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In this study, we investigated a means to improve the robustness of deep network training on visual
recognition tasks without sacrificing accuracy. The contribution of this work can reduce the dependence
on model decay to gain a strong defense against malicious attacks, especially from adversarial samples.
There are two major challenges in this study. First, the model defense capability should be strong and
improved over the training stage. The other is that the degrading of the model performance must be min-
imized to ensure visual recognition performance. To tackle these challenges, we propose active dropblock
(ActDB) by incorporating active learning into a dropblock. Dropblock effectively perturbs the feature
maps, thus enhancing the invulnerability of gradient-based adversarial attacks. In addition, it selects
an optimal perturbation solution to minimize the objective loss function, thereby reducing the model
degradation. The proposed organic integration successfully solved the model robustness and accuracy
simultaneously. We validated our approach using extensive experiments on various datasets. The results
showed significant gains compared to state-of-the-art methods.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Extracting correct features is critical to high-performing visual
recognition model. However, this process is complex over deep
model training and some incorrect focus on tiny details can cause
high sensitivity and instability of deep learning classifiers. Due to
this weakness, the obtained classifier may be easily fooled by some
tiny imperceptible perturbation within query image.

Arising from this model fragility, lots of research starts to chal-
lenge the robustness of deep learning classifiers and proposed a
series of model defense schemes. Most work on robustness in deep
learning methods for vision has focused on the important chal-
lenges of robustness to adversarial examples[1,2]. However, build-
ing such robust models has proved to be quite challenging.
Specifically, training a robust model may not only consume more
resources, but also cause the standard accuracy to decrease[3].

In order to address this issue, we study how to develop a train-
ing scheme for visual recognition deep model with strong invul-
nerability and high accuracy. This work is mainly prepared in
three aspects. First, we will incorporate perturbation into training
process to reduce sensitivity to noise interference. In addition, we
develop an active search scheme to optimize perturbation pattern
and training stochasticity. Finally, we modified objective function
to integrate optimized perturbation with training pipeline and
ensure training efficiency over robustness improvement.

Dropout [4] was proposed to resolve overfitting problem. At the
very beginning, this technique was used on fully connected layers.
Later, it was used on convolutional layers. Recently, dropblock[5]
was proposed to drop the units in a contiguous region of a feature
map. This method is effective because features in convolutional
layers are correlated, even with dropout, information about the
input can still be sent to the next layer, which causes the networks
to overfit. So dropping features in a structured block can better reg-
ularize convolutional networks.

Other than vanilla heuristic dropblock optimization in network,
we employ active learning to improve the policy from dropblock
selector. We first set a dropblock policy pool and use them to equip
dropout layer for training the deep neural networks. We then set
one iteration forward pass for each policy to identify the one with
which the current network yields highest loss, or called uncer-
tainty. Since only one forward pass is directed for each selection,
the extra cost for active dropblock is relatively low. We then apply
the loss from selected policy to conduct backpropagation and
update network. We iterate this process consisting of forward pass
for each dropout rate, comparison among dropblock policies, and
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network backpropagation with selected largest loss. It will not stop
until the network training loss converges. (See Fig. 1).

To the best of our knowledge, we are the first to incorporate
active learning into dropout to achieve the goal of enhancing
model invulnerability as well as preserving performance accuracy.
We empirically justify our approach by comparing it with PCL,
which is the state-of-the-art method. The comparison demon-
strates that this approach significantly outperforms PCL across all
white-box attacks and this outperformance is kept for adversarial
training. In addition, our experiments show that active dropblock
achieved better classification performance than vanilla dropblock
and is more stable on improving the robustness of deep neural
networks.
2. Related work

2.1. Attacks and defenses

Convolutional neural networks can better simulate human
vision system to detect physical objects, but the mechanism is
complex and different from conventional human vision system
and can cause high vulnerability problems[6]. In terms of this
issue, a series of research is focused on challenging neural net-
works with a variety of methods, such as adversarial samples[7,1].

An adversarial image is a clean image perturbed by a small dis-
tortion carefully crafted to confuse a classifier. The classifier some-
times can be fooled by these distortions[8]. Adversarial distortion
is regarded as the worst-case analysis type of network robust-
ness[9]. Meanwhile, the challenge of robustness is usually accom-
panied by the attack and defense of deep neural network[10].
Numerous algorithms have been proposed to make the classifier
more intelligent so that the models trained from these algorithms
are more robust. [11] proposes local distributional smoothness
(LDS) which can be used as a regularization term to promote the
smoothness of the model distribution. The LDS of the model of
the input data points is defined as the robustness of the model dis-
Fig. 1. The process flow
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tribution relative to the local perturbations around the data points
based on the KL-divergence. [2] finds that the use of different max-
imization techniques for misclassified examples has negligible
impacts on the final robustness, and different minimization tech-
niques are crucial. And based on this finding, [2] proposes a new
algorithm called misclassification aware adversarial training
(MART) which explicitly differentiates the misclassified and cor-
rectly classified examples during the training. [12]finds that the
main reason for the existence of perturbations which can fool the
deep neural network is the close proximity of different class sam-
ples in the learned feature space. And it proposes to class-wise dis-
entangle the intermediate feature representations of deep
networks.
2.2. Active learning

Active learning is a well-researched area[13–15]. There are two
main strategies for active learning: representative sampling and
uncertainty sampling[16].

Representative sampling algorithms select unlabeled examples
representing batches of an unlabeled dataset to request labels.
Intuitively, once the selected representative example set is labeled,
it can serve as a replacement for the entire dataset. Therefore, min-
imizing the loss of agent execution is sufficient to ensure low
errors relative to the entire dataset. Considering in practice collect-
ing a large set of labeled images is very expensive, [17] selects rep-
resentative examples based on core-set construction. Inspired by
generative adversarial learning, [18] uses active learning as a bin-
ary classification task, and tries to select examples for labeling so
that the labeled set and the unlabeled pool cannot be
distinguished.

On the other hand, uncertainty sampling is based on a different
principle-selecting new samples to minimize the algorithm’s
uncertainty on the target classifier. [19] proposes a new active
learning strategy designed for deep neural networks by minimiz-
ing the number of data annotation queried from an oracle during
of active dropblock.
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training. [20] investigates some recently proposed methods for
active learning with high-dimensional data and convolutional neu-
ral network classifiers. [21] proposes an approach that blends
mixup and active learning. The former effectively augments the
few unlabeled images by a big pool of synthetic images sampled
from the convex hull of the original images, and the latter actively
chooses from the pool hard examples for the student neural net-
work and query their labels from the teacher model. And this work
has inspired us to design the dropblock using the active learning.

