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ABSTRACT

The emergence of fast, dense, nonvolatile main memory suggests
that certain long-lived data might remain in their natural pointer-
rich format across program runs and hardware reboots. Operations
on such data must currently be instrumented with explicit write-
back and fence instructions to ensure consistency in the wake of a
crash. Techniques to minimize the cost of this instrumentation are
an active topic of research.

We present what we believe to be the first general-purpose ap-
proach to building buffered persistent data structures, and a system,
Montage, to support that approach. Montage is built on top of the
Ralloc nonblocking persistent allocator. It employs a millisecond-
granularity epoch clock, and ensures that no operation appears to
span an epoch boundary. It also arranges to persist only that data
minimally required to reconstruct the structure after a crash. If a
crash occurs in epoch e, all work performed in epochs e and e — 1
is lost, but work from prior epochs is preserved, consistently. As in
traditional file and database systems, a sync operation can be used
to flush buffers on demand; the Montage sync is extremely fast.

We describe the implementation of Montage, argue its correct-
ness, and report unprecedented throughput for persistent queues,
sets/mappings, and general graphs.
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1 INTRODUCTION

Emerging memory technologies such as Intel’s Optane are signifi-
cantly denser and less power hungry than traditional DRAM. While
such memory could simply be used as a plug-in replacement for
DRAM, its nonvolatility also raises the intriguing possibility of
keeping long-lived data in pointer-rich “in memory” format across
program runs and even system crashes, rather than serializing to
and from a file system or back-end database.

Crashes cause problems, however. For file systems and databases,
long-established logging techniques ensure that transitions from
one consistent state to another are failure atomic. For data struc-
tures accessed with load and store instructions, the cost of such
logging may be prohibitively high. Moreover, the fact that caches
remain volatile (at least on current processors) and may write back
their contents out of program order means that data structure opera-
tions must typically issue explicit write-back and fence instructions
to guarantee post-crash consistency.

Past work has established durable linearizability as the standard
correctness criterion for persistent data structures [14, 21, 32, 50].
This criterion builds on the familiar notion of linearizability for
concurrent (non-persistent) structures. A structure is said to be
linearizable if operations that may overlap in time always have
the same effect as some one-at-a-time execution that respects both
“real time” order (if operation A returns before operation B is called,
then A must appear to happen before B) and the semantics of the
abstraction represented by the structure.

A persistent data structure is said to be durably linearizable if
(1) it is linearizable during crash-free operation, (2) each operation
persists (reaches a state that will survive a crash) between its call
and return, and (3) the order of persists matches the linearization
order. These semantics, however, are significantly stronger than
most programs need or most programmers expect. A file or data-
base operation, after all, returns to its caller while data remain in
volatile DRAM buffers. An operation that requires synchronous
persistence—e.g., before responding to a client over the network—
performs a sync operation. A data structure that mimics this more
conventional, relaxed persistence is said to be buffered durably lin-
earizable. Like a file or database system, it guarantees on a crash to
preserve some consistent prefix of pre-crash execution.

Recent publications have described many individual durably
linearizable data structures and perhaps two dozen general-purpose
systems to provide failure atomicity for outermost critical sections
or speculative transactions (Sec. 2). To the best of our knowledge,
all of the general-purpose systems and all but two of the individual
structures (the Dali hashmap [35] and InCLL MassTree [8]) are
strictly durably linearizable. To reduce the overhead of synchronous
persistence and to provide more conventional semantics, we present


https://orcid.org/0000-0001-7118-1206
https://orcid.org/0000-0002-7929-2653
https://orcid.org/0000-0002-2245-3022
https://orcid.org/0000-0001-8652-7644
https://doi.org/10.1145/3472456.3472458
https://doi.org/10.1145/3472456.3472458

ICPP °21, August 9-12, 2021, Lemont, IL, USA

what we believe to be the first general-purpose approach to buffered
durably linearizable structures.! Our system, Montage, employs a
global epoch clock, and ensures that no operation appears to span
an epoch boundary. If a crash occurs in epoch e, Montage recovers
the state of the abstraction from the end of epoch e — 2.

Generalizing an approach embodied in several previous data
structures [36, 49, 50], Montage also distinguishes between the
abstract (semantic) state of the concurrent object and its concrete
(implementation-level) state. It encourages the programmer to main-
tain only the former in NVM, to reduce persistence overhead. A
Montage mapping, for example, would typically persist only a bag
of key-value pairs; the look-up structure (hash table, tree, skip list)
would live entirely in transient DRAM. During recovery, Montage
cooperates with the user program to rebuild the concrete state.

Our implementation of Montage is built on top of Ralloc [3], a
lock-free allocator for persistent memory. Montage itself is also
lock-free during normal operation, though a stalled thread can ar-
bitrarily delay progression of the persistence frontier. Performance
experiments (Sec. 6) reveal that a Montage hashmap on a 2-socket
server can sustain well over 20 M ops/s on a read-heavy workload—
7% as many as the Dali hashmap, 17X as many as the state-of-the-art
Pronto system [32], and within a factor of 3 of a transient DRAM
table. This is close to the best one could hope for: read bandwidth
for Intel Optane NVM is about one-third that of DRAM [22].

Summarizing contributions, we present: (1) The first general
system, Montage, for buffered durably linearizable structures; (2)
informal proofs of safety and liveness; and (3) performance results
for a variety of data structure microbenchmarks, the memcached
key-value store, and a general library for graphs. Relative to the
state of the art in both general systems and special-purpose struc-
tures, we obtain unprecedented throughput without significantly
compromising recovery times.

2 RELATED WORK

Recent years have seen an explosion of work on persistent data
structures, much of it focused on B-tree indices for file systems
and databases [6, 19, 34, 36, 43, 49]. Other work has targeted RB
trees [45], radix trees [26], hashmaps [35, 41, 50], and queues [14].
Several projects persist only parts of a data structure, and rebuild
the rest on recovery. Zuriel et al. [50] argue that this approach can
be used for almost any implementation of a set or mapping. Unfor-
tunately, their SOFT system keeps a full copy of the data in DRAM,
forfeiting the high capacity of NVM, and fails to support atomic
update. Montage eliminates these restrictions; it also supports any
abstraction that comprises items and relationships—effectively, any-
thing that can be represented as a graph.

