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NoisyOTNet: A Robust Real-Time Vehicle Tracking
Model for Traffic Surveillance

Weiwei Xing, Yuxiang Yang*, Shunli Zhang, Qi Yu, Liqiang Wang

Abstract—With the rapid development of intelligent trans-
portation, automated traffic surveillance is considered as an
important component. In the field of traffic surveillance, it is
particularly important to achieve robust and real-time tracking
of vehicles in complex scenes. In this paper, a robust real-time
vehicle tracking model named NoisyOTNet is proposed, which for-
mulates tracking as reinforcement learning with parameter space
noise. In this formulation, the exploration ability of the model is
enhanced to improve the robustness of tracking. Specifically, we
develop a new implementation for noisy network based on deep
deterministic policy gradients (DDPGs) with parameter noise,
which can better cope with the tracking task and directly predict
the tracking result. To improve the tracking accuracy in complex
conditions, e.g. fast motion and large deformation, this paper
presents an adaptive update strategy that can exploit the vehicle
spatial-temporal information based on Upper Confidence Bound
(UCB) algorithm by exploiting. Moreover, as for the recovery
of the lost target, a relocation algorithm based on incremental
learning is developed. The results of extensive experiments
demonstrate that the proposed NoisyOTNet can effectively track
vehicles in complex scenes and achieve competitive performance
compared to the state-of-the-art methods.

Index Terms—Traffic surveillance, vehicle tracking, deep rein-
forcement learning, parameter space noise.

I. INTRODUCTION

UTOMATED traffic surveillance [1] is critical to intel-

ligent transportation systems, which consist of multiple
sub-tasks, such as detection, tracking, and recognition [2]-
[5]. As a fundamental task of vehicle surveillance, an effec-
tive vehicle tracking algorithm can provide accurate vehicle
position and tracking information for subsequent high-level
semantic tasks. A vehicle tracking model consists of three
components: an appearance module, a tracking module, and an
update module [6], [7]. The appearance module is designed to
represent the target by features. It is initialized at the beginning
of tracking and is updated in the following frames according
to different update strategies. The tracking module is used
to locate the vehicle based on the appearance module. The
update module updates the model based on changes of the
target. The tracking process is to track the target with the
above modules and output the target’s position in each frame.
A robust tracker can still achieve high accuracy in uncertain
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and complex scenes. Generally, precision and success rate are
two metrics used to measure the robustness.
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Input Input
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Fig. 1: Action space noise (a) and parameter space noise (b).

Existing vehicle tracking methods are mainly divided into
correlation filter-based [6], [8], [9], deep learning-based [10],
[11], and reinforcement learning (RL)-based [12], [13]. Cor-
relation filter-based methods use correlation filter to learn the
target features. During the tracking process, the candidate
position with the maximum corresponding score is chosen as
the prediction target position in the current frame. Owing to
handcrafted features (e.g., Gray, Histogram of Oriented Gra-
dient, and Color Names) and an efficient feature calculation in
Fourier domain, correlation filter-based methods can perform
real-time tracking. However, the representation ability of hand-
crafted features limits the tracking accuracy and robustness.
With the rapid development of deep learning, deep features
and deep network models are being introduced into tracking to
improve the accuracy. Compared with the handcrafted features,
deep features have better discriminative ability between the
target and background. To accurately distinguish the target,
complex deep models and massive feature calculations are
demanded, which cannot meet the real-time requirements of
vehicle tracking.

For RL-based methods, the tracking process is described as
an evaluation function to provide the optimal action based
on the current state. Different from correlation filter-based
and deep learning-based methods which are static learning
approaches [14], [15], RL is a trial-and-error process and
belongs to dynamic learning, which seems more suitable for
the vehicle tracking problem [16], [17]. However, existing RL-
based trackers still have some issues. Compared with other
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tracking targets, vehicles have specific characteristics such
as fast speed and small deformation. Thus, they face the
challenges of fast movement, occlusion, blur, and lighting
changes in complex environments. The state-space dimension
is much higher in vehicle tracking compared to the traditional
reinforcement learning control tasks. For example, in the task
of ‘pendulum swing-up,” a vector with three coefficients is
sufficient to represent the state space [16]. In vehicle tracking,
the state vector’s dimensionality may easily reach hundreds
or thousands to allow the extracted deep features to represent
video frames accurately [18]. Therefore, RL-based trackers
are sensitive to random noise added to the action. For the
vehicle tracking problem, the tracking model may lose the
target under fast motion and occlusion due to random action
noise. Since random action space noise directly affects the
tracking results, the model may fluctuate dramatically and lose
the vehicle targets, especially in complex environments.

As shown in Fig.1(a),The red point means random noise
added to action and the blue points mean normal network
parameters. The noise is random added to the output of
network and most existing RL-based methods use action space
noise to enhance the exploration ability of the model [19], [20].
However, the action space noise is random and cannot learn
from current frame, which limits the robustness of the model.
Moreover, most existing RL-based trackers use simple model
update strategies or relocation algorithms, which will limit the
robustness of the model in complex scenes, such as occlusion,
blur, or deformation.

In this paper, a novel real-time robust vehicle tracking model
called “NoisyOTNet” is proposed. Different from existing RL-
based vehicle tracking models using action space noise, our
proposed NoisyOTNet introduces noise into the parameter
space to increase the exploration ability inspired by [19], [20],
as shown in Fig.1 (b), different existing RL-based tracking
method, the noise is added to the parameter of network.

Parameter space noise consists of two parts: a set of vectors
of parameters, and a set of zero mean noise vectors generated
by Gaussian distribution. In our method, the generated noise
is added to the parameters of the fully connected layer, and
the noisy parameters are updated during the tracking process.
Furthermore, to enhance the robustness of the proposed Noisy-
OTNet model in complex scenes, an adaptive update strategy
based on the UCB algorithm is proposed. It can adaptively
update NoisyOTNet using the spatial-temporal information of
the vehicle. Finally, an incremental learning-based relocation
algorithm is designed to relocate a missing vehicle. The search
area is adaptively scaled according to the size of the vehicle
and background area to speed up the relocation process.

