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ABSTRACT

For visual tracking methods based on reinforcement learning, action space determines the ability of
exploration, which is crucial to model robustness. However, most trackers adopted simple strategies with
action space, which will suffer local optima problem. To address this issue, a novel reinforcement learning
based tracker called AEVRNet is proposed with non-convex optimization and effective action space
exploration. Firstly, inspired by combinatorial upper confidence bound, we design an adaptive explo-
ration strategy leveraging temporal and spatial knowledge to enhance effective action exploration and
jump out of local optima. Secondly, we define the tracking problem as a non-convex problem and incor-
porate non-convex optimization in stochastic variance reduced gradient as backward propagation of our
model, which can converge faster with lower loss. Thirdly, different from existing reinforcement learning
based trackers using classification method to train model, we define a regression based action-reward
loss function, which is more sensitive to aspects of the target states, e.g., the width and height of the tar-
get to further improve robustness. Extensive experiments on six benchmark datasets demonstrate that
our proposed AEVRNet achieves favorable performance against the state-of-the-art reinforcement learn-

ing based methods.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Visual tracking is one of the fundamental components in the
field of computer vision, and has been intensively studied in video
surveillance, intelligent transportation, unmanned aerial vehicles,
and autonomous driving. Usually, its task involves automatically
tracking the targets of interest in video sequences. Since the type
and size of tracking object are uncertain, the robustness of tracker
is an important index to measure its performance. However, it
remains challenging to precisely tracking in complex scene, since
many factors, like light changes, occlusion, motion blur, scale
changes, and rotation to inner plane, will affect its performance.

With the great improvement of computing power, deep learn-
ing has been successfully applied to object tracking and achieves
great success. Deep learning based methods take advantage of
deep neural networks, such as, CNN [1-3], RNN [4,5], GANs
[6-8], and Siamese network [9], to predict object position. These
methods usually yield good robustness since tracking models are
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developed based on the training datasets with a large number of
labeled images. However, the sampling and searching strategies
they adopted without temporal and spatial knowledge of the
object, and thus lead to inefficient and limited space searching dur-
ing tracking process.

Recently, reinforcement learning (RL) based methods have been
introduced into object tracking and achieve remarkable perfor-
mance. ADNet [10], as one of the successful implementations,
builds an appearance model with a supervised learning method
and designs object motion model by policy gradient method.
Actor-Critic [11], as another exemplary implementation, modifies
the Actor-Critic framework to solve visual tracking problem based
on continuous action space. Although they achieve better tracking
performance compared to other RL-based methods, higher conver-
gence cost affects their tracking efficiency and limited action space
causes lower accuracy. For example, ADNet suffers frequent re-
detection during online tracking and these corrections arise from
local optima and limited action space. This case may become worse
when object features significantly differ from the training datasets.
Meanwhile, either Actor-Critic or ADNet shows high variance in
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backward propagation, which reduces convergence speed and
robustness of tracker.

In order to solve these problems, a novel regression RL-based
tracker AEVRNet is proposed. To accelerate and reduce volatility
during training and improve tracker robustness, non-convex opti-
mized stochastic variance reduced gradient (SVRG) backward
propagation is proposed to balance stochasticity induced noise
and ensure fast convergence speed. For solving inefficient and lim-
ited tracking space searching problem, an adaptive exploration
strategy is designed by combining spatio-temporal knowledge to
enhance tracker exploration ability and helps escape local optima.
A novel regression based action-loss function is defined to further
improve the sensitivity of the target states in AEVRNet and reduce
target loss caused by target states change. The performance of
AEVRNet is evaluated on six benchmarks: OTB-2013 [12] with 50
sequences, OTB-100 [12] with 100 sequences, UAV123 [13] with
123 vehicle sequences, NFS [14] with 100 high frame rate
sequences, TC128 [15] with 128 colorful video sequences and
VOT16 with 61 sequences [16]. The results show that our tracker
outperforms the state-of-the-art RL-based trackers.

The contributions of this paper include:

¢ A novel robust RL-based object tracker AEVRNet is proposed. To
our knowledge, this is the first attempt to use non-convex opti-
mized SVRG is designed for both deep neural network and pol-
icy gradient to accelerate model training and improve model
robustness.

e An adaptive exploration method is designed to balance explo-
ration and exploitation. By taking spatio-temporal knowledge
into consideration, the proposed method can jump out of local
optima and improve the tracking accuracy.

e A regression based action-reward loss function is defined to
improve the robustness of RL-based trackers, which is more
sensitive to aspects of the target states. Results of six bench-
mark datasets show that AEVRNet achieves favorable perfor-
mance against the state-of-the-art RL-based methods in terms
of accuracy and robustness.

The rest of this paper is organized as follows. We review related
work in Section 2, and outline AEVRNet in Section 3. Section 4 illus-
trates experimental results including comparison with state-of-
the-art methods. Section 5 draws conclusions.