Recently, [22] presents a new active learning strategy for
semantic segmentation based on deep reinforcement learning
and proposes a newmodification of the deep Q-network (DQN) for-
mulation for active learning, adapting it to the large-scale nature of
semantic segmentation problems. [16] proposes a new algorithm
named Batch Active learning by Diverse Gradient Embeddings
(BADGE), which samples groups of points that are disparate when
represented in a gradient space.
2.3. Dropout

Deep neural networks usually can easily suffer overfitting prob-
lems, which is one of numerical reasons for weak robustness. To
address this issue, serveral approaches, such as weight decay and
dropout[4], are proposed to alleviate overfitting by regularization
technique. Dropout is rarely used in convultional layer design for
lots of conventional architectures [23–27], but more popular in
fully connected layer optimization[28,29]. Due to its easy imple-
mentation, lots of research is carried out to exploit the benefit from
dropout such as DropConnect[30], DropPath[31], Sched-
uledDropPath[32], ShakeDrop regularization[33], and so forth.
However, conventional dropout does not take spatial information
into consideration, which limits its application within convolu-
tional layers.To break this bottleneck, SpatialDropout[34] is pro-
posed, where an entire channel is dropped from a feature map.
Recently,inspired by Cutout[35], DropBlock[5] is proposed, which
considers the spatial correlation within feature maps and zeroed
out the units in a contiguous region of a feature map. This approach
works effectively on defending adversarial attacks, but still
requires lots of heuristic work on hyperparameter tuning and
may suffer performance instability.
3. Approach

We present our approach of how to carry out the active dropout
in this section. We will introduce the derivation of our approach in
the following: 1) introducing the original dropout in deep neural
networks, 2) constructing a big dropout selector pool which is far
more complicated than the traditional way, 3) actively choosing
the appropriate dropout selector to increase the uncertainty of
the model and optimizing the parameters.
3.1. Dropblock in deep neural networks

In light of vanilla dropout[4], block based dropblock is devel-
oped as follows. Firstly, we can deal with the most popular case
of deep feedforward networks with the activation function r. The
equation can be described as Eq. 1 where xhi is the output of unit
i in layer h, the variable x donates the weights and I donates the
input vector.

xhi ¼ rðShi Þ ¼ rð
X

l<h

X

j

xhl
ij x

l
jÞ with x0j ¼ Ij ð1Þ

Dropblock employs a mask Mðb;BÞ to modify the feature maps,
which can be described by Eq. 2. Here, M is the generated dropout
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mask which is determined by dropblock selector b and block size B.
More details will be introduced in the next subsections.

xhi ¼ rðShi Þ ¼ rðMðbl
j;B

l
jÞ �

X

l<h

X

j

xhl
ij x

l
jÞ with x0j ¼ Ij ð2Þ

This technique comes handy and effective in many works[30–32]. It
can exponentially expand the size of image pool in an imagery way.
For example, different strategy of b may generate different input
vectors, which augments training data over epochs. The experi-
ments justify that this training scheme can help to improve model
robustness[5].

For Dropblock, there is a mask function Mðb; BÞ, which is devel-
oped by spatial sampling. Given delineated local regions, the cen-
ters of local masks Mi;j are sampled given specific distribution.
Then, the global maskM is obtained by the union of all local masks.
Here, the local mask is generated by the rule as follows. For each
zero position Mi;j 2 M, create a spatial square mask with the center
being Mi;j, the width and height being block size B and set all the
values of in the square to be zero[5].
3.2. Dropblock selector

The mask function Mðb;BÞ is determined by dropout selector b,
which follows the bernoulli distribution with the parameter of c as
shown in Eq. 3.

b � bernoulliðcÞ ð3Þ

Here, the selection of the parameter c is a policy decision. For exam-
ple, [5] picks an unchanged policy, i.e., set the c to a constant C1

over the entire training stage.

c 2 X ð4Þ

In our work, as shown in Eq. 4, we develop a finite set X to actively
select c. This number set consists of non-repeating and fractional
numbers between 0 and 1. During each feedforward, one fraction
number is actively selected and assigned to c to generate the mask
of MðbÞ. After element-wise multiplication with this mask, feature
maps are updated with dropblock scheme. With this policy setting,
c and the mask of MðbÞ become adaptive to training stages.
3.3. Active selection for policy

Let F denote loss function where x is the input data, y is the
labels and h is deep model parameters. We develop the following
optimization functions to actively select policy. First, find the drop-
block selector with largest loss after forward pass, which is
described by local objective function in Eq. 5. Then, pick this selec-
tor as local optimal policy to update network by backpropagation.
Globally, we still minimize the loss function over iterations until
the loss converges as Eq. 6.

L0ðhÞ ¼ argmax
d

Fðh; xþ d; yÞ ð5Þ

where d ¼ x � ðJ �MÞ; J is all-ones matrix and L0ðhÞ is the local objec-
tive function with model parameter h.

h ¼ argmin
h

½L0ðhÞ� ð6Þ

Given this selection scheme, the model will be optimized by per-
turbed features. The perturbations help model acquire more knowl-
edge of potential adversarial samples, thus increasing
invulnerability to attack. Also, model can benefit from data aug-
mentation by Eq. 5.



J. Yao, W. Xing, D. Wang et al. Neurocomputing 454 (2021) 189–200
3.4. Overall algorithm

Algorithm1 presents the overall process of our approach Active
DropBlock. In the beginning we have the activation maps A of pre-
vious layer, block size B, a finite policy set of dropout rate X, and
training mode mode 2 fInference; trainingg. We firstly determine
the training mode. If the training mode equals to Inference we will
comply with the basic idea of dropout and return the A directly.
Otherwise, we pick the drop rate c from X, and we create a mask
M which shares the same height and width with A. Then we apply
the mask to A and normalize the result. Next, we will determine if
A is greatly changed. If so, we will return the changed activation
maps. Otherwise, we will pick another drop rate c from X and redo
from the fourth step.
Algorithm1: Active DropBlock
INPUT: The activation maps of previous layer: A

INPUT: The size of active dropblock: B

INPUT: The finite policy set of dropout rate: X

INPUT: The training mode: mode 2 fTraining; Inferenceg

OUTPUT: The new activation maps of active dropblock:

A�
1. If mode ¼¼ Inference then

2. return A� ¼ A

3. end if

4. Pick one dropout rate c from X

5. Generate the sample mask Mðb;BÞ where

b � BernoulliðcÞ

6. Apply the mask: A ¼ A�M

7. Normalize the features:

A� ¼ A� countðMÞ 	 count onesðMÞ

8. If A� is greatly changed then

9. return A�
10. Else

11. Start again from the fourth step
Here, the mask M is the union of local masks from a set of cen-
ters with value Mi;j 2 ð0;1Þ. The values of these centers Mi;j are
sampled based on bernoulli distribution. In particular, the width
and heights of these local masks are constrained by block size B.

4. Experiments

We design various experiments to test our approach, including
both comparison experiments with state-of-the-art method [12]
and ablation studies. Additionally, we also examine our approach
when the available data is inadequate to the main task of interest.