In this paper, we propose a novel real-time vehicle tracking
model based on RL for traffic surveillance systems. The main
contributions are as follows:

« A novel robust real-time vehicle tracking model, Noisy-
OTNet, is proposed, where parameter space noise is intro-
duced. By formulating tracking as reinforcement learning
with parameter space noise, the exploration ability of the
model is improved.

o A new implementation for NoisyOTNet based on DDPGs
with parameter noise is developed, which can better cope

with the tracking task and directly predict the tracking
result.

o An adaptive update strategy based on the UCB algorithm
is proposed, which fully exploits the spatial-temporal in-
formation of the vehicle to adaptively update the tracking
model.

e The proposed method is evaluated on the two popular
tracking datasets UAV123 and OTB, and the results
indicate that NoisyOTNet achieves good tracking perfor-
mance.

The remainder of this paper is arranged as follows. We
review the related studies in Section II. Section III describes
the vehicle tracking problem based on RL, and Section IV
expands the proposed vehicle tracking model, NoisyOTNet.
Section V introduces the implementation of the model in
training and online tracking. The experimental results are
reported in Section VI. Finally, conclusions are drawn in
Section VII.

II. RELATED WORKS

As a fundamental problem of traffic surveillance, numer-
ous classic methods have been applied to vehicle tracking,
including frame difference method, Gaussian mixture model,
optical flow method, and correlation filter. With the great
evolution of computing power, deep learning has accelerated
the development of computer vision. In the following, we
mainly review three types of deep learning methods: CNN-
based methods, Siamese network-based methods, and deep
reinforcement learning-based methods.

A. CNN-based Methods

CNN-based methods use deep features and deep networks
to improve model performance. Deep features contain spatial
information as well as rich semantic information. Compared
with traditional feature representation, CNN-based methods
achieve better representation and recognition ability. Fang et
al. [21] designed a part-based AdaBoost tracking framework
with weight relaxation factor to balance the sample weights.
Hong et al. [22] introduced a deep convolutional network into
tracking to improve the discriminative ability. Gao et al. [23]
introduced an update-pacing framework with an ensemble of
trackers to choose the most robust tracker for the remaining
tracking. MDNet [24] is a multi-domain method to learn both
common and specific domain features to represent a target,
however, it suffers from an over-fitting problem owing to
the huge size of the network. Song et al. [25] integrated
Discriminative Correlation Filter (DCF) process into neural
networks for end-to-end training, which combines correlation
filters with CNNs to improve the tracking performance. Yuan
et al. [26] defined the traffic force in tracking environment
to describe the group behavior and handle complex interac-
tions among vehicles. Bhat et al. [27] analyzed the comple-
mentary properties of deep and shallow features to improve
the robustness of the model. As for the above CNN-based
methods, some focus on achieving high tracking accuracy by
designing complex network architectures [24], while the others
pay attention to realizing real-time trackers by reducing the
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complexity of the model [25]. Compared with those previous
works, we proposed an object tracking framework based on
deep reinforcement learning, which can learn the pattern of
object motion while tracking the target and improve tracking
accuracy.

B. Siamese Network-based Methods

In recent years, Siamese networks [10], [11], [28], [29] have
shown significant potential in tracking accuracy and speed, it
accelerates the calculation process by sharing network weights.
Tao et al. [15] introduced a Siamese network into tracking
and compared the similarity between the search area and
the template without model update to speed up the tracking
process, which may lead to reduced tracking accuracy. Shan et
al. [30] introduced multi-RPNs into the Siamese network and
used FPN structure to build a detection subnetwork. Guo et
al. [31] used an adaptive strategy to adapt to current target
changes and increase the accuracy; however, the network
structure in this method is shallow and has only a fewer layers,
which may be not sufficient for tracking in the conditions of
fast motion and occlusion. Zhu et al. [32] added a distractor-
aware mechanism to improve the region proposal network-
based tracker and increase its robustness and speed. However,
the target variation feature in the tracking process was not
utilized for model update, which reduced the accuracy of the
model. Wang et al. [33] combined image segmentation with
tracking to obtain a closer non-horizontal rectangular tracking
bounding box to the real target, which further improves the
accuracy of the model. Siamese networks prefer to speed up
tracking by reducing update times. Therefore, an effective
model update strategy is very important to identify a target
and decrease the update overhead. To handle this issue, an
adaptive model update strategy is designed based on the object
changes and improves the model’s discriminative ability.

C. Deep Reinforcement Learning-based Methods

Deep RL has been introduced in vehicle tracking with the
development of deep learning in computer vision. In deep
RL, the agent interacts with the environment and obtains
the rewards constantly, and then the model is trained by
maximizing the cuamulative future rewards. Recently, there are
some methods try to exploit the RL technique for vehicle
tracking [12], [17], [34], [35]. Dong et al. [16] designed a
continuous deep Q-learning model to track the target and used
a regression method to solve the tracking problem. Yun et
al. [12] applied a policy-based method to build the appearance
model and classification model for target tracking. Huang
et al. [36] analyzed the relationship between the network
depth and prediction accuracy and designed a mechanism to
adaptively adjust the depth of the computation to reduce the
computational overhead. Supancic et al. [34] treated the target
tracking process as a partially observable decision-making
process and only updated the model when tracking drift
occurs. This approach used an unlimited stream of Internet
videos as the training samples. Liu et al. [37] utilized deep
policy functions to determine the best action of the present
state from a set of jump actions and learn the optimal policies.

Chen et al. [13] introduced the Actor-Critic model and used
networks for prediction and evaluation, however, only the
action space noise and a simple relocation algorithm were
used, which limited the robustness of the model. Ren et al.
[17] used an iterative shift method and defined a new target
evaluation mechanism to further distinguish the target and
background. However, the robustness of the model was limited
by the few training samples. For a non-real-time RL tracker, a
better network architecture is necessary for high-speed robust
tracking performance [12], [17], [38]. To tackle this issue, a
parameter space noise is designed based on the current target,
making the model jump out of locally optimal solutions and
improving its robustness.