2. Related work
2.1. Deep learning based methods

Based on well-developed deep neural networks, like CNN, effi-
cient and accurate inter-frame algorithms are designed to address
computer vision and pattern recognition problems. Deep learning
methods in tracking can be classified into two categories. The first
category uses the powerful representation capability of deep learn-
ing, which will improve the robustness of tracking. For example,
Dong et al. [17] design a two-stage classifier to track the target
in occlusion situation, and Ma et al. [18] use sparse represents to
handle the target in motion blur situation. Shen et al. [19] adap-
tively refine the tracking targets and tracking boxes by introducing
the minimum output sum of squared error filter. YCNN [20] pro-
poses a two-flow CNN to measure the similarity between two
image patches. Shen et al. [21] design submodular optimization
to form the object trajectory in complex scene. Du et al. [22] pro-
pose tracking method based on LSTM to learn spatial-temporal
of the tracking target. Ma et al. [23] train semi-supervised linear
kernel classifiers for visual tracking with Fisher vectors. Scale adap-
tive tracking method is introduced into tracking by [24]. Based on
their methods, Qi et al. [25] combine scale and state to present the

49

Neurocomputing 449 (2021) 48-60

tracking target. Huang et al. [26] capture the structure of the target
by a part space with two online learned probabilities. Hu et al. [27]
use both labeled and unlabeled samples to improve the robustness
of model. CREST [28] and UCT [29] integrate discriminative corre-
lation filter (DCF) processes with neural networks for end-to-end
training. VITAL [6] introduces adversarial learning to improve
tracking performance. However, they do not provide a powerful
target motion strategy and the high robustness of tracker is based
on extensive off-line training and complex networks, which is
time-consuming and will limit the speed of online tracking.

The second category is Siamese network, which has shown great
potential in tracking accuracy and speed. Siamese network com-
pares the similarity between the search area and the object tem-
plate in the first frame without update [9]. Based on that,
SiameseFC [30] improves tracking performance using fully convolu-
tional networks to search object. Shen et al. [31] design attention
mechanism with Siamese network and improve the matching dis-
crimination. Dong et al. [32] propose a quadruplet network to learn
the relationship between samples and achieve better representa-
tion ability. SA-Siam [33] uses dual connection networks and chan-
nel awareness mechanisms to improve performance. Liang et al.
[34] extract local semantic features with more fine-grained and par-
tial information to solving drift problem. Dong et al. [35] propose a
triplet loss to extract more discriminative deep features and Lu et al.
[36] design a shrinkage loss to penalize the importance of easy sam-
ples. RASNet [37] introduces off-line trained general, target adapted
residual, and channel favored feature attention methods into Sia-
mese network. However, Siamese networks focus on utilizing the
appearance information and pay less attention to the background
information, which is crucial for discriminating the target from sim-
ilar objects. To address these issues, our proposed method in this
paper provides a regression based network considering both target
and background information for visual tracking.

2.2. Reinforcement learning based methods

RL has been developed rapidly in recent years. As a sequential
decision-making method, RL has successfully solved lots of prob-
lems in scientific research, engineering, liberal arts and other disci-
plines [38].

Recently, deep RL has been introduced to visual tracking. Com-
pared with deep learning based methods, deep RL analyzes tracking
problems more accurately by self-learning. Meanwhile, augment-
ing training samples improves the discriminative ability of tracker.

For example, HP [39] adopts a hyperparameter optimization
method to learn appropriate hyperparameters, and designs a con-
tinuous deep Q-learning framework to track the object, an efficient
heuristic strategy is also proposed by [40] to handle high dimen-
sional state space and accelerate tracking. ADNet [10] builds an
object appearance model with a supervised learning method, and
implements policy gradient method to train motion model. EAST
[41] improves the tracking efficiency using an off-line trained
agent to determine optimal number of layers for motion predic-
tion. The P-tracker [42] views object tracking process as a partially
observable decision-making process (POMDP), and updates the
model only when tracking drift occurs. This tracker uses an unlim-
ited stream of Internet videos as training samples.

However, traditional RL-based trackers usually employ greedy
method to explore action vectors and select the best action with
the highest evaluation score as current solution. This method per-
forms well on exploitation of the knowledge of current optimal
actions, but suffers limited action space of exploration, and stuck
in local optima [39,10]. Hence, instead of simple action exploita-
tion strategy, we propose an adaptive exploration to expand the
action space and balance of exploration and exploitation to
improve tracking performance.
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3. Adaptive exploration network with non-convex optimization
for tracking

3.1. Overview

In this paper, we propose a novel robust RL-based tracker AEVR-
Net. The tracking framework is shown in Fig. 1, which is divided
into three stages: 1) off-line supervised training, 2) off-line RL
training, and 3) online tracking. The model structure and the track-
ing problem definition based on reinforcement learning will be
introduced in the following.

3.1.1. Off-line supervised training stage

For off-line supervised training stage, an initial model is trained
with supervised learning based on non-convex optimization, and
we obtain the supervised trained model. In this stage, we use
supervised learning method to train off-line model on the Ima-
geNet dataset [1]. By training with a large number of off-line train-
ing samples, the trained model can distinguish the tracking target
and the background. Then, the trained model will be provided as
the initial model for the next stage of RL learning training.

3.1.2. Off-line RL training stage

For the off-line RL training stage, non-convex optimization,
regression based loss function and adaptive exploration methods
are used to train the supervised trained model and obtain online
tracking model. In this stage, the tracking model learns how to
choose action during the tracking process and achieve better track-
ing results.The off-line RL training process is based on ALOV300
[43] dataset, which is same as ADNet.

3.1.3. Online tracking stage

For the online tracking stage, with the background and bound-
ing box of previous frame, our tracker will predict the location and
scale of the object in current frame by adaptive exploration, and
tracker will be updated continuously. During the tracking process,
the adaptive exploration will combine the spatio-temporal infor-
mation of the current tracking target to give a better choice of
action, making the tracking model can jump out of a local optimum
solution.
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3.2. Problem definition

Considering object tracking as a sequential decision problem,
we achieve reinforcement learning by introduce Markov decision
process (MDP) to define the tracking problem. MDP consists of four
major entities: action a € A, state s € S, state transition function
st = f(s,a), reward r(s,a) and the four entities can be specified as
follows.

