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Abstract—With the rapid development of intelligent trans-1

portation, automated traffic surveillance is considered as an2

important component. In the field of traffic surveillance, it is3

particularly important to achieve robust and real-time tracking4

of vehicles in complex scenes. In this paper, a robust real-time5

vehicle tracking model named NoisyOTNet is proposed, which for-6

mulates tracking as reinforcement learning with parameter space7

noise. In this formulation, the exploration ability of the model is8

enhanced to improve the robustness of tracking. Specifically, we9

develop a new implementation for noisy network based on deep10

deterministic policy gradients (DDPGs) with parameter noise,11

which can better cope with the tracking task and directly predict12

the tracking result. To improve the tracking accuracy in complex13

conditions, e.g. fast motion and large deformation, this paper14

presents an adaptive update strategy that can exploit the vehicle15

spatial-temporal information based on Upper Confidence Bound16

(UCB) algorithm by exploiting. Moreover, as for the recovery17

of the lost target, a relocation algorithm based on incremental18

learning is developed. The results of extensive experiments19

demonstrate that the proposed NoisyOTNet can effectively track20

vehicles in complex scenes and achieve competitive performance21

compared to the state-of-the-art methods.22

Index Terms—Traffic surveillance, vehicle tracking, deep rein-23

forcement learning, parameter space noise.24

I. INTRODUCTION25

AUTOMATED traffic surveillance [1] is critical to intel-26

ligent transportation systems, which consist of multiple27

sub-tasks, such as detection, tracking, and recognition [2]–28

[5]. As a fundamental task of vehicle surveillance, an effec-29

tive vehicle tracking algorithm can provide accurate vehicle30

position and tracking information for subsequent high-level31

semantic tasks. A vehicle tracking model consists of three32

components: an appearance module, a tracking module, and an33

update module [6], [7]. The appearance module is designed to34

represent the target by features. It is initialized at the beginning35

of tracking and is updated in the following frames according36

to different update strategies. The tracking module is used37

to locate the vehicle based on the appearance module. The38

update module updates the model based on changes of the39

target. The tracking process is to track the target with the40

above modules and output the target’s position in each frame.41

A robust tracker can still achieve high accuracy in uncertain42
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and complex scenes. Generally, precision and success rate are 43

two metrics used to measure the robustness. 44
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Fig. 1: Action space noise (a) and parameter space noise (b).

Existing vehicle tracking methods are mainly divided into 45

correlation filter-based [6], [8], [9], deep learning-based [10], 46

[11], and reinforcement learning (RL)-based [12], [13]. Cor- 47

relation filter-based methods use correlation filter to learn the 48

target features. During the tracking process, the candidate 49

position with the maximum corresponding score is chosen as 50

the prediction target position in the current frame. Owing to 51

handcrafted features (e.g., Gray, Histogram of Oriented Gra- 52

dient, and Color Names) and an efficient feature calculation in 53

Fourier domain, correlation filter-based methods can perform 54

real-time tracking. However, the representation ability of hand- 55

crafted features limits the tracking accuracy and robustness. 56

With the rapid development of deep learning, deep features 57

and deep network models are being introduced into tracking to 58

improve the accuracy. Compared with the handcrafted features, 59

deep features have better discriminative ability between the 60

target and background. To accurately distinguish the target, 61

complex deep models and massive feature calculations are 62

demanded, which cannot meet the real-time requirements of 63

vehicle tracking. 64

For RL-based methods, the tracking process is described as 65

an evaluation function to provide the optimal action based 66

on the current state. Different from correlation filter-based 67

and deep learning-based methods which are static learning 68

approaches [14], [15], RL is a trial-and-error process and 69

belongs to dynamic learning, which seems more suitable for 70

the vehicle tracking problem [16], [17]. However, existing RL- 71

based trackers still have some issues. Compared with other 72
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tracking targets, vehicles have specific characteristics such1