III. FRAMEWORK

In this paper, we propose a novel real-time vehicle track-
ing model, NoisyOTNet, based on deep RL.The proposed
model introduces parameter space noise into RL for tracking
to improve the robustness in complex scenes. NoisyOTNet
consists of three main components: a parameter space noise-
based tracking module, a spatial-temporal UCB based adaptive
update module, and an adjustable incremental learning based
relocation module.The proposed NoisyOTNet is based on deep
deterministic policy gradients (DDPGs) framework, as shown
in Fig.2. NoisyOTNet is implemented based on the Actor-
Critic network, which consists of an Actor network and a
Critic network. Based on the previous state of the target, the
Actor predicts the optimal tracking result in the current frame.
Then the Critic evaluates the obtained result. According to the
evaluation result, the model is adaptively updated based on
the UCB update strategy. Additionally, to address the vehicle
missing problem, an effective relocation algorithm is designed
to relocate the vehicle.

To introduce deep RL into the vehicle tracking problem,
we define the vehicle tracking problem as MDP. NoisyOTNet
is based on the Actor—Critic network by defining the vehicle
tracking problem as a MDP. Our model includes agents, states,
actions, state transitions, and rewards, as shown in Fig.2.
The tracker selects an action a with a tracking reward (s, t)
according to the current state s and uses the state transition
function s’ = f(s,a) to continue the tracking. The state is
represented by the input image M and the bounding box of
the target (x,y,w, h). For an action, a = (Ax, Ay, Aw, Ah)
describes the vehicle movement. By applying action a to
the original bounding box, we can obtain the new state
s =(2',y,w' h') by

¥ =z+Ar*xw
Y =y+Ayxh
w=w+Awxw
W =h+Ahxh

(D

For the reward, we use the Intersection-over-Union (IoU)
criterion [oU(GT, PB) = (GT N PB)/(GT U PB) between
the ground truth (GT) and the predicted bounding box (PB)
as the reward, which is commonly used in RL-based tracking
methods [12].Hereby, we set the reward as +1 above a certain
threshold and —1 below the threshold, respectively, aiming
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Fig. 2: The NoisyOTNet framework.

to keep the balance between positive and negative samples.
The threshold is set as 0.7 which is an empirical value in the
tracking field [12], [13]. The impact of different IoU thresholds
are analyzed in Section VI. If the threshold is set smaller, more
samples will be regarded as positive, which brings more label
noise and difficulties in training convergence. If the threshold
is set bigger, positive samples will become fewer, which breaks
the balance of positive and negative samples and then degrades
the accuracy of the model.

(s.a)= {1 1oUGT.PB) > 07 @
"SA T 21, 10U(GT, PB) < 0.7

The pipeline of NoisyOTNet starts from choosing action
and ends with updating of the model. The main steps are as
follows:

Step 1: Initialize the target’s state (i.e. the position and
scale) in the current frame based on the tracking results in
the previous frame.

Step 2: Pass the state and reward to the Noisy-Actor
network.

Step 3: Use experience replay memory to store states,
actions and rewards.

Step 4: Generate mini-batch samples by Gaussian sampling
from the experience replay memory.

Step 5: Predict the action by Noisy-Actor and pass to the
Noisy-critic.

Step 6: Evaluate the predicted action by Noisy-Critic to
decide whether to accept the action. If the action is not
accepted, the Noisy-Actor predicts a new action again until
it is accepted.

Step 7: Predict the state of the target in the current frame
by the obtained action.

Step 8: Update the model with the UCB update strategy.

IV. METHOD

In this section, we describe the parameter space noise, a
parameter space noise based loss function, and an adaptive
network update strategy and relocation algorithm.

A. Parameter Space Noise

Existing tracking models based on deep RL utilize action
space noise to increase the exploration capability of a model
in complex scenes. However, action space noise is randomly
generated based on the current states, which are random and
cannot be reproduced. Excessive randomness will lead to dra-
matic fluctuations of the model in complex scenes and the lost
of the target. In addition, action space noise is approximately
linear function and not easily incorporated with complicated
functions, which lowers the performance of the model in
complex scenes. To address this issue, parameter space noise
is innovatively introduced into the proposed vehicle tracking
model.Inserting the noise into the parameter space can enhance
the exploration ability of the model [19], [20], which can
further improve the robustness of tracking in complex scenes.
This can improve the stability of the model in complex scenes
while improving the exploration ability by generating richer
behaviors.

Parameter space noise in a network disturbs its weights
and deviations by noise parameter functions, and these noise
parameters can be helpful for gradient descent. As for the input
x and output y, y = fy(x) introduces interference by a vector
of noisy parameters 6. The parameter space noise 6 is defined
as follows:

0=p+X0e, 3)
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where ¢ = (u, 2) indicates a set of vectors of parameters, € is
a vector of zero-mean noise with fixed statistics, and © repre-
sents an element-wise multiplication. The loss of the network
is represented by the expectation of noise, € : L = E[L(6)].
Thus, the loss function can be defined as an optimization of
the set of parameters (.

The linear layer in the network can be expressed as follows:

y=w'x+0, 4)

where x € R? is the input, w € RP®Y is the weight matrix,
and b € R? is the bias. Now, the linear layer is converted into
a linear noise layer, which is defined as follows:

y=@+o0"0e) x4yt +o" 06, (5)

where p¥ + 0¥ ® ¢ and pu® + o ® € replace w and b,
respectively. In addition, u* € RP®? ;b € RI g% € RP®4
and o® € RY are parameters, and €~ € RP®? and €’ € R? are
random noise variables.

There are two ways to generate noise [19], i.e. independent
Gaussian noise and factorized Gaussian noise. The first is
simpler to implement. Compared to the second, the first one is
widely used in RL-based methods [19], [20]. In order to obtain
better randomness of the noise parameters, we choose the
independent Gaussian noise to generate noise for NoisyOTNet.
The noise of each weight and bias are independent, and we
use a unit Gaussian distribution to draw €; of the random
matrix € (the same way as for €} of the random matrix ).

