
and Protein Data Bank (PDB).!'>"''> This dataset consists of
>82,000 proteins classified as ‘soluble’ or ‘insoluble’, although
the classifications are determined by the databases using unde-
fined criteria, resulting in uncertainty regarding the extent of
solubilities for the proteins in the database. This is particularly
problematic when attempting to predict solubility at extremely
high concentrations. Despite this shortcoming, the dataset is
quite extensive and provides an excellent opportunity to apply
machine learning techniques for classifying protein solubilities
and the elucidation of factors that mediate protein solubility.
One of the developed algorithms, PaRSnIP (Protein Solubility
Predictor), is a gradient boosting machine learning algorithm
trained on a subset of this dataset (~70,000 after removing
sequences with high sequence similarity) for solubility classifi-
cation and feature extraction.''* The algorithm is a nonlinear
ensemble of regression trees trained on over 8,000 protein
features with the final model achieving a test accuracy of 0.87
and a Matthews correlation coefficient of 0.74. Feature extrac-
tion additionally revealed that the features related to the frac-
tion of highly solvent exposure residues (>65%) and the
frequency of specific tripeptide combinations (particularly
IHH) were the best predictors of poor protein solubility. A
similar solubility predictor, DeepSol, was recently developed by
training a convolutional neural network on the same dataset
and achieved comparable classification accuracy and
Matthew’s correlation coeflicient relative to PaRSnIP on an
independent test set.''> Both models performed better than
the previous state-of-the-art prediction algorithm, PROSO II,
a support vector machine trained on the same dataset.''”

The same dataset was used in the development of another
machine learning-based tool for predicting protein solubility,
named SKADE.""” SKADE is a neural network designed with
neural attention architecture that enables highly accurate clas-
sification of solubility behavior and identification of features
important for classification with more transparency than tradi-
tional neural networks. It also facilitates the identification of
promising mutagenesis sites for the improvement of solubility
behavior, making it particularly attractive for antibody appli-
cations. SKADE is composed of two neural network branches
that both consist of two layers of bidirectional Gated Recurrent
Networks (GRUs). The final layer of the networks use
LeakyReLU to learn residue-specific solubility contributions
or SoftMax to learn region-specific solubility contributions as
the activation functions for the prediction and attention
branches, respectively. The primary protein sequence is fed
into the algorithm, translated into a 20-dimensional embed-
ding that represents the 20 amino acids, and passed to both
branches for analysis by the GRU layers. The outputs from
both branches are tensors that are combined to generate a final
scalar prediction. The algorithm was then trained on the pro-
tein dataset and tested on an independent test set with 2,000
sequences. SKADE performed comparably or slightly worse
than DeepSol'"* and PaRSnIP''* in predicting protein solubi-
lity and worse than CamSol'" in predicting the impact of
mutations on solubility. However, SKADE is only trained on
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sequence data, and therefore can be applied more broadly than
the other algorithms. Additionally, SKADE was able to predict
B-sheet aggregation in a similar manner as tools developed
specifically to predict P-sheet aggregation, demonstrating
enhanced generalizability. Additional analysis of the neural
attention architecture revealed that protein termini were by
far the most important regions for solubility classification, and
therefore are good targets for protein engineering to improve
solubility. While methodologies may be used for enhanced
rational design of antibody therapeutics, the algorithms have
yet to be validated on antibodies.

Another important aspect of the solubility of antibody ther-
apeutics was addressed by the development of the algorithm
SODA.'® SODA is an algorithm designed to predict the
change in solubility upon mutation. The algorithm uses a
linear combination of amyloid structure aggregation energy
(PASTA), ESpritz disorder propensity, negative Kyte-
Doolittle hydrophobicity profile, a-helix structure propensity,
and B-sheet structure propensity. Coefficients for the linear
regression model were trained on a dataset of 443 amino acid
substitutions in 71 proteins.''” The model predicted solubility
decreases with higher accuracy than solubility increases, which
was hypothesized to be a result of the strong contribution of
aggregation propensity descriptors to the predictions. The
algorithm also performed comparably to CamSol''’ and
PROSO I1.'"* A web server was developed to automate predic-
tions of solubility changes for various protein mutations.
Implementation of the web server was demonstrated, but not
experimentally validated, on a human germline antibody.
While these methods show great promise, there is still much
work needed to extend them to diverse types of antibodies and
to apply them to address problems specific to the field of anti-
body development.