Several existing data structures are designed to linearize by using
a single compare-and-swap (CAS) instruction to replace a portion
of the structure [6, 26, 34, 35]. If the new portion is persisted before
the CAS, and the updated pointer is persisted immediately after
the CAS, no separate logging is required. Mahapatra et al. [31] and
Haria et al. [17] apply this observation to a variety of “functional”
data structures, building sets, maps, stacks, queues, and vectors. As

!We have recently become aware of the concurrently developed CpNvm system [1],
which is also buffered durably linearizable. Unlike Montage, CpNvm duplicates the
entire data structure in DRAM and NVM, updating the NVM copy at epoch boundaries.
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an extension, a sequence of single-CAS steps can be used to move
a structure through self-documenting intermediate stages [19, 45].

Izraelevitz et al. [21] provide a mechanical construction to con-
vert any nonblocking concurrent structure into a correct persistent
version. David et al. [12] describe several techniques to eliminate
redundant writes-back and fences for such structures, significantly
improving performance.

Many groups now have developed systems to ensure the failure
atomicity of lock-based critical sections [4, 18, 20, 29, 46, 47] or
speculative transactions [2, 5, 7, 9, 11, 15, 16, 24, 33, 37, 38, 42, 44].
Significantly, all of these systems ensure that an operation has
persisted before permitting the calling thread to proceed—that is,
they adopt the strict version of durable linearizability.

The Dali hashmap [35] delays persistence, so the overhead of
writes-back and fencing can be amortized over many operations
while still providing buffered durable linearizability. The implemen-
tation relies on a flush-the-whole-cache instruction that is available
only in privileged mode on the x86, and has the side effect of evict-
ing many useful lines. Similarly, Cohen et al. [8] embed undo logs
inside every cache line and periodically flush the entire cache; their
technique is inapplicable to large values spanning a cache line. Our
reimplementation of Dali (used in Sec. 6) tracks to-be-written-back
lines explicitly in software—as does Montage. Montage then extends
delayed persistence to arbitrary structures.

Perhaps the closest prior work to Montage is the Pronto system
of Memaripour et al. [32], which logs high level operations (rather
than low-level updates), and replays the log after a crash. Periodic
checkpoints allow it to bound the length of the log, and thus re-
covery time. Notably, Pronto still pays the cost of persisting each
operation before returning; extending Pronto to buffer its updates
would be a highly nontrivial change. TIMESTONE [24], likewise,
combines high-level logging and periodic checkpointing, but the
fact that it keeps multiple versions of each object in DRAM means
that, like SOFT, it is unable to make full use of NVM capacity.

3 MONTAGE DESIGN

Montage manages persistent payload blocks on behalf of one or
more concurrent data structures. A programmer who wishes to
adapt a structure to Montage must identify the subset of the data
that is needed, in quiescence, to capture the state of the abstraction.
A set, for example, needs to keep its items in payload blocks, but not
its lookup structure. A mapping needs to keep key-value pairs. A
queue needs to keep its items and their order: it might label payloads
with consecutive integers from i (the head) to j (the tail). A graph
can keep a payload for each vertex (each with a unique name) and
a payload for each edge (each of which names two vertices).

A typical data structure maintains additional, transient indexing
data to speed up retrievals. A set or mapping might maintain a
hash table, tree, or skip list. A queue might maintain a linked list
of pointers to items. A graph might maintain a transient object
for each vertex, containing a pointer to a payload for the vertex
attributes, a set of pointers to neighboring vertex objects, and (if
edges have large attributes) a set of pointers to edge payloads. All
of this transient data can be reconstructed after a crash.

Crucially, synchronization may safely be performed on transient
data. Montage does not, itself, determine the linearization order of
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namespace pds{
class PBlk; // Base class for payloads
// Macro to generate get() and set() methods for field
// fieldname of type type_name within payload_type
GENERATE_FIELD(type_name, fieldname, payload_type);
// Creates ‘protected m_fieldname ™ with the following members:
// get value with old-see-new alert enabled
const type_name& get_fieldname();
// get with old-see-new alert disabled
const type_name& get_unsafe_fieldname();
// set value of fieldname; may return a new payload
payload_typex set_fieldname(type_name&);

class EpochSys;
class Recoverable{ // Base class for Montage structures
// Instance of this structure's epoch system
EpochSys* esys;
// Begin op in current epoch; mark already-created payloads
void BEGIN_OP();
// End an operation
void END_OP();
// Begin a scoped operation using RAII
BEGIN_OP_AUTOEND();
// Create a payload block
payload_typex PNEW(payload_type, ...);
// Delete a payload after end of next epoch
void PDELETE(PBlkx);
// Throw exception if epoch has changed
CHECK_EPOCH() ;
// Request and wait for two-epoch advance
void sync();
3
struct OldSeeNewException :
3

public std::exception;

Figure 1: C++ APL

operations. Rather it ensures that the persistence order for payloads
is consistent with the linearization order of the underlying structure.
More specifically, it divides execution into epochs in such a way that
every epoch boundary represents a consistent cut of the happens-
before relationship among operations; it then arranges, in the wake
of a crash, to recover all managed data structures to their state as
of some common epoch boundary.

3.1 API

The Montage C++ API is shown in Figure 1. A lock-based hashmap
built with Montage appears in Figure 2.