By converting the linear layer into a linear noise layer,
the network loss is changed into L = E[L(f)], which is
represented by the expectation of noise ;4 and e. To obtain the
gradients from a linear noise layer, the gradients are designed
as follows:

VL =VEI[L®)] =E[V,sLp+X o), (6)

where we can obtain gradients from the linear noise layer
based on the parameters p and e.

Furthermore, a Monte Carlo approximation is used for the
noise gradients and the function takes £ at each step of the
optimization:

VL~V,sLp+X0). (7

The above demonstrates how to convert the linear layer to a
linear noise layer, and obtain the gradient information through
the noise parameter. Then the parameter will be updated in
the linear noise layer.

B. Noisy Deep Reinforcement Learning Model for Vehicle
Tracking

In this section, we describe how to introduce a parameter
space noise into the tracking model based on deep RL. We
implement the proposed model based on the DDPG network
structure. DDPG is an Actor—Critic network that can handle an
action prediction in a continuous space. During the prediction,
the Actor provides the results, whereas the Critic estimates

the Q-value function using off-policy data and the recursive
Bellman equation:

Q(st,a) = (81, a1) + YQ(St41, To(5¢41)), (8)

where 7y is the Actor. The Actor is trained to maximize the
Q-values estimated by the Critic by back-propagating through
both networks. For exploration, DDPG uses a stochastic policy
of the form 7y (s) = mg(s¢) + noise, where an exploration is
realized through an action space noise. In addition, the loss of
the DDPG is defined as follows:

LO)=E [E<x,a,r,y>~D [Q(x,al) —r — “mbleag:Q(x b|9*)]2] , )

where D is a distribution of transitions e = (X,a,7 =
R(x,a),y ~ P(]x,a)) drawn from a replay buffer, and 0~
represents the parameters of a target network that updates
(6~ <« 0) regularly to stabilize the learning.
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Fig. 3: Examples of tracking results of trackers with different noises.

As mentioned above, compared with action space noise,
parameter space noise can improve the robustness of the model
in complex scenes and can improve the exploration ability
by generating richer behaviors.As shown in Fig 3, tracking
models with noises can perform better than non-noise tracking
models. Specifically, parameter space noise achieves more
accurate tracking results than action space noise, indicating
that the parameter space noise can improve the exploration
ability of the model and the tracking robustness. Hence, we
introduce a noise layer with the noise parameters into the
DDPG network structure. By transforming the linear layer into
a linear noise layer, we replace the action space noise with
parameter space noise.The parameterized action-value function
Q(x,a,€|¢) or Q(x,a,€|¢) can be considered as a random
variable, which is used to calculate the model loss:

L(¢)=E []E(x,a,r,y)ND Q. a, €l¢) = 7 = ymazQ, o, e’\C*)]z] ., (10)

where the external expectation is the distribution of the
noise variable e with respect to the noise value function
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Q(x,a,€e|¢) and noise variable ¢ for a noisy target value
function Q(y, b, €'|¢ ). Calculating the unbiased estimation of
the loss is straightforward. For each transition in the replay
buffer, we only need to calculate one instance of the target
network and one instance of online network. We generate
these independent noises to avoid deviations. Regarding the
choice of action, another independent sample is generated for
the online network [19].

C. Adaptive UCB-based Online Model Update Strategy

During the tracking process, the vehicle may change dra-
matically in complex scenes, such as deformation, occlusion,
or blur. Thus, the model needs to be updated during the
tracking process to deal with the changes of the current
target.The traditional fixed update methods face difficulty in
improving the validity of the model update in complex scenes
and miss the target. Thus, an efficient model update strategy
is critical to improve the robustness of the model in complex
scenes.To address this problem, an adaptive model update
strategy is designed based on the UCB, which uses online
and target networks by considering the temporal information to
adaptively update the model. For the proposed update strategy,
we define four update policies as follows:

Non-update: The vehicle remains unchanged in the current
scene, and the model can represent the vehicle well without an
update, which can save time and improve the tracking speed.

Online update: A vehicle with minor changes can be rep-
resented by the model which needs to be updated to adapt to
the vehicle in future frames. Only the parameters of the online
network are used to update the model.

Online-target update: The vehicle undergoes dramatic
changes in the current scene, and the model cannot represent
the vehicle well. Thus, a single model update may miss the
vehicle. Hence, an online model and a target model are used
to update the model for adapting to the vehicle.

Relocation: The vehicle is out of view or occluded and
cannot be tracked in the current searching area.We use an
effective relocation algorithm to relocate the vehicle.

Compared with other update strategies based only on the
model output, we innovatively introduce temporal information
into the model update, which can improve the robustness of
the model in complex scenes.

The UCB method can consider the temporal information by
adding terms to the original update value (), and decide the
model update strategy. The function is designed as follows:

Int
Ni(a)’

UCB(v,) = Qq + ¢ (11)
where a indicates each update action, (), is the original value
of a given by the model, c is a fixed weight parameter to
balance the temporal information and the model’s output,
and N:(a) indicates the times this update action occurs in
the previous ¢ frames. The information is stored in a unified
manner for model selection decisions.

The process of the adaptive UCB-based online model update
strategy is shown in Algorithm 1.

Algorithm 1 Adaptive UCB-based online model update strat-
egy.

Input: The original update value Q,, UCB strategy interval
t, UCB weight parameter c;

Output: Selected update strategy M

1: Obtain the number of four model update actions N;(a;)
(i=1,2,3,4) from memory during ¢ period;
a; = Non-update;
as = Online update;
a3 = Online-target update;
a4 = Relocation;
2: 1=1;
3. repeat

4:  Calculate c\/m ;
5: UCB(va;) = Qa; + CM;

6: 1=1+1;

7: until Obtain all four model update action UCB values
UCB(vg,) (i=1,2,3,4);

8: Select the model update action with the maximum
UCB(v,,) as the current model update strategy M.