as fast speed and small deformation. Thus, they face the2

challenges of fast movement, occlusion, blur, and lighting3

changes in complex environments. The state-space dimension4

is much higher in vehicle tracking compared to the traditional5

reinforcement learning control tasks. For example, in the task6

of ‘pendulum swing-up,’ a vector with three coefficients is7

sufficient to represent the state space [16]. In vehicle tracking,8

the state vector’s dimensionality may easily reach hundreds9

or thousands to allow the extracted deep features to represent10

video frames accurately [18]. Therefore, RL-based trackers11

are sensitive to random noise added to the action. For the12

vehicle tracking problem, the tracking model may lose the13

target under fast motion and occlusion due to random action14

noise. Since random action space noise directly affects the15

tracking results, the model may fluctuate dramatically and lose16

the vehicle targets, especially in complex environments.17

As shown in Fig.1(a),The red point means random noise18

added to action and the blue points mean normal network19

parameters. The noise is random added to the output of20

network and most existing RL-based methods use action space21

noise to enhance the exploration ability of the model [19], [20].22

However, the action space noise is random and cannot learn23

from current frame, which limits the robustness of the model.24

Moreover, most existing RL-based trackers use simple model25

update strategies or relocation algorithms, which will limit the26

robustness of the model in complex scenes, such as occlusion,27

blur, or deformation.28

In this paper, a novel real-time robust vehicle tracking model29

called “NoisyOTNet” is proposed. Different from existing RL-30

based vehicle tracking models using action space noise, our31

proposed NoisyOTNet introduces noise into the parameter32

space to increase the exploration ability inspired by [19], [20],33

as shown in Fig.1 (b), different existing RL-based tracking34

method, the noise is added to the parameter of network.35

Parameter space noise consists of two parts: a set of vectors36

of parameters, and a set of zero mean noise vectors generated37

by Gaussian distribution. In our method, the generated noise38

is added to the parameters of the fully connected layer, and39

the noisy parameters are updated during the tracking process.40

Furthermore, to enhance the robustness of the proposed Noisy-41

OTNet model in complex scenes, an adaptive update strategy42

based on the UCB algorithm is proposed. It can adaptively43

update NoisyOTNet using the spatial-temporal information of44

the vehicle. Finally, an incremental learning-based relocation45

algorithm is designed to relocate a missing vehicle. The search46

area is adaptively scaled according to the size of the vehicle47

and background area to speed up the relocation process.48

In this paper, we propose a novel real-time vehicle tracking49

model based on RL for traffic surveillance systems. The main50

contributions are as follows:51

• A novel robust real-time vehicle tracking model, Noisy-52

OTNet, is proposed, where parameter space noise is intro-53

duced. By formulating tracking as reinforcement learning54

with parameter space noise, the exploration ability of the55

model is improved.56

• A new implementation for NoisyOTNet based on DDPGs57

with parameter noise is developed, which can better cope58

with the tracking task and directly predict the tracking 59

result. 60

• An adaptive update strategy based on the UCB algorithm 61

is proposed, which fully exploits the spatial-temporal in- 62

formation of the vehicle to adaptively update the tracking 63

model. 64

• The proposed method is evaluated on the two popular 65

tracking datasets UAV123 and OTB, and the results 66

indicate that NoisyOTNet achieves good tracking perfor- 67

mance. 68

The remainder of this paper is arranged as follows. We 69

review the related studies in Section II. Section III describes 70

the vehicle tracking problem based on RL, and Section IV 71

expands the proposed vehicle tracking model, NoisyOTNet. 72

Section V introduces the implementation of the model in 73

training and online tracking. The experimental results are 74

reported in Section VI. Finally, conclusions are drawn in 75

Section VII. 76

II. RELATED WORKS 77

As a fundamental problem of traffic surveillance, numer- 78

ous classic methods have been applied to vehicle tracking, 79

including frame difference method, Gaussian mixture model, 80

optical flow method, and correlation filter. With the great 81

evolution of computing power, deep learning has accelerated 82

the development of computer vision. In the following, we 83

mainly review three types of deep learning methods: CNN- 84

based methods, Siamese network-based methods, and deep 85

reinforcement learning-based methods. 86

A. CNN-based Methods 87

CNN-based methods use deep features and deep networks 88

to improve model performance. Deep features contain spatial 89

information as well as rich semantic information. Compared 90

with traditional feature representation, CNN-based methods 91

achieve better representation and recognition ability. Fang et 92

al. [21] designed a part-based AdaBoost tracking framework 93

with weight relaxation factor to balance the sample weights. 94

Hong et al. [22] introduced a deep convolutional network into 95

tracking to improve the discriminative ability. Gao et al. [23] 96

introduced an update-pacing framework with an ensemble of 97

trackers to choose the most robust tracker for the remaining 98

tracking. MDNet [24] is a multi-domain method to learn both 99

common and specific domain features to represent a target, 100

however, it suffers from an over-fitting problem owing to 101

the huge size of the network. Song et al. [25] integrated 102

Discriminative Correlation Filter (DCF) process into neural 103

networks for end-to-end training, which combines correlation 104

filters with CNNs to improve the tracking performance. Yuan 105

et al. [26] defined the traffic force in tracking environment 106

to describe the group behavior and handle complex interac- 107

tions among vehicles. Bhat et al. [27] analyzed the comple- 108

mentary properties of deep and shallow features to improve 109

the robustness of the model. As for the above CNN-based 110

methods, some focus on achieving high tracking accuracy by 111

designing complex network architectures [24], while the others 112

pay attention to realizing real-time trackers by reducing the 113
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complexity of the model [25]. Compared with those previous1