Any data structure operation that creates or updates payloads
must make itself visible to Montage by calling BEGIN_OP. It indicates
completion with END_OP. For ease of use, Montage also provides
BEGIN_OP_AUTOEND, which uses the RAII idiom to call BEGIN_OP
immediately and to call END_OP automatically at the end of the
current scope. Read-only operations can skip these calls, though
they must still synchronize on the transient data structure. Pay-
loads are created and destroyed using PNEW and PDELETE. Existing
payloads are accessed with get and set methods, created by the
GENERATE_FIELD macro; get returns a const reference to the field;
set updates the field and returns a (possibly altered) pointer to the
payload.

To support the epoch system, Montage labels all payloads with
the epoch in which they were created or most recently modified. An
operation in epoch e that wishes to modify an existing payload can
do so “in place” if the payload was created in e; otherwise, Montage
creates a new payload with which to replace it. The set methods
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1 class HashMap : public Recoverable{

2 // Payload class

3 class Payload : public PBlk{

4 GENERATE_FIELD(K, key, Payload);

5 GENERATE_FIELD(V, val, Payload);

6 i

7 struct ListNode{ // Transient index class
8 // Transient-to-persistent pointer

9 Payload* payload = nullptr;

10 // Transient-to-transient pointers

11 ListNode* next = nullptr;

12 void set_val_wrapper (V& v){

13 payload = payload->set_val(v);

14 }

15 ListNode(K& key, V& val){

16 payload = PNEW(Payload, key, val);
17 }

18 ~ListNode () {

19 PDELETE (payload);

20 }

21 // get() methods omitted

22 3

23 // Insert, or update if the key exists
24 optional<V> put(K key, V val, int tid){
25 size_t idx=hash_fn(key)%idxSize;

26 ListNode* new_node = new ListNode(key, val);
27 std: :lock_guard lk(buckets[idx].lock);
28 BEGIN_OP_AUTOEND() ;

29 ListNodex curr = buckets[idx].head.next;
30 ListNodex prev = &buckets[idx].head;
31 while(curr){

32 K& curr_key = curr->get_key();

33 if (curr_key == key){

34 optional<V&> ret = curr->get_val();
35 curr->set_val_wrapper(val);

36 delete new_node;

37 return ret;

38 } else if (curr_key > key){

39 new_node->next = curr;

40 prev->next = new_node;

41 return {};

42 } else {

43 prev = curr;

44 curr = curr->next;

45 }

46 } // while

47 prev->next = new_node;

48 return {};

49 }

50 3}

Figure 2: Simple lock-based hashmap
(Montage-related parts highlighted).

enforce this convention by returning a pointer to a new or copied
payload, as appropriate.

During a given epoch, “hot” payloads will typically be modified
in place. When a new copy is created, however, an operation must re-
write any pointers to the payload found anywhere in the structure.
For this reason, it is important to minimize the number of pointers
to a given payload found in transient data; this can be trivially
accomplished by indirecting all such pointers through a transient
intermediate object. It is even more important to avoid long chains
of pointers in persistent data: otherwise, a change to payload p, at
the end of a long chain, would require a change to the penultimate
payload p’, which would in turn require a change to its predecessor

”” and so on.

Because calls to get are invisible to recovery, they can safely

be made outside the bounds of BEGIN_OP and END_OP (subject to



ICPP °21, August 9-12, 2021, Lemont, IL, USA

transient synchronization). Calls to PNEW can also be made early; the
payloads they return will automatically be recorded and properly
labeled when BEGIN_OP is called.

3.2 Periodic Persistence

The key task of Montage is to ensure that operations persist atomi-
cally, in an order consistent with their linearization order. Toward
that end, the system ensures that

(1) all payloads created or modified by a given operation are
labeled with the same epoch number;

(2) all payloads created or modified in a given epoch e persist
together, instantaneously, when the epoch clock ticks over
frome+1to e+ 2; and

(3) each update operation linearizes in the epoch in which it
created payloads.

Property 1 is ensured by the set and PNEW methods, as described
in Section 3.1. Note that an operation that begins in epoch e can
continue to create and modify payloads in that epoch, even if the
clock ticks over to e + 1.

Property 2 is enforced by Montage’s recovery routines: if a crash
occurs in epoch e, those routines discard all payloads labeled e or
e — 1, but keep everything that is older. This two-epoch convention,
as suggested by Nawab et al. [35], allows operations in e and e — 1
to overlap in time, avoiding the need for quiescence on clock ticks.
At the same time, it requires that memory reclamation be delayed.
If a payload created or updated in epoch b is passed to PDELETE
in epoch e > b, Montage creates an “anti-payload” labeled e. If a
crash occurs before e + 2, the anti-payload will be discarded and the
original payload retained. If a crash occurs during epoch e + 2, the
anti-payload will be discovered during recovery and both it and the
original payload will be discarded. If execution proceeds without
a crash, the original payload will be reclaimed when the epoch
advances from e + 2 to e + 3; the anti-payload will be reclaimed
when the epoch advances from e + 3 to e + 4.

Property 3 is the responsibility of the transient data structure
built on top of Montage. Lock-based operations are easy: no con-
flicting operation can proceed until we release our locks, and we
can easily pretend that all updates happened at the last call to set or
PNEW. For nonblocking structures, a similar guarantee can be made
if every operation linearizes on a statically identified compare-and-
swap (CAS) instruction that also modifies an adjacent counter (as
is often used to avoid ABA anomalies). One first reads some vari-
able x, verifies the epoch clock (using the CHECK_EPOCH method),
and only then attempts a CAS on x. If the CAS succeeds, it can
be said to have occurred at the time of the CHECK_EPOCH call. This
strategy generally requires read-only operations on the structure
to be modified by replacing their linearizing read with a read-CAS
primitive (wrapped as load_verify1 in Montage) that updates the
adjacent count: otherwise a read that occurs immediately after an
epoch change might observe an update from the previous epoch
as not yet having occurred. For cases in which this modification
is undesirable (e.g., because reads vastly outnumber updates), we
use a variant of the double-compare-single-swap (DCSS) software
primitive of Harris et al. [25] (wrapped as CAS_verify2) to update
a location while simultaneously verifying the current epoch num-
ber. A compatible read primitive (load_verify2) performs no store
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instructions (and thus induces no cache evictions) so long as no
DCSS is currently in progress on the variable being read; if one is,
the read helps the DCSS complete.

