
A Fast, General System for Buffered Persistent Data Structures
Haosen Wen

∗

Wentao Cai
∗

{hwen5,wcai6}@cs.rochester.edu

Mingzhe Du

Louis Jenkins

{mdu5,ljenkin4}@cs.rochester.edu

University of Rochester

Rochester, New York, USA

Benjamin Valpey

Michael L. Scott

{bvalpey,scott}@cs.rochester.edu

ABSTRACT
The emergence of fast, dense, nonvolatile main memory suggests

that certain long-lived data might remain in their natural pointer-

rich format across program runs and hardware reboots. Operations

on such data must currently be instrumented with explicit write-

back and fence instructions to ensure consistency in the wake of a

crash. Techniques to minimize the cost of this instrumentation are

an active topic of research.

We present what we believe to be the first general-purpose ap-

proach to building buffered persistent data structures, and a system,

Montage, to support that approach. Montage is built on top of the

Ralloc nonblocking persistent allocator. It employs a millisecond-

granularity epoch clock, and ensures that no operation appears to

span an epoch boundary. It also arranges to persist only that data

minimally required to reconstruct the structure after a crash. If a

crash occurs in epoch e , all work performed in epochs e and e − 1

is lost, but work from prior epochs is preserved, consistently. As in

traditional file and database systems, a sync operation can be used

to flush buffers on demand; the Montage sync is extremely fast.

We describe the implementation of Montage, argue its correct-

ness, and report unprecedented throughput for persistent queues,

sets/mappings, and general graphs.

CCS CONCEPTS
• Theory of computation → Parallel computing models; •
Computingmethodologies→Concurrent algorithms; •Com-
puter systems organization → Reliability.

KEYWORDS
Buffered Durable Linearizability, Data Structures, Consistency

ACM Reference Format:
Haosen Wen, Wentao Cai, Mingzhe Du, Louis Jenkins, Benjamin Valpey,

and Michael L. Scott. 2021. A Fast, General System for Buffered Persistent

Data Structures . In 50th International Conference on Parallel Processing (ICPP
’21), August 9–12, 2021, Lemont, IL, USA. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3472456.3472458

∗
The first two authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICPP ’21, August 9–12, 2021, Lemont, IL, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9068-2/21/08. . . $15.00

https://doi.org/10.1145/3472456.3472458

1 INTRODUCTION
Emerging memory technologies such as Intel’s Optane are signifi-
cantly denser and less power hungry than traditional DRAM.While

such memory could simply be used as a plug-in replacement for

DRAM, its nonvolatility also raises the intriguing possibility of

keeping long-lived data in pointer-rich “in memory” format across

program runs and even system crashes, rather than serializing to

and from a file system or back-end database.

Crashes cause problems, however. For file systems and databases,

long-established logging techniques ensure that transitions from

one consistent state to another are failure atomic. For data struc-

tures accessed with load and store instructions, the cost of such

logging may be prohibitively high. Moreover, the fact that caches

remain volatile (at least on current processors) and may write back

their contents out of program order means that data structure opera-

tions must typically issue explicit write-back and fence instructions

to guarantee post-crash consistency.

Past work has established durable linearizability as the standard

correctness criterion for persistent data structures [14, 21, 32, 50].

This criterion builds on the familiar notion of linearizability for

concurrent (non-persistent) structures. A structure is said to be

linearizable if operations that may overlap in time always have

the same effect as some one-at-a-time execution that respects both

“real time” order (if operationA returns before operation B is called,

then Amust appear to happen before B) and the semantics of the

abstraction represented by the structure.

A persistent data structure is said to be durably linearizable if
(1) it is linearizable during crash-free operation, (2) each operation

persists (reaches a state that will survive a crash) between its call

and return, and (3) the order of persists matches the linearization

order. These semantics, however, are significantly stronger than

most programs need or most programmers expect. A file or data-

base operation, after all, returns to its caller while data remain in

volatile DRAM buffers. An operation that requires synchronous

persistence—e.g., before responding to a client over the network—

performs a sync operation. A data structure that mimics this more

conventional, relaxed persistence is said to be buffered durably lin-

earizable. Like a file or database system, it guarantees on a crash to

preserve some consistent prefix of pre-crash execution.

Recent publications have described many individual durably

linearizable data structures and perhaps two dozen general-purpose

systems to provide failure atomicity for outermost critical sections

or speculative transactions (Sec. 2). To the best of our knowledge,

all of the general-purpose systems and all but two of the individual

structures (the Dalí hashmap [35] and InCLL MassTree [8]) are

strictly durably linearizable. To reduce the overhead of synchronous

persistence and to providemore conventional semantics, we present

https://orcid.org/0000-0001-7118-1206
https://orcid.org/0000-0002-7929-2653
https://orcid.org/0000-0002-2245-3022
https://orcid.org/0000-0001-8652-7644
https://doi.org/10.1145/3472456.3472458
https://doi.org/10.1145/3472456.3472458

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Haosen Wen, Wentao Cai, Mingzhe Du, Louis Jenkins, Benjamin Valpey, and Michael L. Scott

what we believe to be the first general-purpose approach to buffered

durably linearizable structures.
1
Our system, Montage, employs a

global epoch clock, and ensures that no operation appears to span

an epoch boundary. If a crash occurs in epoch e , Montage recovers

the state of the abstraction from the end of epoch e − 2.

Generalizing an approach embodied in several previous data

structures [36, 49, 50], Montage also distinguishes between the

abstract (semantic) state of the concurrent object and its concrete
(implementation-level) state. It encourages the programmer tomain-

tain only the former in NVM, to reduce persistence overhead. A

Montage mapping, for example, would typically persist only a bag

of key-value pairs; the look-up structure (hash table, tree, skip list)

would live entirely in transient DRAM. During recovery, Montage

cooperates with the user program to rebuild the concrete state.

Our implementation of Montage is built on top of Ralloc [3], a

lock-free allocator for persistent memory. Montage itself is also

lock-free during normal operation, though a stalled thread can ar-

bitrarily delay progression of the persistence frontier. Performance

experiments (Sec. 6) reveal that a Montage hashmap on a 2-socket

server can sustain well over 20M ops/s on a read-heavy workload—

7× as many as the Dalí hashmap, 17× as many as the state-of-the-art

Pronto system [32], and within a factor of 3 of a transient DRAM

table. This is close to the best one could hope for: read bandwidth

for Intel Optane NVM is about one-third that of DRAM [22].

Summarizing contributions, we present: (1) The first general

system, Montage, for buffered durably linearizable structures; (2)

informal proofs of safety and liveness; and (3) performance results

for a variety of data structure microbenchmarks, the memcached
key-value store, and a general library for graphs. Relative to the

state of the art in both general systems and special-purpose struc-

tures, we obtain unprecedented throughput without significantly

compromising recovery times.

2 RELATED WORK
Recent years have seen an explosion of work on persistent data

structures, much of it focused on B-tree indices for file systems

and databases [6, 19, 34, 36, 43, 49]. Other work has targeted RB

trees [45], radix trees [26], hashmaps [35, 41, 50], and queues [14].

Several projects persist only parts of a data structure, and rebuild

the rest on recovery. Zuriel et al. [50] argue that this approach can

be used for almost any implementation of a set or mapping. Unfor-

tunately, their SOFT system keeps a full copy of the data in DRAM,

forfeiting the high capacity of NVM, and fails to support atomic

update. Montage eliminates these restrictions; it also supports any

abstraction that comprises items and relationships—effectively, any-

thing that can be represented as a graph.

Several existing data structures are designed to linearize by using

a single compare-and-swap (CAS) instruction to replace a portion

of the structure [6, 26, 34, 35]. If the new portion is persisted before

the CAS, and the updated pointer is persisted immediately after

the CAS, no separate logging is required. Mahapatra et al. [31] and

Haria et al. [17] apply this observation to a variety of “functional”

data structures, building sets, maps, stacks, queues, and vectors. As

1
We have recently become aware of the concurrently developed CpNvm system [1],

which is also buffered durably linearizable. Unlike Montage, CpNvm duplicates the

entire data structure in DRAM and NVM, updating the NVM copy at epoch boundaries.

an extension, a sequence of single-CAS steps can be used to move

a structure through self-documenting intermediate stages [19, 45].

Izraelevitz et al. [21] provide a mechanical construction to con-

vert any nonblocking concurrent structure into a correct persistent

version. David et al. [12] describe several techniques to eliminate

redundant writes-back and fences for such structures, significantly

improving performance.

Many groups now have developed systems to ensure the failure

atomicity of lock-based critical sections [4, 18, 20, 29, 46, 47] or

speculative transactions [2, 5, 7, 9, 11, 15, 16, 24, 33, 37, 38, 42, 44].

Significantly, all of these systems ensure that an operation has

persisted before permitting the calling thread to proceed—that is,

they adopt the strict version of durable linearizability.

The Dalí hashmap [35] delays persistence, so the overhead of

writes-back and fencing can be amortized over many operations

while still providing buffered durable linearizability. The implemen-

tation relies on a flush-the-whole-cache instruction that is available

only in privileged mode on the x86, and has the side effect of evict-

ing many useful lines. Similarly, Cohen et al. [8] embed undo logs

inside every cache line and periodically flush the entire cache; their

technique is inapplicable to large values spanning a cache line. Our

reimplementation of Dalí (used in Sec. 6) tracks to-be-written-back

lines explicitly in software—as doesMontage. Montage then extends

delayed persistence to arbitrary structures.