9: Update the model using the M model update strategy.

10: Update the memory with the model update strategy M.

By introducing the temporal information, the model chooses
the update action based on both the current model’s result and
the temporal information generated by the model during the
tracking process.Compared with the traditional model update
method, the proposed update strategy increases the update
actions and improves the robustness and real-time performance
of the model in complex scenes.

D. Incremental Learning-based Relocation Algorithm

The lost of the vehicle tracking in complex scenes may be
classified into two cases: 1) the vehicle is in the image, but
out of the search area, and 2) the vehicle is out of the image.
If the tracker cannot distinguish the two types of lost, it will
cause the model to update with false samples, the target lost,
or even sinking into an infinite loop.

To address this issue, we propose an effective incremental
learning based relocation algorithm. It can effectively distin-
guish and relocate the above failure situations, and further im-
prove the robustness of the model in a complex environment.

The proposed relocation algorithm can efficiently achieve
local to global target relocation based on the target position,
scale, and number of detection. Because the position and scale
of the target are uncertain, the changes in the four dimensions,
namely, top, down, left, and right, are different. First, we
need to calculate the vertical variation Ahy, and Ahgown,
as well as the horizontal variation Awjey; and Aw,.igp, in the
current frame based on the target position, scale, and number
of detection D.

Taking the height changes as an example, hy, = y; —
%hi, hdown = H—(y;— %hl), the values of Ah,, and Ahgoywn
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Algorithm 2 Incremental learning-based relocation algorithm.
Input: The target position of the previous frame
P._1(z,y,w,h), the image size (W, H), the search time D,
the current search time d = 0;
Output: Relocation location P;(z,y,w, h);

1: Obtain changes of scale in four directions: Awjeyy,
Afwm'ght, Ahup, Ahdown N
2: repeat
3:  Expand the search area according to changes in scale;
4:  Detect the target in the expanded search area and obtain
a detection score;

5 if The detection score > 0.7 then

6: Pt(x7yuw7h) = Prelocation(xuy7w7h);

7: Jump to 20;

8 end if

9:  if The detection score > 0.3 then

10: Pa(z,y,w,h)(d=1,2,..., D) = Prejocation(z,y, w, h);
11: d=d+1;

12:  else

13: The current scale search fails, d = d + 1;
14:  end if

15: until d = D;

16: if P, = @ then

17 Pi(x,y,w,h) = P_q(z,y,w, h);

18: else

19:  Choose Py(z,y,w,h) with the maximum detection
score as Pi(x,y,w, h);

20: end if

can be calculated as follows:

h 1
Ahy, = . wp —,
P hup + hdown i D (12)
Ahy — _ hdown % 1
own hup + hdown D7

where Ahy;, and Ahgey,, mean the update range for the top
and bottom coordinates respectively. The relocation process
will then use four directions as the update range to expand
the search area until completing the relocation.

The incremental learning based relocation algorithm is
shown in Algorithm 2.

Through the relocation algorithm, when the detection score
is greater than 0.7 or the global-image detection has been
completed, the tracking bounding box with the highest score is
chosen for the result. If the highest score is still less than 0.3,
the target is considered to be lost, and the previous frame result
is assigned as the current frame prediction position. Then, the
process continues the next frame tracking. The relocation can
be performed efficiently when the target is lost. The search
efficiency and speed are improved.

V. IMPLEMENTATION
We use ILSVRC (ImageNet Large Scale Visual Recognition
Challenge) dataset [39] to pretrain NoisyOTNet for 250,000 it-
erations, which consists of 768 video sequences with bounding
boxes. Specifically,NoisyOTNet has five convolutional layers

and two fully connected layers, and the last fully connected
layer is the noisy layer. Independent Gaussian noise is used
for the noise generation. The noise of each weight and bias are
independent, and both e;fj of the random matrix ¢“, and e? of
the random matrix €®, are drawn from a Gaussian distribution.
For noise generation, we set 1 and o as follows.Each ele-
ment (; ; is generated from independent uniform distributions
u[— %, %], where p is the number of linear layer inputs,
and o, ; is empirically set to 0.017 for all parameters [19],
[40].

For online tracking, we set the update frequency for short
and long term tracking of the Critic network to 10 and 100
respectively, using the last 10 and 30 frames to draw samples
for the model update. In our experiment, 250 positive samples
and 2,500 negative samples are generated around the ground
truth in the first frame to initialize the tracking model. We
generate 256 samples for the relocation process. The maximum
number of steps for one frame is set to five, and the online
model can adaptively decide how many steps for one frame
should be applied based on the tracking results. The online

tracking pipeline is shown in Algorithm 3.

Algorithm 3 NoisyOTNet pipeline for online tracking.

Input: Initial target position P, and image;
Output: Estimated target position P, = (z¢, yt, we, he);

1: Generate samples in the first frame to update a noisy
network;

2: repeat

3 Extract features from (x;—1,y:—1);

4:  repeat

5: Apply the Actor network to give the predicted posi-
tion using single or multi-step tracking;

6: Apply the Critic network with the position and fea-
tures to obtain the score;

7: if relocation then

8: Use the relocation model to find a position with a

higher score around the bounding box;
9: end if
10:  until End of the current frame tracking;
11:  Update the model using the predicted position
P, = (x4, yt, we, hy) with the adaptive update strategy;
: until End of video sequence.

N}

VI. EXPERIMENTS

The proposed vehicle tracking model is implemented by
using the Pytorch toolkit. We use a computer with 3.4 GHz
7700k CPU, 11 GB GTX1080Ti graphics card, and 32 GB
of memory to train and test the vehicle tracking model. The
proposed model can achieve a frame rate of 41 FPS during
online tracking on average, which meets the requirement of
real-time vehicle tracking.

We adopt both precision and success plots to evaluate the
performance of the trackers. Precision is defined based on the
distance between the predicted location and the ground truth
as: dist = \/(Gy — Py)? + (G, — P,)2. If the distance is
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Video challenging attributes on UAV123. Each video may have more than one challenging attribute.

