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ABSTRACT

We introduce subspace locally competitive algorithms (SLCAs), a
family of novel network architectures for modeling latent repre-
sentations of natural signals with group sparse structure. SLCA
first layer neurons are derived from locally competitive algorithms,
which produce responses and learn representations that are well
matched to both the linear and non-linear properties observed in
simple cells in layer 4 of primary visual cortex (area V1). SLCA
incorporates a second layer of neurons which produce approxi-
mately invariant responses to signal variations that are linear in
their corresponding subspaces, such as phase shifts, resembling a
hallmark characteristic of complex cells in V1. We provide a practi-
cal analysis of training parameter settings, explore the features and
invariances learned, and finally compare the model to single-layer
sparse coding and to independent subspace analysis.
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1 INTRODUCTION

Natural images are well known to have statistical structure that can
be efficiently modeled as sparse combinations of oriented, local-
ized, and bandpass filters [Field 1999]. A variety of neural network
models have been developed that learn such representations from
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natural scenes [For example, Aharon et al. 2006; Bell and Sejnowski
1997; Olshausen and Field 1996]. Additionally, the learned repre-
sentations and responses produced by some of these models have
high correspondence with both the linear [Bell and Sejnowski 1997;
Olshausen and Field 1997] and non-linear [Zhu and Rozell 2013]
response properties of simple cells in area V1 of the primate cortex.
Encouraging output neuron activations to be sparse or independent
has been a key computational strategy to learn these interesting
and efficient representations. Sparse activity of neural firing has
been observed experimentally in real biological systems [Vinje and
Gallant 2000], and metabolic restrictions may be interpreted as the
physical implementation of sparsity constraints in these systems.
Despite encouraging independence for the output neuron ac-
tivations in these models, many dependencies among responses
still remain after model training in the form of common amplitude
fluctuations [Hyvérinen and Hoyer 2000; Schwartz and Simoncelli
2001; Wainwright et al. 2001a]. Previous studies have modeled this
dependency using a hierarchy of neurons [Hyvérinen and Hoyer
2000; Karklin and Lewicki 2005] that produce comparable outputs
to biological V1 simple and complex cells. These networks utilize
linear first layer neurons, which limits their likeness to biologi-
cal neurons as well as their representation capacity and efficiency
[Eichhorn et al. 2009; Vilankar and Field 2017]. Other studies have
mitigated the dependency using single-layer networks with an adap-
tive prior that models non-uniformities in the magnitudes among
coefficients [Charles et al. 2011; Garrigues and Olshausen 2010;
Wainwright et al. 2001b], although these models have not been
shown to produce invariant complex cell-like outputs. There is a
strong similarity between these two approaches, as a non-uniform
prior on first layer coefficients can be implemented via feedback
from a hierarchical layer [Lee and Mumford 2003]. Here we present
a hierarchical model that uses non-linear first layer neurons and
a uniform sparsity prior on second-layer neurons. Our network
is an extension of the sparse coding framework that learns sub-
spaces of dependent features for natural images. Information is
propagated between first-layer and second-layer neurons during
inference, such that a simple uniform prior imposed on the second
layer influences the first layer representations and learned weights.
We demonstrate that the model is able to produce complex cell like
outputs that have partial invariance to important image factors


https://doi.org/10.1145/3381755.3381765
https://doi.org/10.1145/3381755.3381765
https://doi.org/10.1145/3381755.3381765

NICE ’20, March 17-20, 2020, Heidelberg, Germany

such as phase and orientation. Although we do not claim to provide
a complete model of complex cell function, we believe adapting the
subspace coding framework to sparse coding networks is a positive
step towards constructing hierarchical invariant representations of
natural scenes, which we identify as a goal of the vision system.

Our primary contribution is a novel architecture for modeling
the group sparse structure of natural signals. The architecture is
extended from Locally Competitive Algorithms (LCAs), which can
be implemented efficiently with analog hardware and thus has
significance for neuromorphic computing [Rozell et al. 2008]. We
describe subspace locally competitive algorithms for producing
two-layer feature-invariant encodings of natural visual scenes. We
provide detailed analysis of the invariances learned from natural
image data and the coding properties for video inputs. Finally, we
compare the model to LCAs as well as independent subspace anal-
ysis. Subspace locally competitive algorithms were first introduced
in [Paiton 2019], although here we provide more in-depth analyses
and comparisons.