Perhaps the closest prior work to Montage is the Pronto system

of Memaripour et al. [32], which logs high level operations (rather
than low-level updates), and replays the log after a crash. Periodic

checkpoints allow it to bound the length of the log, and thus re-

covery time. Notably, Pronto still pays the cost of persisting each

operation before returning; extending Pronto to buffer its updates

would be a highly nontrivial change. TimeStone [24], likewise,

combines high-level logging and periodic checkpointing, but the

fact that it keeps multiple versions of each object in DRAM means

that, like SOFT, it is unable to make full use of NVM capacity.

3 MONTAGE DESIGN
Montage manages persistent payload blocks on behalf of one or

more concurrent data structures. A programmer who wishes to

adapt a structure to Montage must identify the subset of the data

that is needed, in quiescence, to capture the state of the abstraction.

A set, for example, needs to keep its items in payload blocks, but not

its lookup structure. A mapping needs to keep key-value pairs. A

queue needs to keep its items and their order: it might label payloads

with consecutive integers from i (the head) to j (the tail). A graph

can keep a payload for each vertex (each with a unique name) and

a payload for each edge (each of which names two vertices).

A typical data structure maintains additional, transient indexing

data to speed up retrievals. A set or mapping might maintain a

hash table, tree, or skip list. A queue might maintain a linked list

of pointers to items. A graph might maintain a transient object

for each vertex, containing a pointer to a payload for the vertex

attributes, a set of pointers to neighboring vertex objects, and (if

edges have large attributes) a set of pointers to edge payloads. All

of this transient data can be reconstructed after a crash.

Crucially, synchronization may safely be performed on transient

data. Montage does not, itself, determine the linearization order of

A Fast, General System for Buffered Persistent Data Structures ICPP ’21, August 9–12, 2021, Lemont, IL, USAA Fast, General System for Buffered Persistent Data Structures ICPP ’21, August 9–12, 2021, Lemont, IL, USA

namespace pds{
class PBlk; // Base class for payloads
// Macro to generate get() and set() methods for field
// fieldname of type type_name within payload_type
GENERATE_FIELD(type_name, fieldname, payload_type);
// Creates `protected m_fieldname` with the following members:
// get value with old-see-new alert enabled
const type_name& get_fieldname();
// get with old-see-new alert disabled
const type_name& get_unsafe_fieldname();
// set value of fieldname; may return a new payload
payload_type* set_fieldname(type_name&);

class EpochSys;
class Recoverable{ // Base class for Montage structures
// Instance of this structure's epoch system
EpochSys* esys;
// Begin op in current epoch; mark already-created payloads
void BEGIN_OP();
// End an operation
void END_OP();
// Begin a scoped operation using RAII
BEGIN_OP_AUTOEND();
// Create a payload block
payload_type* PNEW(payload_type, ...);
// Delete a payload after end of next epoch
void PDELETE(PBlk*);
// Throw exception if epoch has changed
CHECK_EPOCH();
// Request and wait for two-epoch advance
void sync();

};
struct OldSeeNewException : public std::exception;

};

Figure 1: C++ API.

operations. Rather it ensures that the persistence order for payloads
is consistent with the linearization order of the underlying structure.

More specifically, it divides execution into epochs in such a way that
every epoch boundary represents a consistent cut of the happens-

before relationship among operations; it then arranges, in the wake

of a crash, to recover all managed data structures to their state as

of some common epoch boundary.

3.1 API
The Montage C++ API is shown in Figure 1. A lock-based hashmap

built with Montage appears in Figure 2.

Any data structure operation that creates or updates payloads

mustmake itself visible toMontage by calling BEGIN_OP. It indicates
completion with END_OP. For ease of use, Montage also provides

BEGIN_OP_AUTOEND, which uses the RAII idiom to call BEGIN_OP
immediately and to call END_OP automatically at the end of the

current scope. Read-only operations can skip these calls, though

they must still synchronize on the transient data structure. Pay-

loads are created and destroyed using PNEW and PDELETE. Existing
payloads are accessed with get and set methods, created by the

GENERATE_FIELDmacro; get returns a const reference to the field;
set updates the field and returns a (possibly altered) pointer to the

payload.

To support the epoch system, Montage labels all payloads with

the epoch in which they were created or most recently modified. An
operation in epoch 𝑒 that wishes to modify an existing payload can

do so “in place” if the payload was created in 𝑒 ; otherwise, Montage

creates a new payload with which to replace it. The set methods

1 class HashMap : public Recoverable{
2 // Payload class
3 class Payload : public PBlk{

4 GENERATE_FIELD(K, key, Payload);

5 GENERATE_FIELD(V, val, Payload);
6 };
7 struct ListNode{ // Transient index class
8 // Transient-to-persistent pointer
9 Payload* payload = nullptr;
10 // Transient-to-transient pointers
11 ListNode* next = nullptr;
12 void set_val_wrapper(V& v){
13 payload = payload->set_val(v);
14 }
15 ListNode(K& key, V& val){
16 payload = PNEW(Payload, key, val);
17 }
18 ~ListNode(){
19 PDELETE(payload);
20 }
21 // get() methods omitted
22 };
23 // Insert, or update if the key exists
24 optional<V> put(K key, V val, int tid){
25 size_t idx=hash_fn(key)%idxSize;
26 ListNode* new_node = new ListNode(key, val);
27 std::lock_guard lk(buckets[idx].lock);
28 BEGIN_OP_AUTOEND();
29 ListNode* curr = buckets[idx].head.next;
30 ListNode* prev = &buckets[idx].head;
31 while(curr){
32 K& curr_key = curr->get_key();
33 if (curr_key == key){
34 optional<V&> ret = curr->get_val();
35 curr->set_val_wrapper(val);
36 delete new_node;
37 return ret;
38 } else if (curr_key > key){
39 new_node->next = curr;
40 prev->next = new_node;
41 return {};
42 } else {
43 prev = curr;
44 curr = curr->next;
45 }
46 } // while
47 prev->next = new_node;
48 return {};
49 }
50 };

Figure 2: Simple lock-based hashmap
(Montage-related parts highlighted).

enforce this convention by returning a pointer to a new or copied

payload, as appropriate.

During a given epoch, “hot” payloads will typically be modified

in place.When a new copy is created, however, an operationmust re-

write any pointers to the payload found anywhere in the structure.

For this reason, it is important to minimize the number of pointers

to a given payload found in transient data; this can be trivially

accomplished by indirecting all such pointers through a transient

intermediate object. It is even more important to avoid long chains

of pointers in persistent data: otherwise, a change to payload 𝑝 , at

the end of a long chain, would require a change to the penultimate

payload 𝑝 ′, which would in turn require a change to its predecessor

𝑝 ′′, and so on.

Because calls to get are invisible to recovery, they can safely

be made outside the bounds of BEGIN_OP and END_OP (subject to

transient synchronization). Calls to PNEW can also be made early; the

Figure 1: C++ API.

operations. Rather it ensures that the persistence order for payloads
is consistent with the linearization order of the underlying structure.

More specifically, it divides execution into epochs in such a way that
every epoch boundary represents a consistent cut of the happens-

before relationship among operations; it then arranges, in the wake

of a crash, to recover all managed data structures to their state as

of some common epoch boundary.

3.1 API
The Montage C++ API is shown in Figure 1. A lock-based hashmap

built with Montage appears in Figure 2.

Any data structure operation that creates or updates payloads

mustmake itself visible toMontage by calling BEGIN_OP. It indicates
completion with END_OP. For ease of use, Montage also provides

BEGIN_OP_AUTOEND, which uses the RAII idiom to call BEGIN_OP
immediately and to call END_OP automatically at the end of the

current scope. Read-only operations can skip these calls, though

they must still synchronize on the transient data structure. Pay-

loads are created and destroyed using PNEW and PDELETE. Existing
payloads are accessed with get and set methods, created by the

GENERATE_FIELDmacro; get returns a const reference to the field;
set updates the field and returns a (possibly altered) pointer to the

payload.

To support the epoch system, Montage labels all payloads with

the epoch in which they were created or most recently modified. An
operation in epoch e that wishes to modify an existing payload can

do so “in place” if the payload was created in e ; otherwise, Montage

creates a new payload with which to replace it. The set methods

A Fast, General System for Buffered Persistent Data Structures ICPP ’21, August 9–12, 2021, Lemont, IL, USA

namespace pds{
class PBlk; // Base class for payloads
// Macro to generate get() and set() methods for field
// fieldname of type type_name within payload_type
GENERATE_FIELD(type_name, fieldname, payload_type);
// Creates `protected m_fieldname` with the following members:

// get value with old-see-new alert enabled
const type_name& get_fieldname();
// get with old-see-new alert disabled
const type_name& get_unsafe_fieldname();
// set value of fieldname; may return a new payload
payload_type* set_fieldname(type_name&);

class EpochSys;
class Recoverable{ // Base class for Montage structures
// Instance of this structure's epoch system
EpochSys* esys;
// Begin op in current epoch; mark already-created payloads
void BEGIN_OP();
// End an operation
void END_OP();
// Begin a scoped operation using RAII
BEGIN_OP_AUTOEND();
// Create a payload block
payload_type* PNEW(payload_type, ...);
// Delete a payload after end of next epoch
void PDELETE(PBlk*);
// Throw exception if epoch has changed
CHECK_EPOCH();
// Request and wait for two-epoch advance
void sync();

};
struct OldSeeNewException : public std::exception;

};

Figure 1: C++ API.

operations. Rather it ensures that the persistence order for payloads
is consistent with the linearization order of the underlying structure.

