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Siamese network is highly regarded in the visual object tracking filed because of its unique advantages
of pairwise input and pairwise training. It can measure the similarity between two image patches, which
coincides with the principle of the matching-based tracking algorithm. In this paper, a variant Siamese
network based tracker is proposed to introduce attention module into traditional Siamese network, and
relocate the object with some auxiliary relocation methods, when the proposed tracker runs under an
untrusted state. Firstly, a novel attention shake layer is proposed to replace the max pooling layer in
Siamese network. This layer could introduce and train two different kinds of attention modules at the
same time, which means the proposed attention shake layer could also help to improve the expression
power of Siamese network without increasing the depth of the network. Secondly, an auxiliary relocation
branch is proposed to assist in object relocation and tracking. According to the prior assumptions of visual
object tracking, some weights are involved in the auxiliary relocation branch, such as structure similarity
weight, motion similarity weight, motion smoothness weight and object saliency weight. Thirdly, a novel
response map based switch function is proposed to monitor the tracking process and control the effect
of auxiliary relocation branch. Furthermore, in order to discuss the effect of pooling layer in Siamese
network, 9 pooling and attention architectures are proposed and discussed in this paper. Some empirical
results are shown in the experiment part. Comparing with the state-of-the-art trackers, the proposed

tracker could achieve comparable performance in multiple benchmarks.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Visual object tracking is an enduring and fundamental research
direction, because of its strong application requirements, such as
supervision, auto driving, etc. Besides it is also the foundation of
some other artificial intelligence research, like video based crowd
behavior analysis and anomaly detection, etc. According to the
definition given by Smeulders et al. [1], visual object tracking is an
online semi-supervised learning problem. The only training sample
is from the state of object at the first frame. How to construct the
appearance model of the tracking object accurately, how to online
update the appearance model to adapt the changes of object in the
video and how to monitor tracking process to relocate the object
when failures occur are the key points to be solved in visual object
tracking. Before deep learning based tracking methods, Correlation
Filter (CF) based tracking methods [2-4| have attracted much at-
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tention of the researchers because of their rapidity and simplicity.
However, the tracking performance of this kind tracking methods
is limited by their expression power. Using the deep features from
a well pre-trained network [5,6] may improve the representation
ability to a certain extent. However, these deep feature extraction
methods may also cause the representation inaccuracy of some
objects, because the well pre-trained networks usually are not
trained for tracking tasks, but for classification tasks. Using deep
networks as classifiers in visual object tracking directly [7] may
provide suitable appearance model. However, updating the param-
eters in deep networks is very time consuming, and that is also
the reason why Multi-Domain Network (MDNet) based tracker|7]
could not run in real time.

In addition, Siamese network, which is a pairwise input and
pairwise training network, is also very popular in the visual object
tracking field [8,9]. It could measure the similarity between two
image patches without knowing the category labels of these two
image patches. Normally, Siamese network is treated as a matching
function and used to measure the similarity between templet im-
ages and instance patches obtained from the frames [9]. This kind
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of methods is simple and easy to understand, but considering the
instance patches that need to be measured, these methods is very
time consuming. Besides, it fails to consider the update of tem-
plets. In order to improve the tracking speed and break the lim-
itation in traditional Siamese network that the two input patches
must be of the same size, the idea of CF based trackers is intro-
duced into Siamese network through fully-convolutional operations
[10]. The output of exemplar image is used as a kernel in corre-
lation filter. Thus, the tracking results can be obtained by finding
the peak response score in response map. Due to the way of train-
ing and the backbone network, the expression power of the pro-
posed tracker in [10] is very limited. In addition to replacing the
AlexNet with some deeper network architectures, many variants
[11-13] have been proposed to improve the expression power of
Siamese network as well. Such as replacing the training loss with
a triplet loss [12], combining Siamese network with Region Pro-
posal Network (RPN) [13], etc. Considering the Siamese network
based trackers and their variants, we find that most of the trackers
focus on how to improve the expression power by a deeper back-
bone network. However, this may result in GPU consumption dur-
ing the training process. It may also cause the over fitting, which
means the pre-trained Siamese trackers are very dependent on the
distribution of training samples and testing sequences. Besides, all
the Siamese network based trackers fail to monitor the tracking
process and do not have relocation algorithm, which means these
trackers may provide some results with low response/confidence
scores, and it is hard for them to relocate the objects when failure
occurs. Furthermore, they do not consider the prior assumptions of
visual object tracking. For example, normally, the motion and de-
formation of object in the tracking sequences are smooth, which
means the location or state of the object between two adjacent
frames does not change much. These prior knowledge sometimes
helps refine tracking results and relocates objects.

Motivated by the above discussion, we try to design a Siamese
network based tracker named as AS-Siamfc (Attention Shake
Siamfc, AS-Siamfc), And it mainly focuses on the following three
aspects: how to improve the expression power of AlexNet based
Siamese network without increasing the depth or the layers of the
network, how to introduce the prior knowledge of visual object
tracking into the Siamese network based tracker to refine and im-
prove the tracking results, and how to monitor the tracking process
and detect the tracking failure. In order to solve the three problems
above, firstly, a novel Attention Shake (AS) layer is proposed in this
paper to replace the max pooling layer and improve the expres-
sion power of Siamese network. Different from the other atten-
tion methods, the proposed AS layer combines two different atten-
tion modules with a shake-shake framework [14]. The shake-shake
framework replaces the standard summation of parallel branches
in a multi-branch network with a stochastic affine combination
[14]. This also helps to train the two different attention modules
automatically and avoid over-fitting in the training process at the
same time. Due to the AS layer, the proposed tracker pays more
attention on real objects rather than the hard negative samples,
which also means the AS layer helps to improve the expression
power of Siamese network. Secondly, considering the prior as-
sumptions of visual object tracking, an auxiliary relocation branch
is proposed to refine the location of object when the proposed
tracker runs under untrusted state. In the auxiliary relocation
branch, there are some weights to meet the prior assumptions of
visual object tracking, such as structure similarity weight, motion
similarity weight, motion smoothness weight and object saliency
weight. The additional prior knowledge could refine the tracking
results and bring benefits, especially when the failure occurs or a
tracker runs under untrusted state. Contrarily, it may also bring
the noise and interferes with the tracking results. Hence, moni-
toring tracking process and detecting failure become very impor-

tant. Thirdly, in order to monitor tracking process, we propose a re-
sponse map based switch function. When the value of switch func-
tion is below a certain threshold, we believe the tracker runs under
untrusted state, and the weights in auxiliary relocation branch will
help this tracker to refine tracking results. Moreover, noticing that
few works discuss the impact of pooling layer on Siamese network,
we also propose 9 kinds of pooling and attention architectures and
show some empirical results in the experiment part.

The main contributions of this paper can be summarized as
follows:

e A novel AS layer is proposed to improve the expression power
without increasing the depth or the layers of AlexNet based
Siamese network. By combining two different attention mod-
ules with a shake-shake framework, The proposed AS layer
could train these two different attention modules at the same
time.
An auxiliary relocation branch is proposed to refine the track-
ing results and introduce some prior knowledge of visual ob-
ject tracking into Siamese network based trackers. This auxil-
iary relocation branch involves some weights, such as structure
similarity weight, motion similarity weight, motion smoothness
weight and object saliency weight, to meet the prior assump-
tions of visual object tracking and relocate the object when the
tracker runs under an untrusted state.
A switch function is proposed to monitor the tracking pro-
cess and determine whether the weights in auxiliary relocation
branch affect the tracking results. When the switch function
score is over a certain threshold, we believe the tracker runs
under a trusted state, and auxiliary relocation branch is not re-
quired to assist in tracking results. Otherwise, auxiliary reloca-
tion branch helps to refine the tracking results.

o The impact of pooling layer on Siamese network is discussed in
this paper. 9 pooling and attention architectures are proposed
in this paper and relative empirical results are shown in the
experiment part.

The organization of this paper is as follows: Section 1 shows
the motivations and contributions of the proposed tracker. Then,
some related works are discussed in Section 2. Section 3 illus-
trates the detailed information and process of the proposed tracker.
The analyses of the contributions in this paper and the experi-
ments on widely used benchmarks are shown in Section 4. Finally,
Section 5 concludes this paper.