Antibody pharmacokinetics

PK properties strongly influence the therapeutic efficacy of a
drug by determining its residence time in the body and ability
to reach desired targets. While mAbs are well known for having
relatively long half-lives, there are several reported examples of
abnormally fast antibody clearance,>*>''® which may necessi-
tate more frequent dosing. This is inconvenient and undesir-
able for patients and can reduce compliance. Fast clearance
rates may even prevent efficient drug extravasation and dis-
tribution, thereby reducing bioavailability and target binding.
Antibody clearance rates are known to be influenced by anti-
body charge, hydrophobicity, glycosylation, and receptor bind-
ing, all of which affect nonspecific and target-mediated
clearance.''”™"?! PK profiles are important to evaluate during
drug development, but are also prohibitively slow and costly to
directly measure during early-stage development due to the
large required amount of drug product. Animal models are also
complicated, and in some cases, incompatible with the human
mADbs of interest. Additionally, even the most advanced in vivo
models may not translate well to humans due to shortcomings
in allometric scaling and discrepancies between animal and
human physiology. Efficient methods of in vitro experimenta-
tion and computational modeling are needed for evaluation of
PK properties early in drug development but suffer from many
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of the same issues as in vivo analysis, such as low throughput
and poor translation to humans. Recent advances in experi-
mental methods have addressed these challenges with some
success, “°"'** enabling the generation of larger datasets for the
eventual development of predictive computational tools.
Antibody Fc interaction with the neonatal receptor (FcRn)
has been studied in depth due to its involvement in antibody
recycling and transcytosis pathways and influence on antibody
clearance.'” Antibodies that are internalized into cells non-
specifically can bind to FcRn in a pH-dependent manner in
endosomes and be released back into solution to avoid degra-
dation. Failure to efficiently bind or release FcRn can accelerate
clearance.'**'** Transcytosis assays have been developed that
measure the pH-dependent transport of antibodies across a
thin layer of Madin-Darby canine kidney (MDCK) cells engi-
neered to express human FcRn. These assays have been used to
measure differences in FcRn binding between antibodies with
engineered and non-engineered Fc regions.'*® While the trans-
cytosis measurements of antibody Fc variants correlate well
with their PK profiles, measurements of antibodies with a wide
range of antibody Fc regions have not shown similar agree-
ment. An improved assay has been developed using stably
transfected MDCK cells and the evaluation of transcytosis in
more physiologically relevant conditions (Figure 5a).'*' The
assay is conducted in media containing bovine serum albumin,
which is also recycled by FcRn, but has a poorly understood
influence on the binding of antibodies.'*” Additionally, condi-
tions were altered such that antibody uptake primarily occurs
by pinocytosis'*! rather than pH-dependent FcRn binding that
dominated uptake in the original assay.'*® These changes more
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accurately recreate the in vivo processes that influence
antibody PK. A panel of 53 mAbs with diverse Fc regions was
evaluated with this improved assay, and measured rates of
transcytosis were well correlated in a positive manner with
human clearance data (i.e., faster clearance correlated with
greater transcytosis; R* > 0.8) (Figure 5b)."*' Interestingly,
transcytosis measurements poorly correlated with FcRn affinity
and nonspecific-binding measurements evaluated using the
baculovirus particle-binding assay, suggesting that the in vitro
transcytosis assay captures the combined effects of multiple
events that accurately reflect in vivo recycling and transcytosis
pathways. Notably, mAbs with high pIs (>8.5) displayed a
higher risk for fast antibody clearance than lower pI mAbs
(Figure 5c). This assay represents a substantial advance for in
vitro screening, and can be used to evaluate a much wider
variety of candidate antibodies than would be practical to
evaluate in vivo.