Video challenging attribute

Description

Aspect ratio change (ARC)

The fraction of the ground truth aspect ratio in the first frame

and at least one subsequent frame is outside the range [0.5, 2].

Background clutter (BC)

The background near the target has a similar appearance as the target.

Camera motion (CM)

Abrupt motion of the camera.

Fast motion (FM)

The motion of the ground truth bounding box is larger than

20 pixels between two consecutive frames.

Full occlusion (FOC)

The target is fully occluded.

Illumination variation (IV)

The illumination of the target changes significantly.

Low resolution (LR)

At least one ground truth bounding box has less than 400 pixels.

Out of view (OV)

Some portion of the target leaves the view.

Partial occlusion (POC)

The target is partially occluded.

Similar target (SOB)

There are targets of a similar shape or same type near the target.

Scale variation (SV)

The ratio of the initial and at least one subsequent bounding box.

Viewpoint change (VC)

Viewpoint affects target appearance significantly.

TABLE II: Evaluation results of trackers on UAV123. The proposed NoisyOTNet achieves comparable results with state-of-the-art trackers.

The best results are given in bold.

Tracker NoisyOTNet ECO ARCF | AutoTrack | ADNet ACT MIMRT TSD KAOT
Precision 0.762 0.741 0.666 0.671 0.720 0.692 0.726 0.659 0.686
AUC 0.525 0.525 0.506 0.473 0.510 0.496 0.484 0.464 0.479
FPS 41 8 15 60 8 35 5 42 15
Real-time Y N N Y N Y N Y N
Deep Learning Y Y Y Y Y Y Y Y Y
Programming
Python Matlab | Python Python Matlab | Python | Python | Python | Python
Language

smaller than a predefined threshold, the tracking in the frame
is considered to be precise. Thus precision is defined as the
percentage of the number of frames in which the distance is
smaller than the threshold and the total frame number. Success
rate is calculated by the IoU score. The IoU can be defined as:
IOU(GT,PB) = (GTNPB)/(GT U PB). If the IoU value
is larger than a predefined threshold in one frame, the tracking
in that frame is taken as successful. Success rate is defined as
the percentage of the number of successful frames and the
total frame number. Commonly, the precision threshold is set
as 20 pixels and the success rate threshold is set as 0.5. In
addition, the Area Under the Curve (AUC) of the success plot
is also used as another metric.

A. Evaluation on UAVI23

UAV123 [41] is an unmanned aerial vehicle (UAV) tracking
dataset as a widely used benchmark in the field of vehicle
tracking. It contains 123 fully annotated HD video sequence
data captured from a low-altitude aerial perspective, including
115 videos clips captured by a drone camera and 8 video
sequences rendered by a UAV simulator. To refine the tracking
scene, all video sequences are refined according to 12 common
challenging attributes, as shown in Table I. The trackers are
evaluated in terms of tracking accuracy and run-time.

As shown in Table II,we conducted comparison with eight
state-of-the-art trackers (ECO [7], ARCF [42], AutoTrack [43],
ADNet [12], ACT [13], MIMRT [44], TSD [45], KAOT [46] ).
NoisyOTNet achieves better performance in terms of both the

TABLE III: Ablation study of different components on UAV123. The
best results are shown in bold.

Noisy | UCB | IR | Precision | Success
71.1% 47.6%

v 74.6% 51.2%
Vv 73.4% 50.1%

Vv 72.8% 49.3%

V4 v 75.7% 51.9%
Va VA 75.1% 51.7%
v Vv 74.2% 50.8%

Vv Vv Vv 76.2% 52.5%

precision and AUC plots. The precision rate of NoisyOTNet is
76.2% and 2.1% higher than the performance of the second-
best tracker ECO. The success rate of NoisyOTNet and ECO
are both 52.5%, outperforming the other trackers, and Noisy-
OTNet tracks at 41 FPS, while ECO runs at 8 FPS. UAV123
contains many small targets which are hard to track in low-
resolution videos. NoisyOTNet performs well on small targets,
as shown in Section VI-E. The experiment results demonstrate
that the proposed method can achieve efficient and real-time
tracking in complex scenes.

B. Ablation Study of Different Components

To demonstrate the impact of the components in Noisy-
OTNet, we applied three variants of our tracker by integrat-
ing a network with different types of update and relocation
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strategies and evaluated them on the UAV123 dataset. The
baseline model is a model without “Noisy,” “UCB,” or “IR”
components. These three variants are as follows: 1) “Noisy”
is a baseline model that contains a parameter space noise
network; 2) “UCB” is the baseline model guided by the
adaptive UCB-based online update strategy, which contains
four policies, namely, non-update, online update, online-target
update, and relocation; and 3) “IR” is the baseline model with
a relocation algorithm based on incremental learning. We test
the three components separately to verify their effectiveness
respectively. Table III shows the precision and success plots
of these variations on the UAV123 dataset.

1) Parameter Space Noise: From Table III, we can see
that compared with the base model the “Noisy” component
significantly improves the precision and success rate by 3.5%
and 3.6%, respectively. The reason for this improvement is
the fact that the baseline model uses random action space
noise to enhance the model exploration capabilities. When
the target changes drastically in complex scenes, the model
cannot smoothly adapt to the change of the target. Compared
with action space noise, parameter space noise consists of two
parts, a parameter ; and noise €, and can update based on
the current tracking result. While enhancing the exploration
capability of the model, it can also maintain a stable update
and adapt to the target in complex scenes, such as background
clutter, scale variation, and partial occlusion.

2) Adaptive UCB-based online model update strategy:
Compared with the baseline model, the UCB variants are
2.3% and 2.5% higher in terms of the precision and success
rate, respectively. The baseline model uses a fixed update
strategy, which cannot be adaptively adjusted according to
target changes. The UCB uses an adaptive update based on
the scene and target changes to improve the efficiency. We
also designed four model update policies: non-update, online
update, online-target update, and relocation. Different update
policies are selected according to the UCB result, which
considers both the current tracking result and spatial-temporal
information during tracking. The results indicate that it can
improve the efficiency of the model update as well as the
accuracy of the tracking in complex scenes.