Action: Action a = (Ax', Ay") is defined by the change of bound-
ing boxes involving 11 object move actions (i.e., left, right, up,
down, double left, double right, double up, and double down), scale
changes (scale up and scale down), and stop. Each action is
encoded by one 11-dimensional vector with one-hot form. In
detailed, Ax = aw!, Ay" = ath’, o is set as 0.3 as ADNet.

State: State s; is described by the information within bounding
box p, and the dynamics of actions denoted by action dynamics
vector d;. p, is consist of b, = (x{,y*,w*, h*), which means the center
position and the width and the height of the tracking box, respec-
tively. In detailed, a per-processing function s = ¢(b, F) is defined
to crop the image patch within the bounding box b; in a given
frame F.

State transition function: State transition function is formu-
lated with horizontal and vertical change. The tracker will move
the target bounding box according to new position according to
the the prediction action. The b, can be changed to b.,; by a1,
and the transition can be formulated as (x'+ Axfy' + Ayt,
h' + Axt, w' & Ay'). Different from the existing RL-based trackers
using simple strategies to build action space, we innovatively
design an adaptive exploration strategy combined with temporal
and spatial information to enhance exploration of our tracker,
which can successfully escape local optima.

Reward: The reward function (s, a) means the improvement of
tracking accuracy by taking action a and transfer state s into state
s'. It is by the overlap ratio of the predicted bounding box b, and the
ground truth G, as Eq. (10).

3.3. Tracking model structure

In the proposed tracking framework, we follow the popular
object tracking model structure. As shown in Fig. 2, the backbone
structure is designed with three convolutional layers of VGG-M
and two fully-connected layers with ReLU activation. The last layer

Adaptive policy desicion

s> Tracking
mmmmmm> Adaptive policy
> Greedy policy

L=~ Adaptive decision process

Predicted position

Fig. 1. The online tracking framework of our proposed tracker AEVRNet. Assume default greedy search yields the policy plan along the direction of light blue arrows. The red

arrows show the adaptive exploration policy decision.
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is connected to a vector consisting of action probabilities and con-
fidence scores. In order to further improve the training conver-
gence speed and model accuracy of RL-trackers training methods,
we innovatively propose non-convex optimized SVRG as backward
propagation to relieve local optima problem for tracking problem.
Moreover, an action-reward loss function is designed with regres-
sion to train AEVRNet, which honors Intersection Over Union (IoU)
between the estimation and ground truth bounding boxes. Differ-
ent from existing RL-based trackers using classification, regression
is more sensitive to the target states, such as the width and height
of the target. The model can learn more scale change information
and reduce target loss caused by extra interference information,
which can further improve the accuracy of the proposed tracker.
The main contributions and details are described as follows.

3.4. Off-line pre-training

3.4.1. Non-convex optimized variance reduced backward propagation
Supervised learning for object tracking problem can be formu-
lated into composite optimization problem:

=f(x) +gkx)

rQIRnF (%)

(1)

where f(x) is a smooth function and g(x) is referred to as regular-
izer. Currently, majority of tracking problems are solved by SGD
method [44] with the backward propagation as Eq. (2), where 0 is
model parameter, B denotes mini-batch, g is regularier, # is learning
rate, and t refers to update iteration.

B
O = 0~ 1[5 D VF(00) + V(0] )
i=1
However, SGD usually takes much time to converge because of
the large variance of Vf;(6;) during random sampling [45]. Dong et
at. [39] use sequence based hyperparameter optimization method
to improve the discrimination ability of model. Anschel et al. [46]
average previously estimates and reduce the approximation error
variance. Wu et al. [47] propose a triplet-average policy gradient
to reduce the estimation bias. Pourchot et al. [48] combine the
cross-entropy and twin delayed deep deterministic policy gradient
to improve the robustness of model. In order to improve the accu-

Supervised training stage

Fully-connected layer
Supervised Learning
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racy and efficiency of our proposed AEVRNet, a non-convex SVRG
backward propagation is introduced to instead of SGD as shown
in Eq. 3.

Supposing the current training epoch is s, and we will develop a
snapshot for the model parameters obtained from last training
epoch ¢*~'. Given the current sampled data i, the previous gradient
Vfi(6°") is calculated based on the snapshot model parameters
and the average gradient ft across all data in one epoch is calcu-
lated with the snapshot model parameters. The difference between
them is used to adjust current calculated gradient, thus reducing
model updating variance, which is shown in Eq. 3.

B
O = 0, [je+ 5 D (VEO) - VA0 + VB0 G3)
i-1
Furthermore, visual tracking is a non-convex problem and the
backward propagation without non-convex optimization may
severely suffer local optima and cause tracking failure. Therefore,
we conduct non-convex optimization with stochastic process to
alleviate premature convergence to local optima and the details

are shown in Algorithm 1.

Algorithm 1. Non-convex SVRG Optimization for Supervised
Learning Training Process.

Input: a set of images Dy, number of epochs S, epoch size m,
step size 7, initial parameter 62, := 6°.
:fors=0toS—-1do
057 = b — 0,
= Vf(#)
fort=0tom—1do
Xxg ~ U(Dn)
vt = i+ S (VAT -
01 =071+ nvi“
8: end for
9: end for
10: return ¢; for a random pair (s,t) € {[0,S— 1] x [0,m — 1]}

Vfi(x16°)

N O bW N =

Reinforcement training stage

4

~

i
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Fig. 2. The pre-training process of our proposed method AEVRNet. The pipeline starts from image database, and then, goes through supervised learning training, and next,
experiences fine-tuning with RL. The forward propagation is conducted based on regression loss function. The backward propagation is accomplished with non-convex SVRG

method.
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Same as supervised learning, non-convex optimized SVRG back-
ward propagation is also introduced into RL training process to
alleviate convergence to local optima. Inspired by [49], the period
gradient will adjust current calculated gradient and reducing
model updating variance. When solving policy gradient problem,
Algorithm 1 will be subjected to bias and a correction term w is
employed during gradient projection. This term w is calculated

by (t/0;, 0) = 252
shot. The details are shown in Algorithm 2.