More specifically, it divides execution into epochs in such a way that
every epoch boundary represents a consistent cut of the happens-

before relationship among operations; it then arranges, in the wake

of a crash, to recover all managed data structures to their state as

of some common epoch boundary.

3.1 API
The Montage C++ API is shown in Figure 1. A lock-based hashmap

built with Montage appears in Figure 2.

Any data structure operation that creates or updates payloads

mustmake itself visible toMontage by calling BEGIN_OP. It indicates
completion with END_OP. For ease of use, Montage also provides

BEGIN_OP_AUTOEND, which uses the RAII idiom to call BEGIN_OP
immediately and to call END_OP automatically at the end of the

current scope. Read-only operations can skip these calls, though

they must still synchronize on the transient data structure. Pay-

loads are created and destroyed using PNEW and PDELETE. Existing
payloads are accessed with get and set methods, created by the

GENERATE_FIELDmacro; get returns a const reference to the field;
set updates the field and returns a (possibly altered) pointer to the

payload.

To support the epoch system, Montage labels all payloads with

the epoch in which they were created or most recently modified. An
operation in epoch 𝑒 that wishes to modify an existing payload can

do so “in place” if the payload was created in 𝑒 ; otherwise, Montage

creates a new payload with which to replace it. The set methods

1 class HashMap : public Recoverable{
2 // Payload class
3 class Payload : public PBlk{

4 GENERATE_FIELD(K, key, Payload);

5 GENERATE_FIELD(V, val, Payload);
6 };
7 struct ListNode{ // Transient index class
8 // Transient-to-persistent pointer
9 Payload* payload = nullptr;
10 // Transient-to-transient pointers
11 ListNode* next = nullptr;
12 void set_val_wrapper(V& v){
13 payload = payload->set_val(v);
14 }
15 ListNode(K& key, V& val){
16 payload = PNEW(Payload, key, val);
17 }
18 ~ListNode(){
19 PDELETE(payload);
20 }
21 // get() methods omitted
22 };
23 // Insert, or update if the key exists
24 optional<V> put(K key, V val, int tid){
25 size_t idx=hash_fn(key)%idxSize;
26 ListNode* new_node = new ListNode(key, val);
27 std::lock_guard lk(buckets[idx].lock);
28 BEGIN_OP_AUTOEND();
29 ListNode* curr = buckets[idx].head.next;
30 ListNode* prev = &buckets[idx].head;
31 while(curr){
32 K& curr_key = curr->get_key();
33 if (curr_key == key){
34 optional<V&> ret = curr->get_val();
35 curr->set_val_wrapper(val);
36 delete new_node;
37 return ret;
38 } else if (curr_key > key){
39 new_node->next = curr;
40 prev->next = new_node;
41 return {};
42 } else {
43 prev = curr;
44 curr = curr->next;
45 }
46 } // while
47 prev->next = new_node;
48 return {};
49 }
50 };

Figure 2: Simple lock-based hashmap
(Montage-related parts highlighted).

enforce this convention by returning a pointer to a new or copied

payload, as appropriate.

During a given epoch, “hot” payloads will typically be modified

in place.When a new copy is created, however, an operationmust re-

write any pointers to the payload found anywhere in the structure.

For this reason, it is important to minimize the number of pointers

to a given payload found in transient data; this can be trivially

accomplished by indirecting all such pointers through a transient

intermediate object. It is even more important to avoid long chains

of pointers in persistent data: otherwise, a change to payload 𝑝 , at

the end of a long chain, would require a change to the penultimate

payload 𝑝 ′, which would in turn require a change to its predecessor

𝑝 ′′, and so on.

Because calls to get are invisible to recovery, they can safely

be made outside the bounds of BEGIN_OP and END_OP (subject to

transient synchronization). Calls to PNEW can also be made early; the

Figure 2: Simple lock-based hashmap
(Montage-related parts highlighted).

enforce this convention by returning a pointer to a new or copied

payload, as appropriate.

During a given epoch, “hot” payloads will typically be modified

in place.When a new copy is created, however, an operationmust re-

write any pointers to the payload found anywhere in the structure.

For this reason, it is important to minimize the number of pointers

to a given payload found in transient data; this can be trivially

accomplished by indirecting all such pointers through a transient

intermediate object. It is even more important to avoid long chains

of pointers in persistent data: otherwise, a change to payload p, at
the end of a long chain, would require a change to the penultimate

payload p′, which would in turn require a change to its predecessor

p′′, and so on.

Because calls to get are invisible to recovery, they can safely

be made outside the bounds of BEGIN_OP and END_OP (subject to

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Haosen Wen, Wentao Cai, Mingzhe Du, Louis Jenkins, Benjamin Valpey, and Michael L. Scott

transient synchronization). Calls to PNEW can also be made early; the

payloads they return will automatically be recorded and properly

labeled when BEGIN_OP is called.

3.2 Periodic Persistence
The key task of Montage is to ensure that operations persist atomi-

cally, in an order consistent with their linearization order. Toward

that end, the system ensures that

(1) all payloads created or modified by a given operation are

labeled with the same epoch number;

(2) all payloads created or modified in a given epoch e persist
together, instantaneously, when the epoch clock ticks over

from e + 1 to e + 2; and
(3) each update operation linearizes in the epoch in which it

created payloads.

Property 1 is ensured by the set and PNEW methods, as described

in Section 3.1. Note that an operation that begins in epoch e can
continue to create and modify payloads in that epoch, even if the

clock ticks over to e + 1.
Property 2 is enforced by Montage’s recovery routines: if a crash

occurs in epoch e , those routines discard all payloads labeled e or
e − 1, but keep everything that is older. This two-epoch convention,

as suggested by Nawab et al. [35], allows operations in e and e − 1

to overlap in time, avoiding the need for quiescence on clock ticks.

At the same time, it requires that memory reclamation be delayed.

If a payload created or updated in epoch b is passed to PDELETE
in epoch e > b, Montage creates an “anti-payload” labeled e . If a
crash occurs before e + 2, the anti-payload will be discarded and the
original payload retained. If a crash occurs during epoch e + 2, the
anti-payload will be discovered during recovery and both it and the

original payload will be discarded. If execution proceeds without

a crash, the original payload will be reclaimed when the epoch

advances from e + 2 to e + 3; the anti-payload will be reclaimed

when the epoch advances from e + 3 to e + 4.
Property 3 is the responsibility of the transient data structure

built on top of Montage. Lock-based operations are easy: no con-

flicting operation can proceed until we release our locks, and we

can easily pretend that all updates happened at the last call to set or
PNEW. For nonblocking structures, a similar guarantee can be made

if every operation linearizes on a statically identified compare-and-

swap (CAS) instruction that also modifies an adjacent counter (as

is often used to avoid ABA anomalies). One first reads some vari-

able x , verifies the epoch clock (using the CHECK_EPOCH method),

and only then attempts a CAS on x . If the CAS succeeds, it can

be said to have occurred at the time of the CHECK_EPOCH call. This

strategy generally requires read-only operations on the structure

to be modified by replacing their linearizing read with a read-CAS

primitive (wrapped as load_verify1 in Montage) that updates the

adjacent count: otherwise a read that occurs immediately after an

epoch change might observe an update from the previous epoch

as not yet having occurred. For cases in which this modification

is undesirable (e.g., because reads vastly outnumber updates), we

use a variant of the double-compare-single-swap (DCSS) software

primitive of Harris et al. [25] (wrapped as CAS_verify2) to update

a location while simultaneously verifying the current epoch num-

ber. A compatible read primitive (load_verify2) performs no store

instructions (and thus induces no cache evictions) so long as no

DCSS is currently in progress on the variable being read; if one is,

the read helps the DCSS complete.

As an assist to programmers in ensuring property 3, Montage

raises an exception called OldSeeNewException whenever an op-

eration running in epoch e reads a payload created in some epoch

e ′ > e . In most cases, programmers can ensure that this exception

will never arise. In other cases, the operation may respond to the

exception by rolling back what has done so far and starting over

in the newer epoch. In special cases, an operation can ignore the

exception or use get_unsafe methods to avoid generating it in

the first place (the new data might, for example, be used only for

semantically neutral performance enhancement).

In support of these properties, the epoch-advancing mechanism

at the end of epoch e (1) waits until no operation is active in epoch

e − 1; (2) reclaims all payloads deleted in epoch e − 2 and all anti-

payloads created in epoch e−3; (3) explicitly writes back all payloads
created or modified in epoch e − 1; (4) waits for the writes-back to

complete; and (5) updates and writes back the epoch clock. Further

details appear in Section 5.

3.3 Nonblocking Data Structures
As described in Section 3.2, Montage is compatible with nonblock-

ing operations that employ special CAS or load primitives to en-

sure that linearization occurs in the epoch in which any payloads

were created or modified. In the general case, a structure that uses

the OldSeeNewException to keep its linearization order consis-

tent with epoch order may find that the resulting restarts make it

lock-free or obstruction-free, rather than wait-free. Still, nothing in

Montage precludes lock freedom.