2. Related works

Usually, according to the number of objects which need to
be tracked, visual object tracking can be divided into multi-
object tracking and single object tracking. For multi-object tracking
[15-18], there are multiple objects to be tracked, however, these
objects are usually known in advance, such as pedestrian track-
ing, vehicle tracking. Thus, multi-object tracking is always formu-
lated as a data association problem. For single object tracking
[1,19-23] the object to be tracked is single, but unknown in ad-
vance. Thus, single object tracking is formulated as an online learn-
ing problem. In this paper, we mainly focus on the single object
tracking. However, some methods in single object tracking can be
applied in the multi-object tracking as well. For instance, Shen
et al. [17] try to apply minimum output sum of squared error fil-
ter which is widely used in single object tracking in multi-object
tracking. For single object tacking, Survey [19] and [1] divided
tracking methods into two categories and three components. The
two categories are generative methods [24-26] and discriminative
methods [2,27,28]. Generative tracking methods regard tracking as
a templet matching problem and build the model of joint prob-
ability. While discriminative tracking methods treat tracking as a
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classification problem and build the model of posterior probabil-
ity. For both of these two kinds of tracking methods, large num-
bers of manually designed features and traditional machine learn-
ing methods are used in visual object tracking, such as patch based
methods [29-32], sparse representation based methods [22,33,34],
Support Vector Machine (SVM) based methods [35,36] Correlation
Filter (CF) based methods [2-4], etc. Huang et al. [32] represent
object by a part space with two online learned probabilities to cap-
ture the structure of object. Ma et al. do a lot research on sparse
representation based tracking methods [20-23]. Based on the glob-
ally linear approximation, a discriminative visual dictionary and a
nonlinear classifier in sparse coding manner is proposed for track-
ing in [20]. Besides, Ma et al. [21] also presented a joint blur
state estimation and multi-task reverse sparse learning framework.
While, the three components are appearance model, motion model
and update model respectively. Among these three components,
appearance model, which is used to describe object and distinguish
object from background, plays an important role in visual object
tracking for both generative and discriminative methods.

Recently, along with the development of correlation filter and
deep learning, large numbers of CF based methods [37-39], deep
network based methods [7,13,40,41] and their hybrid methods
[5,10,42,43] are proposed to construct the appearance model of
object in visual object tracking. Normally, deep learning based
trackers can be divided into two kinds: the deep feature based
trackers [5,6] and the deep classification based trackers [7,44]. For
deep feature based trackers, well pre-trained networks are applied
to extract the features of objects and construct the appearance
model, then the extracted deep features are introduced into
the traditional tracking frameworks. For deep classification based
tracker, the deep networks are used as classifiers. The hyperparam-
eter optimization is also one of the drawbacks in deep network
based trackers. Dong et al. [45] proposed a continuous Deep
Q-Learning based action-prediction network for hyperparameter
optimization. In order to evaluate the proposed trackers reasonably
and enhance the comparability among different trackers, many
benchmarks are applied in visual object tracking, such as OTB50
[46], OTB100 [47], TC128 [48], UAV123 [49], GOT-10K [50], Lasot
[51], etc. The presentation of these data sets also provides a large
and diverse training samples for deep network based trackers.
Since the proposed tracker in this paper is based on the combina-
tion of CF based methods and deep network based methods, we
mainly discuss the CF based trackers, deep network based trackers
and the combination of these two kind of trackers in this section.

CF based trackers: David et al. [52] firstly introduce Correlation
filters into the visual object tracking field. The correlation filter in
[52] is trained by the state of object given at the first frame with
a loss function to minimum the output sum of squared error. Thus
the location of object has the largest correlation response score. In
order to increase training samples and improve the robustness of
correlation filter. Henriques et al. [37] propose a cyclic matrix to
train the correlation filter. Instead of the sing-channel feature used
in [37], they also propose a way to integrate multi-channel fea-
tures into correlation filtering framework with a kernel method in
[2]. This Kernelized Correlation Filter based tracker is also known
as KCF. Martin et al. [39] apply two correlation filers to track the
object. One is the translation filter which is used to obtain the
location of object. The other is the scale filter which is proposed
to estimate the scale of object and help the tracker to cope with
the scale changing challenge. Chao et al. [38] find that the corre-
lation between temporal context improves the accuracy and relia-
bility for translation estimation, and train two different correlation
filters from one frame. One is the filter of object, the other is the
temporal context which is a correlation filter of surrounding con-
text with spatial weights. Besides, an online re-detection module is
proposed in [38] to monitor the tracking process in case of track-

ing failure. Generally, the CF based trackers are very effective and
fast (more than 100 fps) which leave room for improvement, such
as introducing some complex modules into the CF based trackers.
Dong et al. [53] propose a two-stage classifier with kernelized cir-
culant structure for occlusion-aware. Besides, a classifier pool is
built to save classifiers with noisy updates and to redetect object
when object is in occlusion.

Deep network based trackers: Along with the successful ap-
plication of deep learning in other research fields, such as clas-
sification, object detection, image caption, etc., many deep net-
work based tracking methods are proposed [7,13,40,44,54,55]. -
Nam et al. [7] propose a tracker based on Convolutional Neural
Network (CNN) which is trained for classification tasks. This net-
work is composed of two parts: the shared layers and domain-
specific layers. The shared layers contain the generic object rep-
resentations. While, the domain-specific layers which are updated
online show representations of individual sequences. Considering
that online updating deep network is very time consuming, David
et al. [44] apply a simple feed-forward network without online
training and updating to improve the tracking speed to 100 fps.
Instead of treating the deep network as a classifier, this network
is trained to regress the state of bounding-box of object. In addi-
tion to the trackers mentioned above, another kind of widely used
tracking methods is based on Siamese network [8]. Siamese net-
work with pairwise inputs could measure the similarity of two im-
age patches without knowing the category labels [56]. Therefore,
Tao et al. [9] propose a tracker based on templet matching and vi-
olence search. In this tracker, Siamese network is applied to mea-
sure the similarity between templet and instance images. Li et al.
[13] and Zhu et al. [57] try to combine the Siamese network with a
Region Proposal Network (RPN) to make the tracking task an end-
to-end learning process. In order to improve the expression power
of Siamese RPN network, Li et al. [40] replace the backbone net-
work of Siamese with a deeper network. While, Fan et al. [55] de-
sign the Siamese network by cascading the RPN networks. Further-
more, Wang et al.[54] try to add an image segmentation branch to
the Siamese network to improve the tracking success rate of the
proposed tracker.

Combination of CF based trackers and deep network based
trackers: There are two ways to combine CF based trackers and
deep network based trackers. One way is treating deep networks as
feature extractors and applying the deep features directly to train
correlation filters without training [5,6,42]. Ma et al. [5] analyse
the impact of convolutional features from different layers on vi-
sual object tacking and train three correlation filters of different
layers. While, Danelljan et al. [42] try to fuse the convolution fea-
tures from different layers with an interpolation operator and ap-
ply this fusion feature to train correlation filter. According to the
discussion above, these combinatorial methods are simple and di-
rect. However, the expression power of the deep features may be
reduced, since the well-trained deep network is trained for classi-
fication task rather than tracking task. The other way is Siamese
network based combination methods [10-12,58,59]. These meth-
ods make full use of the pairwise inputs and pairwise training of
Siamese network. They are usually separated into two parts: the
training process and the tracking process. And the network param-
eters which are more suitable for tracking problem are trained by
pairwise training methods. Bertinetto et al. [10] propose a tracker
named as SiameseFC which is similar to CF based tracker by us-
ing the fully convolutional Siamese network. Dong et al. [12] try
to replace the training loss with a triplet loss by considering the
relationship between positive instances and negative instances. A
novel design principle of Siamese network is proposed in [11] to
replace the backbone network with a deeper and wider one. Thus,
the expression power of Siamese network is also improved. In
order to achieve the online learning of Siamese network based
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trackers, Guo et al. [58] propose a dynamic Siamese network with
a fast general transformation learning model which enables online
learning. Dong et al. [59] increase the two shared sub-branches in
Siamese network to four sub-branches to take advantage of the un-
derlying structure of data and relationship.

There are also some similar works [43,60,61], which try to
introduce attention module into the Siamese network. He et al.
[43] propose a twofold Siamese network for visual object tracking,
this network is composed of two branches: the semantic branch
and appearance branch. In the semantic branch, a channel atten-
tion based module is proposed to obtain the semantic information
of object. While, Wang et al. [60] add three kinds of attention mod-
ules into the Siamese network: the residual attention, channel at-
tention and general attention to improve the tracking performance.
However, all these three attention modules are added in the ex-
emplar branch of the Siamese network, and Siamese network is
used as feature extractor. Shen et al. [61] obtain attention weights
with proposed Attention Net(A-Net). Unlike traditional Siamese
network, the feature maps of different layers in Siamese network
are feeded into A-Net to calculate the attentive feature maps for
cross correlation. Different from these Three trackers mentioned
above, our proposed attention shake Siamese network could train
two different kinds of attention modules at the same time, and
the parameters of these two attention modules could be trained
dynamically. This could help to obtain the benefits of these two at-
tention modules and avoid over fitting problems. Furthermore, our
proposed tracker can monitor the tracking process and introduce
the prior knowledge of visual object tracking to refine the tracking
results when the tracker runs under untrusted state. The specific
details of the proposed tracker are presented in the following sec-
tion.

3. Our approach

In this section, we present the architecture and details of our
proposed Attention Shake based Siamfc (AS-Siamfc) tracker. Firstly,
we present the architecture of the proposed tracker. Then, the fol-
lowing three subsections mainly focus on the details of proposed
tracker respectively, such as attention shake layer, auxiliary reloca-
tion branch and switch function. Finally, we show the training and
tracking procedures of AS-Siamfc.

3.1. Architecture of the proposed tracker

The Siamese network based trackers treat visual object track-
ing as a cross-correlation problem and compute the response map
from Siamese network based deep model. They usually have two
branches for the pairwise input. One branch is to learn the pre-
sentation of object Z' in a semantic embedding space ®(), and the
other branch shows the presentation of the search area x’. Thus the
response map can be calculated by Eq. (1).

fE@.xX)Y=0Z)®®X)+b (1)

where b is bias term and oledast denotes the cross-correlation op-
eration. The goal is to match the maximum value in response map
to the object location.