PK profiles can also be mechanistically modeled with phy-
siologically based pharmacokinetic (PBPK) models using input
parameters describing tissue distribution.'*® While such para-
meters are most accurately obtained from in vivo animal mod-
els, these experiments are again extremely difficult and costly,
thus limiting the utility of such models. However, a recent
study has revealed relationships between in vivo measurements
with those obtained from in vitro experimental assays that are
much higher throughput, greatly expanding the utility of PBPK
models.” In particular, AC-SINS has been shown to be corre-
lated with rates of antibody clearance in humans, possibly
through detection of nonspecific binding that contributes to
antibody clearance. Recently, researchers have generated PBPK
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Figure 5. Cell culture-based evaluation of FcRn-mediated antibody transcytosis correlates well with antibody clearance in vivo. (a) An in vitro transcytosis assay involves
growing a monolayer of Madin-Darby canine kidney (MDCK) cells that overexpress human FcRn and measuring the amount of IgG in the outer chamber after extended
incubation with excess IgG loaded in the inner chamber. (b) Measured rates of in vitro antibody transcytosis correlate with antibody clearance measured in humans
(Pearson’s r = 0.90 and Spearman’s p = 0.77). (c) For a subset of antibodies that have been further experimentally characterized, isoelectric point (pl) displays some
correlation with in vivo antibody clearance rates, as antibodies with high pls have increased risk for fast antibody clearance (Pearson’s r = 0.57 and Spearman’s p = 0.57).

The figure is adapted with permission from a previous publication.’?’



models using only experimental measurements of AC-SINS,
FcRn binding affinity, and physiological parameters to predict
the in vivo clearance of 31 mAbs measured in mouse models.'*
A 16 compartment PBPK model was constructed with one
plasma compartment and 15 tissue compartments, each con-
sisting of six sub-compartments representing organs that can
be modeled with single-cell mechanistic models of FcRn traf-
ficking. Calibrated predictions showed significant agreement
with PK profiles measured in mouse models with high accuracy
for predicting problematic PK parameters such as half-life
(90%), volume of distribution (90%) and clearance rates
(71%). This PBPK model and the transcytosis assay'' repre-
sent substantial advances in accurately predicting antibody PK
profiles that require much less time and protein than in vivo
models. However, the need for purified protein and limited
throughput (particularly for the cell-based transcytosis assay)
still do not allow for the early screening of large antibody
panels to identify PK-related risks in early discovery.
Therefore, further development of high-throughput experi-
mental screens is necessary, in addition to improved under-
standing of the underlying mechanisms of poor PK behavior.
Such advances would inform the design of in vitro systems that
efficiently and accurately represent complex human physiology
and the rational design of antibodies with improved PK
profiles.

Recent studies have also investigated individual problematic
antibodies as well as larger sets of more diverse mAbs and
revealed various physicochemical properties that are associated
with poor PK profiles.”*''®!*° Evaluation of an extensive data-
set of 61 antibodies and their measured clearance rates in
cynomolgus monkeys confirmed previous reports that anti-
body IgG properties such as pI and hydrophobic index were
weakly correlated with clearance values.”* However, the sum of
CDRs L1, L3, and H3 hydrophobic index scores and the charge
of the variable regions at pH 5.5 were found to discriminate
between antibodies with high and low clearance with 75-86%
accuracy. Well-behaved antibodies generally had hydrophobic
index scores <4 and Fv charges between 0 and +6, highlighting
the importance of electrostatic and hydrophobic interactions
on nonspecific clearance. This classification model was further
used to guide the rational design of two test antibodies, one
with desirable clearance rates and a second one with rapid
clearance.”" Introduction of mutations that altered the hydro-
phobic index scores of CDRs L1, L3, and H3 as well as the Fv
net charge significantly altered the measured cynomolgus
clearance rates of several variants. Mutants with Fv net
charge increased beyond the recommended range exhibited
more rapid clearance for both antibodies, while mutants
with Fv charge decreased toward the center of the recom-
mended range exhibited greatly reduced clearance for a
mADb that displayed fast clearance. These results confirm
that Fv and CDR charge and hydrophobicity are important
determinants of antibody developability, but the study is
limited by the relatively small panel of analyzed antibodies.
Improvements in experimental assays to more efliciently
measure clearance rates and other PK properties would
enable the generation of much larger and more extensive
datasets for the development of generalizable computational
models.
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In addition to antibody clearance, bioavailability is extre-
mely important for the efficacy of antibody drugs delivered
through subcutaneous injection, which is the most desired
route of administration due to patient convenience.
Subcutaneous bioavailability describes the fraction of injected
antibody that reaches systemic circulation for distribution to
the target tissues and is difficult to predict due to the current
deficits in mechanistic understanding of the various transport
processes. Based on previous studies that found connections
between antibody properties and bioavailability,'**"** six anti-
bodies were recently investigated in depth."*® Multiple anti-
body properties were found to affect subcutaneous
bioavailability, including polyspecificity, aggregation propen-
sity, and thermal stability. Additionally, antibody variants with
reduced local positive charge, higher specificity, higher thermal
stability, and reduced aggregation potential had more favorable
measured bioavailability. Protein engineering efforts to
improve several of the undesirable biophysical properties of a
suboptimal mAb, including self-association, precipitation, and
poor expression, have provided additional evidence that poor
PK can be related to various biophysical properties.''®
Systematic mutation of three highly interactive hydrophobic
residues implicated in self-association resulted in a variant with
significantly reduced aggregation propensity, increased half-
life in vivo, and reduced nonspecific binding various tissues
without loss of antigen binding. Overall, the improvement of
multiple biophysical and PK properties suggests that the mole-
cular determinants of poor PK behavior can also impact anti-
body aggregation and nonspecific binding. While various
developability criteria have been presented as disparate proper-
ties, they are highly interconnected, especially for in vivo prop-
erties such as PK. Encouragingly, these findings suggest that
the simultaneous consideration of multiple biophysical proper-
ties such as aggregation and nonspecific binding can guide the
evaluation and improvement of complex, in vivo PK
properties.