As an assist to programmers in ensuring property 3, Montage
raises an exception called 01dSeeNewException whenever an op-
eration running in epoch e reads a payload created in some epoch
e’ > e. In most cases, programmers can ensure that this exception
will never arise. In other cases, the operation may respond to the
exception by rolling back what has done so far and starting over
in the newer epoch. In special cases, an operation can ignore the
exception or use get_unsafe methods to avoid generating it in
the first place (the new data might, for example, be used only for
semantically neutral performance enhancement).

In support of these properties, the epoch-advancing mechanism
at the end of epoch e (1) waits until no operation is active in epoch
e — 1; (2) reclaims all payloads deleted in epoch e — 2 and all anti-
payloads created in epoch e—3; (3) explicitly writes back all payloads
created or modified in epoch e — 1; (4) waits for the writes-back to
complete; and (5) updates and writes back the epoch clock. Further
details appear in Section 5.

3.3 Nonblocking Data Structures

As described in Section 3.2, Montage is compatible with nonblock-
ing operations that employ special CAS or load primitives to en-
sure that linearization occurs in the epoch in which any payloads
were created or modified. In the general case, a structure that uses
the OldSeeNewException to keep its linearization order consis-
tent with epoch order may find that the resulting restarts make it
lock-free or obstruction-free, rather than wait-free. Still, nothing in
Montage precludes lock freedom.

4 CORRECTNESS

We argue that Montage (1) preserves, during crash-free operation,
the linearizability of a structure implemented on top of it, (2) adds
buffered durable linearizability, and (3) preserves lock freedom.

Each concurrent data structure serves to implement some ab-
stract data type. The semantics of such a type are defined in terms
of legal histories—sequences of operations, with their arguments
and return values. The implementation is correct if it is linearizable,
meaning that every concurrent history (with overlapping calls and
returns from different threads) is equivalent to (has the same oper-
ations as) some sequential history that is consistent with real-time
order (if A returns before B is called in the concurrent history, then
A precedes B in the sequential history) and that represents a valid
operation sequence for the data type.

We can define the abstract state of a data type, after a finite
sequence of operations, as the set of sequences that are permitted
to extend that sequence according to the type’s semantics. Suppose,
then, that data structure S is a correct implementation of data type
T, and that s is a quiescent concrete state of S (the bits in memory
at some point when no operations are active). We can define the
meaning of that state, M(s), as the state of T after the sequence
of abstract operations corresponding to (a linearization of) the
operations performed so far on S.

We assume that the programmer using Montage obeys the fol-
lowing well-formedness constraints:
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(1) Each data structure S, implemented on top of Montage, is lin-
earizable when Montage itself is disabled and crashes do not
occur. More specifically, assume that (a) PNEW and PDELETE are
implemented as ordinary new and delete; (b) get and set are
ordinary accessor methods, and set never copies a payload; (c)
BEGIN_OP and END_OP are no-ops; and (d) the 01dSeeNewExcep-
tion never arises. Under these circumstances, the structure is
linearizable.
Any synchronization required for linearizability is performed
solely on transient data: accesses to payloads, which may be
replaced on an update, never participate in a data or synchro-
nization race.
(3) All accesses to payloads are made through get and set. Each
operation that modifies the data structure (a) calls BEGIN_OP
before set, (b) calls END_OP after completing all its sets, and (c)
ensures that between its last call to set or CHECK_EPOCH and
its linearization point, no conflicting operation can linearize.
Whenever set returns a pointer to a payload different than the
one on which it was called, the calling operation replaces every
pointer to the old payload in the structure with a pointer to the
new payload. As noted in Section 3.1, this can be trivially ac-
complished by indirecting all such pointers through a transient
intermediate object.
There exists a mapping Q from sets of payloads to states of T
such that whenever S is quiescent, M(s) = Q(p), where s is the
concrete state of S and p is the current set of payloads.
(6) The recovery routine for S, given a set of payloads r, constructs
a concrete state t such that M(t) = Q(r).

—
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4.1 Linearizability

LEmMMA 4.1. A well-formed, linearizable concurrent data structure,
implemented on top of Montage, remains well-formed and linearizable
when Montage is enabled.

PRroOF (SKETCH). Constraint 4 ensures that any payload cloned
by Montage is reattached to the structure wherever the old payload
appeared. Since access to payloads is race-free (Constraint 2), this
re-attachment is safe. Throws of the 01dSeeNewException will be
harmless: they simply facilitate compliance with Constraint 3; any
operation that already satisfies that constraint can safely ignore the
exception. Finally, given the mapping Q from payloads to abstract
state (Constraint 5), we can easily create a Q' that ignores both
the old versions of cloned payloads and any payloads for which an
anti-payload exists. These are the only effects of enabling Montage
that are visible to the structure during crash-free execution. O

THEOREM 4.2. A Montage data structure S remains linearizable
when epoch advancing operations are added to its history.

PRroOF (SKETCH). Let a. denote the operation that advances the
epoch from e — 1 to e. Consider a linearization order for S itself, as
provided by Lemma 4.1. Constraint 3 ensures that the linearization
point of any update operation in this order occurs between events a,
and a.41, making it easy to place these events into the linearization
order. A read-only operation, moreover, has no forward or anti-
dependences on the epoch clock, so it cannot participate in any
circular dependence with respect to the epoch advancing events.

O
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4.2 Buffered Durable Linearizability

THEOREM 4.3. A well formed, linearizable concurrent data struc-
ture, running on Montage, is buffered durably linearizable.