In this subsection, we describe the architecture of the proposed
tracker. As shown in Fig. 1, the architecture of AS-Siamfc can be
mainly divided into three parts: attention shake network, reloca-
tion branch and switch function. Moreover, at the right side of
Fig. 1, a weight based fusion method controlled by switch func-
tion is proposed to introduce the prior knowledge of visual object
tracking into the proposed tracker and calculate the final response
map, Rr. ® and oledast in Fig. 1 denote element-wise product and
cross-correlation operation respectively.

For the part of attention shake network Fig. 1(a), a novel atten-
tion shake layer is proposed to replace the max pooling layer in
the AlexNet based Siamese network. This proposed attention layer
could combine two different attention modules and improve the
expression power. For the part of relocation branch Fig. 1(b), many
weight maps, such as structure similarity weight, motion similarity
weight, motion smoothness weight and object saliency weight, are
applied to introduce some prior knowledge into AS-Siamfc. These
types of prior knowledge could refine and relocate object when
the proposed tracker runs under an untrusted state. For the switch
function part Fig. 1(c), by observing the relationship between the
score of response map of AS network and the success rate of AS-
Siamfc, we design a switch function to monitor the tracking pro-
cess online and control the effect of auxiliary relocation branch on
tracking results.

The whole process can be summarized as follows: firstly, we
feed the exemplar image, I, (also templet obtained from the first
image) and instance image, Iy (also candidate search image which
is larger than exemplar image and represents the search area)
into the proposed AS network and obtain the response map. Then,
the switch function is used to monitor the tracking process ac-
cording to the response map. If the tracker runs under a trusted
state, the tracking results could be obtained according to the re-
sponse maps directly. Otherwise, the response map of AS net-
work is updated by the weight map of auxiliary relocation branch
through element-wise product to refine and relocate the tracking
results.

3.2. Attention shake in siamese network

The expression power of Siamese network directly affects the
performance of tracking and attention modules are proved to be
effective in classification tasks. Thus, we try to introduce attention
modules into Siamese network to improve the expression power.
In this section, a novel attention shake layer is proposed to replace
the max pooling layer in Siamese network. Pooling layer in deep
network helps to reduce the dimension of convolutional features,
which is like a process of feature selection. Max pooling layer se-
lects the maximum impact within an area (the max value). This
could reduce the error of estimated mean which is caused by er-
ror of parameters in convolution layers and retain more useful in-
formation. While, average pooling layer considers the average ef-
fect of all elements in a certain area (the mean value). Thus, the
average pooling layer pays more attention to the integrity of infor-
mation, and helps to reduce the estimated variance caused by the
constraints of neighborhood size. Considering the analyses above,
the proposed AS layer can have the advantages of both max pool-
ing layer and average pooling layer at the same time.

As shown in Fig. 2, the AS layer can be mainly divided into
two parts: the attention part and the shake part. In the atten-
tion part, there are two modified Squeeze and Excitation block
(SE block) [62] based attention modules: the max-attention mod-
ule (left side of Fig. 2(a)) and the average-attention module (right
side of Fig. 2(a)). Different from the traditional SE block, the mod-
ified SE blocks in this paper is applied to further refine the fea-
ture maps of max pooling and average pooling. The architectures of
max-attention module and average-attention module can be found
in Fig. 2(a). The max pooling and average pooling are used as the
spatial attention in AS layer. After the max pooling layer (or aver-
age pooling layer), another global pooling layer is used to trans-
fer the feature map of max pooling (or average pooling) from
((H=-3)/24+1)*((H-3)/2+1)*Cto1%1x%C, where H, W and C
denote the height, width and channel of convolution feature map,
X. Then two fully convolutional layers are used to reduce and then
increase the number of channels with a penalty coefficient, r, re-
spectively. Finally, the channel attention weight can be calculated
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(a) Attention Shake network

Exemplar Image
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(b) Relocation Branch

Fig. 1. The main framework of the proposed AS-Siamfc. It basically consists of 3 parts: (a) the attention shake network with proposed attention shake layer. (b) the auxiliary
relocation branch which contains structure similarity weight, motion similarity weight, motion smoothness weight and object saliency weight. (c) the switch function which

is used to control the four weights in relocation branch.-

MaxPool2d AvgPool2d
(H-3)/2+1*(W-3)/2+1*C (H-3)/2+1%(W-3)/2+1*C
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(b) [ Addition
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X

Fig. 2. The architecture of the proposed attention shake layer. It can be divided into two parts (a) the attention part and (b) the shake part.
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Frame 490 Siamfc

ASs-Siamfc

Fig. 3. The response maps of instance image and the whole image, using Siamfc and AS-Siamfc. (a) and (e) show the instance image of Frame 490 and the whole image
respectively. (b) and (f) are the response map of Siamfc. (c) and (g) are the response map of AS-Siamfc.

by a sigmoid function. The feature map of max-attention, ATpnax,
and average-attention, ATqyg, can be obtained by Eqs. (2) and (3).

ATnax (X) = sig(Winy (Wmo (maxpool (X)))) ® maxpool (X) (2)

ATag(X) = sig(Wa1 (Wyo (avgpool (X)))) ® avgpool (X) (3)

where W,,o and W,q are the operations of the first fully connected
layers of max-attention and average-attention, which try to reduce
the channels from C to C/r. While, Wy,; and W,,, are the operations
of the second fully connected layers of max-attention and average-
attention, which try to rise raise the channels from C/r back to
C. sig() denotes the sigmoid function, and ® is the channel-wise
product.

In order to make the proposed attention shake network contain
the advantages of both max-attention and average-attention, the
shake-shake model [14] is introduced into the AS layer. As shown
in Fig. 2(b), the shake part in AS layer combines the feature map
of max-attention and average-attention by a weighted sum. One
benefit of the shake part is that the weight coefficient is dynamic
in the train process, which could cause the attention part to adjust
its parameters dynamically and prevent over fitting problems. The
feature map of the AS layer can be computed by Eq. (4).

Mas(X) =X = ¥ % ATpax (X) + (1 — ) % ATge(X) (4)

where Mjs(X) denotes the feature map of AS layer, and y denotes
the weight coefficient. In the training process, y varies according
to uniform distribution from 0 to 1. In the tracking process, y is set
to be a fixed scalar, like 0.5. Since the proposed attention shake
network is based on the Siamese network, the response map of
attention shake network can be calculated by Eq. (5).

f, L) = glo(l), o))
=ol)®p)+b (5)

where ¢() denotes the attention shake network, oledast denotes
the cross-correlation operation and b denotes a bias term. I, and
Iy are the exemplar image and instance image respectively.

Fig. 3 shows the response maps of Siamfc [10] and the pro-
posed AS-Siamfc respectively. Fig. 3(b) and (c) are the response
maps of instance image. In order to show the effect of attention
shake layer persuasively, the response maps of the whole frame
are shown in Fig. 3(f) and (g). By comparing the response maps
between Siamfc and the proposed AS-Siamfc, we find that Siamfc
only focus on the center part of object and cannot cover the whole
object. While, AS-Siamfc could focus on the whole object. Further-
more, AS-Siamfc makes the object area of the response map redder

and the background area bluer, which means the proposed method
could increase the discrimination between object and background,
and the attention shake layer could improve the expression power
of Siamese network.

3.3. Auxiliary relocation branch

For tracking tasks, especially for some specific scenarios, there
are some prior assumptions about the tracking object. For example,
we always assume that the motion of tracking object is smooth,
which means the state of object between two adjacent frames does
not vary much. And people tend to choose some conspicuous ob-
jects as tracking objects. Moreover, the sequential relationship of
object can also help to refine the tracking results. Thus, the pur-
pose of the auxiliary relocation branch is to introduce some prior
knowledge into AS-Siamfc, and relocate objects when the tracker
runs under untrusted state. The auxiliary relocation branch along
with the switch function (mentioned below) can be viewed as the
failure detection and relocation part of AS-Siamfc. According to the
prior assumptions mentioned above, some weight maps are intro-
duced into the auxiliary relocation branch, such as structure simi-
larity weight, motion similarity weight, motion smoothness weight
and object saliency weight. The detail procedure is shown in Fig. 4.

From Fig. 4, we can see that the auxiliary relocation
branch can be divided into four sub-branches: motion similarity
weight sub-branch, motion smoothness weight sub-branch, object
saliency weight sub-branch and structure similarity weight sub-
branch.Firstly, we calculate the weight maps of these four sub-
branches respectively. Then, in order to merge the weight maps
obtained from the four sub-branches, we normalize the weight
maps of these four sub-branches. Finally, the response maps are
merged by an element-wise function. Thus, we obtain the weight
map of auxiliary relocation branch. Noticing that the auxiliary re-
location only works on the instance images.