As far as we know, it is the first time to introduce SVRG back-
ward propagation into object tracking. In particular, we innova-
tively designed non-convex optimized SVRG backward
propagation for both supervised learning and RL visual tracking

process, as shown in Fig. 2.

with importance weighting from policy snap-

Algorithm 2. Non-convex SVRG Optimization for Policy
Gradient Tracking Training Process.

Input: a set of images Dy, number of epochs S, epoch size m,
step size 7, batch size N, mini-batch size B, gradient
estimator g, initial parameter 69, := 6°.

l:fors=0toS—-1do

6= o =05,

Sample N trajectories{t;}

L= V(&)

fort=0tom-1do
Sample B trajectories{t;} from p(.|¢*")
¢ =300 (VF(Til0F) — (Tl ) VF(1i]0°))

Z}ﬁﬂ =L+ Cﬁ“

9 o =0 o

10: end for

11: end for

12: return 6; for a random pair (s,t) € {[0,S— 1] x [0,m — 1]}

O NUh WY

3.4.2. Adaptive exploration based on combinatorial upper confidence
bound

RL-based object tracking methods usually suffer the issue of
local optima due to limited action space. When model reaches a
local optima, the limited action space prevents the model from
jumping out of the local optima and causes tracking failure. How-
ever, existing RL-based trackers try to solve this problem with sim-
ple action space searching strategy, which may still stuck in local
optima. Hence, we propose an adaptive exploration method that
employs spatio-temporal information to optimize action space
search and can jump out of local optima to find a better solution.
This method expends the action space with spatio-temporal infor-
mation, and also improves the tracking performance by leveraging
the balance between exploitation and exploration.

The adaptive exploration strategy is formulated with policy gra-
dient and combinatorial upper confidence bound (CUCB) [50] to
expand the action space with spatio-temporal information and
then the action obtained by adaptive exploration strategy will
fine-tune deep neural network to jump out of local optima and find
a better solution.

Algorithm 3. Adaptive Exploration for Policy Search.

Input: arbitrarily initialized 6, frame number T, current frame
to, Step size #, episode length 7, update interval k, action set
A, and episode set .

1: for t = to to t; by k do
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2: if to > T then
3 a; = arg max,Q(a)
4: else

5: a: ~ CUCBJA¢]
6: end if

7: end for

8: for each episode {s;,, ar,, Tt,» - - St,_;» e, ys Tt} ~ T dO
9: fort=tytot; do

10: 0 — 0+nVologmy (s, ar)Q™ (st, ar)

11: end for

12: end for

13: return 0

Our adaptive exploration combines exploration actions into
sequential exploitation process as shown in Fig. 1. Generally,
stochasticity can expand the action search space, and can jump
out of local optima. However, random perturbation may only jump
out of local optima without find a better solution, which increases
the risk of target lose due to stochasticity perturbation. To address
this issue, the prior spatio-temporal knowledge of action explo-
rations is adopted to improve the quality of action space search.
While introducing stochasticity makes the model can jump out of
local optima, it can also constrain stochasticity through the
spatio-temporal information of previous tracking results to ensure
that the model can find a better solution. The optimization process
is summarized in Algorithm 3.

The adaptive exploration is initialized with the default greedy
method. When a new frame comes, the tracking model will calcu-
late the score for each action. Given the score set, the action with
maximum score will be chosen for optimal policy solution and
bounding box projection (shown by Eq. 4). After initialization,
the tracking process will be warmed up with several frames.

A = argmaxQ,(a) (4)
where Q,(a) denotes the score of an action and t is current frame
number.

After warming up period, the action space search strategy will
be replaced by CUCB, and X means the warm up stage flag, which
is shown as Eq. (5), and the designed CUCB is shown as Algorithm
4.1n line 4, i; means the current average value of action i. t means

the total number of the current selection, /3t is the standard

deviation of /i; and is used to update fi;. It shows that as the num-
ber of trials for each action increases, the confidence interval
becomes narrower and the probability of action is more certain.
If the mean value of the action is greater, the greater chance of
being selected, and if the mean value of the action is smaller, the
less chance it will be selected. In line 5, the Q,(a; of each action
is added with the corresponding fi;, and the action with maximum
Q,(a; will be selected as the A;.

Algorithm 4. Combinatorial Upper Confidence Bound.

Input: action i, the total number of times action i is played in
action memory M;, the mean of all outcomes scores of
action i observed in action memory ;.

1: For each action i, play A; and update variables M; and fi;.

2: while true do

t—t+1

For each action i, set f; =f1; + /3t
A¢ = argmaxq(Q.(a;) + f;)
Play action A; and update all M; and f;

3
4
5:
6
7: end while
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During the tracking process, the frame number T is an impor-
tant hyper parameter and is used to control the beginning of adap-
tive exploration. When T is not smaller than a specific number,
adaptive exploration system is activated. Otherwise, default
greedy-search is activated. We test T with different value on
0TB2013, which is detailed in Section 4, and the tracker performs
better when T = 30. The tracking failure score is used for cost func-
tion and optimal hyper parameter is achieved after several
iterations.