ProoF (sKETCH). We need to show that in any execution H con-
taining a crash c, the state of the data structure after recovery
reflects some consistent prefix of the linearized pre-crash history.
Suppose that ¢ occurs in epoch e of H. If e < 2, recovery will restore
the initial state of the system, which reflects the null prefix of execu-
tion. If e > 2, Montage will discard all payloads created in epochs e
and e—1, preserving those in existence as of a.—1, and will pass these
to the structure’s recovery routine. This routine, by Constraint 6,
will construct a new concrete state ¢ such that M(t) = Q(r), where
r is the set of payloads it was given. But r is precisely the set of
payloads created by operations that linearized prior to a.—i. If exe-
cution had reached quiescence immediately after those operations,
Constraint 5 implies that the concrete state s of S would have been
such that M(s) = Q(r). Thus the post-recovery state ¢ reflects a
consistent prefix of the linearized pre-crash history. O

4.3 Liveness

THEOREM 4.4. Montage is lock free during crash-free execution.

Proor (skeTcH). The only loop in Montage lies within BEGIN_OP,
where an update operation seeks to read the epoch clock and an-
nounce itself as active in that epoch, atomically. Each retry of the
loop implies that the epoch has advanced. If we assume that the
epoch advancing operation (which need not be nonblocking) al-
ways waits until at least one operation has completed in the old
epoch, then an operation can be delayed in BEGIN_OP only if some
other operation has completed. The 0ldSeeNewException, simi-
larly, will arise (and cause some operations to start over) only if the
epoch has advanced. O

5 IMPLEMENTATION DETAILS

Figure 3 shows pseudocode for Montage’s core functionality. The
“operation tracker” indicates, for each thread in the system, the
epoch of its active operation (if any), together with lists of payloads
to persist and free (reclaim) at future epoch boundaries. The lists
are logically indexed by epoch, but only the most recent 2 or 3 are
needed. For simplicity, Montage maintains four sets, and indexes
into them using the 2 low-order bits of the epoch number. For
convenience, each thread also caches the epoch of its currently
active operation and last active operation (if any) in thread-local
storage as op_epoch and last_epoch.

Aside from the epoch clock itself, payloads are the only data
allocated in NVM. Each payload indicates the epoch in which it was
created and whether it is new (ALLOC), a replacement of an existing
payload (UPDATE), or an anti-payload (DELETE). ALLOC payloads are
created in PNEW. UPDATE payloads are created in set (when the
block being modified was created in an earlier epoch and cannot
be updated in place). DELETE payloads (anti-payloads) are created
in PDELETE; they live until the payload they are nullifying has
been safely reclaimed, and are reclaimed in the following epoch to
preserve the order of persistence.
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1 Struct Payload
2 enum fype = {ALLOC, UPDATE, DELETE}

3 uint64_t epoch
4 | uint64_t uid // shared between real and anti-payloads

5 Struct EpochSys
// transient structures

6 Tracker operation_tracker
7 PBIk* to_persist[4] // recent 4 epochs
8 PBIk* to_free[4] // recent 4 epochs
9 operation_local uint64_t op_epoch
10 operation_local uint64_t last_epoch
// persistent structures
1 uint64_t curr_epoch
12 Function osn_check (Payload™ p) : void
13 if op_epoch < p—epoch then
14 L L throw OldSeeNewException
15 Function advance_epoch () : void
16 operation_tracker.wait_all (curr_epoch -1)
17 to_persist [(curr_epoch -1) % 4].persist_all()
18 sfence
19 curr_epoch.atomic_increment ()

20 EpochSys* Recoverable::esys
21 Macro BEGIN_OP : void

22 repeat

23 esys — op_epoch = esys — curr_epoch

24 esys — operation_tracker.register(tid, esys — op_epoch)
25 until esys—op_epoch == esys— curr_epoch

26 forall e needs to be persisted for some sync() do
27 L to_persist [e % 4].persist_local(tid)

28 if op_epoch > last_epoch then

29 forall e between last_epoch-1 and

30 min(last_epoch+1, op_epoch-2) do

31 to_free e % 4].free_local(tid)

32 L sfence

33 last_epoch = op_epoch

Macro END_OP : void
35 esys — op_epoch = NULL
esys — operation_tracker.unregister (tid)

»
&
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37 Function payload.get x() : typeof{x)
38 L esys — osn_check (this)

39 return this— x

o Macro PNEW (Type, ...) : Type*
41 new_payload = new Type(...)

'S

42 new_payload— epoch = esys — op_epoch

43 new_payload— type = ALLOC

44 | return new_payload

45 Macro PDELETE (Payload™ p) : void

16 esys — osn_check (p)

47 if p.epoch == esys — op_epoch then

48 if p—type == ALLOC then

49 delete(p)

50 return

51 else

52 | p— type = DELETE

53 else

54 anti_payload = new Payload ()

55 anti_payload— type = DELETE

56 anti_payload— uid = p— uid

57 esys — to_persist [esys — op_epoch % 4].add (anti_payload)
58 | esys— to_free[(esys — op_epoch +1) % 4].add (anti_payload)

59 | esys— to_free[esys — op_epoch % 4].add (p)
60 Function payload.set_x (typeof(x) y) : Payload™

61 esys — osn_check (this)

62 if this— epoch == esys — op_epoch then

63 this—> x=y

64 esys — to_persist [esys — op_epoch % 4].add (this)
65 return this

66 else // this— epoch < esys — op_epoch

67 new_payload = copy(this)

68 new_payload— epoch = esys — op_epoch

69 new_payload— type = UPDATE

70 new_payload— x = y

71 esys — to_persist [esys — op_epoch % 4].add (new_payload)
72 esys — to_free[esys — op_epoch % 4].add (this)

73 return new_payload

Figure 3: Montage Pseudocode.

5.1 Storage Management

Space for payloads in Montage is managed by a variant of the Ralloc
persistent allocator [3]. Ralloc is in turn based on the nonblocking
allocator of Leite and Rocha [27]. Ralloc has very low overhead and
excellent locality during crash-free operation. Almost all metadata
is kept in transient memory, and most allocation and deallocation
operations perform no write-back or fence instructions.