For motion similarity weight sub-branch, we apply Lucas-
Kanade method(LK) [63] to calculate the optical flow, Op(i,i—1),
between instance image i and instance image i — 1, and we also
compute the optical flow, Op(i — 1,i — 2), between instance images
i—1 and i— 2. Then, according to the state of object at instance
image i — 1, we select an area of optical flow Op(i—1,i—2), and
the Histograms of Oriented Optical Flow feature (HOF) [64] of this
area is viewed as the motion characteristic of object. Similarly, we
also extract the HOF of the optical flow Op(i,i— 1). Thus, the mo-
tion similarity weight can be calculated by the cross-correlation
between the HOF of the selected area and optical flow Op(i,i— 1),
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Fig. 4. The procedure of the relocation branch. It can be divided into 4 sub-branches: (a) the motion similarity weight sub-branch, (b) the motion smoothness weight
sub-branch, (c) the object saliency weight sub-branch and (d) the structure similarity weight sub-branch.

as shown in Eq. (6).
Ro = HOF (select(Op(i— 1,i—2))) ® HOF(Op(i,i— 1)) + be (6)

where Ry is the weight map of motion similarity weight sub-
branch, and it is the motion similarity weight used in this pa-
per. select(Op(i—1,i—2)) represents the optical flow of object
calculated by instance image i — 1 and instance image i — 2. HOF()
means the extraction of HOF feature. by denotes the bias term of
motion similarity weight sub-branch.

For object saliency weight sub-branch, the Frequency Tuned
salient region detection method (FT) [65] is applied to compute the
weight map of object saliency weight sub-branch, R, which could
be obtained by Eq. (7).

Rs(x.y) = [ = Iyne . D) I (7)

where I, is the average value of all pixels in the instance image,
and I, denotes the smooth image of instance image after Gaus-
sian filtering. Thus, I,,;.(x, y) is the corresponding score of [, at
* ¥)

For motion smoothness weight sub-branch, the traditional two-
dimensional Gaussian distribution function which is centered at
(X, Ye) is used to construct the weight map of motion smooth-
ness weight sub-branch. (x., y.) can be obtained by the location of
object center in the previous frame. The two-dimensional Gaussian
distribution function is shown in Eq. (8).

x—x)2+(v-ye)?
Re(x,y) = #EJ o (8)
where o is standard deviation of Gaussian distribution function,
and R; is the weight map of motion smoothness weight sub-
branch.

For structure similarity weight, The Histograms of Oriented Gra-
dients feature (HOG) [66] is applied to describe the structure in-
formation of object. Firstly, we extract the HOG feature of both the
instance image i, Ix(i) and the object image of instance image i — 1,
Io(i— 1). The object image of instance image i — 1 can be obtained

by the state of object at frame i — 1. Thus, the structure similar-
ity weight can be calculated by the cross-correlation between the
HOG feature of I,(i — 1) and I(i), as shown in Eq. (9)

Rst = HOG(I,(i — 1)) ® HOG(Ix(i)) + bst (9)

where Rg; is the weight map of structure similarity weight sub-
branch, and it is the structure similarity weight used in this pa-
per. HOG() means the extraction of HOG feature, and bs; denotes
the bias term of structure similarity weight sub-branch. Thus the
weight map of auxiliary relocation branch can be calculated by
Eq. (10) through element-wise product.

Ry =Ro ©Rc ©Rs © R (10)

Fig. 5 shows the weight maps of object saliency weight, motion
similarity weight, motion smoothness weight, structure similarity
weight and the total weight map of auxiliary relocation branch re-
spectively. From Fig. 5, we find that the object saliency weight in
Fig. 5(b) focuses on detecting the entire object, especially when
the difference between object and background is obvious. The mo-
tion similarity weight in Fig. 5(c) pays more attention to the areas
which have similar movement of object. And this makes the re-
sponse map of optical flow more suitable for tracking the moving
rigid objects. While, the motion smoothness weight in Fig. 5(d) es-
timates the probabilities of the locations of objects in instance im-
age. It is consistent with the assumption that the motion of objet is
smooth. Similar to the motion similarity weight, the structure sim-
ilarity weight in Fig. 5(e) pays more attention to the areas which
have similar structure of object. This may help the tracker handle
some tracking challenges, such as illumination variation, color vari-
ation, etc. More analyses about these three sub-branches can be
found in Section 4.2.2. From Fig. 5(f), we find that the weight map
of auxiliary relocation branch can not only outline the object, but
also estimate the location of object center accurately. Thus, we be-
lieve the auxiliary relocation branch could refine and relocate the
objects when the proposed tracker runs under untrusted state.
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Fig. 5. The visualization of the four weight sub-branches in auxiliary relocation branch. (a) is the original image, (b) is the object saliency weight, (c) is the motion similarity
weight, (d) is the motion smoothness weight, (e) is the structure similarity weight, and (f) is the weight of auxiliary relocation branch.

3.4. Switch function

Considering that introducing prior knowledge into AS-Siamfc
may also bring noises, and sometimes, the prior knowledge itself
is the noise which could impact tracking performance, we should
monitor the tracking process of the proposed tracker, and ensure
that the prior knowledge presented in auxiliary relocation branch
affects the response map of AS Siamese network and further refine
and relocate the objects only when the tracker runs under the un-
trusted state. Thus, in this section, a novel switch function which is
based on the response map of AS Siamese network is proposed to
monitor the tracking process and control the effect of auxiliary re-
location branch on the tracking performance. The proposed switch
function is shown in Eq. (11).

S(Ry) = 8<maX(RA) —avgRa) _
max(Rs) — min(Ry)

where R, represents the response map of AS Siamese network.
Thus, max(R,), avg(R4) and min(R,) are the maximum, average and
minimum values of Ry. % is the confidence percent-
age, which is used to assess the reliability of tracking process. &()
denotes the unit step function and s; is the threshold. When con-
fidence percentage is over S;, the switch function score is 1. other-
wise, the switch function score is 0. Thus, the final response map
of AS-Siamfc can be calculated by Eq. (12), which is controlled by
the switch function.

Rr =s(Ra)Ra + (1 —s(Ra))Rr © Ry (12)

Where Ry is the final response map of AS-Siamfc. R, and R, are the
weight map of auxiliary relocation branch and the response map
of AS network respectively. From Eq. (12), we can see that when
confidence percentage is under the threshold s;, we believe that
the tracker runs under an untrusted state, and the weight map of
auxiliary relocation branch helps to refine and relocate the object.
Thus, the final response map Ry is computed by an element-wise
product, Ry = R ® R4. Otherwise, we think the tracker runs under
a trusted state, and the final response map is equal to the response
map of AS network, Rt = R4. Another benefit of the proposed func-
tion is that we do not need to calculate the response map of aux-
iliary relocation branch in every frame. Instead, we only compute
the response maps of auxiliary relocation branch, when the tracker
runs under an untrusted state. This may also increase the tracking
speed and reducing the amount of calculation.

Fig. 6 shows the relationship among response scores of Ry,
scores of switch function, precision scores and success scores in
two different sequences. The horizontal axes are the indexes of
frames, and the vertical axes are the corresponding scores. Fig. 6(a)
and (e) show plots of the maximum, minimum and average val-
ues of R4 of every frame. From these plots, we find that the av-
erage and minimum values of R4 in every frame do not change
much. While, the maximum values vary with the frames. In both
Fig. 6(a) and (e), we can see significant decline in the maximum
values of R4. Fig. 6(b) and (f) are the values of confidence percent-

(11)

age in switch function, which can be computed by %.

From these plots we can also see the significant decline which is
consistent with the decline in Fig. 6(a) and (e). By comparing the
plots, Fig. 6(a) and (b), Fig. 6(e) and (f), the confidence percentage
represents the ratio of the distance between the peak value and
mean value of R, to the distance between the peak value and the
valley value of Ry, and it can be applied to monitor tracking pro-
cess and measure the confidence of the tracking results. When the
confidence percentage is under a certain threshold, the maximum
value of R4 is low, which means the tracker is hard to tell the ob-
ject from the background and the tracker runs under an untrusted
state. By comparing the precision and success scores of Siamfc and
AS-Siamfc in Fig. 6(c) and (d), Fig. 6(g) and (h), we find that the
precision and success scores of AS-Siamfc with switch function and
relocation branch become smoother and higher, which also means
the switch function and auxiliary relocation branch could monitor
the tracking process, detect failure and relocate the object when
the tracker runs under an untrusted state.

3.5. Training and tracking

Similar to Siamfc [10], the proposed AS-Siamfc can be divided
into the offline training process and online tracking process. Dur-
ing the training process, we try to optimize the parameters of the
proposed AS network by reducing the loss of the whole data set.
While, in tracking process, the pre-trained AS network is used to
calculate R4 and obtain the final response map Rr along with the
weight map of auxiliary relocation branch R;. The state of object
can be estimated by searching the index of peak value in Ry.

For training process, we adopt the logistic loss as the loss func-
tion, and train the proposed AS network on positive and negative
pairs. The obtaining of positive and negative pairs is similar to
Siamfc [10]. The loss function of a single response map is shown
in Eq. 13.