Antibody immunogenicity

The immunogenicity of antibodies, defined as their propensity
to elicit immune responses, is also an important property of
therapeutic proteins that affects their developability.">® Such
immune responses generally occur due to the recognition of
antibodies as foreign substances in the body, resulting in their
rapid removal and development of immune system memory.
Antibodies discovered through animal immunization often are
recognized by the human immune system as foreign due to
differences in their sequences and structures between species.
Early efforts in decreasing immunogenicity generally involved
humanization of these foreign, often murine-derived, antibo-
dies through grafting of the desired CDR loops onto human
antibody frameworks.'*® However, this process often leads to
reduction in function and folding stability. Recent advances
have focused on improving the rational design of variants with
increased humanness and high affinity.*® For example, scoring
methods for quantifying the level of humanness that evaluate
correlations between residues at different positions during the
humanization process have been improved."*” Advances have
also been made in animal immunization techniques through
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the development of transgenic mice with humanized immune
systems that produce fully human antibodies.'*® However, a
recent study found that mAbs from such mice are prone to rare
mutations in framework regions due to somatic hypermutation
that compromise their biophysical properties and immuno-
genicity profiles."*® Antibody display methods, such as phage
and yeast display, are also important for generating and screen-
ing of fully human synthetic libraries, thus eliminating the
need for antibody humanization."**'*” Most recently, there is
great interest in using human-derived B-cells in conjunction
with next-generation sequencing technologies for rapid and
efficient generation of fully human mAbs."*'"'** However,
these discovery platforms lack efficient negative selection pro-
cesses to deselect for self-reactivity relative to naturally derived
antibodies, and therefore are at higher risk for immunogenicity
problems. The ubiquity of this issue demonstrates a great need
for experimental and computational approaches for diagnosing
and reducing the immunogenicity of antibody candidates.

Immunogenicity is a difficult property to experimentally
measure because adverse reactions are caused by a cascade of
immunological events that vary greatly even between different
individuals.">> These events are controlled by complex and
poorly understood feedback mechanisms that are difficult to
represent through experimentation. One of the main immuno-
genic risks for antibody therapeutics, particularly for treating
chronic illnesses that require repeated and long-term antibody
administration, is the development of anti-drug antibodies
(ADAs). ADAs are formed after professional antigen-present-
ing cells, such as dendritic cells, interact with and endocytose
antibody drugs. The cells then cleave the antibody drugs into
short peptides, some of which may be displayed by major
histocompatibility complex class II (MHCII) molecules on
the cell surface."**""*® T cells must then recognize these pre-
sented peptides as foreign and become activated, initiating
various immune responses that include the generation of
ADAs, which circulate in the body as part of the adaptive
immune memory and neutralize subsequent doses of the ther-
apeutic (Figure 6). This neutralization accelerates drug clear-
ance and decreases drug efficacy due to the inability of the
therapeutic to bind its target."*” Prediction of immunogenic
responses to antibody therapeutics is vital, as adverse reactions
can render antibody therapeutics inactive or harmful, depend-
ing on many coalescing factors in a complicated and unpre-
dictable manner.