In its original form, Ralloc performs garbage collection after a
crash to identify the blocks that are currently in use; all others
are returned to the free list. For Montage, we modified the recov-
ery mechanism to simply peruse all blocks, and to keep all and
only those that are labeled as having been created at least two
epochs ago. (These blocks will of course have been written back
at some previous epoch boundary.) Montage passes the recovered
blocks (i.e., payloads) to the application data structure, which is
then responsible for rebuilding transient state. To facilitate parallel
recovery, the application may request that the blocks be returned
via k separate iterators, to be used by k separate application threads.
As a point of reference, the recovery code for our Montage hashmap
is less than 50 LOC.

5.2 Configuration Options

A wide variety of concrete designs could be used to flesh out the
pseudocode of Figure 3. Natural questions include:

e Should the advance_epoch function be called periodically
by application (worker) threads—e.g., from within the API
calls—or should it be called by a background thread?

e Once advance_epoch has been called, should it be executed
by a single thread, or should it be parallelized? (The Pronto
system, a possible inspiration, can be configured to perform
all writes-back on the sister hyperthread of the worker that
wrote the data [32].)

o Is the answer to the previous question the same for both

writes-back and storage reclamation? Perhaps some tasks

are better performed on the cores where payloads or payload
lists are likely to be in cache?

Should all writes-back for a given epoch be delayed until the

end, or does it make sense to start some of them earlier? One

might, for example, employ a circular buffer in each worker,
and issue writes-back one at a time, all at once, or perhaps
half a buffer at a time, as the buffer fills.

How long should an epoch be? Should it be measured in

time, operations performed, or payloads written?
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We performed a variety of experiments to evaluate the impact
on performance of various answers to these questions; Figures 4
and 5 show some of the results. In each graph, the first four groups
of bars use per-thread circular buffers of 2, 16, 64, or 256 payloads,
respectively. When these buffers overflow, the oldest entries are
written back incrementally. A single background thread serves to
advance the epoch, at a frequency indicated by bars within each
group. The background thread also writes back any remaining
items in the per-worker-thread buffers at each epoch boundary,
and performs all memory reclamation. In the fifth group of bars,
reclamation is moved into the worker threads, which reclaim freed
payloads and anti-payloads from epoch e at the beginning of epochs
e + 2 and e + 3, respectively.

The final three groups of bars are provided for reference only
(the final two do not correctly implement persistence). DirWB per-
forms an immediate write-back after every update; Montage(T)
places payloads in NVM but omits writes-back and reclaims deleted
payloads immediately; Buf=64+DirFree buffers its writes-back but
performs immediate reclamation.

While the best parameters depend to some degree on the nature
of the application and the underlying hardware, we obtained good
overall performance by using an epoch length of 10 ms, buffering up
to 64 writes-back in each thread during each epoch (incrementally
writing back any excess), and arranging for a single background
thread to advance the epoch and perform remaining writes-back.

Parallel (incremental) write-back turns out to be essential: a sin-
gle background thread is unable to keep up with more than a small
number of worker threads in a high-throughput microbenchmark if
it is responsible for all writes-back (drawn from unbounded buffers)
at the end of every epoch. The background thread does seem to be
able to keep up with reclamations, however; moving these into the
worker threads has a small negative impact on throughput due to
critical path dilation. A separate background thread for each worker,
running on the worker’s core, improves throughput in some but
not all cases; in general this strikes us as a poor use of resources.

While the effect of epoch length depends on an application’s
cache footprint, it is generally smaller than the effect of the write-
back buffer size. Further insight into the impact of shorter epochs
can be found in Figure 9 (Sec. 6.1.2), in which we arrange for each
thread of a hash table microbenchmark to invoke a sync operation
every k operations, for various values of k. Throughput doesn’t
begin to drop off until the effective epoch length (the time between
sync calls) is under 1 ms.

To minimize the latency of sync (not shown in Fig. 3), the caller
helps perform the writes-back of its peers before updating the
global epoch counter. At the beginning of each operation, a worker
also helps to persist its payloads from the previous epoch if they
are needed by any active sync. A variant of the mindicator of Liu
et al. [30] keeps track, efficiently, of the oldest epoch for which
unpersisted payloads still exist.

6 EXPERIMENTAL RESULTS

In this section we present a series of experiments that use mi-
crobenchmarks to compare the performance of Montage to that of
competing systems (Sec. 6.1), validate the microbenchmark results
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with experiments using memcached (Sec. 6.2), demonstrate gener-
ality by persisting arbitrary graphs (Sec. 6.3), and assess the cost of
recovery (Sec. 6.4).

All tests were conducted on a Linux 5.3.7 (Fedora 30) server with
two Intel Xeon Gold 6230 processors, with 20 physical cores and 40
hyperthreads in each socket—a total of 80 hyperthreads. Threads
in all experiments were pinned first one per core on socket 0, then
on the extra hyperthreads of that socket, and then socket 1. Each
socket has 6 channels of 128 GB Optane DIMMs and 6 channels
of 32 GB DRAMs. We use ext4 to map NVM pages in direct access
(DAX) mode. In all experiments, we allow Linux to allocate DRAM
across the two sockets of the machine according to its default policy.
The NVM is explicitly interleaved across sockets (dm-stripe with
a 2 MB chunk size [40]). The source code of Montage is available at
https://github.com/urcs-sync/Montage.

Systems and structures tested include the following:

Montage - as described in previous sections.

Friedman - the persistent lock-free queue of Friedman et al. [14].
Dali - our reimplementation of the buffered durably linearizable
hashmap of Nawab et al. [35].

SOFT - the lock-free hashmap of Zuriel et al. [50], which persists
only semantic data but keeps a full copy in DRAM.