4 CORRECTNESS
We argue that Montage (1) preserves, during crash-free operation,

the linearizability of a structure implemented on top of it, (2) adds

buffered durable linearizability, and (3) preserves lock freedom.

Each concurrent data structure serves to implement some ab-

stract data type. The semantics of such a type are defined in terms

of legal histories—sequences of operations, with their arguments

and return values. The implementation is correct if it is linearizable,
meaning that every concurrent history (with overlapping calls and

returns from different threads) is equivalent to (has the same oper-

ations as) some sequential history that is consistent with real-time

order (if A returns before B is called in the concurrent history, then

A precedes B in the sequential history) and that represents a valid

operation sequence for the data type.

We can define the abstract state of a data type, after a finite

sequence of operations, as the set of sequences that are permitted

to extend that sequence according to the type’s semantics. Suppose,

then, that data structure S is a correct implementation of data type

T , and that s is a quiescent concrete state of S (the bits in memory

at some point when no operations are active). We can define the

meaning of that state, M(s), as the state of T after the sequence

of abstract operations corresponding to (a linearization of) the

operations performed so far on S .
We assume that the programmer using Montage obeys the fol-

lowing well-formedness constraints:

A Fast, General System for Buffered Persistent Data Structures ICPP ’21, August 9–12, 2021, Lemont, IL, USA

(1) Each data structure S , implemented on top of Montage, is lin-

earizable when Montage itself is disabled and crashes do not

occur. More specifically, assume that (a) PNEW and PDELETE are

implemented as ordinary new and delete; (b) get and set are

ordinary accessor methods, and set never copies a payload; (c)

BEGIN_OP and END_OP are no-ops; and (d) the OldSeeNewExcep-
tion never arises. Under these circumstances, the structure is

linearizable.

(2) Any synchronization required for linearizability is performed

solely on transient data: accesses to payloads, which may be

replaced on an update, never participate in a data or synchro-
nization race.

(3) All accesses to payloads are made through get and set. Each
operation that modifies the data structure (a) calls BEGIN_OP
before set, (b) calls END_OP after completing all its sets, and (c)
ensures that between its last call to set or CHECK_EPOCH and

its linearization point, no conflicting operation can linearize.

(4) Whenever set returns a pointer to a payload different than the

one on which it was called, the calling operation replaces every

pointer to the old payload in the structure with a pointer to the

new payload. As noted in Section 3.1, this can be trivially ac-

complished by indirecting all such pointers through a transient

intermediate object.

(5) There exists a mapping Q from sets of payloads to states of T
such that whenever S is quiescent,M(s) = Q(p), where s is the
concrete state of S and p is the current set of payloads.

(6) The recovery routine for S , given a set of payloads r , constructs
a concrete state t such that M(t) = Q(r).

4.1 Linearizability
Lemma 4.1. A well-formed, linearizable concurrent data structure,

implemented on top of Montage, remains well-formed and linearizable
when Montage is enabled.

Proof (sketch). Constraint 4 ensures that any payload cloned

by Montage is reattached to the structure wherever the old payload

appeared. Since access to payloads is race-free (Constraint 2), this

re-attachment is safe. Throws of the OldSeeNewException will be

harmless: they simply facilitate compliance with Constraint 3; any

operation that already satisfies that constraint can safely ignore the

exception. Finally, given the mapping Q from payloads to abstract

state (Constraint 5), we can easily create a Q ′
that ignores both

the old versions of cloned payloads and any payloads for which an

anti-payload exists. These are the only effects of enabling Montage

that are visible to the structure during crash-free execution. □

Theorem 4.2. A Montage data structure S remains linearizable
when epoch advancing operations are added to its history.

Proof (sketch). Let ae denote the operation that advances the

epoch from e − 1 to e . Consider a linearization order for S itself, as

provided by Lemma 4.1. Constraint 3 ensures that the linearization

point of any update operation in this order occurs between eventsae
and ae+1, making it easy to place these events into the linearization

order. A read-only operation, moreover, has no forward or anti-

dependences on the epoch clock, so it cannot participate in any

circular dependence with respect to the epoch advancing events.

□

4.2 Buffered Durable Linearizability
Theorem 4.3. A well formed, linearizable concurrent data struc-

ture, running on Montage, is buffered durably linearizable.

Proof (sketch). We need to show that in any execution H con-

taining a crash c , the state of the data structure after recovery

reflects some consistent prefix of the linearized pre-crash history.

Suppose that c occurs in epoch e ofH . If e ≤ 2, recovery will restore

the initial state of the system, which reflects the null prefix of execu-

tion. If e > 2, Montage will discard all payloads created in epochs e
and e−1, preserving those in existence as ofae−1, andwill pass these
to the structure’s recovery routine. This routine, by Constraint 6,

will construct a new concrete state t such thatM(t) = Q(r), where
r is the set of payloads it was given. But r is precisely the set of

payloads created by operations that linearized prior to ae−1. If exe-
cution had reached quiescence immediately after those operations,

Constraint 5 implies that the concrete state s of S would have been

such that M(s) = Q(r). Thus the post-recovery state t reflects a
consistent prefix of the linearized pre-crash history. □

4.3 Liveness
Theorem 4.4. Montage is lock free during crash-free execution.

Proof (sketch). The only loop inMontage lies within BEGIN_OP,
where an update operation seeks to read the epoch clock and an-

nounce itself as active in that epoch, atomically. Each retry of the

loop implies that the epoch has advanced. If we assume that the

epoch advancing operation (which need not be nonblocking) al-

ways waits until at least one operation has completed in the old

epoch, then an operation can be delayed in BEGIN_OP only if some

other operation has completed. The OldSeeNewException, simi-

larly, will arise (and cause some operations to start over) only if the

epoch has advanced. □

5 IMPLEMENTATION DETAILS
Figure 3 shows pseudocode for Montage’s core functionality. The

“operation tracker” indicates, for each thread in the system, the

epoch of its active operation (if any), together with lists of payloads

to persist and free (reclaim) at future epoch boundaries. The lists

are logically indexed by epoch, but only the most recent 2 or 3 are

needed. For simplicity, Montage maintains four sets, and indexes

into them using the 2 low-order bits of the epoch number. For

convenience, each thread also caches the epoch of its currently

active operation and last active operation (if any) in thread-local

storage as op_epoch and last_epoch.
Aside from the epoch clock itself, payloads are the only data

allocated in NVM. Each payload indicates the epoch in which it was

created and whether it is new (ALLOC), a replacement of an existing

payload (UPDATE), or an anti-payload (DELETE). ALLOC payloads are
created in PNEW. UPDATE payloads are created in set (when the

block being modified was created in an earlier epoch and cannot

be updated in place). DELETE payloads (anti-payloads) are created
in PDELETE; they live until the payload they are nullifying has

been safely reclaimed, and are reclaimed in the following epoch to

preserve the order of persistence.

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Haosen Wen, Wentao Cai, Mingzhe Du, Louis Jenkins, Benjamin Valpey, and Michael L. Scott
ICPP ’21, August 9–12, 2021, Lemont, IL, USA Haosen Wen, Wentao Cai, Mingzhe Du, Louis Jenkins, Benjamin Valpey, and Michael L. Scott

1 Struct Payload
2 enum type = {ALLOC, UPDATE, DELETE}

3 uint64_t epoch
4 uint64_t uid // shared between real and anti-payloads

5 Struct EpochSys
// transient structures

6 Tracker operation_tracker
7 PBlk* to_persist [4] // recent 4 epochs

8 PBlk* to_free [4] // recent 4 epochs

9 operation_local uint64_t op_epoch
10 operation_local uint64_t last_epoch

// persistent structures

11 uint64_t curr_epoch
12 Function osn_check (Payload* p) : void
13 if op_epoch < p→epoch then
14 throw OldSeeNewException

15 Function advance_epoch () : void
16 operation_tracker.wait_all (curr_epoch - 1)
17 to_persist [(curr_epoch - 1) % 4].persist_all()
18 sfence
19 curr_epoch.atomic_increment ()

20 EpochSys* Recoverable::esys
21 Macro BEGIN_OP : void
22 repeat
23 esys→ op_epoch = esys→ curr_epoch
24 esys→ operation_tracker.register (tid, esys→ op_epoch)
25 until esys→op_epoch == esys→curr_epoch
26 forall e needs to be persisted for some sync() do
27 to_persist [e % 4].persist_local(tid)

28 if op_epoch > last_epoch then
29 forall e between last_epoch-1 and
30 min(last_epoch+1, op_epoch-2) do
31 to_free [e % 4].free_local(tid)
32 sfence

33 last_epoch = op_epoch

34 Macro END_OP : void
35 esys→ op_epoch = NULL

36 esys→ operation_tracker.unregister (tid)

37 Function payload.get_x() : typeof(x)
38 esys→ osn_check (this)
39 return this→ x

40 Macro PNEW (Type, ...) : Type*
41 new_payload = new Type (...)
42 new_payload→ epoch = esys→ op_epoch
43 new_payload→ type = ALLOC

44 return new_payload

45 Macro PDELETE (Payload* p) : void
46 esys→ osn_check (p)
47 if p.epoch == esys→ op_epoch then
48 if p→type == ALLOC then
49 delete(p)
50 return
51 else
52 p→ type = DELETE

53 else
54 anti_payload = new Payload ()
55 anti_payload→ type = DELETE

56 anti_payload→ uid = p→ uid
57 esys→ to_persist [esys→ op_epoch % 4].add (anti_payload)
58 esys→ to_free [(esys→ op_epoch + 1) % 4].add (anti_payload)

59 esys→ to_free [esys→ op_epoch % 4].add (p)

60 Function payload.set_x (typeof(x) y) : Payload*
61 esys→ osn_check (this)
62 if this→ epoch == esys→ op_epoch then
63 this→ x = y
64 esys→ to_persist [esys→ op_epoch % 4].add (this)
65 return this

66 else // this→ epoch < esys → op_epoch
67 new_payload = copy(this)

68 new_payload→ epoch = esys→ op_epoch
69 new_payload→ type = UPDATE

70 new_payload→ x = y
71 esys→ to_persist [esys→ op_epoch % 4].add (new_payload)
72 esys→ to_free [esys→ op_epoch % 4].add (this)
73 return new_payload

Figure 3: Montage Pseudocode.