While an accurate picture of the immunogenicity profile of
antibody candidates cannot be constructed before it has been
administered and monitored long term in a large and diverse
population, several experimental techniques have been devel-
oped for preclinical risk assessment.'**"">° These techniques
generally involve the assessment of known key steps in the
initial immune response, such as MHCII binding and T-cell
activation, through ex vivo cellular assays. MHCII binding is
evaluated through MHC-associated peptide proteomics
(MAPPs) in which mAbs are incubated with human-derived
dendritic cells and the displayed peptides are identified with
mass spectrometry to determine antibody regions with high
immunogenic risk."**'*’ This assay has been demonstrated to
successfully identify immunogenic sequences of problematic
antibodies such as infliximab'*’ and describe the likelihood of
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Figure 6. Repeated administration of therapeutic antibodies can lead to the
development of anti-drug antibodies and immunogenicity. Antibody therapeutics
are first internalized by APCs and processed into peptides, some of which are
presented by the major histocompatibility complex Il (MHCII) as foreign antigens
to naive T cells (top). Activated T cells then proliferate, release chemokines, and
activate naive B-cells (middle). Activated B-cells mature into plasma cells and
produce ADAs in large quantities, leading to immunogenicity (bottom). While
there are currently no reported assays for directly predicting clinical immuno-
genicity, various steps in the ADA development process can be modeled and
predicted.

ADA development.'"*® T-cell activation can be assessed
through measurement of cell proliferation (via flow cytometry
or [3H]-thymidine incorporation) and production of cytokines
such as interleukin-2 (IL-2) or interferon (IFN)-y (via enzyme-
linked immunospot or ELISpot assays) following co-incuba-
tion of donor-derived T cells with antigen-presenting cells
(APCs; naive or pre-incubated with therapeutic mAb). Both
T-cell proliferation and cytokine secretion have been shown to
relate to rates of clinical immunogenicity.'*® This importance
of assessing T-cell activation in addition to MHCII peptide
presentation was highlighted in a recent study of two mAbs
(secukinumab and ixekizumab) with the same target antigen,
but with different rates of clinical immunogenicity.">* While
the MAPPs assay identified similar numbers of potentially
antigenic peptides for the two mAbs, subsequent T-cell assays
(IFN-y ELISpot) revealed that only those of ixekizumab acted
as T-cell epitopes, leading to increased frequency of mAb-
specific T cells. The major limitation of these experimental
assays is the necessary usage of donor-derived cells, which
requires careful and extensive processing and represents a
small fraction of patient diversity. Similar to preclinical animal
trials, these cellular assays provide vital experimental risk
assessment but are impractical for screening large numbers of
candidate mAbs in early discovery.

To broaden screening capabilities, computational tools have
been developed that identify regions in protein sequences that



are at high risk for recognition by MHCII molecules with
relatively high accuracy and which can be used in screening
or rational design of mAbs.'**"">* These tools are built with
binding data specific to the major alleles for MHCII molecules,
thus covering the majority of the population while also
enabling customization based on the target population.
Recently, the computational tool EpiSweep was developed for
the rational design of functional protein variants and libraries
with decreased immunogenicity."”* EpiSweep uses existing
tools for identifying immunogenic epitopes to mutate and
predict immunogenicity following mutation. This program
also evaluates the effects of these epitope-deleting mutations
on function and stability using sequence- or structure-based
scoring methods. This enables the identification of a series of
variants or library designs on the Pareto frontier that represent
the trade-offs minimal possible between immunogenicity and
function. B-lactamase variants with several mutations designed
with EpiSweep demonstrated markedly decreased immuno-
genic potential (based on degree of MHCII binding to wild-
type versus mutated peptides) with similar or slightly decreased
activity and thermostability as the wild type.!>>"°
Additionally, a combinatorial B-lactamase library with several
mutations at the ‘elbow’ of the Pareto frontier designed by
EpiSweep displayed decreased MHCII peptide binding and
high overall activity and stability. The highest performing
individual variants were isolated from a designed library with
up to 30 mutations. One of these variants contained 14 muta-
tions, displayed the same melting temperature and better enzy-
matic activity than wild type, and only showed significant
T-cell activation (measured via IL-2 ELISpot) for one of the
18 donors, as compared to eight of 18 donors for the wild
type. 17