4.1. Comparison experiments

4.1.1. Experiment Setting
Our experiments are basically constructed on CIFAR-10 and

Tiny-Imagenet. CIFAR-10 is one of the most widely used datasets
for machine learning research. It contains 60,000 (50,000 for train-
ing and 10,000 for testing) 32�32 color images in 10 different
classes. Tiny-Imagenet is a distinct subset of the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) data set, which con-
sists of 200 different categories. Each image label has 500 training
images, 50 validation images. The original image resolution is
64�64 pixels and we resize them into 224�224 pixels.

Besides that we use some fine-grained visual classification
(FGVC) datasets,which are the Stanford Cars[36] and the Aircraft
[37], to examine the ability of our approach in data efficiency.
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The Stanford Cars dataset contains 8,144 training and 8,041 testing
images across 196 car classes. The classes represent variations in
car make, model, and year. The Aircraft dataset is a set of 10,000
images across 100 classes denoting a fine-grained set of airplanes
of different varieties.

4.1.2. Evaluation metric.
We selected the classification accuracy after adversarial attack

as one evaluation metric. This evaluation criterion is adopted by
a majority of attack-defense approaches and easily compared with
other conventional methods.

In particular, we also proposed accuracy degeneration percent-
age (ADP) to more clearly show model robustness across different
methods. The calculation formula is developed as follows:

ADP ¼ Vanilla Accuracy� Attacked Accuracy
Vanilla Accuracy

� 100% ð7Þ

Here, larger ADP implies that model degeneration is more severe
and invulnerability is weaker.

The selected attack benchmarks include one-step gradient
method, like FGSM[38] and iterative methods, BIM[39], MIN[40],
and Projected Gradient Descent (PGD)[41]. Here, FGSM only carries
out one iteration optimization while others may conduct several
iterations to obtain adversarial samples according to the experi-
ment setting. Among these approaches, PGD is usually a stronger
attack in virtue of the optimization from the first order information
of the target model. It generates an adversarial sample by starting
from a random position in the clean image neighborhood Uðx; �Þ.
This method carries our for m iterations with a step size of a as:

xm ¼ xm�1 þ a 
 signðrxm�1Lðxm�1; yÞÞ ð8Þ

xm ¼ clipðxm; xm � �; xm þ �Þ ð9Þ
Following this understanding we design our experiments in three
aspects and all experiments are carried out based on CIFAR-10
dataset.

4.1.3. Competing method
We identify one state-of-the-art method as our competing

method, which is the Prototype Conformity Loss (PCL) [12]. It
forces the features for each class to lie inside a convex polytope
that is maximally separated from the polytopes of other classes
and achieve significant gains in comparison to state-of-the-art
defenses. We incorporate our proposed method into PCL and equip
this method to evaluate the performance variability.

4.2. Quantitative results

First, we train our model using PCL only and apply active drop-
block on the model. Then, we use selected attack methods to attack
the model and compared the performance change between PCL
and PCL + active dropblock, the results of which are shown in
Table 1. Our method can better maintain classification accuracy
after adversarial attacks. For PCL, the ADPs for FGSM, BIM, MIM,
and PGD are 25.15%, 63.96%, 63.29%, and 69.93%. For PCL + active
dropblock, the ADPs for FGSM, BIM, MIM, and PGD are 22.68%,
36.96%, 34.92%, and 51.03%. Apparently, PCL + active dropblock
yields significantly lower ADPs and model degeneration, and exhi-
bits higher robustness. In particular, PCL + active dropblock shows
higher classification accuracy under the setting of no attack. This
observation implies that active dropblock can boost classification
accuracy of PCL.

Secondly, we directed adversarial training based on FGSM
attack to evaluate model robustness performance. Table 2 lists
the results and shows that PCL + active dropblock still exhibits sig-



Table 1
Robustness of model without adversarial training under white-box attacks.

Training PCL PCL + Ours

Accuracy ADP Accuracy ADP

No Attack 90.45 - 93.12 -
FGSM 67.7 25.15% 72.0 22.68%
BIM 32.6 63.96% 58.7 36.96%
MIN 33.2 63.29% 60.6 34.92%
PGD 27.2 69.93% 45.6 51.03%

Table 2
Robustness of model with adversarial training using FGSM attack.

Training PCLFGSM PCLFGSM + Ours

Accuracy ADP Accuracy ADP

No Attack 91.28 - 91.67 -
FGSM 75.8 16.96% 84.7 7.60%
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nificantly better performance than PCL. The ADP for vanilla PCL is
16.96%, but it is reduced to 7.60% for PCL + active dropblock. It jus-
tifies that active dropblock can boost defense performance of PCL
from adversarial training. Also, when there is no attack but adver-
sarial training, PCL + active dropblock can show better perfor-
mance than vanilla PCL.

Next, we conduct adversarial training on vanilla PCL with
PCL + active dropblock and compare their performances after iter-
ative attack. During the training process, we set the iteration of
PGD to 10 and after training, we use PGD, BIM and MIN attack
methods to attack the model. The setting of each method follows
the experiment setup in PCL. From the Table 3, PCL + active drop-
block shows better performance across all experiments. For PGD,
BIM, and MIN, the ADPs of PCL with adversarial training are
49.18%, 49.94%, and 46.35%, but PCL + active dropblock with
adversarial training shows 44.66%, 32.94%, and 31.09%, respec-
tively. These ADP reductions indicate that active dropblock can
enhance model robustness of PCL after adversarial training com-
pared to vanilla setting. Particularly, PCL + active dropblock can
show better classification accuracy than vanilla PCL when there
is adversarial training but no attack.
4.3. Ablation study

We investigate each component in our proposed method
through ablation study and justify that they are effectively inte-
grated and both imperative. For ablation study, we select both
CIFAR-10 and Tiny-ImageNet for benchmarks which can better
cover dataset scales. To ensure that the results are comparable,
all configurations are set to the same for each classification task
in following studies.
4.3.1. Active Dropblock vs Vanilla Dropblock
In this section, we compare active dropblock with vanilla drop-

block extensively to justify our approach.
Table 3
Robustness of model with adversarial training using PGD attack.

Training PCLPGD

Accuracy AD

No Attack 91.89 -
BIM 46.7 49.1
MIN 46.0 49.9
PGD 49.3 46.3
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CIFAR-10 + VGG-16 We developed the first comparison study
on CIFAR-10 task. We incorporate vanilla dropblocks and active
dropblocks into VGG-16, separately, and examine their perfor-
mance on a set of PGD attacks. The PDG attacks are developed with
incremental steps. As shown in Fig. 2, when the step is set to 1, the
classification accuracy of VGG-16, vanilla dropblock and active
dropblock are almost the same. When we increase the step of
PGD attack, the classification accuracy is decreasing as expected.
However, both active dropblock and the vanilla dropblock are
helpful for the robustness of the model. And when we set the step
to 20, the accuracy of VGG-16 and vanilla dropblock is close to zero
while it is obvious that the decline level of our method is much
lower than the other cases.

CIFAR-10 + ResNet-18 Next, we investigate the performance
difference on another well-used architecture, ResNets[23], which
consists of two main components, including feature extraction
layer group and the classification layer group. The feature extrac-
tion layer group always consist of four major layers and each of
them is composed of different number of Basicblocks or Bottle-
necks. We equip vanilla dropblock and active dropblock into
ResNet-18 separately, and compare the performance gain from
each equipment.