2 SUBSPACE LOCALLY COMPETITIVE
ALGORITHMS

We will first outline the mathematical details of Subspace Locally
Competitive Algorithms (SLCAs), a two-layer extension of Locally
Competitive Algorithms (LCAs) [Rozell et al. 2008]. Then we will
provide a characterization of the effect of the user-defined sparsity
and group-size parameters for training a particular SLCA network.
Finally, we will explore the features and invariances learned by the
SLCA network to better understand the complex cell-like behavior
of the second layer neurons. In our experiments we focus on a
single instantiation of SLCAs, although it is possible to explore
other versions by modifying the underlying LCA framework as was
explored by Rozell et al. [2008] and Charles et al. [2011].

2.1 Model description

In sparse coding, it is typical to first assume a linear generative

model:
L

s=<I>a+v=Zak<I>k+v, (1)
k=1

where s € R” is an input image vector and ® € is a learned
overcomplete (i.e. L > P) dictionary matrix. It is assumed that
the input includes small unstructured noise, v ~ N (0, X), which
is drawn from a Gaussian distribution with mean 0 and diagonal
variance Y. The neuron activations are represented with the vector
a € Rl Fora given dictionary, it is necessary to infer a to recon-
struct an input signal, s. We also impose a constraint that a is sparse,
which encourages conditional independence and efficiency. This is
accomplished by minimizing the following energy function:

RPXL

L
argmin [ Egc = %Hs - <I>a||§ +A Z Clap) |, (2)
4 k=1
where || - ||§ indicates the squared 2 norm, which is derived from

assuming Gaussian noise, and A is a sparsity trade-off parameter.
For maximum sparsity, the ideal cost function, C(-), would be an
lo pseudo-norm, which is a direct cost on the number of active
units. However in practice it is common to use the /; cost — a more
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computationally tractable relaxation that corresponds to using the
absolute value of the activations, C(ay) = |ag|, and is derived from
assuming a Laplacian prior uniformly over the coefficients (for a
more thorough probabilistic treatment of sparse coding see [Lewicki
and Olshausen 1999]). One of the key features of the LCA model is
the ability to easily implement a variety of costs by modifying the
threshold function (see [Charles et al. 2011; Rozell et al. 2008] for
alternatives and equation 10 for our implementation). For this study
we will use a threshold function resembling that used for the [;
cost, although we identify the exploration of alternative functions
as an interesting direction for future study.
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Figure 1: The subspace locally competitive algorithm net-
work. Neurons are grouped such that they learn subspaces
of co-active units. Once a group amplitude passes the thresh-
old, all neurons in the group contribute to the output ac-
tivity. For clarity we omit the all-to-all lateral connections
among the first layer neurons, specified by the matrix G in
equation (9).

Our SLCA network has two layers. The first layer is composed
of sparse coding neurons as in traditional LCA. In the second layer,
units pool responses from select groups of neurons in the first layer.
The diagram in fig 1 illustrates this network architecture. For SLCA,
we reshape the dictionary matrix to be P X N X M, where P is the
number of pixels, N is the number of neurons in a group, and M is
the number of groups. Additionally, the activations are reshaped
to be N X M. Both N and M are user-defined parameters in our
model and are set such that each group has an equal number of
neurons and neurons do not belong to more than one group (i.e.
groups do not overlap). When comparing to a single-layer sparse
coding model, we require that L = N % M. The second layer neuron
outputs, o are trained to span correlated subspaces of the input
data. Their amplitude is the L norm of the within-group first layer
activity vector, ap,:

om = |laml|l2 =

where m indexes the group and Zf\i 1 sums over the neurons within
the group. This formulation for the group amplitude is akin to the
common model of computation for complex cells that is thought
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to support their invariance to transformations of certain stimuli
features (e.g. [Adelson and Bergen 1985; Heeger 1992]). For a given
group, the group amplitude may be equivalent for different com-
binations of first layer neuron activities. So in this way, the group
amplitude can be invariant to specific signal transformations that
result in different yet equivalent combinations of first layer neuron
activities . Each of these equivalent combinations can be thought
of as a direction for a vector in the group subspace. We define this
as a unit-length steering vector, z,,, that has the same number of
elements as our group activity vector:

a
Znm = Ly 4)
Om

Thus we can now represent our layer one activations in a polar
format with an amplitude o, and an angle defined as that between
the positive canonical vector pointing from the origin along the
horizontal axis and z,. Additionally, we frame the amplitude units
as pooling units akin to complex cells with measurable invariances.