1

L(ly, vxz) = W

Z log(l + e*’y[”]“x,z[“])

ueD

(13)

where I, is the set which contains all the labels of a response map,
and vy, ; is the set which contains all the real values of a response
map. Thus, Iy[u] and vy, ;[u] represent the u th label and real value
of a response map. The loss function of a response map is the
mean value of logistic losses of all elements in the response map.
D is the set of index in a response map, and |D| is the number of
indexes in D. For each index u in a response map, the label Iy[u]
can be obtained by Eq. 14.

lu] =1(lu—c|]| = r < 0) = I(l[u —c|]| - r > 0) (14)

where c is the center of object, and r is the radius. I(x) denotes
the indicate function. When * is true, I(x) = 1, otherwise, I(x) =
0. Thus, when the distance between u and c is longer than the
radius r, the label Iy[u] = —1, otherwise, Iy[u] = 1. Furthermore, the
parameter 6 of AS network can be optimized by minimizing the
mean value of all response maps in the data set with Stochastic
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Fig. 6. Visualization of the response scores, scores of the switch function, precision scores and success scores on 2 sequences.(a) and (e) are the response scores of proposed
attention shake network. (b) and (f) show the values of confidence percentage in switch function. (c) and (g) are the precision scores of Siamfc and AS-Siamfc. (d) and (h)

are the success scores of Siamfc and AS-Siamfc.

Gradient Descent (SGD). The equation is shown in Eq. (15).

- 2 (tpena Ly, f(2 1 0))
6 = arg min
0 |Da|

(15)

where Da and |Da| represent the data set and the number of data
set which is used to train the proposed AS network. (I, I, Iy) is a
training sample in the data set. I, Iy and I, are the exemplar image,
instance image and label of training data respectively.

For tracking process, we try to estimate the state of object
through the response map R4 which is obtained by the pre-trained
AS network along with the weight map of auxiliary relocation
branch R;. The pseudo code is shown in Algorithm 1.

Algorithm 1 Pseudo code of AS-Siamfc.
Input: The exemplar image, I;; The initial object state, X;; The pre-
trained AS network, Threshold, s;; Number of frames, N¢;
Output: The states of object X, t € {1, 2, .,Nf};
1: Calculating the feature map of exemplar image by feeding I,
into The AS network;
. Initializing the object state, X; = X;;
fort =2;t <Ny, t++ do
Calculating the instance image Iy, according to X;_1;
Feeding the instance image I into AS network and comput-
ing the response map by Eq. 5;
6: Resizing the response map to (255 %255 % 1) and obtaining
Ry.
7: Computing the score of switch function S(R4), by Eq. 11;
8: if S(R4) > 0 then

a R whN

9: Estimating the location of object through Ry4;

10: Updating the state of object X;;

11: else

12: Calculating the response map of auxiliary relocation
branch, Ry, by Egs. 6, 7, 8, 9, 10;

13: computing the final response map, Ry, by Eq. 12;

14: Estimating the location of object through Rr;

15: Updating the state of object X;;

16: end if

17: end for

18: return X;, t € {1,2, .,Nf}:

The tracking process can be summarized as follows: firstly, we
feed the exemplar image, I, (also templet obtained from the first

image) and instance image, Iy (also candidate search image which
is larger than exemplar image and represents the search area) into
the proposed AS network to compute the response map R4 by
Eq. (5). Then, we calculate the score of the proposed switch func-
tion S(Ry). If S(R,) is larger than 0, we believe that the tracker runs
under a trusted state. Therefore, we could estimate the state of ob-
ject only by the response map Ry. If not, the tracker runs under
an untrusted state. The weight map of auxiliary relocation branch
Rr which is obtained by Egs. (6)-(10) helps to refine and relocate
object with R4. Thus, the final response map Ry is calculated by
an element-wise product, Eq. (12). Finally, we estimate the state of
object by the final response map Rr and update the instance image
of the next frame by the state of object.

4. Experiments

This section provides some experimental results of the pro-
posed AS-Siamfc tracker. Generally, there are three subsections
in this section: The implementation subsection which describes
the settings and parameters of the experiments; The basic experi-
ments which discuss and analyze the effectiveness and availabil-
ity of the proposed AS network and auxiliary relocation branch
respectively; The Experiments on widely used benchmark which
shows some quantitative and qualitative comparison experiments
on some widely used benchmarks.

4.1. Implementation

In this subsection, we show some details about the settings and
implementation of the proposed AS-Siamfc tracker. All the experi-
ments run on a remote server with 64G memory and one GeForce
GTX Titan X. The proposed AS network is trained on GOT-10K
[50] benchmark which contains 10,000 video sequences and 1.5
million manually labeled boxes. Unlike some other training data
sets, the tracking objects in this data set belong to more than 560
categories, which is helpful to improve the classification ability of
AS-Siamfc. During the training process, the weight coefficient y in
attention shake layer varies randomly from O to 1. While, in the
tracking process, y is set to be 0.5. Moreover, the widely used
benchmarks, OTB2013 [46], OTB100 [47], and OTB50, along with
their evaluation criteria are applied in this paper to test the per-
formance of the proposed AS-Siamfc tracker. OTB50 is composed
of 50 hard-to-track sequences selected from the OTB100. Besides,



62

J. Wang, W. Liu and W. Xing et al./ Neurocomputing 400 (2020) 53-72

Conv2d

Conv2d

Conv2d Conv2d Conv2d (3,96,11,2) (3,96,11,2)
(3,96,11,2) (3,96,11,2) (3,96,11,2)
MaxPool2d AvgPool2d MaxPool2d AvgPool2d
3,2) (3,2) (3,2) (3,2)
AvgPool2d e Inception
Ma?;oz‘;lu c?;‘gd (3,2) Mul(y) Mul(1-y) ‘
’ 4 concatenate
\/ \4 AdaptiveAvgPool2d
Conv2d Convad Convad Addition (1:;’;‘;2;’ . (]
(96,256,5,1) (96,256,5,1) (96,256,5,1) ,96,1, e
Conv2d Conv2d linear(C,C/r)
(96,256,5,1) (96,256,5,1)
AvgPool2d Retu
MaxPool2d Conv2d EHO0
3,2) 32) 32) MaxPool2d AvgPool2d Ma’(‘;”z;"z" “’g(z"z‘;'z" =
32) (3,2) \ / linear(C/r,C)
Mul(y) Mul(1-y) Sigmoid
Conv2d Conv2d Conv2d N eote 1*1*C
(256,384,3,1) (256,384,3,1) (256,384,3,1) TS Y V/
- Conv2d
Addition (512,256,1,1) scale
Conv2d Conv2d Conv2d @Y Conv2d
(384,384,3,1) (384,384,3,1) (384,384,3,1) (256,384,3,1) (256384,3.1)
Pro_A_Avg Layer
Conv2d Conv2d
(384,384,3,1) (384,384,3,1)
Convad Convad Conv2d -
(384,256,3,1) (384,256,3,1) (384,256,3,1) Convad Conv2d
(384,256,3,1) (384,256,3,1)
(a) Siamfc_R (b) SA3 (c) Sap (d) Sap_s (e) SA1
Conv2d Conv2d Conv2d (et con2d
(3,96,11,2) (3.96,11,2) (3,96,11,2) (3,96,11,2) (3,96,11,2)
AvgPool2d MaxPool2d MaxPool2d AvgPool2d
AvgPool2d MaxPool2d (32) (32) (3,2) 3,2)
32) 32 Pro_A_Max Layer Pro_A_Avg Layer licsption
Pro_A_Avg Layer Pro_A_Max Layer ~ _
Mull Mul(1-
Pro_A_Avg Layer Pro_A_Max Layer Conv2d Convad (v) (1-v) ’}pﬁve‘MaxPoolzd
(96,256,5,1) (96,256,5,1) T (1)
-
Convad Conv2d AvgPool2d MaxPool2d ddition ~FC
(96,256,5,1) (96,256,5,1) 3.2) 3,2) — linear(C,C/r)
(96,256,5,1)
RelU
AvgPool2d MaxPool2d Pro_A_Avg Layer Pro_A_Max Layer
(3,2) (32) MaxPool2d AvgPool2d
' ‘ 32) 32) i
Conv2d Conv2d L L linear(C/r,C)
(256,384,3,1) (256,384,3,1) Pro_A_Max Layer Pro_A_Avg Layer
Pro_A_Avg Layer Pro_A_Max Layer == 55 ) Sigmoid
Conv2d Conv2d 1*1*C
(384,384,3,1) (384,384,3,1) Mul(y) Mul(1-y) {"/
Conv2d Conv2d T—a
(256,384,3,1) (256,384,3,1) Conv2d Conv2d cEl
(384,256,3,1) (384,256,3,1) Addition
Conv2d Conv2d Conv2d
Mul Mul(1-
(384,384,3,1) (384,384,3,1) ulty) ultd-v) (256,384,3,1) Pro_A_Max Layer
\ / Conv2d
4,384,3,1
Conv2d Conv2d (3673543 1/
(384,256,3,1) (384,256,3,1) Addition Conv2d
(384,256,3,1)
(f) SA2_a (g) SA2_m (h) SA2_s (i) AS-Siamfc

Fig. 7. 9 kinds of attention shake network architectures for comparison.

some state-of-the-art trackers are used for the comparison experi-
ments, such as Siamfc [10], SAMF [67], DSST [39], Struck [27], TLD
[68], CSK [37], ASLA [69], OAB [70] and IVT [71].