works, we proposed an object tracking framework based on2

deep reinforcement learning, which can learn the pattern of3

object motion while tracking the target and improve tracking4

accuracy.5

B. Siamese Network-based Methods6

In recent years, Siamese networks [10], [11], [28], [29] have7

shown significant potential in tracking accuracy and speed, it8

accelerates the calculation process by sharing network weights.9

Tao et al. [15] introduced a Siamese network into tracking10

and compared the similarity between the search area and11

the template without model update to speed up the tracking12

process, which may lead to reduced tracking accuracy. Shan et13

al. [30] introduced multi-RPNs into the Siamese network and14

used FPN structure to build a detection subnetwork. Guo et15

al. [31] used an adaptive strategy to adapt to current target16

changes and increase the accuracy; however, the network17

structure in this method is shallow and has only a fewer layers,18

which may be not sufficient for tracking in the conditions of19

fast motion and occlusion. Zhu et al. [32] added a distractor-20

aware mechanism to improve the region proposal network-21

based tracker and increase its robustness and speed. However,22

the target variation feature in the tracking process was not23

utilized for model update, which reduced the accuracy of the24

model. Wang et al. [33] combined image segmentation with25

tracking to obtain a closer non-horizontal rectangular tracking26

bounding box to the real target, which further improves the27

accuracy of the model. Siamese networks prefer to speed up28

tracking by reducing update times. Therefore, an effective29

model update strategy is very important to identify a target30

and decrease the update overhead. To handle this issue, an31

adaptive model update strategy is designed based on the object32

changes and improves the model’s discriminative ability.33

C. Deep Reinforcement Learning-based Methods34

Deep RL has been introduced in vehicle tracking with the35

development of deep learning in computer vision. In deep36

RL, the agent interacts with the environment and obtains37

the rewards constantly, and then the model is trained by38

maximizing the cumulative future rewards. Recently, there are39

some methods try to exploit the RL technique for vehicle40

tracking [12], [17], [34], [35]. Dong et al. [16] designed a41

continuous deep Q-learning model to track the target and used42

a regression method to solve the tracking problem. Yun et43

al. [12] applied a policy-based method to build the appearance44

model and classification model for target tracking. Huang45

et al. [36] analyzed the relationship between the network46

depth and prediction accuracy and designed a mechanism to47

adaptively adjust the depth of the computation to reduce the48

computational overhead. Supancic et al. [34] treated the target49

tracking process as a partially observable decision-making50

process and only updated the model when tracking drift51

occurs. This approach used an unlimited stream of Internet52

videos as the training samples. Liu et al. [37] utilized deep53

policy functions to determine the best action of the present54

state from a set of jump actions and learn the optimal policies.55

Chen et al. [13] introduced the Actor-Critic model and used 56

networks for prediction and evaluation, however, only the 57

action space noise and a simple relocation algorithm were 58

used, which limited the robustness of the model. Ren et al. 59

[17] used an iterative shift method and defined a new target 60

evaluation mechanism to further distinguish the target and 61

background. However, the robustness of the model was limited 62

by the few training samples. For a non-real-time RL tracker, a 63

better network architecture is necessary for high-speed robust 64

tracking performance [12], [17], [38]. To tackle this issue, a 65

parameter space noise is designed based on the current target, 66

making the model jump out of locally optimal solutions and 67

improving its robustness. 68

III. FRAMEWORK 69

In this paper, we propose a novel real-time vehicle track- 70

ing model, NoisyOTNet, based on deep RL.The proposed 71

model introduces parameter space noise into RL for tracking 72

to improve the robustness in complex scenes. NoisyOTNet 73

consists of three main components: a parameter space noise- 74

based tracking module, a spatial-temporal UCB based adaptive 75

update module, and an adjustable incremental learning based 76

relocation module.The proposed NoisyOTNet is based on deep 77

deterministic policy gradients (DDPGs) framework, as shown 78

in Fig.2. NoisyOTNet is implemented based on the Actor- 79

Critic network, which consists of an Actor network and a 80

Critic network. Based on the previous state of the target, the 81

Actor predicts the optimal tracking result in the current frame. 82

Then the Critic evaluates the obtained result. According to the 83

evaluation result, the model is adaptively updated based on 84

the UCB update strategy. Additionally, to address the vehicle 85

missing problem, an effective relocation algorithm is designed 86

to relocate the vehicle. 87

To introduce deep RL into the vehicle tracking problem, 88

we define the vehicle tracking problem as MDP. NoisyOTNet 89

is based on the Actor–Critic network by defining the vehicle 90

tracking problem as a MDP. Our model includes agents, states, 91

actions, state transitions, and rewards, as shown in Fig.2. 92

The tracker selects an action a with a tracking reward r(s, t) 93

according to the current state s and uses the state transition 94

function s′ = f(s, a) to continue the tracking. The state is 95

represented by the input image M and the bounding box of 96

the target (x, y, w, h). For an action, a = (∆x,∆y,∆w,∆h) 97

describes the vehicle movement. By applying action a to 98

the original bounding box, we can obtain the new state 99

s′ = (x′, y′, w′, h′) by 100
x′ = x+ ∆x ∗ w
y′ = y + ∆y ∗ h
w′ = w + ∆w ∗ w
h′ = h+ ∆h ∗ h

(1)

For the reward, we use the Intersection-over-Union (IoU) 101

criterion IoU(GT,PB) = (GT ∩ PB)/(GT ∪ PB) between 102

the ground truth (GT) and the predicted bounding box (PB) 103

as the reward, which is commonly used in RL-based tracking 104

methods [12].Hereby, we set the reward as +1 above a certain 105

threshold and −1 below the threshold, respectively, aiming 106
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Fig. 2: The NoisyOTNet framework.

to keep the balance between positive and negative samples.1

The threshold is set as 0.7 which is an empirical value in the2

tracking field [12], [13]. The impact of different IoU thresholds3

are analyzed in Section VI. If the threshold is set smaller, more4

samples will be regarded as positive, which brings more label5

noise and difficulties in training convergence. If the threshold6

is set bigger, positive samples will become fewer, which breaks7

the balance of positive and negative samples and then degrades8

the accuracy of the model.9

r(s, a) =

{
1, IoU(GT,PB) > 0.7
−1, IoU(GT,PB) 6 0.7

(2)

The pipeline of NoisyOTNet starts from choosing action10

and ends with updating of the model. The main steps are as11

follows:12

Step 1: Initialize the target’s state (i.e. the position and13

scale) in the current frame based on the tracking results in14

the previous frame.15

Step 2: Pass the state and reward to the Noisy-Actor16

network.17

Step 3: Use experience replay memory to store states,18

actions and rewards.19

Step 4: Generate mini-batch samples by Gaussian sampling20

from the experience replay memory.21

Step 5: Predict the action by Noisy-Actor and pass to the22

Noisy-critic.23

Step 6: Evaluate the predicted action by Noisy-Critic to24

decide whether to accept the action. If the action is not25

accepted, the Noisy-Actor predicts a new action again until26

it is accepted.27

Step 7: Predict the state of the target in the current frame28

by the obtained action.29

Step 8: Update the model with the UCB update strategy.30

IV. METHOD 31

In this section, we describe the parameter space noise, a 32

parameter space noise based loss function, and an adaptive 33

network update strategy and relocation algorithm. 34

A. Parameter Space Noise 35

Existing tracking models based on deep RL utilize action 36

space noise to increase the exploration capability of a model 37

in complex scenes. However, action space noise is randomly 38

generated based on the current states, which are random and 39

cannot be reproduced. Excessive randomness will lead to dra- 40

matic fluctuations of the model in complex scenes and the lost 41

of the target. In addition, action space noise is approximately 42

linear function and not easily incorporated with complicated 43

functions, which lowers the performance of the model in 44

complex scenes. To address this issue, parameter space noise 45

is innovatively introduced into the proposed vehicle tracking 46

model.Inserting the noise into the parameter space can enhance 47

the exploration ability of the model [19], [20], which can 48

further improve the robustness of tracking in complex scenes. 49

This can improve the stability of the model in complex scenes 50

while improving the exploration ability by generating richer 51

behaviors. 52

Parameter space noise in a network disturbs its weights 53

and deviations by noise parameter functions, and these noise 54

parameters can be helpful for gradient descent. As for the input 55

x and output y, y = fθ(x) introduces interference by a vector 56

of noisy parameters θ. The parameter space noise θ is defined 57

as follows: 58

θ = µ+ Σ� ε, (3)
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where ζ = (µ,Σ) indicates a set of vectors of parameters, ε is1

a vector of zero-mean noise with fixed statistics, and � repre-2

sents an element-wise multiplication. The loss of the network3

is represented by the expectation of noise, ε : L̄ = E[L(θ)].4

Thus, the loss function can be defined as an optimization of5

the set of parameters ζ.6

The linear layer in the network can be expressed as follows:7

y = ωTx + b, (4)

where x ∈ Rp is the input, ω ∈ Rp⊗q is the weight matrix,8

and b ∈ Rq is the bias. Now, the linear layer is converted into9

a linear noise layer, which is defined as follows:10

y = (µω + σω � εω)Tx + µb + σb � εb, (5)

where µω + σω � εω and µb + σb � εb replace ω and b,11

respectively. In addition, µω ∈ Rp⊗q, µb ∈ Rq, σω ∈ Rp⊗q12

and σb ∈ Rq are parameters, and εω ∈ Rp⊗q and εb ∈ Rq are13

random noise variables.14

There are two ways to generate noise [19], i.e. independent15

Gaussian noise and factorized Gaussian noise. The first is16

simpler to implement. Compared to the second, the first one is17

widely used in RL-based methods [19], [20]. In order to obtain18

better randomness of the noise parameters, we choose the19

independent Gaussian noise to generate noise for NoisyOTNet.20

The noise of each weight and bias are independent, and we21

use a unit Gaussian distribution to draw εωi,j of the random22

matrix εω (the same way as for εbj of the random matrix εb).23

By converting the linear layer into a linear noise layer,24

the network loss is changed into L̄ = E[L(θ)], which is25

represented by the expectation of noise µ and ε. To obtain the26

gradients from a linear noise layer, the gradients are designed27

as follows:28

∇L̄ = ∇E[L(θ)] = E[∇µ,ΣL(µ+ Σ� ε)], (6)

where we can obtain gradients from the linear noise layer29

based on the parameters µ and ε.30

Furthermore, a Monte Carlo approximation is used for the31

noise gradients and the function takes ξ at each step of the32

optimization:33

∇L̄ ≈ ∇µ,ΣL(µ+ Σ� ξ). (7)