Now we will use these terms to define the SLCA energy function:

N M M
1 2
Eglca =3lIs = Z Z 0;zijPijll; +AZ oj+
=

i=1 j=1

N M M
ﬁZZZ@;—Cbi—IMﬂ,

i=1 j=1 [=1

®)

where A and f are user-defined regularization trade-off multipliers,
®; is a P x N matrix representing the basis functions in group j, and
Iy is the N X N identity matrix. The middle term puts a penalty on
the number of active groups for any given input signal, which will
encourage independence between group representations. The right
most term pressures the within-group weights to be orthogonal,
which prevents the pathological solution of within-group neurons
learning to have identical weights. This regularization also reduces
competition between neurons within groups, which is scaled by
the inner product between neighboring neurons’ weight vectors.
As in sparse coding, we will infer the first layer neuron activations
by following the negative energy gradient with respect to that
neuron. An interim step for this derivation leads us to an alternative
definition of the group direction vector:

M
9 Zj:l 9j  dom
danm danm
= dnm (6)

[vN 2
i1 Qi

=Znm-

Thus, the negative gradient with respect to activity, anm, is

P N M
JEg
- === Z sh®@hnm — Z Z Gijnmaij — Aznm, (7)
%nm = i1 =1

where Gjjnm = 25:1 ®4;j@pym is the dictionary Gramian tensor.

As was done for LCA networks, our first layer neurons will
maintain a state variables, u, with dynamics that are governed
by the energy function. Neurons produce activations when their
states exceed a threshold, which we represent as a rate code, a.
Superthreshold neurons will inhibit the other first layer neurons
in the network through horizontal connections, defined by the
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tensor G. To derive the governing equations, we first group the self
inhibition terms from equation 7 and assign them to the neuron’s
internal state, u:

Unm = fi(anm) = Gnm + Aznm

(om +A) znm

®)
A
=apm(1+ —).
Om
In order for the network dynamics to settle to a minimum of the en-
ergy function, we assign the update rule for each neuron’s internal
state to be proportional to equation 7, giving us

Tlnm = bpm — Z Gijnmaij — Unm, )
ij#nm
where bpm = 25:1 $p®hnm = @1, is the neuron’s feedforward
drive and 7 is the neuron’s membrane time constant. The SLCA
network differs from LCA networks in that all neurons within a
group will produce outputs when that group exceeds the threshold.
However, as long as an, and u,, are related by a monotonically
increasing function, the network activations will settle to a global
minima [Rozell et al. 2008]. The output amplitude in terms of the
group threshold anm = T (unm) is

L 0, ||um| |2 <4
e (T [
|luml2
(10)
This formulation is equivalent to an independently derived thresh-
old function for an LCA implementation used to solve sparse signal
approximation problems with a block-/; cost function [Charles et al.
2011].

Deriving the learning process for SLCA follows the same proce-
dure as for the original LCA, although the modified energy function
results in an additional term. The basis functions, ®p;, are opti-
mized by performing gradient descent on Eg., while fixing the
coefficient values, a, computed from the SLCA inference step. This
yields the update rule

N M
Aq)pnm =r][ Sp — Z Z szijq)Pij anm+

i=1 j=1

M P
2p Z cI:’panign (Z (I)hnjq)hnm - 5jm)],
Jj=1 h=1

In practice, we used the automatic gradient computation provided
by the TensorFlow library [Abadi et al. 2015] for updating the
network weights.

The resulting network produces non-linear neurons at both the
first and second layer in the hierarchy. Like the LCA network, this
network can also be implemented in analog circuit hardware that
settles to the energy minimum [Charles et al. 2011; Rozell et al.
2008]. In the next section, we will present and analyze the features
learned when training the SLCA network on natural image patches.

(11)

2.2 TFeatures learned

All models were trained on the van Hateren natural scenes dataset
[Hateren and Schaaf 1998]. We preprocessed the data by transform-
ing the pixel values to log intensity, whitening, normalizing the
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images to have zero mean and unit standard deviation, and finally
extracting 16 by 16 pixel patches. Image whitening was done using
an approximate Fourier method on the whole images [See section
5.9.3 of Hyvirinen et al. 2009], where we first performed a 2D
Fourier transform on the image, then multiplied it by a whiten-
ing filter, and finally performed an inverse Fourier transform. The
whitening filter was composed by multiplying together a ramp
(that has a slope of 1 and rises with frequency) component and a
low-pass (starting at 0.7 times the Nyquist frequency) component.