An additional computational tool, TCPro, has been devel-
oped to assess the immunogenicity profiles of therapeutic pro-
teins in silico.'> Predicting the clinical immune response
(especially ADA development) is complicated because it involves
protein processing, antigen presentation by MHCII molecules,
T-cell activation, and ultimately B-cell activation. Nevertheless,
TCPro uses recent advances in computational methods to incor-
porate analyses of different genotypes present among the popu-
lation, which enables coverage of a greater and more relevant
amount of genetic diversity than is possible experimentally.
TCPro simulates T-cell proliferation and IL-2 secretion assays
using non-linear ordinary differential equations.'> Predictions
are generated using three user inputs: 1) amino acid sequences of
the therapeutic proteins; 2) ratios of CD4+ cells that will bind to
the drugs (Fp); and 3) MHCII genotypes of the individual or
populations of interest. MHCII binding affinities (predicted by
NetMCHIIpan), randomly assigned counts of various cell types
(within reported ranges), and drug concentrations are then input
to the system of differential equations that model the time-
dependent dynamics of the T-cell populations. Individuals pre-
dicted to have significantly greater T-cell proliferation and IL-2
secretion in the presence of protein drugs are considered immu-
nogenic. User-defined populations of specified size are modeled
by simulating individuals with the same genotype distribution as
the population of interest, with the percentage of responders
given as the final output. TCPro was able to predict the percen-
tage of donors responding in both ex wvivo assays for
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experimentally characterized peptide fragments from a blood
clotting factor and three control proteins with mean absolute
percent error of 4.2%. TCPro predictions for 15 therapeutic
antibodies and other proteins were generally found to correlate
with rates of clinically observed immunogenicity, often better
than ex vivo experimental assays.

While these computational tools were developed for appli-
cation toward diverse types of therapeutic proteins, they can
easily be applied to mAbs. However, the frequency of uptake
and processing by APCs may differ between mAbs and other
therapeutic proteins, thereby affecting the likelihood of devel-
oping ADAs. Both experimental and computational methods
rely on simulating simplified versions of several key steps in
ADA development for the prediction of clinical immunogeni-
city, which do not fully represent the complex cascade of events
performed by diverse immune cells involved in a true immune
response. Advancements in this field will need to consider the
function of B cells, which interact with activated T cells to
produce ADAs but also act as APCs, though less efficiently
than professional APCs such as dendritic cells. Additionally,
ADAs are most problematic upon repeated drug administra-
tion, but none of the existing methods discussed here considers
the effects of immunological memory. Nevertheless, preclinical
experimental assessment is vital toward ensuring patient safety,
and computational tools such as EpiSweep'>* and TCPro'>
represent substantial advances in screening candidates and
guiding rational protein engineering.

Conclusions

Despite the impressive advances in using mAbs as potent
therapeutics, there are still many challenges that continue to
frustrate their efficient development. There remains great need
for high-throughput experimental techniques that facilitate the
evaluation of biophysical properties at extremely low concen-
trations and which require low quantities of protein available at
the antibody discovery stage. This is of particular importance
for in vivo properties, such as PK and immunogenicity, that
suffer from a critical lack of key experimental data and may be
evaluated as late as after the initiation of clinical trials. In
addition, the systematic generation of high-quality data from
these high-throughput techniques will be invaluable to further
the understanding of biophysical properties for enhanced
rational design and computational de-risking of candidate
molecules. This data will be critical for improving computa-
tional methods that show great promise for enhancing anti-
body developability yet have been limited to date by the lack of
sufficiently large datasets. It will be important to broaden the
scope of these computational methods to include full-length
IgG modeling, as well as protein dynamics to mimic real for-
mulation conditions. Increasing the application of machine
learning methods for the analysis of emerging experimental
datasets may yield great advances and warrants attention for
future work to address the remaining challenges hindering the
development of antibody therapeutics. Importantly, these
methods will rely on improvements in feature extraction to
accurately describe characteristics of antibodies that are deter-
ministic of their developability properties, which is possibly the
greatest remaining challenge. If the rapid progress in the field
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continues at the current pace, we expect that advances in the
coming years related to evaluating and predicting antibody
developability properties will substantially reduce late-stage
failures and provide more effective and safer therapeutics for
patients.
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