The above demonstrates how to convert the linear layer to a34

linear noise layer, and obtain the gradient information through35

the noise parameter. Then the parameter will be updated in36

the linear noise layer.37

B. Noisy Deep Reinforcement Learning Model for Vehicle38

Tracking39

In this section, we describe how to introduce a parameter40

space noise into the tracking model based on deep RL. We41

implement the proposed model based on the DDPG network42

structure. DDPG is an Actor–Critic network that can handle an43

action prediction in a continuous space. During the prediction,44

the Actor provides the results, whereas the Critic estimates45

the Q-value function using off-policy data and the recursive 46

Bellman equation: 47

Q(st, at) = r(st, at) + γQ(st+1, πθ(st+1)), (8)

where πθ is the Actor. The Actor is trained to maximize the 48

Q-values estimated by the Critic by back-propagating through 49

both networks. For exploration, DDPG uses a stochastic policy 50

of the form π̂θ(st) = πθ(st) + noise, where an exploration is 51

realized through an action space noise. In addition, the loss of 52

the DDPG is defined as follows: 53

L(θ) = E
[
E(x,a,r,y)∼D

[Q(x, a|θ)− r − γmax
b∈A

Q(y, b|θ−)]2
]
, (9)

where D is a distribution of transitions e = (X, a, r = 54

R(x, a), y ∼ P (|x, a)) drawn from a replay buffer, and θ− 55

represents the parameters of a target network that updates 56

(θ− ← θ) regularly to stabilize the learning. 57
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Fig. 3: Examples of tracking results of trackers with different noises.

As mentioned above, compared with action space noise, 58

parameter space noise can improve the robustness of the model 59

in complex scenes and can improve the exploration ability 60

by generating richer behaviors.As shown in Fig 3, tracking 61

models with noises can perform better than non-noise tracking 62

models. Specifically, parameter space noise achieves more 63

accurate tracking results than action space noise, indicating 64

that the parameter space noise can improve the exploration 65

ability of the model and the tracking robustness. Hence, we 66

introduce a noise layer with the noise parameters into the 67

DDPG network structure. By transforming the linear layer into 68

a linear noise layer, we replace the action space noise with 69

parameter space noise.The parameterized action-value function 70

Q(x, a, ε|ζ) or Q(x, a, ε′|ζ−) can be considered as a random 71

variable, which is used to calculate the model loss: 72

L̄(ζ) = E
[
E(x,a,r,y)∼D

[Q(x, a, ε|ζ)− r − γmax
b∈A

Q(y, b, ε′|ζ−)]2
]
, (10)

where the external expectation is the distribution of the 73

noise variable ε with respect to the noise value function 74
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Q(x, a, ε|ζ) and noise variable ε′ for a noisy target value1

function Q(y, b, ε′|ζ−). Calculating the unbiased estimation of2

the loss is straightforward. For each transition in the replay3

buffer, we only need to calculate one instance of the target4

network and one instance of online network. We generate5

these independent noises to avoid deviations. Regarding the6

choice of action, another independent sample is generated for7

the online network [19].8

C. Adaptive UCB-based Online Model Update Strategy9

During the tracking process, the vehicle may change dra-10

matically in complex scenes, such as deformation, occlusion,11

or blur. Thus, the model needs to be updated during the12

tracking process to deal with the changes of the current13

target.The traditional fixed update methods face difficulty in14

improving the validity of the model update in complex scenes15

and miss the target. Thus, an efficient model update strategy16

is critical to improve the robustness of the model in complex17

scenes.To address this problem, an adaptive model update18

strategy is designed based on the UCB, which uses online19

and target networks by considering the temporal information to20

adaptively update the model. For the proposed update strategy,21

we define four update policies as follows:22

Non-update: The vehicle remains unchanged in the current23

scene, and the model can represent the vehicle well without an24

update, which can save time and improve the tracking speed.25

Online update: A vehicle with minor changes can be rep-26

resented by the model which needs to be updated to adapt to27

the vehicle in future frames. Only the parameters of the online28

network are used to update the model.29

Online-target update: The vehicle undergoes dramatic30

changes in the current scene, and the model cannot represent31

the vehicle well. Thus, a single model update may miss the32

vehicle. Hence, an online model and a target model are used33

to update the model for adapting to the vehicle.34

Relocation: The vehicle is out of view or occluded and35

cannot be tracked in the current searching area.We use an36

effective relocation algorithm to relocate the vehicle.37

Compared with other update strategies based only on the38

model output, we innovatively introduce temporal information39

into the model update, which can improve the robustness of40

the model in complex scenes.41

The UCB method can consider the temporal information by42

adding terms to the original update value Qa and decide the43

model update strategy. The function is designed as follows:44

UCB(va) = Qa + c

√
lnt

Nt(a)
, (11)

where a indicates each update action, Qa is the original value45

of a given by the model, c is a fixed weight parameter to46

balance the temporal information and the model’s output,47

and Nt(a) indicates the times this update action occurs in48

the previous t frames. The information is stored in a unified49

manner for model selection decisions.50

The process of the adaptive UCB-based online model update51

strategy is shown in Algorithm 1.52

Algorithm 1 Adaptive UCB-based online model update strat-
egy.
Input: The original update value Qa, UCB strategy interval
t, UCB weight parameter c;
Output: Selected update strategy M ;

1: Obtain the number of four model update actions Nt(ai)
(i=1,2,3,4) from memory during t period;
a1 = Non-update;
a2 = Online update;
a3 = Online-target update;
a4 = Relocation;

2: i = 1;
3: repeat
4: Calculate c

√
lnt

Nt(ai)
;

5: UCB(vai) = Qai + c
√

lnt
Nt(ai)

;
6: i = i+ 1;
7: until Obtain all four model update action UCB values
UCB(vai) (i=1,2,3,4);

8: Select the model update action with the maximum
UCB(vai) as the current model update strategy M .