When trained on natural images, the SLCA weights learn to tile
orientations, spatial frequencies, and positions. They also learn to
have within-group similarities, such as equal orientation or position.
Figure 2 shows the results of a parameter sweep to convey the
effect of group size on the model performance. From this process
we selected a lambda value of 1.0 and group size of 4 for the rest of
the experiments.
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Figure 2: Reconstruction error versus sparsity for group
sizes of M: 2, 4, 5, 8, with 1280 neurons (5x overcomplete)
and § = 0.2. For each group size, we tested three values for
A: 1.0, 1.5, and 2.0, where lower values will result in a higher
fraction active. Moreover, higher group size leads to a lower
fraction of neurons active on average.

Figure 3 shows a selection of the features learned with the SLCA
network. Although the group structure constrains the dictionary,
the network still learns to tile spatial frequencies, positions, orien-
tations, and phases.

2.3 Qualitative assessment of cell invariance

A given second layer neuron can represent a continuous varia-
tion of features that are defined by the space spanned by the first
layer weight vectors. We illustrate this in figure 4 by generating
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Figure 3: Weights learned for our chosen parameter set, N =
4, A = 1.5, and f = 0.2. SLCA converges to features that
are like LCA, but grouped to have similar properties within
groups, and different properties across groups.

images while holding group amplitude constant and varying group
direction. To generate the images, we compute angle vectors, z,,
from natural images that evoke a large group amplitude, op,. Re-
constructions are created from the inferred z,, and a one-hot group
amplitude vector with o, = 1. Each row of images produce equal
group activations from a different second layer neuron.
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Figure 4: Group neurons have equal response for a variety of
image features. Each row corresponds to a different group,
or subspace. The leftmost column shows the four layer 1 ba-
sis functions that makeup the given group. For the remain-
ing columns we set the group amplitudes to a one-hot vector
with oy, = 1 and present (left) the reconstructions and (right)
the corresponding layer 1 neuron amplitudes (i.e. the z,, vec-
tor). The z,, are computed from natural images that evoke a
strong group response. The bar charts show the z;;,;, value for
each neuron weight, where the left to right bars correspond
to a clockwise rotation starting in the top left in the basis im-
age grid. We selected groups that have equal amplitudes for
images that vary in phase, position, orientation, edge length,
and spatial frequency for the descending rows, respectively.

I‘

There is likely a continuum of cells exhibiting response prop-
erties between what is classically considered “simple” and “com-
plex”, as visually responsive cells in V1 exhibit a variety of shared
non-linear response properties that can be observed with different
stimulus variations [De Valois et al. 1982; Dean and Tolhurst 1983;
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Mechler and Ringach 2002]. Characterizing cell responses to con-
trolled stimulus, such as sinusoidal gratings, is extremely valuable
in understanding their basic response properties, but limited in
its ability to define the high-dimensional response geometry of
individual cells. An alternative, complementary, approach is to map
out the regions in stimulus space where the neuron’s responses are
equal - their iso-response surfaces [Golden et al. 2016]. In practice,
this would be difficult to do for biological neurons due to the high
dimensionality of the input and large amount of stimulus variations
required, however it is tractable to characterize for model neurons.
In order to better understand the response properties of our second
layer neurons, we visualized their iso-response contours, which are
found when an iso-response surface of a neuron is projected onto
a two-dimensional subspace.

It is possible for neuron iso-response contours to be straight or
curved. Curved contours may bend towards the origin (endo-origin)
or away from it (exo-origin). Linear and pointwise non-linear neu-
rons (i.e. any model with rectified, sigmoid, hyperbolic tangent,
or functionally similar non-linearities) will produce straight con-
tours [Golden et al. 2016]. Exo-origin curvature is indicative of
selectivity, meaning the neuron will respond to a smaller set of
possible stimuli than a neuron with straight iso-response contours
[Vilankar and Field 2017]. This form of curvature can result from
AND-like operators, gain control, divisive normalization, and other
competitive computations, such as that found among sparse coding
neurons. Conversely, endo-origin curvature is indicative of invari-
ance, where the neuron responds equally to variations between the
vectors defining the image plane [Golden et al. 2016]. This form
of curvature can result from OR-like operators and computations
implemented in classic energy models. As an illustrative example,
consider a simple two-layer network that has two first layer neu-
rons with 7-phase-shifted weights and a single pooling neuron. The
first layer of neurons produce linear outputs, a = W' s. The pooling
neuron uses SLCA grouping actions as described before, producing
output that is the square-root of the sum of the squares of the within-