A { CUCB(a),

argmaxQ, (a),

3.4.3. Regression based training

The first stage is to pre-train tracker with supervised learning.
The existing RL-based trackers, like ADNet or ACT, formulate
action-reward function with classification setting. This formulation
requires the location of the target to be converted into a marked
training sample. However, spatial continuous information is lost
during this conversion. To preserve this important information,
we propose a regression training method for forward propagation
to train the proposed model. We innovatively designed a regres-
sion based action-reward loss function for RL-based tracker.
Instead of discrete binary reward function, a continuous function
is developed to map IoU with reward, as shown in Eq. (7), and then,
reward contains more detailed information of target.

The training dataset consists of image patches {p;}, action labels

if T>30
otherwise.

(5)

{0}, and regression value {r{*®}. During training, the action
dynamics vector {d;} is set to zero. The ground truth patch posi-
tion, size and image, are provided. A sample patch p; is generated
around the ground truth with Gaussian importance sampling and

its corresponding action o}”m is assigned by,

(act)

0" = argmaonU(f (pj,a),G)

(6)
where f(pj,a) denotes the patch moved from p; by action a and G
means the ground truth patch. In order to make full use of the
object information, the corresponding action regression value r}”g)
to p; is innovatively defined as follows,

1 = IoU(p;, G). (7)

Different with the existing RL-based trackers using the classifi-
cation method to train the tracker, which is not sensitive to the tar-
get deformation and leading to target loss. We propose and define
a regression based action-reward loss function, which is more sen-
sitive to aspects of the target states, e.g., the width and height of
the target and reduce tracking failure due to target deformation.

A training batch consists of the randomly selected training sam-
ples {(p;, of r”"g)} . The proposed network (Ws;) minimizes the

multi-task loss functlon by non-convex optimized SVRG. The
multi-task loss function is defined by minimizing the following
loss Lg;,

Ly = ZL ZL

where m denotes the size of patch batch, L; denotes the cross-
entropy loss, L, denotes the squared loss, and 6, and r;® denote
the predicted action and corresponding action regression IoU value,
respectively.

The second stage is to pre-train tracker with RL. The network is
fine-tuned by policy gradient approach and uses the same param-
eters of Wy, as the initial network parameters. The tracking process

act ac[ reg reg

8)
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has sequential states s;, the corresponding action a;; and the
reward function r(s;,). a;, is defined by,

9)

where p(als;;) means conditional action probability and the reward
function r(s;,) is as follows,

r(Se)) = { 1, if IoU(br,G) > 0.7

—1, otherwise
where br means the terminal patch position.

Same as other trackers, we use the first six layers of the network
to training. The parameters (ws,...,ws) in Wy, are updated by
non-convex optimized SVRG to maximize the tracking scores as
follows,

Ay = arg maxp(alse;; W)

(10)

ologp(ae,|sc; W
AWRL(XZZ g (A |Se; RL)Z[’

(11)
=1 t=1 Wit

where Z;, = r(s;;) means the reward, L is training frames, and T; is
steps during the [ — th frame.

3.5. Online tracking and update

After the first and second pre-training stages, the pre-trained
tracker will track and be updated during online visual tracking
for the third stage. For each frame, our method chooses the posi-
tion with maximum score given by adaptive exploration strategy
as the estimated object position. Then tracker will be updated with
samples by Gaussian sampling around the predicted location. We
only fine-tune the fc layers wy,...,w; instead of all layers, for
the fc layers would have the video specific knowledge while convo-
lutional layers would have generic tracking information. The track-
ing framework is shown in Algorithm 5.

Algorithm 5. Framework of Our Proposed Method for Online
Tracking.

Input: initial object position Py.

Output: estimated object position Py = (X, y;, W, he);

1: Generate samples in the first frame to update all fully-
connected layers in network;

2: repeat

3: Extract features from (x;_1,Y; 1);

4: repeat

5 Compute scores for 11 actions and choose action with
adaptive policy exploration;

6: Move the bounding box with the selected action and
add the selected into the action sequence;

7: Extract features from the bounding box;

8: until The selected action is a stop action;

9: Compute score of the bounding box;

10: if score<—0.5 then

11: Use re-detection module to find a position with a
higher score around the bounding box;

12: end if
13: Update the network by the predicted position
Pt = (xt,¥:, W, ht) and action sequence;

14: until End of video sequence;

4. Experiments

Our proposed AEVRNet is implemented in MATLAB 2017b with
MatConvNet toolbox, which runs on a PC with a 4-cores 4.2 GHz
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Intel 7700k CPU and an NVIDIA 2080Ti GPU with 11G memory.
During off-line training, we used ALOV300 [51] as the training
dataset, which is the same as ADNet. At the stage of online track-
ing, only fully-connected layers are fine-tuned. Concerning sample
generation, 150 negative and 200 positive samples are generated
from the first frame. After the first frame, 15 negative and 20 pos-
itive samples are generated when tracking is successful, and 512
samples are generated in the re-detection model when tracking
fails. In terms of adaptive exploration, T is set to 30, which means
the CUCB strategy starts at the 31st frame.

4.1. Evaluation on OTB

Our proposed method is evaluated with OTB dataset, which is a
popular benchmark dataset. The tracking performance is also com-
pared of another nine state-of-the-art trackers, including ECO [52],
MDNet [53], ADNet, DeepSRDCF [54], CF2 [55], HDT [56], SRDCFde-
con [57], MEEM [58], and KCF [59]. These methods can be classified
into CF based methods, deep learning based methods, and RL-
based methods. The experiments are carefully designed based on
the same protocols and the same parameters.