5.1 Storage Management
Space for payloads in Montage is managed by a variant of the Ralloc

persistent allocator [3]. Ralloc is in turn based on the nonblocking

allocator of Leite and Rocha [27]. Ralloc has very low overhead and

excellent locality during crash-free operation. Almost all metadata

is kept in transient memory, and most allocation and deallocation

operations perform no write-back or fence instructions.

In its original form, Ralloc performs garbage collection after a

crash to identify the blocks that are currently in use; all others

are returned to the free list. For Montage, we modified the recov-

ery mechanism to simply peruse all blocks, and to keep all and

only those that are labeled as having been created at least two

epochs ago. (These blocks will of course have been written back

at some previous epoch boundary.) Montage passes the recovered

blocks (i.e., payloads) to the application data structure, which is

then responsible for rebuilding transient state. To facilitate parallel

recovery, the application may request that the blocks be returned

via 𝑘 separate iterators, to be used by 𝑘 separate application threads.

As a point of reference, the recovery code for our Montage hashmap

is less than 50 LOC.

5.2 Configuration Options
A wide variety of concrete designs could be used to flesh out the

pseudocode of Figure 3. Natural questions include:

• Should the advance_epoch function be called periodically by

application (worker) threads—e.g., from within the API calls—or

should it be called by a background thread?

• Once advance_epoch has been called, should it be executed by a

single thread, or should it be parallelized? (The Pronto system, a

possible inspiration, can be configured to perform all writes-back

on the sister hyperthread of the worker that wrote the data [32].)

• Is the answer to the previous question the same for both writes-

back and storage reclamation? Perhaps some tasks are better

performed on the cores where payloads or payload lists are likely

to be in cache?

• Should all writes-back for a given epoch be delayed until the end,

or does it make sense to start some of them earlier? One might,

for example, employ a circular buffer in each worker, and issue

writes-back one at a time, all at once, or perhaps half a buffer at

a time, as the buffer fills.

• How long should an epoch be? Should it be measured in time,

operations performed, or payloads written?

Figure 3: Montage Pseudocode.

5.1 Storage Management
Space for payloads in Montage is managed by a variant of the Ralloc

persistent allocator [3]. Ralloc is in turn based on the nonblocking

allocator of Leite and Rocha [27]. Ralloc has very low overhead and

excellent locality during crash-free operation. Almost all metadata

is kept in transient memory, and most allocation and deallocation

operations perform no write-back or fence instructions.

In its original form, Ralloc performs garbage collection after a

crash to identify the blocks that are currently in use; all others

are returned to the free list. For Montage, we modified the recov-

ery mechanism to simply peruse all blocks, and to keep all and

only those that are labeled as having been created at least two

epochs ago. (These blocks will of course have been written back

at some previous epoch boundary.) Montage passes the recovered

blocks (i.e., payloads) to the application data structure, which is

then responsible for rebuilding transient state. To facilitate parallel

recovery, the application may request that the blocks be returned

via k separate iterators, to be used by k separate application threads.

As a point of reference, the recovery code for our Montage hashmap

is less than 50 LOC.

5.2 Configuration Options
A wide variety of concrete designs could be used to flesh out the

pseudocode of Figure 3. Natural questions include:

• Should the advance_epoch function be called periodically

by application (worker) threads—e.g., from within the API

calls—or should it be called by a background thread?

• Once advance_epoch has been called, should it be executed

by a single thread, or should it be parallelized? (The Pronto

system, a possible inspiration, can be configured to perform

all writes-back on the sister hyperthread of the worker that

wrote the data [32].)

• Is the answer to the previous question the same for both

writes-back and storage reclamation? Perhaps some tasks

are better performed on the cores where payloads or payload

lists are likely to be in cache?

• Should all writes-back for a given epoch be delayed until the

end, or does it make sense to start some of them earlier? One

might, for example, employ a circular buffer in each worker,

and issue writes-back one at a time, all at once, or perhaps

half a buffer at a time, as the buffer fills.

• How long should an epoch be? Should it be measured in

time, operations performed, or payloads written?

A Fast, General System for Buffered Persistent Data Structures ICPP ’21, August 9–12, 2021, Lemont, IL, USA

We performed a variety of experiments to evaluate the impact

on performance of various answers to these questions; Figures 4

and 5 show some of the results. In each graph, the first four groups

of bars use per-thread circular buffers of 2, 16, 64, or 256 payloads,

respectively. When these buffers overflow, the oldest entries are

written back incrementally. A single background thread serves to

advance the epoch, at a frequency indicated by bars within each

group. The background thread also writes back any remaining

items in the per-worker-thread buffers at each epoch boundary,

and performs all memory reclamation. In the fifth group of bars,

reclamation is moved into the worker threads, which reclaim freed

payloads and anti-payloads from epoch e at the beginning of epochs
e + 2 and e + 3, respectively.

The final three groups of bars are provided for reference only

(the final two do not correctly implement persistence). DirWB per-

forms an immediate write-back after every update; Montage(T)

places payloads in NVM but omits writes-back and reclaims deleted

payloads immediately; Buf=64+DirFree buffers its writes-back but

performs immediate reclamation.

While the best parameters depend to some degree on the nature

of the application and the underlying hardware, we obtained good

overall performance by using an epoch length of 10ms, buffering up

to 64 writes-back in each thread during each epoch (incrementally

writing back any excess), and arranging for a single background

thread to advance the epoch and perform remaining writes-back.

Parallel (incremental) write-back turns out to be essential: a sin-

gle background thread is unable to keep up with more than a small

number of worker threads in a high-throughput microbenchmark if

it is responsible for all writes-back (drawn from unbounded buffers)

at the end of every epoch. The background thread does seem to be

able to keep up with reclamations, however; moving these into the

worker threads has a small negative impact on throughput due to

critical path dilation. A separate background thread for each worker,

running on the worker’s core, improves throughput in some but

not all cases; in general this strikes us as a poor use of resources.

While the effect of epoch length depends on an application’s

cache footprint, it is generally smaller than the effect of the write-

back buffer size. Further insight into the impact of shorter epochs

can be found in Figure 9 (Sec. 6.1.2), in which we arrange for each

thread of a hash table microbenchmark to invoke a sync operation

every k operations, for various values of k . Throughput doesn’t
begin to drop off until the effective epoch length (the time between

sync calls) is under 1ms.

To minimize the latency of sync (not shown in Fig. 3), the caller

helps perform the writes-back of its peers before updating the

global epoch counter. At the beginning of each operation, a worker

also helps to persist its payloads from the previous epoch if they

are needed by any active sync. A variant of the mindicator of Liu
et al. [30] keeps track, efficiently, of the oldest epoch for which

unpersisted payloads still exist.

6 EXPERIMENTAL RESULTS
In this section we present a series of experiments that use mi-

crobenchmarks to compare the performance of Montage to that of

competing systems (Sec. 6.1), validate the microbenchmark results

with experiments using memcached (Sec. 6.2), demonstrate gener-

ality by persisting arbitrary graphs (Sec. 6.3), and assess the cost of

recovery (Sec. 6.4).

All tests were conducted on a Linux 5.3.7 (Fedora 30) server with

two Intel Xeon Gold 6230 processors, with 20 physical cores and 40

hyperthreads in each socket—a total of 80 hyperthreads. Threads

in all experiments were pinned first one per core on socket 0, then

on the extra hyperthreads of that socket, and then socket 1. Each

socket has 6 channels of 128GB Optane DIMMs and 6 channels

of 32GB DRAMs. We use ext4 to map NVM pages in direct access

(DAX) mode. In all experiments, we allow Linux to allocate DRAM

across the two sockets of the machine according to its default policy.

The NVM is explicitly interleaved across sockets (dm-stripe with

a 2MB chunk size [40]). The source code of Montage is available at

https://github.com/urcs-sync/Montage.

Systems and structures tested include the following:

Montage – as described in previous sections.

Friedman – the persistent lock-free queue of Friedman et al. [14].

Dalí – our reimplementation of the buffered durably linearizable

hashmap of Nawab et al. [35].

SOFT – the lock-free hashmap of Zuriel et al. [50], which persists

only semantic data but keeps a full copy in DRAM.