The proposed tracker could track objects in real time. The av-
erage tracking speed of AS-Siamfc on OTB100 data set is 70.625
fps, which is slightly slower than Siamfc [10], which is 84 fps. We
believe the reasons are as follows: Firstly, the proposed tracker is
based on the Siamfc tracker. Since the tracking speed of SimaFC
is more than 80 fps, the proposed tracker is easy to track in real
time. Secondly, computing the weight map of auxiliary relocation
branch are very time consuming, especially the motion similarity
weight. This makes the proposed tracker run slower than Siamfc
tracker. However, we can reduce this time consumption by calcu-
lating the weight maps of instance images rather than the whole
frame. Because of the proposed switch function, we only calculate
the weight maps of auxiliary relocation branch when the proposed
tracker runs under untrusted state. This also reduces the time con-
sumption and increases the tracking speed of AS-Siamfc.

4.2. Basic experiments

In order to illustrate the feasibility and effectiveness of our pro-
posed AS network, auxiliary relocation branch and switch function,

some basic experiments and analyses are set and provided in this
section. These basic experiments and analyses can be divided into
two subsections: some analyses of the attention shake method and
some analyses of the auxiliary relocation branch. For the subsec-
tion of attention shake method, we compare the proposed AS net-
work with some other possible attention shake based networks.
For the subsection of auxiliary relocation branch, we present the
tracking comparisons between the trackers with and without aux-
iliary relocation branch.

4.2.1. Some analyses of the attention shake method

In this section, we show some results and analyses of differ-
ent attention shake methods. In order to discuss the influence of
pooling layer on Siamese network, the results of the Siamese net-
works with different pooling layers are also shown in this subsec-
tion. Firstly, we design 9 kinds of Siamese network architectures
for comparison. These 9 kinds of designed networks contain dif-
ferent pooling layers and attention shake methods. Secondly, we
present the precision and success plots of these 9 networks in
0TB100.

As shown in Fig. 7, there are 9 kinds of Siamese network archi-
tectures which are designed for comparison. The Pro_A_Avg layer
and Pro_A_Max layer at the right side of Fig. 7 are the proposed
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Fig. 8. The precision and success plots of OPE in OTB2013, OTB100 and OTB50.

max-attention module and average-attention module respectively.
Fig. 7(a) is the backbone architecture of Siamfc network, and AS-
Siamfc in Fig. 7(i) is the proposed AS-Siamfc network. The oth-
ers are some possible variants of this network. In order to discuss
the influences of pooling layers in Siamese network, we also con-
struct two networks SA3 in Fig. 7(b) and Sap in Fig. 7(c) by replac-
ing the max pooling layers in Fig. 7(a) with convolutional layers
and average pooling layers respectively. Besides, we also combine
the max pooling layers and average pooling layers with a shake
module and construct the Sap_s network in Fig. 7(d). In order to
analyse the proposed max-attention module and average-attention
module Separately, we construct the SA2_a network which only
contains average-attention module and SA2_m network which only
contains max-attention module in Fig. 7(f) and (g) respectively. we
also design a spacial attention model, SA1, by merging the feature
maps of max pooling layer and average pooling layer in Fig. 7(e).
Noticing that SA3, Sap_s, SA2_a and SA2_m can also be viewed as
some modified attention methods, we can show the comparisons
of different attention methods. SA2_s in Fig. 7(h)and AS-Siamfc
in Fig. 7(i) show two possible network architectures of attention
shake network.

Fig. 8 shows the precision and success plots of the 9 network
architectures above in OTB2013, OTB100 and OTB50 data set. In
order to ensure the comparability of the experiment and better re-
flect the influence of different networks on the tracking results, all
the 9 network architectures are applied in the tracking framework
with auxiliary relocation branch. Especially, Siamfc_R is the Siamfc
tracker with auxiliary relocation branch, and it is also trained in
GOT-10K data set. As shown in Fig. 8, we can see that comparing
with the other 8 network architectures, AS-Siamfc shows the best
performance of both precision and success plots in all the three
data sets. Compared with Siamfc_R, the proposed AS-Siamfc has an
average increase of 6.63% and 7.13% in terms of precision plots and
success plots. Comparing SA2_s, Sap_s, AS-Siamfc with the other
network architectures, we find that the network architectures with
shake module are more likely to have good tracking performance.
This also illustrates the effectiveness and rationality of attention
shake module and the proposed AS-Siamfc tracker.

Table 1 shows the precision and success scores of 11 tracking
challenges in OTB100 data set. In Table 1, each tracker is evaluated
by the precision and success score, and these two sets of scores
are divided into two rows in the Table. The precision scores are in
the row above. While, the success scores are in the following row.
IV, SV, OCC, DEF, MB, FM, IPR, OPR, OV, BC and LR in Table 1 repre-
sent illumination variation, scale variation, occlusion, deformation,
motion blur, fast motion, in-plane rotation, out-of-plane rotation,
out-of-view, background clutters and low resolution respectively.
By comparing the precision and success scores of Siamfc_R, SA3,
Sap and Sap_s, we can get some empirical conclusions about
the influence of pooling layers on Siamese network. It is that
comparing with Sap and SA3, the Siamese network with max
pooling layers can obtain relatively better results. However, the
performance of the designed Sap_s which contains the shake
module are better than Siamfc_R in the tracking challenge of
out-of-plane, scale variation, deformation, motion blur, in-plane
rotation, etc. This also presents the shake module could improve
the expression power of Siamese network. Generally, the attention
shake based backbone network architectures, SA2_s and AS-Siamfc
can rank in the top three of the 9 network architectures in all
tracking challenges. This illustrates the effectiveness of attention
shake based network architectures. Comparing with the other
network architectures, the proposed AS-Siamfc tracker shows a
better performance in all tracking challenges.

In order to analysis the effectiveness of the shake part in atten-
tion shake layer, we also designed four different training and track-
ing methods for the proposed tracker. The first one is training with
random weight coefficients of shake part, but tracking with a fixed
weight coefficient. It is also known as AS-Siamfc_W which is ap-
plied in this paper. The second one is training with random weight
coefficients of shake part, and tracking with random weight coeffi-
cients as well (AS-Siamfc_RR). In contrast, the third one is training
with a fixed weight coefficient, but tracking with random weights
(AS-Siamfc_SR), and the last one, AS-Siamfc_SS, is both training
and tracking with a fixed weight coefficient. Fig. 9 shows the per-
formance of these four training and tracking methods. To ensure
the experiment is clear and fair, all these trackers run without
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Table 1
The precision and success scores of 11 tracking challenges in OTB100. For each tracker, the precision scores are in the first row, and the
success scores are in the following row.
v NY 0ocC DEF MB FM IPR OPR oV BC LR
SA1 Pre 0.713 0.720 0.630 0.702 0.675 0.698 0.738 0.721 0.561 0.681 0.708
Suc 0.562 0.556 0.506 0.537 0.556 0.569 0.566 0.551 0.451 0.534 0.535
Sap Pre 0.670 0.674 0.648 0.671 0.680 0.670 0.696 0.697 0.477 0.642 0.631
Suc 0.523 0.525 0.516 0.524 0.556 0.545 0.537 0.537 0.374 0.503 0.460
Sap_s Pre 0.750 0.773 0.714 0.770 0.743 0.742 0.761 0.783 0.617 0.727 0.671
Suc 0.571 0.585 0.556 0.578 0.598 0.592 0.572 0.590 0.487 0.554 0.479
SA2_a Pre 0.529 0.586 0.520 0.635 0.606 0.562 0.588 0.602 0.403 0.461 0.490
Suc 0.417 0.453 0.409 0.482 0.496 0.455 0.457 0.459 0.309 0.362 0.354
SA2_m Pre 0.675 0.747 0.672 0.723 0.687 0.730 0.750 0.753 0.610 0.618 0.697
Suc 0.528 0.574 0.531 0.553 0.568 0.583 0.571 0.569 0.476 0.476 0.526
SA2_s Pre 0.702 0.743 0.684 0.735 0.693 0.711 0.788 0.748 0.603 0.667 0.686
Suc 0.541 0.569 0.543 0.561 0.564 0.566 0.572 0.571 0.464 0.518 0.498
SA3 Pre 0.601 0.633 0.658 0.663 0.608 0.643 0.684 0.698 0.453 0.645 0.587
Suc 0.474 0.489 0.517 0.512 0.490 0.512 0.519 0.530 0.358 0.497 0.434
Siamfc_R Pre 0.745 0.761 0.685 0.715 0.733 0.750 0.771 0.757 0.626 0.662 0.700
Suc 0.584 0.590 0.542 0.545 0.603 0.602 0.594 0.577 0.500 0.514 0.537
Siamfc Pre 0.746 0.751 0.667 0.694 0.721 0.732 0.752 0.733 0.621 0.669 0.751
Suc 0.567 0.562 0.514 0.509 0.570 0.567 0.560 0.539 0.481 0.500 0.541
AS-Siamfc Pre 0.791 0.837 0.784 0.824 0.810 0.812 0.835 0.833 0.708 0.753 0.705
Suc 0.631 0.675 0.633 0.657 0.685 0.677 0.668 0.669 0.569 0.599 0.561
AS-Siamfc_W Pre 0.760 0.806 0.739 0.797 0.786 0.774 0.800 0.798 0.664 0.726 0.693
Suc 0.563 0.602 0.566 0.589 0.625 0.610 0.597 0.599 0.500 0.599 0.493
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Fig. 9. The precision and success plots of OPE in OTB2013, OTB100 and OTB50.

auxiliary relocation branch. From Fig. 9, we can see that the pre-
cision and success scores of AS-Siamfc_W and AS-Siamfc_RR are
higher than those of AS-Siamfc_SR and AS-Siamfc_SS, which means
the trackers which train with random weight coefficients have bet-
ter performance. Thus, the shake part in attention shake layer
may help to improve the performance of AS-Siamfc. Though, AS-
Siamfc_RR may also get high precision and success scores. Some-
times, it is even better than AS-Siamfc_W, such as the precision
in OTB2013. However, AS-Siamfc_RR seems less robust and AS-
Siamfc_W shows the better performance in most cases. Thus, the
method that training with random weight coefficients and tracking
with a fixed weight coefficient is applied in the proposed tracker.