9: Update the model using the M model update strategy.
10: Update the memory with the model update strategy M .

By introducing the temporal information, the model chooses 53

the update action based on both the current model’s result and 54

the temporal information generated by the model during the 55

tracking process.Compared with the traditional model update 56

method, the proposed update strategy increases the update 57

actions and improves the robustness and real-time performance 58

of the model in complex scenes. 59

D. Incremental Learning-based Relocation Algorithm 60

The lost of the vehicle tracking in complex scenes may be 61

classified into two cases: 1) the vehicle is in the image, but 62

out of the search area, and 2) the vehicle is out of the image. 63

If the tracker cannot distinguish the two types of lost, it will 64

cause the model to update with false samples, the target lost, 65

or even sinking into an infinite loop. 66

To address this issue, we propose an effective incremental 67

learning based relocation algorithm. It can effectively distin- 68

guish and relocate the above failure situations, and further im- 69

prove the robustness of the model in a complex environment. 70

The proposed relocation algorithm can efficiently achieve 71

local to global target relocation based on the target position, 72

scale, and number of detection. Because the position and scale 73

of the target are uncertain, the changes in the four dimensions, 74

namely, top, down, left, and right, are different. First, we 75

need to calculate the vertical variation ∆hup and ∆hdown, 76

as well as the horizontal variation ∆wleft and ∆wright in the 77

current frame based on the target position, scale, and number 78

of detection D. 79

Taking the height changes as an example, hup = yi − 80

1
2hi, hdown = H−(yi− 1

2hi), the values of ∆hup and ∆hdown 81
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Algorithm 2 Incremental learning-based relocation algorithm.
Input: The target position of the previous frame

Pt−1(x, y, w, h), the image size (W,H), the search time D,
the current search time d = 0;
Output: Relocation location Pt(x, y, w, h);

1: Obtain changes of scale in four directions: ∆wleft,
∆wright, ∆hup, ∆hdown ;

2: repeat
3: Expand the search area according to changes in scale;
4: Detect the target in the expanded search area and obtain

a detection score;
5: if The detection score > 0.7 then
6: Pt(x, y, w, h) = Prelocation(x, y, w, h);
7: Jump to 20;
8: end if
9: if The detection score > 0.3 then

10: Pd(x, y, w, h)(d = 1, 2, ..., D) = Prelocation(x, y, w, h);
11: d = d+ 1;
12: else
13: The current scale search fails, d = d+ 1;
14: end if
15: until d = D;
16: if Pt = ∅ then
17: Pt(x, y, w, h) = Pt−1(x, y, w, h);
18: else
19: Choose Pd(x, y, w, h) with the maximum detection

score as Pt(x, y, w, h);
20: end if

can be calculated as follows:1

∆hup =
hup

hup + hdown
∗ 1

D
,

∆hdown =
hdown

hup + hdown
∗ 1

D
,

(12)

where ∆hup and ∆hdown mean the update range for the top2

and bottom coordinates respectively. The relocation process3

will then use four directions as the update range to expand4

the search area until completing the relocation.5

The incremental learning based relocation algorithm is6

shown in Algorithm 2.7

Through the relocation algorithm, when the detection score8

is greater than 0.7 or the global-image detection has been9

completed, the tracking bounding box with the highest score is10

chosen for the result. If the highest score is still less than 0.3,11

the target is considered to be lost, and the previous frame result12

is assigned as the current frame prediction position. Then, the13

process continues the next frame tracking. The relocation can14

be performed efficiently when the target is lost. The search15

efficiency and speed are improved.16

V. IMPLEMENTATION17

We use ILSVRC (ImageNet Large Scale Visual Recognition18

Challenge) dataset [39] to pretrain NoisyOTNet for 250,000 it-19

erations, which consists of 768 video sequences with bounding20

boxes. Specifically,NoisyOTNet has five convolutional layers21

and two fully connected layers, and the last fully connected 22

layer is the noisy layer. Independent Gaussian noise is used 23

for the noise generation. The noise of each weight and bias are 24

independent, and both εωi,j of the random matrix εω , and εbj of 25

the random matrix εb, are drawn from a Gaussian distribution. 26

For noise generation, we set µ and σ as follows.Each ele- 27

ment µi,j is generated from independent uniform distributions 28

u[−
√

3
p ,
√

3
p ], where p is the number of linear layer inputs, 29

and σi,j is empirically set to 0.017 for all parameters [19], 30

[40]. 31

For online tracking, we set the update frequency for short 32

and long term tracking of the Critic network to 10 and 100 33

respectively, using the last 10 and 30 frames to draw samples 34

for the model update. In our experiment, 250 positive samples 35

and 2,500 negative samples are generated around the ground 36

truth in the first frame to initialize the tracking model. We 37

generate 256 samples for the relocation process. The maximum 38

number of steps for one frame is set to five, and the online 39

model can adaptively decide how many steps for one frame 40

should be applied based on the tracking results. The online 41

tracking pipeline is shown in Algorithm 3. 42

Algorithm 3 NoisyOTNet pipeline for online tracking.
Input: Initial target position P0 and image;
Output: Estimated target position Pt = (xt, yt, wt, ht);

1: Generate samples in the first frame to update a noisy
network;

2: repeat
3: Extract features from (xt−1, yt−1);
4: repeat
5: Apply the Actor network to give the predicted posi-

tion using single or multi-step tracking;
6: Apply the Critic network with the position and fea-

tures to obtain the score;
7: if relocation then
8: Use the relocation model to find a position with a

higher score around the bounding box;
9: end if

10: until End of the current frame tracking;
11: Update the model using the predicted position

Pt = (xt, yt, wt, ht) with the adaptive update strategy;
12: until End of video sequence.