The selected OTB datasets include OTB-50, OTB-100, and OTB-
2013. Fig. 4 shows the tracking results of all trackers under one-
pass evaluation(OPE) on these datasets. The performance of our
proposed method is shown in Fig. 4, exhibits high precision and
success rate, and the state-of-the-art trackers are beaten. The pre-
cision of our tracker is 88.6%, 90.9%, and 95.3% on OTB-50, OTB-
100, and OTB-2013, receptively. It is shown that the proposed
method yields higher precision than ECO and MDNet in OTB-
2013. In terms of OTB-50 and OTB-100, the precision of our
method is comparable with ECO and MDNet. In addition, compared
with ADNet, our method runs significantly faster and accurately.

To further analyze the performance of the proposed method, we
choose more state-of-the-art methods for comparison in OTB-100,
including PG-Net [60], Siam R-CNN [61], GradNet [62], DiMP [63],
TADT [64], C-RPN [65], DAT [66], SPM [67]. The results are shown
in OTable 1. As shown in the table, the proposed method performs
favorably against other state-of-the-art methods.

4.2. Quantitative evaluation
OTB divides the video sequences into 11 attributes (e.g., fast

motion, occlusion, scale variation and illumination variation) and
those attributes in OTB benchmark are also analyzed. Fig. 3 lists

plots of OPE - clutter (32) Precision plots of OPE - illumination variation (38)
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Fig. 4. Precision and success plots using the one-pass evaluation(OPE) over OTB-
100, OTB-50, and OTB-2013 benchmarks. The legend of location error precision
contains threshold score at 20 pixels for each tracker. The performance of AEVRNet
is favorably against the state-of-the-art trackers.

the results from all trackers based on eight main video attributes
of OPE in OTB-100. Our method AEVRNet still better performs on
illumination variation, low resolution, and background clutter.
Compared with ADNet, AEVRNet outperforms in scale variation,
in-plane rotation by 2.6% and 4.1%, receptively. As our method
use regression instead of classification method, which is more sen-
sitive to aspects of the target states, e.g., the width and height of
the target. Compared with ECO and MDNet, our proposed AEVRNet
uses adaptive exploration to enhance larger action space and have
chance to jump out of local optima. Meanwhile, the performance of
the proposed method in fast motion slightly lower than some
state-of-the-art trackers. This result is relevant to feature extrac-
tion of deep neural network. Since we use less layers in our con-
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Fig. 3. Precision plots over eight tracking challenges. The scores are obtained with a threshold of 20 pixels for each tracker. Our proposed method AEVRNet performs

favorably against the state-of-the-art trackers on these eight challenging attributes.
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Table 1

Comparison with the state-of-the-art trackers on the OTB-100 dataset. The results are presented in terms of precision. The best score is highlighted in bold.
Tracker Ours PG-Net Siam R-CNN GradNet DiMP
Precision 0.909 0.892 0.891 0.861 0.901
Tracker TADT C-RPN DAT SPM SiamFC++
Precision 0.866 0.875 0.903 0.899 0.855

structed network to accelerate tracking, which lower the discrim-
inative ability of feature.

4.3. Qualitative evaluation

Fig. 5 shows tracking results of several top tracking methods:
MDNet, KCF, ADNet, CF2, together with our proposed method on
seven challenging sequences. CF2 performs well in rotation and
deformation conditions (Diving and MotorRolling), but misses the
object when fast motion and large-scale variation occur (Biker,
Bird2, and Matrix), because it has no re-detection module. KCF uses
only HOG feature to represent the object, as a result, it can track
fast but cannot fully describe the object, which leads to object
missing. It also fails to track the object when heavy occlusion
and background clutter occur (Bird2, MotorRolling, and Matrix).
ADNet based on RL performs well in rotation and scale variation

conditions (Diving, Walking2, and MotorRolling). However, for fast
motion and heavy occlusion conditions, it may miss the object
(Biker, Matrix, and Bird2) as its greedy strategy may not jump out
of local optima. MDNet performs well in rotation, fast motion
and occlusion conditions (MotorRolling, Bird2, and Diving) with
multi-domain theory, but when background clutter and large-
scale variation situations occur (Biker, CarScale, and Matrix), its per-
formance is less accurate because the tracker cannot follow the
object well under fast appearance changes.

The proposed method performs well for two main reasons.
Firstly, the regression training method is more coupled to tracking
problem. Different with the existing RL-based trackers using the
classification method to train the tracker, which is not sensitive
to the target deformation and leading to target loss. Our proposed
method pays more attention to learn the target states, e.g., the
width and height of the target. The results show that our proposed

——— ADNet ——— MDNet

Ours

CF2 — KCF

Fig. 5. Qualitative evaluation of our method, MDNet, KCF, ADNet, and CF2 on seven challenging sequences, Biker, Bird2, CarScale, Diving, Walking, MotorRolling, and Matrix.
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Fig. 6. Precision plots of different component of our proposed AEVRNet on OTB-100
and OTB-2013, which shows the improvement of each component of AEVRNet.

AEVRNet performs well in deformations, rotations, and scale vari-
ation conditions (CarScale, Walking2, Diving, and MotorRolling).
Especially for CarScale, our method adjusts almost perfectly to
the scale variation of the ground truth, much better than other
methods. Secondly, the adaptive exploration method can enable
the proposed tracker to expand the action space and jump out of
local optima. Furthermore, the results show that our method per-
forms well in occlusion, background clutter, and fast motion (Biker,
Bird2, and Matrix). It performs better than ADNet in all aforemen-
tioned seven challenging sequences.