group first layer neurons’ activities, o = {/2; a‘iz. This will result
in invariance to phase modulation. To visualize the iso-response
contours, we first construct a stimulus set from a two-dimensional
plane (or cross-section) in stimulus space that is defined by the
two orthogonal weight vectors from the first layer. Each individ-
ual point in this two-dimensional plane can be represented as a
stimulus in image signal space, and thus a discrete sampling of the
points can be collected to form a stimulus set. Next we compute
the second layer’s output for each image in our stimulus set. We
visualize the iso-response contours by coloring the points in the
two-dimensional plane according to the second layer neuron’s nor-
malized response and then binning the values with fixed bin widths.
The resulting bin boundaries are iso-response contours. For this
example network, the iso-response contours of the second layer
neurons will be concentric circles with centers at the origin. Of
course, this basic complex cell model is insufficient to explain the
variety of response properties observed in biological neurons. More
complicated models will not have perfectly circular iso-response
contours and will likely have both endo- and exo-origin curvature
when viewing different projections of their high-dimensional re-
sponse surface. A neuron that has both types of curvature indicates
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invariance along some pair of dimensions (e.g. those which explore
phase variation) and selectivity along another pair of dimensions
(e.g. those which explore position variation) [Golden et al. 2016].
In figure 5 we show SLCA complex cell iso-response contours in
two-dimensional cross-sections of the P-dimensional image space.
In each plot the horizontal axis is defined by a weight vector that
corresponds to a “target” layer 1 neuron in some group. A second
layer 1 “comparison” neuron is chosen to either be in the same
group (figure 5, left column) or a different group (figure 5, right
column). The vertical axis for the image plane is then chosen using
a single step of the Gram-Schmidt process starting from the target
neuron and comparison neuron pair. The plot color values corre-
spond to the second layer neuron that contains the target first layer
neuron in its group. The second layer neurons can exhibit both
endo- and exo-origin curvature, indicating a nuanced relationship
between the neuron’s selectivity and invariance properties.

Selective directions

Invariant directions
|

0

Figure 5: SLCA second layer cells have both endo- and
exo-origin iso-response curvature. Contour lines indicate
regions of equal response (iso-response contours) for sec-
ond layer cells. Each row visualizes outputs from a dif-
ferent second-layer cell. Image planes are spanned by two
first layer neuron basis functions that are either within the
same group (left column) or in different groups (right col-
umn). Endo-origin curvature for within-group planes indi-
cates that the second layer cell is partially invariant to lin-
ear combinations of the two defining vectors. Exo-origin cur-
vature for different-group planes indicates that the second
layer cell is selective to differences between the two defining
features, such as orientation or position.

3 COMPARISONS TO SPARSE CODING AND
INDEPENDENT SUBSPACE ANALYSIS

Another successful natural scene model is independent compo-
nents analysis (ICA) [Bell and Sejnowski 1997; Hyvérinen 1999],
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which was extended by [Hyvérinen and Hoyer 2000] to independent
subspace analysis (ISA). Both models represent images as linear
combinations of elements from a complete dictionary, a = ®7s.
The process for learning ® encourages that the elements in the a
vector are statistically independent. However, the encoding process
itself is linear and thus all elements in @ are likely to have some
inner-product with s and the code produced will likely not have any
zero-valued outputs. Like SLCA, the ISA extension incorporates
a pooling layer whose outputs are computed as the square-root
of the sum-of-squares of a pre-defined group of inputs from the
first layer. ISA pooling layer units are shown to exhibit phase and
shift invariant properties, much like mammalian V1 complex cells.
However, there are two key differences between ISA and SLCA
regarding the representation and encoding procedures. One differ-
ence is that the first layer representation in SLCA is overcomplete.
The second key difference is that the first layer encoding process
for SLCA is non-linear. These two differences result in improved
efficiency as well as selectivity [Eichhorn et al. 2009; Lewicki and
Sejnowski 2000; Vilankar and Field 2017].