NVTraverse – a general transformation that converts transient

“traversal data structures” into persistent ones. [13]

MOD – persistent structures (here, queues and hashmaps) as pro-

posed by Haria et al. [17], who leverage history-preserving trees to

linearize updates with a single write. The hashmap is implemented

with per-bucket locking using MOD linked lists. This hashmap has

lower time complexity and better scalability than the compressed

hash-array mapped prefix-tree in the original MOD paper [17].

Pronto-Full and Pronto-Sync – the general-purpose system of

Memaripour et al. [32], which logs high-level operation descriptions

that can be replayed, starting from a checkpoint, to recover after a

crash. We test both the synchronously logged and (on ≤ 40 threads)

the “full” (asynchronous) version.

Mnemosyne – the general-purpose, pioneering system of Volos

et al. [44], which adds persistence to the TinySTM transactional

memory system [39].

For comparison purposes, we also include:

DRAM(T) and NVM(T) – high quality transient data structures

built on DRAM and NVM, respectively, with no persistence support.

Montage (T) – a variant of Montage that still places payloads in

NVM, but elides all persistence operations (no buffering, write-back

instructions, delayed deletion, or epoch advance).

6.1 Microbenchmark Throughput
We have benchmarked Montage against the data structures and

systems listed above, using queue and hashmap structures. Results

appear in Figures 6 and 7. The Montage queue employs a single

lock. The Montage hashmap has a lock per bucket—like all other

competitors, it represents each bucket as a linked list. In work not

reported here, we have developed nonblocking linked lists, queues,

and maps, and various tree-based maps. In Section 6.3 we describe

the implementation of a general graph, with operations to add and

remove both vertices and edges.

https://github.com/urcs-sync/Montage

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Haosen Wen, Wentao Cai, Mingzhe Du, Louis Jenkins, Benjamin Valpey, and Michael L. Scott

0

1

2

3

4

5

6

7

8

9

10

Buf=2 Buf=16 Buf=64 Buf=256 Buf=64
+LocalFree

DirWB Montage(T) Buf=64
+DirFree

Th
ro

u
gh

p
u

t
(M

o
p

/s
)

Combinations / Epoch Lengths

1us 5us 10us 50us 100us 500us 1ms

5ms 10ms 50ms 100ms 500ms 1s 5s

Figure 4: Design exploration on 40-thread hash table

0

0.5

1

1.5

2

2.5

3

Buf=2 Buf=16 Buf=64 Buf=256 Buf=64
+LocalFree

DirWB Montage(T) Buf=64
+DirFree

Th
ro

u
gh

p
u

t
(M

o
p

/s
)

Combinations / Epoch Lengths

1us 5us 10us 50us 100us 500us 1ms

5ms 10ms 50ms 100ms 500ms 1s 5s

Figure 5: Design exploration on 1-thread queue

>>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>>

104

105

106106

107

0 10 20 30 40 50 60 70 80 90Threads

Th
ro

ug
hp

ut
 (o

ps
/s

)

>
DRAM (T)
NVM (T)
Montage (T)

Montage
Friedman
MOD

Pronto−Full
Pronto−Sync
Mnemosyne

Figure 6: Throughput of concurrent queues.

The queue microbenchmark runs a 1:1 enqueue:dequeue work-

load. For the map we report both write-dominant (0:1:1 get:insert:

remove) and read-dominant (18:1:1 get:insert:remove) results, with

0.5 million elements preloaded in 1 million hash buckets. The value

size in queues and maps is 1 KB. Key values range from 1 to 1 mil-

lion, converted to a string and padded to 32 B. Each workload runs

for 30 seconds. Results were averaged over 3 trials for each data

point. Since SOFT does not support atomic updates for existing
keys, our benchmark does not include these. Separate experiments

(not shown) confirm that the use of update does not significantly
alter the curves of other systems.

As shown in Figures 6 and 7, Montage data structures generally

perform as fast as transient structures running on NVM (they may

even outperform NVM (T), given transient indexing in DRAM).

Compared to DRAM (T), Montage adds as little as 30% overhead

in queues, and less than 65% on the highly concurrent hashmap in

most cases. With the exception of SOFT, Montage also outperforms

all tested persistence systems on all four workloads. The Montage

queue provides up to 6× the throughput of Friedman et al.’s queue,

and is one to two orders of magnitude faster than the MOD, Pronto,

and Mnemosyne queues. For hashmaps, Montage runs up to 4×

faster than MOD, 4×–30× faster than Dalí, NVTraverse and Pronto,

and nearly two orders of magnitude faster than Mnemosyne on

the write-dominant workloads. On the read-dominant workload,

Montage still has up to 4× the throughput of MOD, the fastest

general-purpose competitor system.

The exceptional case is SOFT, which maintains—and reads from—

a full copy of the data in DRAM, and which works for sets and

mappings only, without atomic update. Nonetheless, Montage is

close to or outperforms SOFT at low thread counts and on the

read-dominant workload, and still achieves more than one-third

the throughput of SOFT at high thread counts. Interestingly, Mon-

tage and NVM (T) stop scaling at 12 and 20 threads on the write-

dominant workload; this may reflect multithreading contention

in Intel’s NVM write combining buffer and write pending queues.

Similar contention may also explain why NVTraverse, which has

writes-back and a fence in both read and write operations, is able to

keep up with Montage’s performance at lower thread counts, but

subsequently falls behind.

It may seem surprising that NVM (T) has higher throughput

than DRAM on queue benchmarks. This is because NVM (T) uses

Ralloc instead of jemalloc; we believe Ralloc’s block layout provides

enqueue/dequeue workloads with better cache locality.

6.1.1 Payload Size. To assess the impact of operation footprint

on relative performance, we repeated our queue and read-write

hashmap experiments with a single thread but with payloads vary-

ing from 16 B to 4 KB. Results appear in Figure 8 (here with a mixed

read-write workload for the hashmap).

At all payload sizes, Montage continues to outperform all persis-

tent competitors other than SOFT. Interestingly, in write-dominant

hashmap experiments (not shown), the SOFT curve drops more

sharply than the Montage curve, and crosses over at just 256 B:

the overhead of (strict) durable linearizability increases with larger

payloads, while Montage benefits more from its buffering.

6.1.2 Sync Frequency. As noted in Section 1, buffered durable lin-

earizability mirrors the behavior of traditional file and database

systems: operations are permitted to return before they reach per-

sistence. An application that must be certain of persistence (e.g.,

before sending confirmation to a remote client over the internet)

can call a Montage sync operation. In the extreme, an application

can obtain strict durable linearizability by calling sync after every

operation, but this will reduce performance (much as it does for

traditional block devices) and is generally overkill.

A Fast, General System for Buffered Persistent Data Structures ICPP ’21, August 9–12, 2021, Lemont, IL, USA

>>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>>

104

105

106106

107

108

0 10 20 30 40 50 60 70 80 90Threads

Th
ro

ug
hp

ut
 (o

ps
/s

)

>DRAM (T)
NVM (T)
Montage (T)

Montage
SOFT
NVTraverse

Dalí
MOD
Pronto−Full

Pronto−Sync
Mnemosyne

(a) 0:1:1 get:insert:remove

>>>
>>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>>

104

105

106106

107

108

0 10 20 30 40 50 60 70 80 90Threads

Th
ro

ug
hp

ut
 (o

ps
/s

)

>DRAM (T)
NVM (T)
Montage (T)

Montage
SOFT
NVTraverse

Dalí
MOD
Pronto−Full

Pronto−Sync
Mnemosyne

(b) 18:1:1 get:insert:remove

Figure 7: Throughput of concurrent hashmaps.

>>> >>> >>>
>>>

>>>

103

104

105

106106

107

16 64 256 1K 4KSize (B)

Th
ro

ug
hp

ut
 (o

ps
/s

)

>

DRAM (T)
NVM (T)
Montage (T)
Montage

Friedman
MOD
Pronto−Sync
Mnemosyne

(a) Single-threaded Queues

>>> >>>
>>>

>>>

>>>

104

105

106106

16 64 256 1K 4KSize (B)

Th
ro

ug
hp

ut
 (o

ps
/s

)

>

DRAM (T)
NVM (T)
Montage (T)
Montage
SOFT

NVTraverse
Dalí
MOD
Pronto−Sync
Mnemosyne

(b) Single-threaded Hashmap—2:1:1 get:insert:remove

Figure 8: Throughput of single-threaded data structures (log-scale x-axis).

>>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>>0

1

2

3

4

5

6

7

8

9

10

100 101 102 103 104 105ops/sync

Th
ro

ug
hp

ut
 (M

op
s/

s)

>NVM (T)
Montage (T)
Montage (cb)

Montage (dw)
SOFT
NVTraverse

Dalí
MOD
Pronto−Full

Pronto−Sync
Mnemosyne

Figure 9: Throughput of 40-thread hashmaps with a sync ev-
ery x operations on average (log-scale x-axis; linear y-axis).

To assess the impact of sync, we repeated our write-dominant

hashmap experiments with 40 threads but with calls to sync inter-

spersed in every thread every 1 to 10
5
operations on average. In

Figure 9, we employ two different write-back strategies in Montage:

Montage (dw) writes back and flushes all written payloads at the

end of each operation; Montage (cb) tracks updates in 64-entry per-

thread buffers, as described in Section 5.2. With one sync every 40

operations or fewer (≥ 2500 syncs per thread per second), Mon-

tage (cb) suffers from bookkeeping overhead on epoch advances; it

wins with less frequent sync calls. Significantly, with either con-

figuration, Montage outperforms NVTraverse, MOD, and Pronto

even with a sync after every operation.