4.4. Ablation analysis

To further analyze the contribution of each component in the
model, we evaluate different variations of our method on OTB-
100 and OTB-2013. Here, ADNet is used as a baseline. “SVRG”
denotes the case that the proposed method is only with non-
SVRG to do off-line training and online tracking. “SVRG-Action”
denotes the case that the proposed method used both non-SVRG
and adaptive exploration for object tracking. “Ours” denotes the
case that the proposed method used all of non-SVRG, adaptive
exploration and regression based training.

The performance of all those variations is shown in Fig. 6. It is
obtained that every single component can improve performance
of the proposed method. For adaptive exploration combines tem-
poral and spatial relations to solve the problem of RL-based visual
tracking during online tracking, which can enhance exploration
and successfully escapes local optima. The results show that it
gains 2.9% and 5.0% improvements on two datasets. The regression
reduces information loss and improves the robustness of the pro-
posed method.

4.4.1. Non-convex optimized stochastic variance reduced gradient
backward propagation

We analyze the impact of the proposed non-convex SVRG and
trains 120 epochs, which is same as the ADNet settings. From
Table 2 we can find that non-convex optimized SVRG (non-SVRG)
can converge fast with lower loss on training and test datasets
by 0.017 and 0.027, respectively. Because non-SVRG uses the opti-
mal solution of the current epoch of training to initial the param-
eter of next epoch. Compared with SGD using the random

Table 2
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parameter as the initial parameter, the model training can be
accelerated. The online tracking results are shown in Fig. 6, the
non-SVRG can improve the baseline’s precision by 0.8% and 0.6%
on two datasets. To further analyze the effective of the proposed
non-convex SVRG, we apply it to famous deep learning based
trackers ECO and MDNet. As shown in Table 3, the non-SVRG can
gain 0.6% and 0.5% improvement on ECO and MDNet, respectively.
It is mainly benefited from the robust model trained by non-SVRG
can convergence faster with lower loss and improves the accuracy
of the proposed method.

4.4.2. Adaptive exploration based on CUCB

We also analyze the impact of the hyper parameter T in adap-
tive exploration. The hyper parameter T is tested on OTB-2013 by
different values from 0 to 50, and the proposed method performs
better when T is 30 as shown in Table 4. That means when the
tracker is robust to the object, the adaptive exploration can
enhance the exploration ability better. Adaptive exploration com-
bines temporal and spatial information to solve action space selec-
tion, which can enhance exploration and successfully escapes local
optima. The results shows that it gains 2.3% and 3.1% improve-
ments on two datasets shown in Fig. 6. As shown in Fig. 7, the
adaptive exploration can effectively alleviate target loss in occlu-
sion and blur. To further analyse the effect to action selection of
1, we design three action selection methods on OTB-100. I method
chooses action with greedy, Il method chooses action only with g,

3Int
2M;

Table 5. The results show that compared to the greedy method,
the current average value f£i; can obtain 1.1% and 0.8% improve-
ment on precision and AUC. When [i; is combined with the stan-

3Int
2M;

0.5% on precision and AUC, respectively.

and III method chooses with fi; + the results are shown in

dard deviation the results can be improved by 0.6% and

4.4.3. Regression based training

We analyze the impact of regression based training. Fig. 8
shows that the regression is sensitive to different aspects of the
target states, e.g., the width and height of the target, which can
help tracker predict position more accurate around the tracking
object. Fig. 6 shows that it gains 0.6% and 2.0% improvements on
two datasets, since our model is sensitive to aspects of the target
states, e.g., the width and height of the target and reduces interfer-
ence information passed to tracker. Furthermore, the regression
based training can also reduce re-detection frequency by 30% on
average when blur occurs. To further analyse the effective of the
proposed the regression based action-reward loss, we apply it to
another reinforcement learning based tracker ACT, the experiment
results are shown in Table 6. We can find the proposed method
obtains 1.2% and 1.3% improvement in precision on OTB-100 and
OTB-2013 datasets, and also improve the AUC rate, respectively.
It is mainly because the proposed method is more sensitive to dif-
ferent aspects of the target.

The training loss and test error of pre-training for our proposed method. The non-SVRG method performs better than SGD method, which convergences faster with lower loss and

error.

Epoch 1 30 60 90 120

Training loss SGD 1.753 1.578 1.569 1.562 1.558
non-SVRG 1.748 1.559 1.550 1.545 1.541

Test error SGD 0.543 0.436 0.429 0.423 0.419
non-SVRG 0.540 0.407 0.401 0.396 0.392
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Table 3
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The precision results of the baseline, ECO, and MDNet with non-SVRG on OTB-100. The results show that the non-SVRG can be applied to other deep learning based trackers and

improve their training process.

Baseline ECO MDNet
Precision SGD 0.880 0.910 0.909
non-SVRG 0.888 0.916 0.914
Table 4
The average precision results on OTB-2013 dataset. The best scores are highlighted in bold. Our proposed method performs best when T = 30.
T=0 T=10 T=20 T=30 T=40 T=50
Precision 0.920 0.926 0.935 0.953 0.941 0.933

Greedy L] Ours

Fig. 7. Performance evaluation using greedy and our adaptive exploration method
in ClifBar, BlurOwl and Tiger2 video sequences. Yellow and red bounding boxes
denote greedy and our adaptive exploration, respectively.

Table 5
Comparison with the three action choose methods on the OTB-100 dataset.