VI. EXPERIMENTS 43

The proposed vehicle tracking model is implemented by 44

using the Pytorch toolkit. We use a computer with 3.4 GHz 45

7700k CPU, 11 GB GTX1080Ti graphics card, and 32 GB 46

of memory to train and test the vehicle tracking model. The 47

proposed model can achieve a frame rate of 41 FPS during 48

online tracking on average, which meets the requirement of 49

real-time vehicle tracking. 50

We adopt both precision and success plots to evaluate the 51

performance of the trackers. Precision is defined based on the 52

distance between the predicted location and the ground truth 53

as: dist =
√

(Gx − Px)2 + (Gy − Py)2. If the distance is 54
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TABLE I: Video challenging attributes on UAV123. Each video may have more than one challenging attribute.

Video challenging attribute Description

Aspect ratio change (ARC)
The fraction of the ground truth aspect ratio in the first frame
and at least one subsequent frame is outside the range [0.5, 2].

Background clutter (BC) The background near the target has a similar appearance as the target.

Camera motion (CM) Abrupt motion of the camera.

Fast motion (FM)
The motion of the ground truth bounding box is larger than
20 pixels between two consecutive frames.

Full occlusion (FOC) The target is fully occluded.

Illumination variation (IV) The illumination of the target changes significantly.

Low resolution (LR) At least one ground truth bounding box has less than 400 pixels.

Out of view (OV) Some portion of the target leaves the view.

Partial occlusion (POC) The target is partially occluded.

Similar target (SOB) There are targets of a similar shape or same type near the target.

Scale variation (SV) The ratio of the initial and at least one subsequent bounding box.

Viewpoint change (VC) Viewpoint affects target appearance significantly.

TABLE II: Evaluation results of trackers on UAV123. The proposed NoisyOTNet achieves comparable results with state-of-the-art trackers.
The best results are given in bold.

Tracker NoisyOTNet ECO ARCF AutoTrack ADNet ACT MIMRT TSD KAOT

Precision 0.762 0.741 0.666 0.671 0.720 0.692 0.726 0.659 0.686

AUC 0.525 0.525 0.506 0.473 0.510 0.496 0.484 0.464 0.479

FPS 41 8 15 60 8 35 5 42 15

Real-time Y N N Y N Y N Y N

Deep Learning Y Y Y Y Y Y Y Y Y

Programming
Language

Python Matlab Python Python Matlab Python Python Python Python

smaller than a predefined threshold, the tracking in the frame1

is considered to be precise. Thus precision is defined as the2

percentage of the number of frames in which the distance is3

smaller than the threshold and the total frame number. Success4

rate is calculated by the IoU score. The IoU can be defined as:5

IOU(GT,PB) = (GT ∩PB)/(GT ∪PB). If the IoU value6

is larger than a predefined threshold in one frame, the tracking7

in that frame is taken as successful. Success rate is defined as8

the percentage of the number of successful frames and the9

total frame number. Commonly, the precision threshold is set10

as 20 pixels and the success rate threshold is set as 0.5. In11

addition, the Area Under the Curve (AUC) of the success plot12

is also used as another metric.13

A. Evaluation on UAV12314

UAV123 [41] is an unmanned aerial vehicle (UAV) tracking15

dataset as a widely used benchmark in the field of vehicle16

tracking. It contains 123 fully annotated HD video sequence17

data captured from a low-altitude aerial perspective, including18

115 videos clips captured by a drone camera and 8 video19

sequences rendered by a UAV simulator. To refine the tracking20

scene, all video sequences are refined according to 12 common21

challenging attributes, as shown in Table I. The trackers are22

evaluated in terms of tracking accuracy and run-time.23

As shown in Table II,we conducted comparison with eight24

state-of-the-art trackers (ECO [7], ARCF [42], AutoTrack [43],25

ADNet [12], ACT [13], MIMRT [44], TSD [45], KAOT [46] ).26

NoisyOTNet achieves better performance in terms of both the27

TABLE III: Ablation study of different components on UAV123. The
best results are shown in bold.

Noisy UCB IR Precision Success

71.1% 47.6%
√

74.6% 51.2%
√

73.4% 50.1%
√

72.8% 49.3%
√ √

75.7% 51.9%
√ √

75.1% 51.7%
√ √

74.2% 50.8%
√ √ √

76.2% 52.5%

precision and AUC plots. The precision rate of NoisyOTNet is 28

76.2% and 2.1% higher than the performance of the second- 29

best tracker ECO. The success rate of NoisyOTNet and ECO 30

are both 52.5%, outperforming the other trackers, and Noisy- 31

OTNet tracks at 41 FPS, while ECO runs at 8 FPS. UAV123 32

contains many small targets which are hard to track in low- 33

resolution videos. NoisyOTNet performs well on small targets, 34

as shown in Section VI-E. The experiment results demonstrate 35

that the proposed method can achieve efficient and real-time 36

tracking in complex scenes. 37

B. Ablation Study of Different Components 38

To demonstrate the impact of the components in Noisy- 39

OTNet, we applied three variants of our tracker by integrat- 40

ing a network with different types of update and relocation 41
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strategies and evaluated them on the UAV123 dataset. The1