NVTraverse — a general transformation that converts transient
“traversal data structures” into persistent ones. [13]

MOD - persistent structures (here, queues and hashmaps) as pro-
posed by Haria et al. [17], who leverage history-preserving trees to
linearize updates with a single write. The hashmap is implemented
with per-bucket locking using MOD linked lists. This hashmap has
lower time complexity and better scalability than the compressed
hash-array mapped prefix-tree in the original MOD paper [17].
Pronto-Full and Pronto-Sync — the general-purpose system of
Memaripour et al. [32], which logs high-level operation descriptions
that can be replayed, starting from a checkpoint, to recover after a
crash. We test both the synchronously logged and (on < 40 threads)
the “full” (asynchronous) version.

Mnemosyne - the general-purpose, pioneering system of Volos
et al. [44], which adds persistence to the TinySTM transactional
memory system [39].

For comparison purposes, we also include:

DRAM (T) and NVM (T) - high quality transient data structures
built on DRAM and NVM, respectively, with no persistence support.
Montage (T) — a variant of Montage that still places payloads in
NVM, but elides all persistence operations (no buffering, write-back
instructions, delayed deletion, or epoch advance).

6.1 Microbenchmark Throughput

We have benchmarked Montage against the data structures and
systems listed above, using queue and hashmap structures. Results
appear in Figures 6 and 7. The Montage queue employs a single
lock. The Montage hashmap has a lock per bucket—like all other
competitors, it represents each bucket as a linked list. In work not
reported here, we have developed nonblocking linked lists, queues,
and maps, and various tree-based maps. In Section 6.3 we describe
the implementation of a general graph, with operations to add and
remove both vertices and edges.


https://github.com/urcs-sync/Montage

ICPP °21, August 9-12, 2021, Lemont, IL, USA

9
8
O
o
)
S 6
3 5
=
® 4
I
l‘E 3
2
1
0
Buf=2 Buf=16 Buf=64 Buf=256 Buf=64 DirWB  Montage(T) Buf=64
+LocalFree +DirFree
Combinations / Epoch Lengths
 lus H 5us = 10us m 50us = 100us m 500us H1ms
m5ms 10ms 50ms 100ms 500ms 1s Ss

Figure 4: Design exploration on 40-thread hash table

7
10 )
Ba-n

— O SN
> - B S
D 46
a 10
o
=
>
£
© 10°
3
£ DRAM (T) -+ Montage Pronto-Full
~ < NVM (T) - Friedman = Pronto-Sync

10% Montage (T) # MOD >¢ Mnemosyne
Threads 0 10 20 3 40 50 60 70 8 90

Figure 6: Throughput of concurrent queues.

The queue microbenchmark runs a 1:1 enqueue:dequeue work-
load. For the map we report both write-dominant (0:1:1 get:insert:
remove) and read-dominant (18:1:1 get:insert:remove) results, with
0.5 million elements preloaded in 1 million hash buckets. The value
size in queues and maps is 1 KB. Key values range from 1 to 1 mil-
lion, converted to a string and padded to 32 B. Each workload runs
for 30 seconds. Results were averaged over 3 trials for each data
point. Since SOFT does not support atomic updates for existing
keys, our benchmark does not include these. Separate experiments
(not shown) confirm that the use of update does not significantly
alter the curves of other systems.

As shown in Figures 6 and 7, Montage data structures generally
perform as fast as transient structures running on NVM (they may
even outperform NVM (T), given transient indexing in DRAM).
Compared to DRAM (T), Montage adds as little as 30% overhead
in queues, and less than 65% on the highly concurrent hashmap in
most cases. With the exception of SOFT, Montage also outperforms
all tested persistence systems on all four workloads. The Montage
queue provides up to 6x the throughput of Friedman et al’s queue,
and is one to two orders of magnitude faster than the MOD, Pronto,
and Mnemosyne queues. For hashmaps, Montage runs up to 4x
faster than MOD, 4x-30x faster than Dali, NVTraverse and Pronto,
and nearly two orders of magnitude faster than Mnemosyne on
the write-dominant workloads. On the read-dominant workload,
Montage still has up to 4x the throughput of MOD, the fastest
general-purpose competitor system.
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Figure 5: Design exploration on 1-thread queue

The exceptional case is SOFT, which maintains—and reads from—
a full copy of the data in DRAM, and which works for sets and
mappings only, without atomic update. Nonetheless, Montage is
close to or outperforms SOFT at low thread counts and on the
read-dominant workload, and still achieves more than one-third
the throughput of SOFT at high thread counts. Interestingly, Mon-
tage and NVM (T) stop scaling at 12 and 20 threads on the write-
dominant workload; this may reflect multithreading contention
in Intel’s NVM write combining buffer and write pending queues.
Similar contention may also explain why NVTraverse, which has
writes-back and a fence in both read and write operations, is able to
keep up with Montage’s performance at lower thread counts, but
subsequently falls behind.

It may seem surprising that NVM (T) has higher throughput
than DRAM on queue benchmarks. This is because NVM (T) uses
Ralloc instead of jemalloc; we believe Ralloc’s block layout provides
enqueue/dequeue workloads with better cache locality.

6.1.1 Payload Size. To assess the impact of operation footprint
on relative performance, we repeated our queue and read-write
hashmap experiments with a single thread but with payloads vary-
ing from 16 B to 4 KB. Results appear in Figure 8 (here with a mixed
read-write workload for the hashmap).

At all payload sizes, Montage continues to outperform all persis-
tent competitors other than SOFT. Interestingly, in write-dominant
hashmap experiments (not shown), the SOFT curve drops more
sharply than the Montage curve, and crosses over at just 256 B:
the overhead of (strict) durable linearizability increases with larger
payloads, while Montage benefits more from its buffering.