4.2.2. Some analyses of the auxiliary relocation branch
In this section, we discuss the impacts of the prior assump-
tions of visual object tracking on Siamese network based track-

ers. Furthermore, we also present some analyses and results of the
proposed auxiliary relocation branch and switch function. Accord-
ing to the prior assumptions that the movement of the object is
smooth, the object is obvious in a certain range and the move-
ment and structure of the object are consistent to a certain ex-
tent, we apply motion smoothness weight, object saliency weight,
motion similarity weight and structure similarity weight to fit the
prior assumptions above. All these methods are merged into the
proposed auxiliary relocation branch.

Fig. 10 shows the effects of saliency, optical flow, HOG feature
and the final response map of AS-Siamfc qualitatively. The first row
of each sub-figure represents the original image. The second row
of each sub-figure is the object saliency. The third and fourth rows
of each sub-figure represent the optical flow and HOG feature of
object respectively. While, the last row shows the final response
map of AS-Siamfc. From Fig. 10, we can see that each method in
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(d)

Fig. 10. The saliency, optical flow, HOG feature and response map of proposed tracker for 6 sequences in OTB50 and OTB100.

auxiliary relocation branch has its own applicable video sequences
and scenarios. As shown in Fig. 10(a), both saliency detection and
optical flow could outline the object in some simple sequences or
the difference between object and background is large. Since the
helmet in Fig. 10(b) is more prominent than the background, the
saliency detection method is more suitable to locate the object
than optical flow. On the contrary, Fig. 10(c) shows that optical
flow is good at dealing with background clutter sequences which
saliency detection method cannot handle. Fig. 10(d) and (f) show
the sequences which are not applicable to saliency detection
method and optical flow. However, the structure (the HOG feature)
of objects in these two sequences does not change much. Fig. 10(e)
shows a complex sequence. In this sequence, the motion of object
is not regular, the object is not very salient and there are many
other people who have the similar structure with the object
in this sequence. Thus, in this sequence, the saliency detection
method, optical flow and HOG feature is hard to estimate the
location of the object accurately. However, with the help of motion
smoothness weight we can still estimate the state of object.

In order to further explore the impact of the proposed auxiliary
relocation branch and switch function, Fig. 11 shows the precision
and success plots of trackers with and without auxiliary reloca-

65

tion branch and switch function. Siamfc_R and Siamfc represent
the Siamfc trackers with and without auxiliary relocation branch
respectively. While, AS-Siamfc and AS-Siamfc_W are the proposed
trackers with and without auxiliary relocation branch respectively.
All these trackers are tested in OTB2013, OTB100 and OTB50 data
set. From Fig. 11, we find that the propose AS-Siamfc tracker (with
auxiliary relocation branch) achieves the best tracking performance
among all these four trackers. By comparing the precision and suc-
cess plots of AS-Siamfc and AS-Siamfc_W, we find that the preci-
sion score and success score of AS-Siamfc are increased by 2.87%
and 6.80% on average. Comparing the precision and success plots
of Siamfc_R and Siamfc, we can also find the slight improvements.
These experiments validate the effectiveness and availability of the
proposed auxiliary relocation branch.

Table 1 also provides the precision and success scores of AS-
Siamfc, AS-Siamfc_W, Siamfc and Siamfc_R under 11 tracking chal-
lenges in OTB100. By comparing the precision and success scores
of these four trackers, we can see that in most cases, the perfor-
mances of the trackers with auxiliary relocation branch are better
than those trackers without auxiliary relocation branch. Thus, we
can say that the proposed auxiliary relocation branch along with
the switch function could monitor the tracking process, refine and
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Fig. 11. The precision and success plots of OPE in OTB2013, OTB100 and OTB50.
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Fig. 12. The precision and success plots of OPE in OTB2013, OTB100 and OTB50.

relocate objects when the tracker runs under untrusted state and
improve tracking performance.

In order to discuss the effectiveness of the four sub-branches
in auxiliary relocation branch specifically, the performances of
AS-Siamfc without motion smoothness weight (AS-Siamfc_msm),
AS-Siamfc without motion similarity (AS-Siamfc_msi), AS-Siamfc
without object saliency weight (AS-Siamfc_os) and AS-Siamfc
without structure similarity (AS-Siamfc_ss) are shown in the
Fig. 12 along with the performance without the whole auxiliary
relocation branch (AS-Siamfc_W) and the proposed tracker AS-
Siamfc. From all the precision and success plots in Fig. 12, we

can see that AS-Siamfc_ss shows the worst performance except
AS-Siamfc_W, and AS-Siamfc_msm gets the highest precision and
success score except AS-Siamfc, which indicates that the structure
similarity weight plays a relatively important role in the auxiliary
relocation branch.

Furthermore, we also show the effectiveness of the threshold of
switch function in OTB100 data set in Fig. 13. The first two figures
in Fig. 13 are the precision and success plots of OPE respectively.
The numbers in the brackets in legend indicate the corresponding
thresholds applied in AS-Siamfc. Notice that the thresholds of
AS-Siamfc and AS-Siamfc_W are 0.6 and 0. The third figure is
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Success rate

Success plots of OPE - otb100

‘s S-Siarmfe [0.680]
08 s AS-SIaM(G(0.5) [0.614]
e 5. Siarmfc(0.4) 0.614]

— 5. Siamfc(0.2) (0.614]
—AS-Siamfc(0.3) [0.614]
AS-Siamfo_W [0.610]
s S Slamfc(0.1) [0.610)
— S Siamc(0.7) [0.511]
—AS-Siamfc(0.8) [0.473]
s AS-Siam(0.9) [0.473]

o 01 02 03

04

05

06 07 08 09

Overlap threshold

0 . .

Precision plots of OPE - 0tb2013 (52)

= AS-Siamfc [0.820]
=== SAMF [0.765] [
m— Siamfc [0.762] [
= DSST [0.733]
= Struck [0.648]
TLD [0.552]
=== ASLA [0.550]
m— CSK [0.544]
=== OAB [0.507]
= VT [0.503]

0 10

20

30 40 50

Location error threshold

0.8

0.7

0.6

0.5

0.4

03

0.2

0.1

The analyses of threshold of switch function

0812 0812 0818 0816 0815 082 084

0.61

Precision Score

w—SuCCESS SCOre

Success plots of OPE - 0tb2013 (52)

1 .
= AS-Siamfc [0.667]
=== Siamfc [0.575]
0.8k m— SAMF [0.560]
= DSST [0.499]
% 06l == Struck [0.475]
o ASLA [0.454]
@ ===T|D [0.405]
8 04l m— CSK [0.395]
a === OAB [0.368]
== |\/T [0.360]
0.2f 1
00 0.2 0.4 0.6 0.8 1

Overlap threshold

Fig. 14. The precision and success plots of OPE in OTB2013.
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Fig. 15. The precision and success plots of OPE in OTB100.
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Fig. 16. The precision and success plots of OPE in OTB50.
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Fig. 17. The AR plot for experiment baseline of VOT2018.

the trend map of precision and success score. The abscissa of
this figure is thresholds, while, the ordinate is the corresponding
precision and success scores. From Fig. 13, we can see that when
the threshold is less than 0.5, the plots of precision and success
score rise steadily, and reach the peaks at 0.6. Then, the plots
begin to plunge. The precision and scores may even lower than
AS-Siamfc_W, when the threshold is over 0.7. We believe the
reason is when the threshold is over 0.7, the performance of
AS-Siamfc is more dependent on auxiliary relocation branch than
on AS network. Thus, the auxiliary relocation branch may bring
some noise and wrong knowledge, which leads to the error of
AS-Siamfc and reduces the tracking performance.