3) Incremental learning-based relocation algorithm: The
baseline model does not have relocation algorithm, and when
partial occlusion, complete occlusion, or out of view occurs,
it may lose the target, and result in tracking failure. We con-
ducted local-to-global relocation instead of a simple global-
image relocation, which considers the target motion, size, and
background size. Through an effective relocation, the model
can judge the case of the current lost target and choose the
optimal relocation result as the current target tracking position.
As shown in Table III, the “IR” component can effectively
improve both the precision and success rates by 1.7% based
on the baseline model.

4) NoisyOTNet: “Noisy+UCB” enables the adaptive UCB-
based online update strategy to update the model based on
the environment and target changes, which can effectively
reduce the risk of drift. It outperforms “Noisy” by 1.1% on
the precision plot and 0.7% on the success plot. Moreover,
“Noisy+UCB+IR” combines all optimizations of NoisyOTNet,

TABLE IV: Impact of different IoU thresholds on tracking perfor-
mance of the proposed method on the OTB-2015 dataset. The best
results are highlighted in bold.

IoU 0.5 0.6 0.7 0.8 0.9
Precision | 0.811 | 0.837 | 0.902 | 0.871 | 0.791
AUC 0.575 | 0.603 | 0.672 | 0.636 | 0.553

based on “Noisy+UCB”. NoisyOTNet adopts an incremental
learning based relocation algorithm instead of the simple relo-
cation algorithm. Our strategy can relocate the missing target
more efficiently and achieve 1.2% and 0.6% performance gains
in terms of the precision over the “Noisy” and "Noisy+UCB”
on a precision plot, respectively.

5) loU Thresholds: In order to further analyze the impact of
different parameters of IoU on tracking performance, we set
different IoU thresholds. We validated them on the OTB-2015
dataset, and the experimental results are shown in the Table IV.
If the threshold is too small, some of the negative samples may
be turned into positive, which cannot effectively distinguish
the target from the background when the background is similar
to the target, resulting in tracking failure. If the threshold is
too large, the number of positive samples will be reduced, en-
larging the imbalance between positive and negative samples,
which may reduce the model’s accuracy. Therefore, we use the
threshold of 0.7, which allows the proposed method to achieve
better tracking performance.

C. Evaluation on OTB

In order to show the robustness of the proposed method,
we conduct the experiment on OTB dataset by using the same
hyperparameter settings as the UAV123 dataset. OTB [47],
[48] includes 100 video sequences and is widely used in the
object tracking field. It is subdivided into OTB-2013 and OTB-
2015 with 51 and 100 tracking sequences, respectively. Same
with the UAV123 experiments, precision and AUC rates are
used to evaluate the performance of trackers. We use precision-
13 and AUC-13 for OTB-2013 dataset, and precision-15 and
AUC-15 for OTB-2015 dataset to evaluate the accuracy. The
comparison results with 11 state-of-the-art trackers (ADNet
[12], ACT [13], HP [16], DRL-IS [17], EAST [36], UCT [32],
CREST [25], SiamDW [28], SiamRPN++ [10], C-RPN [11],
and RASNet [33]) are shown in Table V.

From Table V we can observe that NoisyOTNet performs
better than reinforcement learning-based trackers including
ADNet, HP, DRL-IS, EAST, and ACT on both benchmark
datasets. ADNet and ACT use action space noise to increase
the exploration ability of the model. HP uses deep Q-Learning
to enhance the exploration, and DRL-IS designs an update
module to increase the exploration ability of the model.
Compared with ADNet that achieves 89.6% and 88.0% on
precision-13 and precision-15, NoisyOTNet performs 2.9%
and 2.2% higher than ADNet, and 3 times faster than AD-
Net. ACT is a real-time RL-based tracker, NoisyOTNet per-
forms 4.1% and 4.3% higher than ACT on precision-13 and
precision-15, respectively. The results show that the proposed
method performs competitively against the state-of-the-art RL-
based methods.
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TABLE V: Evaluation results of trackers on OTB. The best and second best results are denoted in bold and underline, respectively.

Ours | UCT | CREST | SiamDW | SiamRPN++ | C-RPN | RASNet HP DRL-IS | ADNet | ACT | EAST

Precision-13 | 0.925 | 0.904 0.908 0.88 0.918 0.897 0.892 0.841 0.923 0.896 | 0.884 | 0.851
AUC-13 0.685 | 0.641 0.673 0.666 0.68 0.675 0.67 0.629 0.682 0.672 | 0.667 | 0.638
Precision-15 | 0.902 | 0.849 0.837 0.854 0.903 0.871 0.857 0.796 0.901 0.88 0.859 | 0.813

AUC-15 0.672 | 0.611 0.623 0.64 0.67 0.663 0.642 0.601 0.671 0.668 0.648 | 0.612
Real-Time 45 41 10 35 35 32 83 6.9 10.2 8 35 159
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Fig. 4: AUC scores of different attributes: aspect ratio change (ARC), camera motion (CM), out of view (OV), scale variation (SV), background
clutter (BC), fast motion (FM), partial occlusion (POC), and viewpoint change (VC).

TABLE VI: The real-time performance of the proposed method on
the UAV123 and OTB-2015 datasets.

Dataset UAV123 | OTB-2015
A Tracki
verage Tracking Speed 41 45
(Frame Per Second, FPS)

In order to further analyze the real-time performance of
the proposed method, seven real-time trackers mentioned in
Section II are employed for comparison on OTB dataset,
and the results are shown in Table V. It can be found that
the proposed method achieves the real-time performance with
speed 45 FPS, which is faster than most competing trackers
and only some slower than RASNet and EAST. Thus it shows
that our method achieves higher accuracy while the model
maintains competitive real-time performance compared to the
state-of-the-art trackers.