In order to get a comprehensive comparison between vanilla
dropblock and active dropblock, we equip vanilla dropblock and
active dropblock after each major layer of ResNet-18 separately.
The batch size is set to 128 for each experiment. The total number
of training epoch is 200. The learning rate is initialized to 0.01 and
the drop interval are 80, 60, 40 and 20. The learning rate is divided
by 10 when the training process reaches drop interval. And SGD is
used to optimize the model. And all the results are averaged by
three independent experiments with the same setting. The c of
vanilla dropblock is set to 0.2 and we set c of active dropblock from
0 to 0.225 with 0.025 interval.

Firstly, we train the model without the adversarial training and
the block size is set to 2 in consideration of consistency. The clas-
sification accuracy on different layers is shown in Fig. 3a. From the
PCLPGD + Ours

P Accuracy ADP

92.15 -
8% 51.0 44.66%
4% 61.8 32.94%
5% 63.5 31.09%



Fig. 2. Classification Accuracy (%) for CIFAR-10 under different steps of PGD attack.
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experiment results we can find out that the vanilla ResNet-18 can
consistently gain classification accuracy improvement after
equipped with either components. Particularly, active dropblock
has shown higher improvement than vanilla dropblock. The rela-
tive gain increases are 0.11%, 0.25%, 0.5% and 0.11% for major Layer
1, 2, 3 and 4, respectively. It worth mentioning that the highest rel-
ative gain occurs when we incorporate active dropblock into the
third major Layer of ResNet-18. Then, we use PGD attack method
with different steps to attack the model and the attack results
are shown in Figures from 3b–3d. As we can see from the results,
all of the classification accuracy results have been severely affected
by the perturbations. However, both vanilla dropblock and active
(a) Step=0 (b) Ste

(d) Step=10 (e) Ste
Fig. 3. Classification Accuracy (%) for CIFAR-10 on different layers of ResNet-18 combined
the block size is set to 2. When the step is set to 0, we do not add any perturbation into im
use PGD to attack the model.
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dropblock are useful in weakening the effect of PGD attack method
on different layers. And our method is more effective than vanilla
dropblock. It is worth mentioning that the relative increases of
active dropblock are various on each layer. We envision the reason
of this phenomenon could be the following: The sizes of the feature
map on different layers are various and we use the same block size
to carry out the experiments.

To further explore the impact of block size on active dropblock,
we equipped vanilla dropblock and active dropblock on the third
major layer of ResNet-18 with various block size to carry out the
experiments. We set block size from 1 to 6 with 1 interval because
the size of feature map generated by the third major layer of
ResNet-18 is 8. As shown in Table 4, we use different steps of
PGD attack to attack the model. What needs special explanation
is that when we use 0 step to attack the model, we don’t add
any perturbation into the images, which means the classification
accuracy in the third column corresponds to the normal classifica-
tion accuracy just like the Fig. 3a.

As we can see in the third column of Table 4, the classification
accuracy of vanilla ResNet-18 is 94.12. Both vanilla dropblock and
active dropblock have shown their ability to increase the classifica-
tion accuracy. Vanilla dropblock gains 0.56 improvement on aver-
age while our active dropblock can gain 0.99 improvement on
average. And when we set the block size to 4, we get the highest
classification accuracy on CIFAR-10 dataset. We envision the rea-
son of this phenomenon could be the following: Both methods
drop the features in structured block, which can enhance the
response of the remaining features. So the model trained by either
methods can have better ability to distinguish positive features
from negative features in the testing dataset. However, when we
use active learning to guide the training process, the value of loss
is greatly changed than vanilla dropblock. Which can also improve
the ability of enhancing the response of positive features.
p=1 (c) Step=5

p=15 (f) Step=20
with VanDB and ActDB. The models are trained without the adversarial training and
ages. So (a) is the standard classification accuracy. As the step increase, we start to



Table 4
Classification Accuracy (%) for CIFAR-10 under different steps of PGD attack. The dropblock is equipped on the third major layer of ResNet-18 with different block size. DB is short
for Dropblock and bs is short fot block size in the light of table width.

Step 0 1 5 10 15 20

Regular 94.12 50.96 0.53 0.01 0 0
bs = 1 Vanilla DB 94.35 50.82 0.74 0.01 0 0

Active DB 94.81 57.06 1.62 0.07 0.03 0.01
bs = 2 Vanilla DB 94.64 59.58 1.9 0.18 0.07 0.05

Active DB 95.11 60.06 1.89 0.34 0.18 0.12
bs = 3 Vanilla DB 94.69 60.09 2.16 0.05 0.02 0

Active DB 95.01 60.7 3.2 0.31 0.11 0.05
bs = 4 Vanilla DB 94.54 59.88 2.99 0.25 0.06 0.04

Active DB 95.34 62.53 5.01 0.44 0.1 0.05
bs = 5 Vanilla DB 95.24 58.88 3.57 0.3 0.1 0.04

Active DB 95.21 59.25 5.55 0.53 0.12 0.05
bs = 6 Vanilla DB 94.83 53.46 1.81 0.15 0 0

Active DB 95.2 57.97 3.97 0.5 0.13 0.05
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When we use PGD to attack the model, as shown in the rest five
columns in Table 4, all of the classification accuracy results have
been severely affected. Both vanilla dropblock and active drop-
block have shown their ability to weaken the effect of PGD attack.
However, when we set the block size to 1, which transforms drop-
block into dropout, vanilla dropblock has shown slightly increment
in protecting the model from PGD attack. Compared to other
experiments whose block size is bigger than 1, the classification
accuracy of vanilla dropblock is better than vanilla ResNet-18 after
being attacked by PGD, which proves that dropping features in a
structured way can improve the robustness of the model. It is
worth mentioning that our acitve dropblock still shows its stable
ability to improve the robustness of the model even if the block
size is 1 and we have done various experiments to discuss about
it in the next subsection.

When block size is bigger than 1, it is clear that both methods
have better performances than the base model. Specifically, vanilla
dropblock improves the baseline by 7.2, 1.96, 0.18, 0.05 and 0.03
on average when the block size are 1, 5, 10, 15 and 20, respectively.
But our method has further achieved another 1.72, 1.44, 0.23, 0.08
and 0.04 accuracy increases on average when comparing to the
improvements of vanilla dropblock. And when block size is set to
4, our method achieved the best increases compared to vanilla
dropblock, which are 2.65, 2.02, 0.19, 0.04 and 0.01 respectively.
We envision the reason of this phenomenon could be the follow-
ing: As we proved before, dropping features in a structured block
is one of factors in improving the robustness of the model. Mean-
while, along with the model learning process, the features of
images are abstracted more and more compendious. So in order
to better serve the model training process, the features to be
Table 5
Classification Accuracy (%) for CIFAR-10 under different steps of PGD attack. The models are
third major layer of ResNet-18 with different block size. DB is short for Dropblock and bs

Step 0 1

Regular 90.52 80.09
bs = 1 Vanilla DB 90.7 80.8

Active DB 90.91 81.42
bs = 2 Vanilla DB 91.17 81.54

Active DB 91.16 82.01
bs = 3 Vanilla DB 91.66 81.67

Active DB 91.57 82.38
bs = 4 Vanilla DB 91.11 80.46

Active DB 91.98 81.64
bs = 5 Vanilla DB 91.07 79.98

Active DB 92.24 82.43
bs = 6 Vanilla DB 91.69 81.33

Active DB 91.53 81.38
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dropped cannot be either too much or too little. In other words, dif-
ferent layers may require different strategies of picking the value of
block size. However, according to the experiments in the Table 5,
our method can always achieve improvements regardless of block
size.