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40 50 60 70 80 90Threads

Th
ro

ug
hp

ut
 (M

op
s/

s) DRAM (T)
Montage (T)
Montage

Figure 10: memcached throughput on YCSB-A (linear y-axis).

6.2 Hashmap Validation Using memcached
To confirm our data structure results in a more realistic setting,

we use Montage to persist a variant of memcached developed by

Kjellqvist et al. [23]. This variant links directly to a multithreaded

client application, dispensing with the usual socket-based commu-

nication. It was appealing for our experiments because the authors

had already converted it to use Ralloc instead of the benchmark’s

usual custom allocator.

Figure 10 compares the resulting (fully persistent, recoverable)

version of memcached to the transient version of Kjellqvist et

al., placing items in DRAM or in NVM; since the index always

stays in DRAM, the latter is effectively equivalent to the configu-

ration of Montage (T). Here the YCSB-A workload [10], with 1M

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Haosen Wen, Wentao Cai, Mingzhe Du, Louis Jenkins, Benjamin Valpey, and Michael L. Scott

0

.1

.2

.3

.4

0 10 20 30 40 50 60Threads

Th
ro

ug
hp

ut
 (M

op
s/

s) DRAM (T)
Montage (T)
Montage

0

10

20

30

0 10 20 30 40 50 60Threads

Th
ro

ug
hp

ut
 (M

op
s/

s)

DRAM (T)
Montage (T)
Montage

Figure 11: Graph microbenchmark throughput (linear y-axis)
(AddEdge+RemoveEdge):(AddVertex+RemoveVertex) = 4:1 (left), 499:1 (right).

101

102

0 10 20 30 40 50 60Threads

La
te

nc
y

(s
)

DRAM (T)
Montage (T)
Montage

Figure 12: Time to rebuild Orkut graph.

records, comprises 2.5M read and 2.5M update operations, evenly

distributed across threads. Data points reflect the average of three

trials. As in the microbenchmark results, Montage performs within

a small constant factor of purely transient structures.

6.3 Generality in Graphs
As noted in Section 3.1, a Montage programmer must avoid long

chains of pointers. In a persistent graph, we therefore arrange for

edge payloads to point to their endpoint vertices, but not vice versa.

A more conventional representation of connectivity is then kept

in transient memory, with the (typically large) edge and vertex

attributes appearing only in payloads. We regard this representa-

tion as a strong indication of Montage’s generality. Using it, we

compare performance (as in the memcached experiments) to tran-

sient graphs placed entirely in DRAM or partially in NVM. Fig-

ure 11 shows results for a microbenchmark that performs a mix of

AddEdge, RemoveEdge, AddVertex, and RemoveVertex operations.

The first two of these take vertex IDs as source and destination.

AddVertex connects a new vertex to (on average) 32 other ver-

tices; RemoveVertex clears all adjacent edges. We keep identifiers

in each vertex payload, and name them in edge payloads. AddEdge
and RemoveEdge do not affect any vertex payload; RemoveVertex
deletes all edge payloads that name the deleted vertex.

To initialize the graph, we add 10
6/2 vertices out of the total

capacity of 10
6
. For each initial vertex (as in AddVertex) we ran-

domly create 32 edges to other vertices. While benchmarking, we

vary the portion of edge and vertex operations (4:1 and 499:1 in

our experiments), and carefully distribute to Add and Remove op-

erations so that the number of existing vertices and the average

vertex degree remain statistically stable. Each workload runs for 30

seconds. Results were averaged over 3 trials for each data point. The

persistent Montage graph performs within a factor of 2 of the fully

transient graph, mirroring the results of previous sections and con-

firming Montage’s utility for arbitrary linked structures. While the

average vertex degree is modest in these experiments, AddVertex
and RemoveVertex operations are still somewhat expensive in both

the persistent and transient case. When these operations are called

less often (right half of Fig. 11), overall throughput is higher.

6.4 Recovery Time
To assess the overhead of recovery in Montage, we measured both

hash map and graph examples. In the hashmap case, we initialized

the table with 2–64 million 1 KB elements, leading to a total payload

size of 1–32GB. With 1 recovery thread, Montage recovers the 1GB

data set in 0.7 s and the 32GB data set in 41.9 s. With 8 recovery

threads, it takes 0.4 and 13.8 s, respectively. Improving the scalability

of recovery is a topic for future work.

As a second example, we compared the recovery time of a large

Montage graph (the SNAP Orkut dataset [28, 48], a social network

of ∼3M vertices and 117M edges) to the time required to construct

the same graph, in parallel, from a set of adjacency lists. The dataset

is partitioned into many files, each of which uses a custom binary

format that eliminates the need for string manipulation. Montage

recovery is handled much like parallel construction: vertices and

edges are added back to the graph in parallel. Because recovery

is an internal graph operation, however, much of the locking can

be elided by cyclically distributing vertices among threads, each

of which creates a set of edge buffers to pass to other threads.

Figure 12 demonstrates that recovery is even faster than construc-

tion on DRAM at low thread counts, and takes roughly as long

as construction on NVM after 16 threads. Crucially, the Montage

implementation has the advantage of supporting small changes to

the graph without the need orchestrate persistence via file I/O.

7 CONCLUSIONS
We have introduced Montage, the first general-purpose system

for buffered durable linearizability of persistent data structures.

In comparison to systems that are (strictly) durably linearizable,

Montage moves write-back and, crucially, fencing off the critical

path of the application. Montage is built on top of the Ralloc non-

blocking persistent allocator [3], which avoids both writes-back and

fences in most allocation and deallocation operations. Nonblocking

data structures remain nonblocking when implemented on top of

Montage, though preempted threads can stall the advance of the

persistence frontier.

Experimentswithmultiple data structures—including the hashmap

of memcached—confirm that Montage dramatically outperforms

prior general-purpose systems for persistence. It also outperforms—

or is competitive with—existing special-purpose persistent data

structures. In many cases, in fact, it rivals the performance of tradi-

tional transient data structures configured to use NVM instead of

DRAM. This is generally the best performance one could hope for.

ACKNOWLEDGMENTS
This work was supported in part by NSF grants CCF-1717712, CNS-

1900803, and CNS-1955498, by a Google Faculty Research award,

and by a USDepartment of Energy Computational Science Graduate

Fellowship (grant DE-SC0020347).

A Fast, General System for Buffered Persistent Data Structures ICPP ’21, August 9–12, 2021, Lemont, IL, USA

REFERENCES
[1] David Aksun and James Larus. 2021. Durability Through NVM Checkpointing

(poster). In 12th Non-Volatile Memories Wkshp.
[2] H. Alan Beadle, Wentao Cai, Haosen Wen, and Michael L. Scott. 2020. Non-

blocking Persistent Software Transactional Memory. In 27th Intl. Conf. on High
Performance Computing, Data, and Analytics (HiPC).

[3] W. Cai, H. Wen, H. A. Beadle, C. Kjellqvist, M. Hedayati, and M. L. Scott. 2020.

Understanding and Optimizing Persistent Memory Allocation. In 19th Intl. Symp.
on Memory Management (ISMM).

[4] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014. Atlas:

Leveraging Locks for Non-volatile Memory Consistency. In ACM Conf. on Object
Oriented Programming Systems Languages & Applications (OOPSLA).

[5] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D. Viglas. 2015. REWIND:

Recovery Write-ahead system for In-memory Non-volatile Data-structures. Proc.
of the VLDB Endowment 8, 5 (Jan. 2015).

[6] Shimin Chen and Qin Jin. 2015. Persistent B+-trees in Non-volatile Main Memory.

Proc. of the VLDB Endowment 8, 7 (Feb. 2015).
[7] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,

Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Making Persistent Objects

Fast and Safe with Next-generation, Non-volatile Memories. In 16th Intl. Conf.
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). 14 pages. https://doi.org/10.1145/1950365.1950380

[8] Nachshon Cohen, David T. Aksun, Hillel Avni, and James R. Larus. 2019. Fine-

Grain Checkpointing with In-Cache-Line Logging. In 24th Intl. Conf. on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS).
14 pages. https://doi.org/10.1145/3297858.3304046

[9] Nachshon Cohen, David T. Aksun, and James R. Larus. 2018. Object-Oriented

Recovery for Non-Volatile Memory. Proc. of the ACM on Programming Languages
2, OOPSLA (Oct. 2018).

[10] Brian Cooper. 2010. YCSB CoreWorkloads. https://github.com/brianfrankcooper/

YCSB/wiki/Core-Workloads.

[11] Andreia Correia, Pascal Felber, and Pedro Ramalhete. 2018. Romulus: Efficient

Algorithms for Persistent Transactional Memory. In 30th ACM Symp. on Parallel
Algorithms and Architectures (SPAA).

[12] Tudor David, Aleksandar Dragojević, Rachid Guerraoui, and Igor Zablotchi. 2018.