6.1.2  Sync Frequency. As noted in Section 1, buffered durable lin-
earizability mirrors the behavior of traditional file and database
systems: operations are permitted to return before they reach per-
sistence. An application that must be certain of persistence (e.g.,
before sending confirmation to a remote client over the internet)
can call a Montage sync operation. In the extreme, an application
can obtain strict durable linearizability by calling sync after every
operation, but this will reduce performance (much as it does for
traditional block devices) and is generally overkill.
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To assess the impact of sync, we repeated our write-dominant
hashmap experiments with 40 threads but with calls to sync inter-
spersed in every thread every 1 to 10° operations on average. In
Figure 9, we employ two different write-back strategies in Montage:
Montage (dw) writes back and flushes all written payloads at the
end of each operation; Montage (cb) tracks updates in 64-entry per-
thread buffers, as described in Section 5.2. With one sync every 40
operations or fewer (> 2500 syncs per thread per second), Mon-
tage (cb) suffers from bookkeeping overhead on epoch advances; it
wins with less frequent sync calls. Significantly, with either con-
figuration, Montage outperforms NVTraverse, MOD, and Pronto
even with a sync after every operation.
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Figure 10: memcached throughput on YCSB-A (linear y-axis).

6.2 Hashmap Validation Using memcached

To confirm our data structure results in a more realistic setting,
we use Montage to persist a variant of memcached developed by
Kjellqvist et al. [23]. This variant links directly to a multithreaded
client application, dispensing with the usual socket-based commu-
nication. It was appealing for our experiments because the authors
had already converted it to use Ralloc instead of the benchmark’s
usual custom allocator.

Figure 10 compares the resulting (fully persistent, recoverable)
version of memcached to the transient version of Kjellgvist et
al., placing items in DRAM or in NVM; since the index always
stays in DRAM, the latter is effectively equivalent to the configu-
ration of Montage (T). Here the YCSB-A workload [10], with 1M
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Figure 12: Time to rebuild Orkut graph.

(AddEdge+RemoveEdge):(AddVertex+RemoveVertex) = 4:1 (left), 499:1 (right).

records, comprises 2.5 M read and 2.5 M update operations, evenly
distributed across threads. Data points reflect the average of three
trials. As in the microbenchmark results, Montage performs within
a small constant factor of purely transient structures.

6.3 Generality in Graphs

As noted in Section 3.1, a Montage programmer must avoid long
chains of pointers. In a persistent graph, we therefore arrange for
edge payloads to point to their endpoint vertices, but not vice versa.
A more conventional representation of connectivity is then kept
in transient memory, with the (typically large) edge and vertex
attributes appearing only in payloads. We regard this representa-
tion as a strong indication of Montage’s generality. Using it, we
compare performance (as in the memcached experiments) to tran-
sient graphs placed entirely in DRAM or partially in NVM. Fig-
ure 11 shows results for a microbenchmark that performs a mix of
AddEdge, RemoveEdge, AddVertex, and RemoveVertex operations.
The first two of these take vertex IDs as source and destination.
AddVertex connects a new vertex to (on average) 32 other ver-
tices; RemoveVertex clears all adjacent edges. We keep identifiers
in each vertex payload, and name them in edge payloads. AddEdge
and RemoveEdge do not affect any vertex payload; RemoveVertex
deletes all edge payloads that name the deleted vertex.

To initialize the graph, we add 10°/2 vertices out of the total
capacity of 10°. For each initial vertex (as in AddVertex) we ran-
domly create 32 edges to other vertices. While benchmarking, we
vary the portion of edge and vertex operations (4:1 and 499:1 in
our experiments), and carefully distribute to Add and Remove op-
erations so that the number of existing vertices and the average
vertex degree remain statistically stable. Each workload runs for 30
seconds. Results were averaged over 3 trials for each data point. The
persistent Montage graph performs within a factor of 2 of the fully
transient graph, mirroring the results of previous sections and con-
firming Montage’s utility for arbitrary linked structures. While the
average vertex degree is modest in these experiments, AddVertex
and RemoveVertex operations are still somewhat expensive in both
the persistent and transient case. When these operations are called
less often (right half of Fig. 11), overall throughput is higher.

6.4 Recovery Time

To assess the overhead of recovery in Montage, we measured both
hash map and graph examples. In the hashmap case, we initialized
the table with 2-64 million 1 KB elements, leading to a total payload
size of 1-32 GB. With 1 recovery thread, Montage recovers the 1 GB

data set in 0.7 s and the 32 GB data set in 41.9 s. With 8 recovery
threads, it takes 0.4 and 13.8 s, respectively. Improving the scalability
of recovery is a topic for future work.

As a second example, we compared the recovery time of a large
Montage graph (the SNAP Orkut dataset [28, 48], a social network
of ~3 M vertices and 117 M edges) to the time required to construct
the same graph, in parallel, from a set of adjacency lists. The dataset
is partitioned into many files, each of which uses a custom binary
format that eliminates the need for string manipulation. Montage
recovery is handled much like parallel construction: vertices and
edges are added back to the graph in parallel. Because recovery
is an internal graph operation, however, much of the locking can
be elided by cyclically distributing vertices among threads, each
of which creates a set of edge buffers to pass to other threads.
Figure 12 demonstrates that recovery is even faster than construc-
tion on DRAM at low thread counts, and takes roughly as long
as construction on NVM after 16 threads. Crucially, the Montage
implementation has the advantage of supporting small changes to
the graph without the need orchestrate persistence via file I/O.

7 CONCLUSIONS

We have introduced Montage, the first general-purpose system
for buffered durable linearizability of persistent data structures.
In comparison to systems that are (strictly) durably linearizable,
Montage moves write-back and, crucially, fencing off the critical
path of the application. Montage is built on top of the Ralloc non-
blocking persistent allocator [3], which avoids both writes-back and
fences in most allocation and deallocation operations. Nonblocking
data structures remain nonblocking when implemented on top of
Montage, though preempted threads can stall the advance of the
persistence frontier.

Experiments with multiple data structures—including the hashmap
of memcached—confirm that Montage dramatically outperforms
prior general-purpose systems for persistence. It also outperforms—
or is competitive with—existing special-purpose persistent data
structures. In many cases, in fact, it rivals the performance of tradi-
tional transient data structures configured to use NVM instead of
DRAM. This is generally the best performance one could hope for.
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