Normal training vs Adversarial training An adversarial sample
is a clean sample perturbed by a small distortion carefully crafted.
Adversarial samples can always mislead the model and produce
some unexpected behaviors. And adversarial training is a collection
of techniques to train neural networks on how to spot intentionally
misleading data or behaviors. This differs from the standard classi-
fication problem in machine learning, since the goal is not just to
spot ”bad” inputs, but preemptively locate vulnerabilities and craft
more flexible learning algorithms. Generally speaking, when we
carry out adversarial training, we usually generate perturbations
by some certain methods, like gradient-based methods, and add
these perturbations onto the original images. And then we use
these adversarial images to train the model. While when we train
the model equipped with the dropblock, the features will be
dropped in a structured block during the training process. Intu-
itively, this will neutralize the effect of adversarial training to some
extend.

To find out this, we carry out various of experiments on CIFAR-
10 dataset using adversarial training. We use PDG with 10 steps to
generate the adversarial samples during the training process. And
the rest configurations of experiments are the same as the previous
part.

Firstly, we investigate the performance on image classification.
We deploy vanilla dropblock and active dropblock on ResNet-18
respectively. As shown in Fig. 4a, both methods have better perfor-
trained using the adversarial training with 10 steps and dropblock is equipped on the
is short fot block size in the light of table width.

5 10 15 20

35.88 28.73 26.45 25.37
37.6 30.09 27.74 26.61
38.91 31.49 28.88 27.87
39.11 32.06 29.26 27.85
39.85 32.25 29.57 28.24
39.33 31.74 29.17 27.87
41.49 34.15 31.13 29.95
37.66 30.34 27.76 26.57
41.57 34.9 32.28 31.1
36.32 29.26 26.87 25.77
37.38 30.65 28.55 27.5
37.6 30.61 28.28 26.98
38.18 31.13 28.73 27.51



(a) Step=0 (b) Step=1 (c) Step=5

(d) Step=10 (e) Step=15 (f) Step=20
Fig. 4. Classification Accuracy (%) for CIFAR-10 on different layers of ResNet-18 combined with VanDB and ActDB. The models are trained using adversarial training with 10
steps. The block size is set to 2. As explained before, (a) stands the standard classification accuracy and the rest figures are classification results under different steps of PGD
attack.

Table 6
Classification Accuracy (%) for Tiny-Imagenet under different steps of PGD attack.

Model ResNet-18

Step Regular Vanilla Dropblock Active Dropblock

0 59.84 60.80 61.96
1 11.40 11.82 12.78
5 2.72 2.8 3.28
10 1.94 2.16 2.38
15 1.82 2.08 2.28
20 1.82 2.10 2.24
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mances than the vanilla ResNet-18. But our method has further
achieved better accuracy increases when comparing to the
improvement of the other method in most cases.

Then, in order to find out the effect on robustness, we use PGD
attack method with different steps to attack models and the results
are shown in Figures from 4a–4f. As the same before, all of the clas-
sification accuracy results have been affected and both methods
have shown better performances than the original ResNet-18.

To find out if there exist similar phenomenon when we change
the value of block size, we carry our various experiments based on
different block sizes. Firstly we train the models under the same
configurations except block sizes, and both vanilla dropblock and
active dropblock are equipped after the third major layer of
ResNet-18. Then we use PDG with different steps to attack the
models. When step equals to 0, it means that we don’t add any per-
turbations onto the images. In other words, it represents the stan-
dard classification accuracy when the step is set to 0. As we can see
from Table 5, both methods can gain accuracy increases compared
to the vanilla ResNet-18. And it is worth mentioning that under
adversarial training, the improvements are unstable. However,
our method has further achieved another 0.33 accuracy increase
on average when comparing to the improvement of the vanilla
method. When we begin to increase the step of PGD attack method,
the classification accuracy begin to be affected by perturbations.
Both methods have shown better performances the vanilla
ResNet-18. And it is obvious that our active dropblock has shown
more superior ability of weakening the effect of perturbations than
vanilla dropblock. Which is also worth to mention is that we still
get the best performance when we set 4 to block size. Our method
has further achieved another 1.18, 3.91, 4.56, 4.52 and 4.53 accu-
racy increase when comparing to the improvement of vanilla drop-
block. From this part we can infer that the standard classification
accuracy will be Influenced slightly when we use both adversarial
training and dropblock. However, the robustness of model will get
stronger.
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Low resolution vs High resolution Then, we investigate the
performance difference on larger scale dataset. We construct our
experiments based on the Tiny-ImageNet. Tiny-ImageNet is the
subset of the ImageNet dataset. Although the size of this dataset
is relatively smaller but it covers a good variety of classes with
higher resolution. Adequate class coverage ensures its moderate
task complexity and ability to evaluate model power. Each class
of Tiny-ImageNet only contains 500 training images while there
are 200 classes in Tiny-ImageNet so it is relatively difficult for
the model to learn all effective features in limited epochs. In other
words it is easier to attack the model training based on this dataset
successfully.

For network configuration, we select ResNets[23] as well. The
batch size of these experiments is set to 64. SGD is used as the opti-
mizer of the model. We use 0.01 to initialize the learning rate and
every 30 epochs the learning rate is divided by 10. The total epoch
of these experiments is 120.

As shown in Table 6, the attack step equals to 0 means the
model doesn’t get attacked. The characteristic of normal classifica-
tion accuracy stays almost the same as what we have shown in for-
mer section, which is that by applying our active dropblock can
obtain performance increasing. When the model begins to get
attacked, all of the test accuracy drops are very serious. And the



Fig. 5. Classification Accuracy (%) for Tiny-ImageNet on different layers of ResNet-
18 combined with Vanilla Dropblock and Active Dropblock.
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vanilla dropblock is not helpful for the robustness. But our method
has shown more stable effect. We envision the reason of this phe-
nomenon could be the following: Both methods drop the features
in structured block, which can enhance the response of the remain-
ing features. This will lead to the classification accuracy increasing
as the first line of Table 7. Meanwhile, this can improve the robust-
ness of the model when ratio of training set and test set is ade-
quate. However, when the size of training data is small, this
effect will decrease. So training the model in our active way is
the key to improve the robustness of the model.