Log-Free Concurrent Data Structures. In Usenix Annual Technical Conf. (ATC).
https://www.usenix.org/conference/atc18/presentation/david

[13] Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E Blelloch, and Erez

Petrank. 2020. NVTraverse: In NVRAM Data Structures, the Destination Is

More Important Than the Journey. In 41st ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI).

[14] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank. 2018.

A Persistent Lock-free Queue for Non-volatile Memory. In 23rd ACM SIGPLAN
Symp. on Principles and Practice of Parallel Programming (PPoPP). 13 pages.

[15] Ellis R. Giles, Kshitij Doshi, and Peter Varman. 2015. SoftWrAP: A Lightweight

Framework for Transactional Support of Storage Class Memory. In 31st Symp. on
Mass Storage Systems and Technologies (MSST).

[16] Jinyu Gu, Qianqian Yu, Xiayang Wang, Zhaoguo Wang, Binyu Zang, Haibing

Guan, and Haibo Chen. 2019. Pisces: A Scalable and Efficient Persistent Transac-

tional Memory. In Usenix Annual Technical Conf. (ATC).
[17] Swapnil Haria, Mark D. Hill, and Michael M. Swift. 2020. MOD: Minimally

Ordered Durable Datastructures for Persistent Memory. In 25th Intl. Conf. on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS).

[18] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Keeton, and

Patrick Eugster. 2017. NVthreads: Practical persistence for multi-threaded appli-

cations. In 12th European Conf. on Computer Systems (EuroSys).
[19] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. 2018. En-

durable Transient Inconsistency in Byte-Addressable Persistent B+-Tree. In 16th
Usenix Conf. on File and Storage Technologies (FAST).

[20] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016. Failure-Atomic Per-

sistent Memory Updates via JUSTDO Logging. In 21st Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

[21] J. Izraelevitz, H. Mendes, and M. L. Scott. 2016. Linearizability of Persistent

Memory Objects Under a Full-System-Crash Failure Model. In Intl. Symp. on
Distributed Computing (DISC).

[22] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman

Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen

Zhao, and Steven Swanson. 2019. Basic Performance Measurements of the Intel

Optane DC Persistent Memory Module. arXiv:1903.05714v3.

[23] Chris Kjellqvist, Mohammad Hedayati, and Michael L. Scott. 2020. Safe, Fast

Sharing of Memcached as a Protected Library. In 49th Intl. Conf. on Parallel
Processing (ICPP). Article 6, 8 pages. https://doi.org/10.1145/3404397.3404443

[24] R Madhava Krishnan, Jaeho Kim, Ajit Mathew, Xinwei Fu, Anthony Demeri,

Changwoo Min, and Sudarsun Kannan. 2020. Durable transactional memory can

scale with TimeStone. In 25th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[25] Harris Timothy L., Fraser Keir, and Pratt Ian A. 2002. A Practical Multi-word

Compare-and-Swap Operation. In 16th Intl. Symp. on Distributed Computing
(DISC).

[26] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H. Noh.

2017. WORT: Write Optimal Radix Tree for Persistent Memory Storage Systems.

In 15th Usenix Conf. on File and Storage Technologies (FAST).
[27] Ricardo Leite and Ricardo Rocha. 2018. LRMalloc: A Modern and Competitive

Lock-Free Dynamic Memory Allocator. In 13th Intl. Meeting on High Performance
Computing for Computational Science (VECPAR).

[28] Jure Leskovec and Rok Sosič. 2016. SNAP: A General-Purpose Network Analysis

and Graph-Mining Library. ACM Trans. on Intelligent Systems and Technology 8,

1 (July 2016).

[29] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L Scott, Sam H Noh, and

Changhee Jung. 2018. iDO: Compiler-directed failure atomicity for nonvolatile

memory. In 51st Intl. Symp. on Microarchitecture (MICRO).
[30] Yujie Liu, Victor Luchangco, and Michael Spear. 2013. Mindicators: A scalable

approach to quiescence. In 33rd IEEE Intl. Conf. on Distributed Computing Systems
(ICDCS).

[31] Pratyush Mahapatra, Mark D Hill, and Michael M Swift. 2019. Don’t Persist All:

Efficient Persistent Data Structures. arXiv:1905.13011.

[32] Amirsaman Memaripour, Joseph Izraelevitz, and Steven Swanson. 2020. Pronto:

Easy and Fast Persistence for Volatile Data Structures. In 25th Intl. Conf. on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS).

[33] AmirsamanMemaripour and Steven Swanson. 2018. Breeze: User-Level Access to

Non-Volatile Main Memories for Legacy Software. In 36th Intl. Conf. on Computer
Design (ICCD).

[34] Moohyeon Nam, Hokeun Cha, Kibeom Jin, Jiwon Seo, and Beomseok Nam. 2020.

B3-tree: Byte-Addressable Binary B-Tree for Persistent Memory. ACM Trans. on
Storage 16, 3 (July 2020).

[35] Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey III, Dhruva R.

Chakrabarti, and Michael L. Scott. 2017. Dalí: A Periodically Persistent Hash

Map. In Intl. Symp. on Distributed Computing (DISC).
[36] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang

Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree

for Storage Class Memory. In Intl. Conf. on the Management of Data (SIGMOD).
[37] Matej Pavlovic, Alex Kogan, Virendra J Marathe, and Tim Harris. 2018. Brief

announcement: Persistent multi-word compare-and-swap. In ACM Symp. on
Principles of Distributed Computing (PODC).

[38] Pedro Ramalhete, Andreia Correia, Pascal Felber, and Nachshon Cohen. 2019.

OneFile: A Wait-Free Persistent Transactional Memory. In 49th IEEE/IFIP Intl.
Conf. on Dependable Systems and Networks (DSN).

[39] Torvald Riegel, Pascal Felber, and Christof Fetzer. 2006. A Lazy Snapshot Al-

gorithm with Eager Validation. In 20th Intl. Symp. on Distributed Computing
(DISC).

[40] Steve Scargall. 2018. Using Persistent Memory Devices with the Linux Device

Mapper. https://pmem.io/2018/05/15/using_persistent_memory_devices_with_

the_linux_device_mapper.html.

[41] David Schwalb, Markus Dreseler, Matthias Uflacker, and Hasso Plattner. 2015.

NVC-Hashmap: A Persistent and Concurrent Hashmap For Non-Volatile Memo-

ries. In 3rd VLDBWkshp. on In-Memory Data Management and Analytics (IMDM).
[42] Usharani U. and Andy M. Rudoff. 2017. Introduction to Programming with Persis-

tent Memory from Intel. https://software.intel.com/en-us/articles/introduction-

to-programming-with-persistent-memory-from-intel.

[43] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H.

Campbell. 2011. Consistent and Durable Data Structures for Non-volatile Byte-

addressable Memory. In 9th Usenix Conf. on File and Storage Technologies (FAST).
[44] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Light-

weight Persistent Memory. In 16th Intl. Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS).

[45] Chundong Wang, Qingsong Wei, Lingkun Wu, Sibo Wang, Cheng Chen, Xiaokui

Xiao, Jun Yang, Mingdi Xue, and Yechao Yang. 2018. Persisting RB-Tree into

NVM in a Consistency Perspective. ACM Trans. on Storage 14, 1 (Feb. 2018).
[46] Zhenwei Wu, Kai Lu, Andrew Nisbet, Wenzhe Zhang, and Mikel Luján. 2020.

PMThreads: Persistent memory threads harnessing versioned shadow copies. In

41st ACM SIGPLAN Conf. on Programming Language Design and Implementation
(PLDI).

[47] Yi Xu, Joseph Izraelevitz, and Steven Swanson. 2021. Clobber-NVM: Log Less,

Re-execute More. In 26th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[48] Jaewon Yang and Jure Leskovec. 2012. SNAP Dataset: Orkut Social Network and

Ground-Truth Communities. https://snap.stanford.edu/data/com-Orkut.html.

[49] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and

Bingsheng He. 2015. NV-Tree: Reducing Consistency Cost for NVM-based Single

Level Systems. In 13th Usenix Conf. on File and Storage Technologies (FAST).
[50] Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez Petrank.

2019. Efficient Lock-free Durable Sets. Proc. of the ACM on Programming Lan-
guages 3, OOPSLA (Oct. 2019).

https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/3297858.3304046
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://www.usenix.org/conference/atc18/presentation/david
https://doi.org/10.1145/3404397.3404443
https://pmem.io/2018/05/15/using_persistent_memory_devices_with_the_linux_device_mapper.html
https://pmem.io/2018/05/15/using_persistent_memory_devices_with_the_linux_device_mapper.html
https://software.intel.com/en-us/articles/introduction-to-programming-with-persistent-memory-from-intel
https://software.intel.com/en-us/articles/introduction-to-programming-with-persistent-memory-from-intel
https://snap.stanford.edu/data/com-Orkut.html

	Abstract
	1 Introduction
	2 Related Work
	3 Montage Design
	3.1 API
	3.2 Periodic Persistence
	3.3 Nonblocking Data Structures

	4 Correctness
	4.1 Linearizability
	4.2 Buffered Durable Linearizability
	4.3 Liveness

	5 Implementation Details
	5.1 Storage Management
	5.2 Configuration Options

	6 Experimental Results
	6.1 Microbenchmark Throughput
	6.2 Hashmap Validation Using memcached
	6.3 Generality in Graphs
	6.4 Recovery Time

	7 Conclusions
	Acknowledgments
	References