In figure 6, we characterize the weights learned by computing
their peak spatial position, frequency, and orientation using the
feature’s 2-D Fourier transform. Because SLCA is based on the LCA
framework, we are able to train an overcomplete model and learn a
finer sampling of these natural variations in the image data. The
group constraint on the LCA model does not restrict it from tiling
the different variation parameters. However, SLCA does learn more
weights with lower spatial frequencies and centered positions when
compared to LCA.

The natural variations from frame to frame in video sequences
are small, and therefore the representation of adjacent frames
should also be small. The LCA network has previously been shown
to provide increased stability for encoding video inputs [Rozell
et al. 2008] when compared to alternative sparse coding methods.
To test how this influences the pooling unit outputs we encoded a
natural video with the LCA, ISA, and SLCA models. The video is
from a head-mounted GoPro 5 camera recording at 90 frames-per-
second while the wearer walked around the UC Berkeley campus.
In figure 7 we show improved stability in the second layer of the
SLCA model when compared to ISA. Instead of an explicit slowness
prior [for example, as was done in Lies et al. 2014; Wiskott and Se-
jnowski 2002], SLCA’s slowness comes from the LCA network and
it is achieved because the differential equation driving the network
neurons has hysteresis with respect to the changing input.

4 DISCUSSION

The linear responses of natural images to Gabor-like filters have
kurtotic histograms centered around zero, indicating that they pro-
vide for an efficient coding strategy [Field 1999]. The responses also
have strong dependencies in the form of common amplitude fluctu-
ations, which can be observed by viewing the joint histograms of
individual filters [Wainwright et al. 2001a]. A group sparse prior
can provide a more flexible and efficient representation that resolves
much of these dependencies [Garrigues and Olshausen 2010]. Im-
portantly, neurons in networks that utilize a group sparse prior ex-
hibit response properties that have been commonly used to identify
complex cells in biological vision systems [Hyvéarinen and Hoyer
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Figure 6: Features learned with ISA, LCA, and SLCA. The
LCA and SLCA models are both 5 times overcomplete, while
the ISA model is complete. From left to right, the columns
are the spatial positions, spatial frequencies, and orienta-
tions of each function. For the left column, points indicate
the center of individual basis functions learned for each
model.

2000; Pollen and Ronner 1983], suggesting that it is a promising
method for encoding natural signals. In this study, we presented a
novel network architecture for producing nonlinear, decomposed
representations of natural images. We demonstrated that the second
layer representation jointly encodes feature identity as a group am-
plitude and qualitative elements of the feature as a group direction.
The network is an extension of Locally Competitive Algorithms,
which can be implemented efficiently in analog hardware, although
we reserve developing an SLCA hardware circuit analogy for future
work. We first provided details about the network’s training behav-
ior for a variety of parameter settings. Then we explored the learned
invariances by visualizing generated images that produce equal
second layer responses. Our network neurons have iso-response
geometry with both exo-origin curvature, indicating selectivity, and
endo-origin curvature, indicating invariance, which was previously
hypothesized but never demonstrated [Golden et al. 2016]. Finally,
we demonstrate that subspace sparse coding produces more sta-
ble video representations than the independent subspace analysis
model.

The work herein was focused on laying groundwork for a group
sparse coding architecture that extends an analog inference algo-
rithm. There is a relationship between framing subspace coding
in terms of a non-uniform prior over a single layer network, as
was done in [Garrigues and Olshausen 2010], and imposing a uni-
form prior on the second layer of a two-layer network, as we have



Subspace Locally Competitive Algorithms

First layer

LCA

0
Second layer

SLCA

Time (Frame Number)

Figure 7: SLCA produces more stable codes for video inputs
than ISA. Extending the LCA network to encode for fea-
tures subspaces results in a more stable code for video in-
puts, which is an important property for decoding by down-
stream neurons. To illustrate this effect we show a sampling
activations of 256 first layer units and 64 second layer units
from each model. Each row in the matrices is a neuron in-
dex, while each column is a frame from a video of natural
scenes. The grayscale value indicates the normalized neuron
activation.

done here. A better understanding of this relationship could help
to resolve the current model inconsistency where within-group
neurons share their internal states. We are also interested in using
the SLCA to learn groupings of data without supervised signals in
a semi-supervised object detection task.
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