ResNet-18 vs ResNet-34 We further examine the impact from
deeper network structure. We incorporate vanilla dropblock and
active dropblock into different layers of ResNet-18 and ResNet-
34, respectively. We set the ResNet-18 to base model architecture
and the experimental results are listed in Fig. 5. The vanilla ResNet-
18 can consistently gain classification accuracy improvement after
equipped with either components. Particularly, active dropblock
has shown higher improvement than the vanilla dropblock. The
relative gain increases are 1.41%, 2.48%, 1.56%, and 1.91%, for
Layer 1, 2, 3 and 4, respectively. It is worth mentioning that the
highest gain occurs when we incorporate active dropblock into
the last layer, i.e., layer 4, of the ResNet-18. (See Fig. 6).

We also investigate model performance under ResNet-34 with
more complex and deeper architecture. As shown in Fig. 5, our
active dropblock consistently outperform vanilla dropblock. The
relative gain increases are 1.68%, 0.91%, 2.09%, and 1.29%. In par-
ticular, the performance gain from vanilla dropblock is signifi-
cantly reduced. The accuracy even becomes worse after vanilla
dropblock is equipped in layer 1 and 2. By contrast, ResNet-34 still
consistently benefits from active dropblock across all layers. This
observation indicates that our approach shows good and stable
performance in deeper network. In addition, higher performance
gain occurs in later layers, which suggests that more benefits could
be gained when active dropblock is equipped in later layers.
Fig. 6. Classification Accuracy (%) for Tiny-ImageNet on different layers of ResNet-
34 combined with Vanilla Dropblock and Active Dropblock.
4.3.2. Active Dropblock vs Vanilla Active Dropout
We also compared active dropblock with vanilla active dropout

in model robustness. The difference between two approaches is
dropout strategy. Vanilla active dropout consists of pixel level
(i.e., drop block size = 1) dropout and active learning. The experi-
ments are developed with CIFAR-10 and VGG-16. The selected
attack method is PGD and incremental step attack is chosen to
examine model robustness. The results are illustrated in Fig. 2.
Apparently, active dropblock significantly outperforms vanilla
active dropout, while vanilla active dropout only shows slightly
better performance than vanilla VGG-16. Meanwhile, we also carry
out various experiments with CIFAR-10 and ResNet-18 as shown in
Table 8. As we have seen in previous parts, active dropout have
better performance than vanilla dropout while both method out-
perform the base model. This indicates that the benefit from active
learning is significantly boosted when drop out pattern is spatially
block-based. It implies that active learning and dropblock are both
imperative to best performance gain of active dropout.
Table 7
Classification Accuracy (%) for Tiny-Imagenet under different steps of PGD attack.

Model ResNet-34

Step Regular Vanilla Dropblock Active Dropblock

0 62.14 62.22 63.52
1 12.76 11.96 14.56
5 2.96 2.9 3.6
10 2.14 2.06 2.68
15 2.1 1.98 2.54
20 2.1 1.94 2.54
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4.4. Data efficiency of active dropblock

In addition to better model robustness and accuracy, our active
dropout can exhibit higher data efficiency over learning tasks since
it is able to augment features and exploit data information. We jus-
tifies this data efficiency with image classification and fine-grained
visual classification.

4.4.1. Image Classification
We developed the experiments on image classification task

with dataset of CIFAR-10. The investigated network architectures
are VGG-16 and ResNet-18. To show data-efficiency, we reduce
the size of images to 2500 randomly, and conduct network training
with the obtained reduced dataset. The results are shown in Fig. 7.
It is found that our active dropblock can yield significant accuracy
improvement compared to active dropout, vanilla dropblock, and
corresponding vanilla network backbone. Then, we increase the
data size to further examine the consistency of this advantage
and the results are included in Fig. 7. As expected, active dropblock
consistently outperforms the others, while the advantage becomes
smaller when data size is larger than 32500, which data size is
already adequately large. This finding indicates that active dropout
can augment data and improvement learning efficiency from lim-
ited data.



Table 8
Classification Accuracy (%) for CIFAR-10 on different layers of ResNet-18 combined with Vanilla Dropout and Active Dropout. DO is short for Dropout in the light of table width.

Model ResNet-18 Without Adversarial Training

Step Regular Layer1 Layer2 Layer3 Layer4

Vanilla DO Active DO Vanilla DO Active DO Vanilla DO Active DO Vanilla DO Active DO

0 94.12 94.46 94.49 94.22 95.01 94.35 94.81 94.17 94.65
1 50.96 52.22 57.14 51.9 58.11 50.82 57.06 48.94 56.58
5 0.53 1.22 2.38 0.64 2.74 0.74 1.62 0.94 1.51
10 0.01 0.08 0.22 0.01 0.32 0.01 0.07 0.02 0.04
15 0 0.01 0.08 0 0.15 0 0.03 0 0.01
20 0 0 0.03 0 0.08 0 0.01 0 0.01

Model ResNet-18 With Adversarial Training(Training step: 10)

Step Regular Layer1 Layer2 Layer3 Layer4

Vanilla DO Active DO Vanilla DO Active DO Vanilla DO Active DO Vanilla DO Active DO

0 90.52 90.78 90.51 90.61 90.44 90.7 90.91 90.54 90.99
1 80.09 80 80.91 79.81 80.7 80.8 81.42 80.34 80.68
5 35.88 35.7 37.38 36.12 37.34 37.6 38.91 37.09 37.77
10 28.73 28.44 30.1 28.59 29.86 30.09 31.49 29.52 30.62
15 26.45 25.94 27.49 25.81 27.39 27.74 28.88 26.9 27.86
20 25.37 24.8 26.51 24.72 26.27 26.61 27.87 25.81 26.76

(a) VGG-16 (b) ResNet-18

Fig. 7. Classification accuracy on CIFAR-10 with different size of training dataset and the whole testing dataset. (a) is trained by VGG-16 and (b) is trained by ResNet-18. The
ActDB is applied on the posterior layers of these models.
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4.4.2. Fine-grained visual classification
In addition to some kind of low resolution dataset, we also per-

form some experiments on some high resolution dataset. In this
section we developed the experiments on fine-grained visual clas-
sification task with datasets of Stanford Cars and Aircrafts. The
investigated network architectures are ResNet-18, ResNet-34, and
DRN-C-26. We resize each dataset into 448 � 448 and the batch
size of each experiment is set to 64. We use SGD as the training
optimizer and use 0.001 to initialize the learning rate. Meanwhile,
the learning rate is divided by 10 every 60 epochs and we use 300
epochs to carry out these experiments.