4.3. Experiments on widely used benchmark

In order to compare the proposed AS-Siamfc tracker with some
state-of-the-art trackers, we show some quantitative and qualita-
tive experiments on the widely used benchmarks, OTB2013 [46],
OTB100 [47], OTB50 and VOT2018 [72] in this section. Firstly,
we show the precision and success plots of One-Pass Evaluation
(OPE) in benchmark OTB2013, OTB100 and OTB50, along with
the Accuracy-Robustness plots (AR plots) in VOT2018. The perfor-
mances of the proposed tracker under 10 tracking challenges are
also analysed in this section. Secondly, we provide the tracking
bounding boxes of 10 sequences to show the qualitative analyses
of the proposed AS-Siamfc tracker.

4.3.1. Quantitative analyses

We provide some quantitative analyses in this subsection.
We also selected some state-of-the-art trackers including some
Siamese network based trackers for comparison which is con-
ducted on the widely used benchmark, OTB2013, OTB100 and
OTB50. Two metrics, precision and Area Under Curve (AUC), are
used to rank these trackers. Firstly, we show the comparison re-
sults of OTB2013, OTB100 and OTB50 respectively. Then, we anal-
yse the performance of the proposed AS-Siamfc tracker under 10
tracking challenges.

Experiments on OTB2013 data set: OTB2013 is one of the
widely used benchmark with 52 fully annotated sequences. In or-
der to facilitate the comparison test, the author also provides two
evaluation criteria and a toolkit. Fig. 14 shows the precision and
success plots of One-Pass Evaluation (OPE) in OTB2013 data set.
From Fig. 14, we can see that our proposed AS-Siamfc tracker
achieves the best tracking performance against the other compar-
ative trackers at the average speed of 70.625 fps. The precision
score and success score are 0.820 and 0.667 respectively. Com-
paring with Siamfc tracker, the performance of the proposed AS-

Siamfc tracker exceeds the performance of Siamfc tracker 0.058
and 0.092 on the precision score and success score respectively.

Experiments on OTB100 data set: In order to increase the
number of sequences of OTB2013 data set and to evaluate the
visual object trackers more accurately, Wu et al. [47] add some
fully annotated sequences into OTB2013 data set to construct the
OTB100 data set. Thus, OTB100 data set expends OTB2013 data
set from 52 sequences to 100 sequences. Similarly, the evaluation
criteria and toolkits in OTB2013 data set are also applicable in
OTB100. Fig. 15 shows the precision and success plots of OPE in
OTB100 data set. From Fig. 15, we can see that the precision score
and success score of the proposed AS-Siamfc are 0.844 and 0.680,
which are also the highest scores in Fig. 15. The precision score
and success score of the proposed tracker are 0.087 and 0.108
larger than that of Siamfc. By comparing the scores of AS-Siamfc
tracker in OTB2013 and OTB100, we find that the scores of AS-
Siamfc in OTB100 are average 1.85% higher than that in OTB2013.
We believe the reason is that the number of sequences in OTB2013
data set is relatively small, which will have a great impact on the
overall precision and success scores if the tracking performances
of a certain sequence are not good. On the contrary, there are
more sequences in OTB100 and the distribution of the sequences
in OTB100 is relatively uniform. Thus, the tracking results of a
single video sequence have little influence on the overall precision
and success scores. This also illustrates the effectiveness and
applicability of the proposed AS-Siamfc tracker.

Experiments on OTB50 data set: OTB50 is composed of 50
hard-to-track sequences selected from the OTB100. It is one of the
widely used benchmark with 50 fully annotated sequences. The
toolkit proposed in OTB2013 [46] can also applied in OTB50 data
set. Fig. 16 shows the precision and success plots of OPE in OTB50
data set. As shown in Fig. 16, our performance of the proposed
tracker is better than the other state-of-the-art trackers. The pre-
cision score and success score are 0.764 and 0.604 respectively.
Comparing with Siamfc tracker, the performance of the proposed
AS-Siamfc tracker exceeds the performance of Siamfc tracker 0.071
and 0.091 on the precision score and success score respectively.

Experiments on VOT2018 data set: VOT2018[72] is also one of
the widely used benchmarks, which contents 60 sequences, includ-
ing many tiny, similar tracking objects. Fig. 17 shows the mean AR
plot and pooled AR plot for experiment baseline of VOT2018 data
set respectively. According to the definition of AR plot in VOT2018
[72], the trackers which locate at the upper right quarter of AR
plot perform better than the ones locate at the lower left quar-
ter. As shown in Fig. 17, though the proposed AS-Siamfc tracker
has a relatively low score on robustness, its accuracy score is the
highest among the trackers for comparison. Generally, when com-
paring with some state-of-the-art trackers, AS-Siamfc could give a
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Fig. 18. The precision and success plots of 10 tracking challenges in OTB100, using proposed tracker and 8 state-of-the-art trackers.

comparable performance in VOT2018, which illustrates the effi-
ciency of the proposed tracker.

Experiments of 10 tracking challenges in OTB100: In order
to analyse the applicability of the proposed AS-Siamfc tracker
in different sequences in detail. The sequences in OTB100 data
set are divided into 11 tracking challenges, including illumination

variation, out-of-plane rotation, scale variation, occlusion, defor-
mation, motion blur, fast motion, in-plane rotation, out of view,
background clutter and low resolution. Fig. 18 shows the precision
and success plots of AS-Siamfc under these challenges along with
some state-of-the-art trackers. In order to make the figure neat,
we select 10 challenges in Fig. 18 instead of all 11 challenges.
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Fig. 19. Qualitative results of 10 typical video sequences in OTB2013, OTB100 and OTB50, using the proposed tracker and 9 state-of-the-art trackers.

From Fig. 18, we can see that the proposed AS-SimaFC tracker
performs the best than the other trackers under all the 10 track-
ing challenges. By comparing the performances of the proposed
tracker and Simafc tacker, we find that the proposed tracker shows
better performances under the challenges of out-of-plane rotation,
scale variation, deformation and fast motion,etc. especially the
deformation. From Fig. 18(d), we can see that our proposed tracker
shows a relatively good performance in the tracking challenge of
occlusion, even though AS-Siamfc does not deliberately design a
module to deal with this challenge. We believe the reason is the
proposed switch function could indirectly detect the occurrence
of occlusion to some extent, and using auxiliary relocation branch
to refine the tracking results, since when occlusion occurs, the
response map of AS Siamese network may get a low response
score, which also means the tracker is running under an untrusted
state. Indeed, there are also many occlusion aware methods in
visual object tracking and motion segmentation [53,73,74]. How to
integrate these occlusion aware methods in the proposed tracking
framework to further improve the tracking performance will be
our future work. In Fig. 18(e), the precision score and success score
of AS-Siamfc are 0.13 and 0.148 higher than that of Siamfc and
are 0.125 and 0.145 higher than that of SAMF tracker [67], which
is also the second-ranking tracker in Fig. 18(e). We believe this
also proves that the proposed AS network and auxiliary relocation
branch with switch function could improve the expression power
of Siamese network and provide good tracking performances.

4.3.2. Qualitative analyses

In addition to the above-mentioned quantitative analyses ex-
periments, we also show some tracking bounding boxes of the se-
quences in OTB2013, OTB100 and OTB50 for qualitative analyses in
this subsection.

As shown in Fig. 19, we select 10 typical video sequences in
OTB2013, OTB100 and OTB50. The names of these 10 sequences are
CarScale, Matrix, DragonBaby, Skiing, Jump, Diving, Girl2, FleetFace,
Soccer and David3 in order from left to right and from top to bot-
tom. These 10 sequences basically contain all the 11 tracking chal-
lenges (one sequence may contain multiple challenges). However,

in order to show the advantages of the proposed AS-Siamfc tacker
better, these sequences focus more on the challenges of deforma-
tion, scale variation and fast motion. From the sequence CarScale,
we can see that AS-Siamfc could estimate the state of object bet-
ter, when the car runs from far to near and gradually larger. In the
sequences of Diving and Jump, the athletes have obvious and fast
deformations. Even so, the proposed tracker can still track the ath-
letes well. Meanwhile, the sequences of Matrix, DragonBaby and
Skiing show the challenge of fast motion, since the people in the
fighting or skiing always move fast. The proposed tracker can also
provide a relatively accurate tracking performance. Generally, all
the quantitative and qualitative experiments can prove the appli-
cability and effectiveness of the proposed AS-Siamfc tracker.

5. Conclusions

In this paper, we proposed a novel Attention shake based
tracker which is based on a modified Siamese network. The pro-
posed tracker which is named as AS-Siamfc tracks the object in
real-time, whose average tracking speed is 70.625 fps. Moreover,
AS-Siamfc tracker can improve the expression power of Siamese
network by merging two different attention modules into Siamese
network, introducing the prior knowledge into the proposed
tracking framework and monitoring the tracking process. Firstly,
in order to improve the expression power of Siamese network,
a novel attention shake layer which combines two different at-
tention modules with shake-shake framework is proposed in the
architecture of the backbone network. Secondly, the auxiliary relo-
cation branch which contains structure similarity weight, motion
similarity weight, motion smoothness weight and object saliency
weight is proposed to introduce the prior knowledge into the
tracking framework and relocate the objects when the tracker runs
under untrusted state. Finally, a novel switch function which is
based on the response map of AS network is proposed to monitor
the tracking process and detect the tracking failure. The qualitative
and quantitative experiments as well as the basic experiments
show the effectiveness and applicability of the proposed tracking
algorithm.
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