In addition, we also discuss the influence of different ex-
ploration strategies. In Table V, HP [16] is a Q-learning-based
approach to learn hyperparameters to improve the exploration
capability of the model. ADNet [12] is a policy-based method
that uses stochastic strategy to enhance the exploration capabil-
ity. EAST is implemented based on DQN to achieve efficient
exploration of the model. ACT [13] expands the exploration
capability by adding action noise. DRL-IS [17] follows the
Actor-Citric framework and designs different update strategies
to expand the search space of the model. The results show that

the proposed method with parameter noise can outperforms the
RL-based trackers with other exploration strategies on these
two datasets.

To analyze the proposed method’s real-time performance,
we have added the tracking speed experiments on the UAV123
and OTB-2015 datasets, as shown in Table VI. The results
show that the proposed method achieves the 41 FPS and 45
FPS, respectively in these two datasets and can meet the real-
time requirement.

D. Quantitative Analysis

We conducted a comparison with 11 state-of-the-art track-
ers (SRDCF, SAMF, MUSTER [50], DSST, Struck [51],
DCF [49], KCF [6], CSK [52], TLD [53]), and the results
are shown in Fig. 4.

Fig. 4 shows the AUC of the different trackers for eight
challenging attributes in UAV123. The results show that the
NoisyOTNet method performs well on all of these challenging
attributes.

For camera motion and viewpoint changes, we achieved
the highest score among the state-of-the-art trackers, 6.7%
and 6.3% higher than the second-best tracker SRDCEF, re-
spectively. Because the parameter space noise introduced is
reproducible, it can improve the model’s ability to explore
while enhancing the robustness of the model in complex
scenes. The experimental results of the aspect ratio changes
and background clutter demonstrate that our proposed model
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Fig. 5: Qualitative evaluation of the proposed NoisyOTNet, SRDCF, KCF, ADNet, and ECO on seven challenging sequences, Car6, Car7,

Car4, Carl3, Carl7, Truckl, and Uav2.

performs better than the other state-of-the-art trackers. For the
RL-based trackers, the model can apply the original knowledge
into a new environment and adapt the model to the current
tracking target.

Furthermore, SRDCF and Struck use a fixed update strategy,
and when the target changes drastically under occlusions and
fast movements, the updated model cannot represent the target
well. Compared with these approaches, the adaptive update
strategy can improve the robustness of the updated model. The
updated model can track the target after such drastic changes,
and achieves better performance on partial occlusions and fast
motions. For out-of-view attribute, NoisyOTNet benefits from
the relocation algorithm and achieves a rate of 42.5% on the
success plot, and can judge whether the target is lost when
it moves out of image quickly without significant calculation

overhead.

The experimental results demonstrate that the proposed ve-
hicle tracker can accurately track the vehicle target in complex
scenes under occlusions, out of view, and deformations, and
has better robustness than the other state-of-the-art trackers
used in the experiment.

E. Qualitative Evaluation

Fig. 5 shows the tracking results of several top tracking
methods including MDNet, KCF, ADNet, CF2, and our pro-
posed method on seven challenging sequences. These chal-
lenges include scale changes, occlusions, viewpoint changes,
small targets, deformations, and low resolution. We evaluate
the robustness of our proposed model based on the experimen-
tal results on these video sequences.
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In sequence Car6, the scale of the vehicle has changed sig-
nificantly, and ECO and NoisyOTNet can cope with the scale
change of the current vehicle well. ADNet is sensitive to the
changes of the target because the action space noise is based on
the predictions. When the target scale changes significantlyit
will be less robustness to scale changes. In sequence Car7,
the vehicle completely occludes twice in complex scenes,
and KCF, ADNet, and SRDCF lose the target after the first
occlusion; ECO loses the target after the second occlusion; and
NoisyOTNet can still maintain the correct positioning of the
target after two occlusions because when the target is occluded
or lost, the relocation algorithm allows our tracker to quickly
and accurately relocate the target when it reappears.

In sequence Car4, the target scale and background change
drastically, and KCF and SRDCF completely lose the target,
whereas the other trackers can still track the target.They use
deep features with stronger discriminative ability for represen-
tation, improving the tracking robustness in complex scenes.
In the sequences of Truckl and Carl7, the vehicle is deformed
and flipped. In the case of deformation, the other trackers
lose the target during tracking based on a fixed and single
update strategy. NoisyOTNet can effectively track the target
in complex scenes by updating the model with the adaptive
update strategy. The targets in Uav7 and Carl3 are small
with low resolution. These small targets also suffer from an
uncertain motion trajectory and full occlusions. As shown
in Fig. 5, SRDCF and ADNet gradually lose their targets
during the tracking process, whereas ECO loses the target
when it becomes extremely small. The experimental results
indicate that the proposed tracker can track small targets in
low-resolution scenes.

Through the above qualitative analysis, we can see that in
complex scenes, such as scale changes, occlusions, complex
background, small targets, and low resolution, our proposed
model can achieve robust tracking. Meanwhile, compared with
ECO and ADNet, which perform at 8 FPS, our model can run
at 41 FPS on UAV123 and meet the real-time vehicle tracking
requirement.

VII. CONCLUSIONS

In this paper, we propose a novel real-time vehicle tracking
model NoisyOTNet, which enables accurate vehicle tracking
in complex scenes. The parameter space noise introduced into
the proposed model is different from action space noise used
by existing RL models. The parameter space noise consists
of parameters and noise and can improve the robustness and
exploration capabilities of the model in complex scenes. Fur-
thermore, the adaptive online update strategy learns the spatial-
temporal information and select the optimal update policy to
quickly and accurately update the model. The updated model
can accurately represent the target after dramatic changes in
complex scenes. A relocation algorithm based on incremental
learning is also proposed to relocate lost target in complex
scenes. Finally, the experimental results on UAV123 and OTB
datasets verify that NoisyOTNet can effectively conduct real-
time tracking in complex scenes and achieve competitive
results compared with other state-of-the-art RL. methods. The

12

current model can also be further optimized. As future work,
we will introduce an adaptive relocation method, and upgrade
the current network structure with better deep learning model
to further improve the robustness and speed of the proposed
model.
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