The comparison results are reported in Table 9. It shows that
active dropout also obtain consistently higher performance than
vanilla network backbones. These observations justify that the fea-
ture augmentation from active dropblock can improve training
efficiency on large-scale dataset.
Table 9
Classification Accuracy (%) for Fine-Grained Visual Classification on different databases wi

Task Stanford Cars

Backbone Regular Act

ResNet-18 84.72 87.
ResNet-34 89.13 89.
DRN-C-26 90.30 90.
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Furthermore, we provide some qualitative results to illustrate
the feature maps from active dropblock equipped DRN-C-26. From
Fig. 8, active dropblocks generate more spotty features but the acti-
vation areas better cover the entire objects. This implies that the
active dropblock can enlarge the receptive field and render net-
work detect more distinct features between objects, which can
help to increase classification accuracy. Also, the spotty and ran-
dom features show higher complexity of activation process, which
can increase attack optimization cost.
5. Discussion and conclusions

Dropblock is an effective approach to improve the robustness of
deep neural network. It proposes to drop features in a structured
block. The feature extraction ability can be improved in this way
and there are a lot of works have used it to improve their perfor-
mance[42,43]. However, most of them are rely on some empirical
th input size of 448.

Aircrafts

ive Regular Active

56 81.49 82.84
64 86.11 86.23
74 86.80 87.91



(a) Image (b) VanDB (c) ActDB (d) Image (e) VanDB (f) ActDB

Fig. 8. Activation maps extracted from DRN-C-26 while we use test dataset to generate these activation maps. (a) and (d) are the training images from dataset. (b) and (e) are
the activation maps based on the vanilla dropblock. (c) and (f) are the activation maps based on our method.
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information to choose the hyperparameter like block size or c,
which usually takes a lot of time on experiments. On the other
aspect, data augmentation is a critical component of training deep
neural network. One of the latest work on data augmentation[44]
investigates how learned, specialized data augmentation policies
improve generalization performance. However, this kind of meth-
ods usually focus on input level or low level of model, which can-
not guarantee the stability of augmenting.

To resolve this dilemma, we use the active learning to enhance
the dropblock and proposed the active dropblock. We force the
selection of dropout selector to disturb the input vector to a great
extent and keep the basic optimizing principle of deep neural net-
work. By doing this way, the upper boundary of dataset can be
increased and the model trained from this way can predict cor-
rectly some input data which may not be collected in the dataset.
According to our experiments, our method can improve the data
effectiveness when the dataset is fragmentary. When we use the
whole dataset or a small-scale dataset to train the model, we can
get a higher result than the original dropblock. Meanwhile, our
method can improve the robustness of deep neural network and
achieve better results compared to the state-of-the-art work.

To the best of our knowledge, this is the first work applying the
active learning to the dropblock and focusing on the robustness of
the deep neural network. This work can greatly improve the fea-
ture extraction ability of model and our method can apply to many
other works. We believe that more research work in this direction
are valuable, like improve the training effectiveness of model.
Some of these idea will be considered in future work.
CRediT authorship contribution statement

Jie Yao: Conceptualization, Methodology, Software, Formal
analysis, Investigation, Resources, Data curation, Writing - original
draft, Writing - review & editing, Visualization, Project administra-
tion. Weiwei Xing: Validation, Formal analysis, Supervision, Fund-
ing acquisition. Dongdong Wang: Methodology, Writing - original
199
draft, Visualization. Jintao Xing: Resources, Visualization. Liqiang
Wang: Validation, Formal analysis.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgement

Funding: This work was supported by the National Natural
Science Foundation of China [grant number 61876018].

References

[1] N. Carlini, D. Wagner, Adversarial examples are not easily detected: Bypassing
ten detection methods, in: Proceedings of the 10th ACMWorkshop on Artificial
Intelligence and Security, 2017, pp. 3–14.

[2] Y. Wang, D. Zou, J. Yi, J. Bailey, X. Ma, Q. Gu, Improving adversarial robustness
requires revisiting misclassified examples, in: International Conference on
Learning Representations, 2020.

[3] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, A. Madry, Robustness may be at
odds with accuracy, arXiv preprint arXiv:1805.12152.

[4] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout:
a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res.
15 (1) (2014) 1929–1958.

[5] G. Ghiasi, T.-Y. Lin, Q.V. Le, Dropblock: A regularization method for
convolutional networks, Adv. Neural Inform. Processing Syst. (2018) 10727–
10737.

[6] A. Azulay, Y. Weiss, Why do deep convolutional networks generalize so poorly
to small image transformations?, J Mach. Learn. Res. 20 (184) (2019) 1–25.

[7] I.J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial
examples, arXiv preprint arXiv:1412.6572.

[8] A. Kurakin, I. Goodfellow, S. Bengio, Adversarial machine learning at scale,
arXiv preprint arXiv:1611.01236.

[9] D. Hendrycks, T. Dietterich, Benchmarking neural network robustness to
common corruptions and perturbations, arXiv preprint arXiv:1903.12261.

[10] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, P. McDaniel,
Ensemble adversarial training: Attacks and defenses, arXiv preprint
arXiv:1705.07204.

[11] T. Miyato, S.-I. Maeda, M. Koyama, K. Nakae, S. Ishii, Distributional smoothing
with virtual adversarial training, arXiv preprint arXiv:1507.00677.

http://refhub.elsevier.com/S0925-2312(21)00659-7/h0005
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0005
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0005
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0005
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0020
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0020
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0020
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0025
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0025
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0025
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0030
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0030


J. Yao, W. Xing, D. Wang et al. Neurocomputing 454 (2021) 189–200
[12] A. Mustafa, S. Khan, M. Hayat, R. Goecke, J. Shen, L. Shao, Adversarial defense
by restricting the hidden space of deep neural networks, in: Proceedings of the
IEEE International Conference on Computer Vision, 2019, pp. 3385–3394.

[13] B. Settles, Active learning literature survey, Tech. rep., University of
Wisconsin-Madison Department of Computer Sciences (2009).

[14] S. Hanneke et al., Theory of disagreement-based active learning, Foundations
and Trends, Mach. Learn. 7 (2–3) (2014) 131–309.

[15] S. Dasgupta, Two faces of active learning, Theor. Computer Sci. 412 (19) (2011)
1767–1781.

[16] J.T. Ash, C. Zhang, A. Krishnamurthy, J. Langford, A. Agarwal, Deep batch active
learning by diverse, uncertain gradient lower bounds, arXiv preprint
arXiv:1906.03671.

[17] O. Sener, S. Savarese, Active learning for convolutional neural networks: A
core-set approach, arXiv preprint arXiv:1708.00489.

[18] D. Gissin, S. Shalev-Shwartz, Discriminative active learning, arXiv preprint
arXiv:1907.06347.

[19] M. Ducoffe, F. Precioso, Adversarial active learning for deep networks: a
margin based approach, arXiv preprint arXiv:1802.09841.

[20] W.H. Beluch, T. Genewein, A. Nürnberger, J.M. Köhler, The power of ensembles
for active learning in image classification, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 9368–
9377.

[21] D. Wang, Y. Li, L. Wang, B. Gong, Neural networks are more productive
teachers than human raters: Active mixup for data-efficient knowledge
distillation from a blackbox model, arXiv preprint arXiv:2003.13960.