I Il I

Precision 0.880 0.891 0.897
AUC 0.629 0.637 0.642

Fig. 8. Performance evaluation using regression and classification methods in Biker,
Bird1 and Girl2 video sequences. Red and green bounding boxes denote regression
and classification methods, respectively.

4.5. Evaluation on NFS, VOT, TC128, and UAV123 datasets

In order to further analyze the effectiveness of the proposed
method, we choose four famous datasets. For each dataset, we
select representative state-of-the-art tracking methods to compare
with the proposed method, respectively.

We choose VOT16, and VOT18 to analyze the proposed method.
VOT16 [16] contains 60 sequences, and all the trackers are evalu-
ated by EAO (Expected Average Overlap), A (average overlap over
successfully tracked frames), and R (failure rate). VOT18 adds more
complex tracking sequences testing and uses the same evaluation
method as VOT16. Our method performs better than CREST, which
is RL-based. Because CREST has limit exploration ability, which
shows that adaptive exploration for action space is crucial for
robust tracking. SiamFC and SA-Siam ignore background informa-
tion resulting in low robustness. The results in Table 7 shows the
efficiency of the proposed method with an EAO score of 0.342
and achieves the best A and R scores among those trackers. More-
over, the proposed method also performs favorably against other
methods in VOT18 dataset (see Table 8).

TC128 |[15] contains 128 challenging colorful tracking
sequences. The same evaluation setting is developed for TC128
and other datasets. 4 state-of-the-art methods (ECO, ADNet, DRL-
IS [76], and SiamRPN [77]) are compared with our proposed
method. ECO achieves a precision rate of 85.2% and our proposed
method outperforms ADNet with an improvement of 3.8% shown
in Table 9.

UAV123 [13] includes 123 tracking sequences and most of the
are vehicles, which is harder to track while facing occlusion and
out of view problem. Our method is compared with 12 state-of-
the-art methods, the obtained precision are shown in Table 9.
Our tracker outperforms ECO and achieves precision of 75.2%.

NFS [14] includes 100 sequences with 240 fps high frame rate.
Most of those sequences are more than 5000 frames, we evaluate
on the 240 fps version of the dataset with 8 state-of-the-art track-
ers. Table 10 shows success plot over 100 videos, reporting AUC
scores in the legend. The proposed method significantly outper-
forms CCOT with a relative improvement of 4%.

5. Conclusion

In this paper, we propose a novel RL-based tracking method
AEVRNet with non-convex optimized SVRG and adaptive explo-
ration strategy. Firstly, the adaptive exploration strategy is pro-
posed to combined temporal and spatial relations to expand
action space and enhance exploration to escape local optima for
object tracking. Secondly, SVRG backward propagation is pre-
sented to optimize supervised learning and RL for object tracking,
which results in good convergence accuracy and speed. In particu-
lar, they are non-convex optimized, thus premature convergence
to local optima is avoided. Thirdly, an action-reward loss function
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Elejlfeseults of reinforcement learning based tracker ACT with and without the proposed regression based action-reward loss on OTB-2013 and OTB-100.
OTB-100 OTB-2013
Precision AUC Precision AUC
ACT 0.859 0.648 0.884 0.667
ACT+regression 0.871 0.658 0.897 0.679

Table 7
Comparison with the state-of-the-art trackers on the VOT 2016 dataset. The results are presented in terms of expected average overlap (EAO), accuracy value (A), and robustness
value (R). The best scores are highlighted in bold.

Ours CCoT MDNet SiamFC [30] CREST DSLT [68] SA-Siam [33] VITAL Meta-Tracker [69] RTINet [70]
EAO 0.342 0.331 0.257 0.277 0.283 0.332 0.291 0.323 0314 0.298
R 0.8 0.85 1.204 1.382 1.083 0.93 1.08 0.97 0.934 1.07
A 0.52 0.523 0.533 0.549 0.524 0.525 0.54 0.531 0.521 0.57
Table 8

Comparison with the state-of-the-art trackers on the VOT 2018 dataset. The results are presented in terms of expected average overlap (EAO), accuracy value (A), and robustness
value (R). The best scores are highlighted in bold.

Ours PG-Net DRT [71] MAML [72] Siam R-CNN SiamMask [73] SiamRPN++ [74] ATOM [75] ECO ccot

EAO 0.466 0.447 0.356 0.392 0.408 0.347 0.414 0.401 0.280 0.267
R 0.182 0.192 0.201 0.22 0.22 0.288 0.234 0.204 0.276 0.318
A 0.641 0.618 0.519 0.635 0.609 0.602 0.6 0.59 0.484 0.494

Table 9
Precision and success plots of our proposed method on TC128 and UAV123. The best scores are highlighted in bold.
Ours ECO ADNet SiamRPN DRL-IS
TC128 AUC 0.603 0.605 0.574 0.578 0.599
Precision 0.821 0.825 0.783 0.799 0.818
UAV123 AUC 0.531 0.525 0.502 0.527 -
Precision 0.752 0.741 0.716 0.748 -

Table 10
Comparison with the state-of-the-art trackers on the NFS dataset. The results are presented in terms of AUC. The best scores are highlighted in bold.
Ours ECO Siamcar [78] ADNet CCOT [79] Bridge [80] DeepSRDCF DaSiamRPN [81] MDNet SiamDW [82]
AUC 0.532 0.470 0.507 0.461 0.492 0.515 0.353 0.395 0.425 0.502

is designed by regression for object tracking, which is more Investigation. Ligiang Wang: Writing - original draft, Writing -
sensitive to aspects of the target states, e.g., the width and height review & editing.

of the target and can further improve the accuracy of the proposed
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