baseline model is a model without “Noisy,” “UCB,” or “IR”2

components. These three variants are as follows: 1) “Noisy”3

is a baseline model that contains a parameter space noise4

network; 2) “UCB” is the baseline model guided by the5

adaptive UCB-based online update strategy, which contains6

four policies, namely, non-update, online update, online-target7

update, and relocation; and 3) “IR” is the baseline model with8

a relocation algorithm based on incremental learning.We test9

the three components separately to verify their effectiveness10

respectively. Table III shows the precision and success plots11

of these variations on the UAV123 dataset.12

1) Parameter Space Noise: From Table III, we can see13

that compared with the base model the “Noisy” component14

significantly improves the precision and success rate by 3.5%15

and 3.6%, respectively. The reason for this improvement is16

the fact that the baseline model uses random action space17

noise to enhance the model exploration capabilities. When18

the target changes drastically in complex scenes, the model19

cannot smoothly adapt to the change of the target. Compared20

with action space noise, parameter space noise consists of two21

parts, a parameter µ and noise ε, and can update based on22

the current tracking result. While enhancing the exploration23

capability of the model, it can also maintain a stable update24

and adapt to the target in complex scenes, such as background25

clutter, scale variation, and partial occlusion.26

2) Adaptive UCB-based online model update strategy:27

Compared with the baseline model, the UCB variants are28

2.3% and 2.5% higher in terms of the precision and success29

rate, respectively. The baseline model uses a fixed update30

strategy, which cannot be adaptively adjusted according to31

target changes. The UCB uses an adaptive update based on32

the scene and target changes to improve the efficiency. We33

also designed four model update policies: non-update, online34

update, online-target update, and relocation. Different update35

policies are selected according to the UCB result, which36

considers both the current tracking result and spatial-temporal37

information during tracking. The results indicate that it can38

improve the efficiency of the model update as well as the39

accuracy of the tracking in complex scenes.40

3) Incremental learning-based relocation algorithm: The41

baseline model does not have relocation algorithm, and when42

partial occlusion, complete occlusion, or out of view occurs,43

it may lose the target, and result in tracking failure. We con-44

ducted local-to-global relocation instead of a simple global-45

image relocation, which considers the target motion, size, and46

background size. Through an effective relocation, the model47

can judge the case of the current lost target and choose the48

optimal relocation result as the current target tracking position.49

As shown in Table III, the “IR” component can effectively50

improve both the precision and success rates by 1.7% based51

on the baseline model.52

4) NoisyOTNet: “Noisy+UCB” enables the adaptive UCB-53

based online update strategy to update the model based on54

the environment and target changes, which can effectively55

reduce the risk of drift. It outperforms “Noisy” by 1.1% on56

the precision plot and 0.7% on the success plot. Moreover,57

“Noisy+UCB+IR” combines all optimizations of NoisyOTNet,58

TABLE IV: Impact of different IoU thresholds on tracking perfor-
mance of the proposed method on the OTB-2015 dataset. The best
results are highlighted in bold.

IoU 0.5 0.6 0.7 0.8 0.9

Precision 0.811 0.837 0.902 0.871 0.791

AUC 0.575 0.603 0.672 0.636 0.553

based on “Noisy+UCB”. NoisyOTNet adopts an incremental 59

learning based relocation algorithm instead of the simple relo- 60

cation algorithm. Our strategy can relocate the missing target 61

more efficiently and achieve 1.2% and 0.6% performance gains 62

in terms of the precision over the ”Noisy” and ”Noisy+UCB” 63

on a precision plot, respectively. 64

5) IoU Thresholds: In order to further analyze the impact of 65

different parameters of IoU on tracking performance, we set 66

different IoU thresholds. We validated them on the OTB-2015 67

dataset, and the experimental results are shown in the Table IV. 68

If the threshold is too small, some of the negative samples may 69

be turned into positive, which cannot effectively distinguish 70

the target from the background when the background is similar 71

to the target, resulting in tracking failure. If the threshold is 72

too large, the number of positive samples will be reduced, en- 73

larging the imbalance between positive and negative samples, 74

which may reduce the model’s accuracy. Therefore, we use the 75

threshold of 0.7, which allows the proposed method to achieve 76

better tracking performance. 77

C. Evaluation on OTB 78

In order to show the robustness of the proposed method, 79

we conduct the experiment on OTB dataset by using the same 80

hyperparameter settings as the UAV123 dataset. OTB [47], 81

[48] includes 100 video sequences and is widely used in the 82

object tracking field. It is subdivided into OTB-2013 and OTB- 83

2015 with 51 and 100 tracking sequences, respectively. Same 84

with the UAV123 experiments, precision and AUC rates are 85

used to evaluate the performance of trackers. We use precision- 86

13 and AUC-13 for OTB-2013 dataset, and precision-15 and 87

AUC-15 for OTB-2015 dataset to evaluate the accuracy. The 88

comparison results with 11 state-of-the-art trackers (ADNet 89

[12], ACT [13], HP [16], DRL-IS [17], EAST [36], UCT [32], 90

CREST [25], SiamDW [28], SiamRPN++ [10], C-RPN [11], 91

and RASNet [33]) are shown in Table V. 92

From Table V we can observe that NoisyOTNet performs 93

better than reinforcement learning-based trackers including 94

ADNet, HP, DRL-IS, EAST, and ACT on both benchmark 95

datasets. ADNet and ACT use action space noise to increase 96

the exploration ability of the model. HP uses deep Q-Learning 97

to enhance the exploration, and DRL-IS designs an update 98

module to increase the exploration ability of the model. 99

Compared with ADNet that achieves 89.6% and 88.0% on 100

precision-13 and precision-15, NoisyOTNet performs 2.9% 101

and 2.2% higher than ADNet, and 3 times faster than AD- 102

Net. ACT is a real-time RL-based tracker, NoisyOTNet per- 103

forms 4.1% and 4.3% higher than ACT on precision-13 and 104

precision-15, respectively. The results show that the proposed 105

method performs competitively against the state-of-the-art RL- 106

based methods. 107
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TABLE V: Evaluation results of trackers on OTB. The best and second best results are denoted in bold and underline, respectively.

Ours UCT CREST SiamDW SiamRPN++ C-RPN RASNet HP DRL-IS ADNet ACT EAST

Precision-13 0.925 0.904 0.908 0.88 0.918 0.897 0.892 0.841 0.923 0.896 0.884 0.851

AUC-13 0.685 0.641 0.673 0.666 0.68 0.675 0.67 0.629 0.682 0.672 0.667 0.638

Precision-15 0.902 0.849 0.837 0.854 0.903 0.871 0.857 0.796 0.901 0.88 0.859 0.813

AUC-15 0.672 0.611 0.623 0.64 0.67 0.663 0.642 0.601 0.671 0.668 0.648 0.612

Real-Time 45 41 10 35 35 32 83 6.9 10.2 8 35 159
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Fig. 4: AUC scores of different attributes: aspect ratio change (ARC), camera motion (CM), out of view (OV), scale variation (SV), background
clutter (BC), fast motion (FM), partial occlusion (POC), and viewpoint change (VC).

TABLE VI: The real-time performance of the proposed method on
the UAV123 and OTB-2015 datasets.