[22] A. Casanova, P.O. Pinheiro, N. Rostamzadeh, C.J. Pal, Reinforced active learning
for image segmentation, arXiv preprint arXiv:2002.06583.

[23] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[24] S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, Aggregated residual transformations
for deep neural networks, in: Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 1492–1500.

[25] F. Yu, V. Koltun, T. Funkhouser, Dilated residual networks, in: Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017, pp.
472–480.

[26] C. Szegedy, S. Ioffe, V. Vanhoucke, A.A. Alemi, Inception-v4, inception-resnet
and the impact of residual connections on learning, in: Thirty-first AAAI
conference on artificial intelligence, 2017.

[27] D. Han, J. Kim, J. Kim, Deep pyramidal residual networks, in: Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp. 5927–
5935.

[28] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, arXiv preprint arXiv:1409.1556.

[29] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception
architecture for computer vision, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 2818–2826.

[30] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, R. Fergus, Regularization of neural
networks using dropconnect, in: International conference on machine
learning, 2013, pp. 1058–1066.

[31] G. Larsson, M. Maire, G. Shakhnarovich, Fractalnet: Ultra-deep neural
networks without residuals, arXiv preprint arXiv:1605.07648.

[32] B. Zoph, V. Vasudevan, J. Shlens, Q.V. Le, Learning transferable architectures for
scalable image recognition, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 8697–8710.

[33] Y. Yamada, M. Iwamura, T. Akiba, K. Kise, Shakedrop regularization for deep
residual learning, arXiv preprint arXiv:1802.02375.

[34] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, C. Bregler, Efficient object
localization using convolutional networks, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp. 648–656.

[35] T. DeVries, G.W. Taylor, Improved regularization of convolutional neural
networks with cutout, arXiv preprint arXiv:1708.04552.

[36] J. Krause, M. Stark, J. Deng, L. Fei-Fei, 3d object representations for fine-grained
categorization, in: Proceedings of the IEEE international conference on
computer vision workshops, 2013, pp. 554–561.

[37] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, A. Vedaldi, Fine-grained visual
classification of aircraft, arXiv preprint arXiv:1306.5151.

[38] I.J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial
examples, arXiv preprint arXiv:1412.6572.

[39] A. Kurakin, I. Goodfellow, S. Bengio, Adversarial examples in the physical
world, arXiv preprint arXiv:1607.02533.

[40] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, J. Li, Boosting adversarial attacks
with momentum, in: Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 9185–9193.

[41] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, Towards deep learning
models resistant to adversarial attacks, arXiv preprint arXiv:1706.06083.

[42] K. Lee, S. Maji, A. Ravichandran, S. Soatto, Meta-learning with differentiable
convex optimization, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 10657–10665.

[43] G. Ghiasi, T.-Y. Lin, Q.V. Le, Nas-fpn: Learning scalable feature pyramid
architecture for object detection, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 7036–7045.

[44] B. Zoph, E.D. Cubuk, G. Ghiasi, T.-Y. Lin, J. Shlens, Q.V. Le, Learning data
augmentation strategies for object detection, arXiv preprint arXiv:1906.11172.
200
Jie Yao received the B.S. degree in Software Engineer
from Beijing Jiaotong University, China, in 2016. During
2019–2020, he was a visiting student at University of
Central Florida. Currently, he is a Ph.D. candidate of
School of Software Engineering at Beijing Jiaotong
University, China. His research interests include image
processing, computer vision and deep model robust-
ness.
Weiwei Xing received her B.S. degree in Computer
Science and Technology and Ph.D. degree in Signal and
Information Processing from Beijing Jiaotong University,
in 2001 and 2006 respectively. During 2011–2012, she
was a visiting scholar at University of Pennsylvania.
Currently, she is an associate professor at School of
Software Engineering, Beijing Jiaotong University. Her
research interests mainly include intelligent informa-
tion processing and artificial intelligence.
Dongdong Wang is a Ph.D. candidate in computer sci-
ence at University of Central Florida. He earned his
Master of Science in Environmental Science from Duke
University in 2017. His research explores the approa-
ches for knowledge distillation and deep neural net-
work optimization and the application field is focused
on computer vision. His work is developed upon
numerical analysis and optimization. He has published
several peer-reviewed papers in leading conferences
such as CVPR and AAAI.
Jintao Xing received his B.S. degree in Software Engi-
neering from Beijing Jiaotong University, China, in 2017.
Currently he is a Ph.D. student at degree at School of
Software Engineering, Beijing Jiaotong University. His
main research interests include image processing,
computer vision, transportation planning, and intelli-
gent transportation systems.
Liqiang Wang is an associate professor in the Depart-
ment of Computer Science at the University of Central
Florida. He is the director of Big Data Lab. He was a
faculty member (2006–2015) in the Department of
Computer Science at the University of Wyoming. He
received Ph.D. in Computer Science from Stony Brook
University in 2006. He was a visiting Research Scientist
in IBM T.J. Watson Research Center during 2012–2013.
His research focuses on big data techniques, which
include the following aspects: (1) improving the accu-
racy, security, privacy, and fairness of big data analytics;
(2) optimizing performance, scalability and resilience of

big data processing, especially on Cloud and GPU platforms; (3) using program
analysis and deep learning techniques to detect and avoid programming errors,
execution anomaly, as well as performance defects in big data programs. He

received NSF CAREER Award in 2011 and Castagne Faculty Fellowship (2013-2015).

http://refhub.elsevier.com/S0925-2312(21)00659-7/h0060
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0060
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0060
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0060
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0070
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0070
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0075
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0075
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0100
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0100
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0100
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0100
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0100
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0115
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0115
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0115
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0115
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0120
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0120
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0120
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0120
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0125
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0125
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0125
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0125
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0135
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0135
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0135
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0135
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0145
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0145
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0145
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0145
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0150
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0150
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0150
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0150
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0160
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0160
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0160
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0160
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0170
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0170
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0170
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0170
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0180
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0180
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0180
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0180
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0200
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0200
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0200
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0200
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0210
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0210
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0210
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0210
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0215
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0215
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0215
http://refhub.elsevier.com/S0925-2312(21)00659-7/h0215

	Active dropblock: Method to enhance deep model accuracy�and robustness
	1 Introduction
	2 Related work
	2.1 Attacks and defenses
	2.2 Active learning
	2.3 Dropout

	3 Approach
	3.1 Dropblock in deep neural networks
	3.2 Dropblock selector
	3.3 Active selection for policy
	3.4 Overall algorithm

	4 Experiments
	4.1 Comparison experiments
	4.1.1 Experiment Setting
	4.1.2 Evaluation metric.
	4.1.3 Competing method

	4.2 Quantitative results
	4.3 Ablation study
	4.3.1 Active Dropblock vs Vanilla Dropblock
	4.3.2 Active Dropblock vs Vanilla Active Dropout

	4.4 Data efficiency of active dropblock
	4.4.1 Image Classification
	4.4.2 Fine-grained visual classification


	5 Discussion and conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	References