Dataset UAV123 OTB-2015

Average Tracking Speed
(Frame Per Second, FPS)

41 45

In order to further analyze the real-time performance of1

the proposed method, seven real-time trackers mentioned in2

Section II are employed for comparison on OTB dataset,3

and the results are shown in Table V. It can be found that4

the proposed method achieves the real-time performance with5

speed 45 FPS, which is faster than most competing trackers6

and only some slower than RASNet and EAST. Thus it shows7

that our method achieves higher accuracy while the model8

maintains competitive real-time performance compared to the9

state-of-the-art trackers.10

In addition, we also discuss the influence of different ex-11

ploration strategies. In Table V, HP [16] is a Q-learning-based12

approach to learn hyperparameters to improve the exploration13

capability of the model. ADNet [12] is a policy-based method14

that uses stochastic strategy to enhance the exploration capabil-15

ity. EAST is implemented based on DQN to achieve efficient16

exploration of the model. ACT [13] expands the exploration17

capability by adding action noise. DRL-IS [17] follows the18

Actor-Citric framework and designs different update strategies19

to expand the search space of the model. The results show that20

the proposed method with parameter noise can outperforms the 21

RL-based trackers with other exploration strategies on these 22

two datasets. 23

To analyze the proposed method’s real-time performance, 24

we have added the tracking speed experiments on the UAV123 25

and OTB-2015 datasets, as shown in Table VI. The results 26

show that the proposed method achieves the 41 FPS and 45 27

FPS, respectively in these two datasets and can meet the real- 28

time requirement. 29

D. Quantitative Analysis 30

We conducted a comparison with 11 state-of-the-art track- 31

ers (SRDCF, SAMF, MUSTER [50], DSST, Struck [51], 32

DCF [49], KCF [6], CSK [52], TLD [53]), and the results 33

are shown in Fig. 4. 34

Fig. 4 shows the AUC of the different trackers for eight 35

challenging attributes in UAV123. The results show that the 36

NoisyOTNet method performs well on all of these challenging 37

attributes. 38

For camera motion and viewpoint changes, we achieved 39

the highest score among the state-of-the-art trackers, 6.7% 40

and 6.3% higher than the second-best tracker SRDCF, re- 41

spectively. Because the parameter space noise introduced is 42

reproducible, it can improve the model’s ability to explore 43

while enhancing the robustness of the model in complex 44

scenes. The experimental results of the aspect ratio changes 45

and background clutter demonstrate that our proposed model 46
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Fig. 5: Qualitative evaluation of the proposed NoisyOTNet, SRDCF, KCF, ADNet, and ECO on seven challenging sequences, Car6, Car7,
Car4, Car13, Car17, Truck1, and Uav2.

performs better than the other state-of-the-art trackers. For the1

RL-based trackers, the model can apply the original knowledge2

into a new environment and adapt the model to the current3

tracking target.4

Furthermore, SRDCF and Struck use a fixed update strategy,5

and when the target changes drastically under occlusions and6

fast movements, the updated model cannot represent the target7

well. Compared with these approaches, the adaptive update8

strategy can improve the robustness of the updated model. The9

updated model can track the target after such drastic changes,10

and achieves better performance on partial occlusions and fast11

motions. For out-of-view attribute, NoisyOTNet benefits from12

the relocation algorithm and achieves a rate of 42.5% on the13

success plot, and can judge whether the target is lost when14

it moves out of image quickly without significant calculation15

overhead. 16

The experimental results demonstrate that the proposed ve- 17

hicle tracker can accurately track the vehicle target in complex 18

scenes under occlusions, out of view, and deformations, and 19

has better robustness than the other state-of-the-art trackers 20

used in the experiment. 21

E. Qualitative Evaluation 22

Fig. 5 shows the tracking results of several top tracking 23

methods including MDNet, KCF, ADNet, CF2, and our pro- 24

posed method on seven challenging sequences. These chal- 25

lenges include scale changes, occlusions, viewpoint changes, 26

small targets, deformations, and low resolution. We evaluate 27

the robustness of our proposed model based on the experimen- 28

tal results on these video sequences. 29
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In sequence Car6, the scale of the vehicle has changed sig-1

nificantly, and ECO and NoisyOTNet can cope with the scale2

change of the current vehicle well. ADNet is sensitive to the3

changes of the target because the action space noise is based on4

the predictions. When the target scale changes significantlyit5

will be less robustness to scale changes. In sequence Car7,6

the vehicle completely occludes twice in complex scenes,7

and KCF, ADNet, and SRDCF lose the target after the first8

occlusion; ECO loses the target after the second occlusion; and9

NoisyOTNet can still maintain the correct positioning of the10

target after two occlusions because when the target is occluded11

or lost, the relocation algorithm allows our tracker to quickly12

and accurately relocate the target when it reappears.13

In sequence Car4, the target scale and background change14

drastically, and KCF and SRDCF completely lose the target,15

whereas the other trackers can still track the target.They use16

deep features with stronger discriminative ability for represen-17

tation, improving the tracking robustness in complex scenes.18

In the sequences of Truck1 and Car17, the vehicle is deformed19

and flipped. In the case of deformation, the other trackers20

lose the target during tracking based on a fixed and single21

update strategy. NoisyOTNet can effectively track the target22

in complex scenes by updating the model with the adaptive23

update strategy. The targets in Uav7 and Car13 are small24

with low resolution. These small targets also suffer from an25

uncertain motion trajectory and full occlusions. As shown26

in Fig. 5, SRDCF and ADNet gradually lose their targets27

during the tracking process, whereas ECO loses the target28

when it becomes extremely small. The experimental results29

indicate that the proposed tracker can track small targets in30

low-resolution scenes.31

Through the above qualitative analysis, we can see that in32

complex scenes, such as scale changes, occlusions, complex33

background, small targets, and low resolution, our proposed34

model can achieve robust tracking. Meanwhile, compared with35

ECO and ADNet, which perform at 8 FPS, our model can run36

at 41 FPS on UAV123 and meet the real-time vehicle tracking37

requirement.38

VII. CONCLUSIONS39

In this paper, we propose a novel real-time vehicle tracking40

model NoisyOTNet, which enables accurate vehicle tracking41

in complex scenes. The parameter space noise introduced into42

the proposed model is different from action space noise used43

by existing RL models. The parameter space noise consists44

of parameters and noise and can improve the robustness and45

exploration capabilities of the model in complex scenes. Fur-46

thermore, the adaptive online update strategy learns the spatial-47

temporal information and select the optimal update policy to48

quickly and accurately update the model. The updated model49

can accurately represent the target after dramatic changes in50

complex scenes. A relocation algorithm based on incremental51

learning is also proposed to relocate lost target in complex52

scenes. Finally, the experimental results on UAV123 and OTB53

datasets verify that NoisyOTNet can effectively conduct real-54

time tracking in complex scenes and achieve competitive55

results compared with other state-of-the-art RL methods. The56

current model can also be further optimized. As future work, 57

we will introduce an adaptive relocation method, and upgrade 58

the current network structure with better deep learning model 59

to further improve the robustness and speed of the proposed 60

model. 61
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