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a b s t r a c t 

Siamese network is highly regarded in the visual object tracking filed because of its unique advantages 

of pairwise input and pairwise training. It can measure the similarity between two image patches, which 

coincides with the principle of the matching-based tracking algorithm. In this paper, a variant Siamese 

network based tracker is proposed to introduce attention module into traditional Siamese network, and 

relocate the object with some auxiliary relocation methods, when the proposed tracker runs under an 

untrusted state. Firstly, a novel attention shake layer is proposed to replace the max pooling layer in 

Siamese network. This layer could introduce and train two different kinds of attention modules at the 

same time, which means the proposed attention shake layer could also help to improve the expression 

power of Siamese network without increasing the depth of the network. Secondly, an auxiliary relocation 

branch is proposed to assist in object relocation and tracking. According to the prior assumptions of visual 

object tracking, some weights are involved in the auxiliary relocation branch, such as structure similarity 

weight, motion similarity weight, motion smoothness weight and object saliency weight. Thirdly, a novel 

response map based switch function is proposed to monitor the tracking process and control the effect 

of auxiliary relocation branch. Furthermore, in order to discuss the effect of pooling layer in Siamese 

network, 9 pooling and attention architectures are proposed and discussed in this paper. Some empirical 

results are shown in the experiment part. Comparing with the state-of-the-art trackers, the proposed 

tracker could achieve comparable performance in multiple benchmarks. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Visual object tracking is an enduring and fundamental research

irection, because of its strong application requirements, such as

upervision, auto driving, etc. Besides it is also the foundation of

ome other artificial intelligence research, like video based crowd

ehavior analysis and anomaly detection, etc. According to the

efinition given by Smeulders et al. [1] , visual object tracking is an

nline semi-supervised learning problem. The only training sample

s from the state of object at the first frame. How to construct the

ppearance model of the tracking object accurately, how to online

pdate the appearance model to adapt the changes of object in the

ideo and how to monitor tracking process to relocate the object

hen failures occur are the key points to be solved in visual object

racking. Before deep learning based tracking methods, Correlation

ilter (CF) based tracking methods [2–4] have attracted much at-
∗ Corresponding author. 
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ention of the researchers because of their rapidity and simplicity.

owever, the tracking performance of this kind tracking methods

s limited by their expression power. Using the deep features from

 well pre-trained network [5,6] may improve the representation

bility to a certain extent. However, these deep feature extraction

ethods may also cause the representation inaccuracy of some

bjects, because the well pre-trained networks usually are not

rained for tracking tasks, but for classification tasks. Using deep

etworks as classifiers in visual object tracking directly [7] may

rovide suitable appearance model. However, updating the param-

ters in deep networks is very time consuming, and that is also

he reason why Multi-Domain Network (MDNet) based tracker [7]

ould not run in real time. 

In addition, Siamese network, which is a pairwise input and

airwise training network, is also very popular in the visual object

racking field [8,9] . It could measure the similarity between two

mage patches without knowing the category labels of these two

mage patches. Normally, Siamese network is treated as a matching

unction and used to measure the similarity between templet im-

ges and instance patches obtained from the frames [9] . This kind

https://doi.org/10.1016/j.neucom.2020.02.120
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.02.120&domain=pdf
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of methods is simple and easy to understand, but considering the

instance patches that need to be measured, these methods is very

time consuming. Besides, it fails to consider the update of tem-

plets. In order to improve the tracking speed and break the lim-

itation in traditional Siamese network that the two input patches

must be of the same size, the idea of CF based trackers is intro-

duced into Siamese network through fully-convolutional operations

[10] . The output of exemplar image is used as a kernel in corre-

lation filter. Thus, the tracking results can be obtained by finding

the peak response score in response map. Due to the way of train-

ing and the backbone network, the expression power of the pro-

posed tracker in [10] is very limited. In addition to replacing the

ALexNet with some deeper network architectures, many variants

[11–13] have been proposed to improve the expression power of

Siamese network as well. Such as replacing the training loss with

a triplet loss [12] , combining Siamese network with Region Pro-

posal Network (RPN) [13] , etc. Considering the Siamese network

based trackers and their variants, we find that most of the trackers

focus on how to improve the expression power by a deeper back-

bone network. However, this may result in GPU consumption dur-

ing the training process. It may also cause the over fitting, which

means the pre-trained Siamese trackers are very dependent on the

distribution of training samples and testing sequences. Besides, all

the Siamese network based trackers fail to monitor the tracking

process and do not have relocation algorithm, which means these

trackers may provide some results with low response/confidence

scores, and it is hard for them to relocate the objects when failure

occurs. Furthermore, they do not consider the prior assumptions of

visual object tracking. For example, normally, the motion and de-

formation of object in the tracking sequences are smooth, which

means the location or state of the object between two adjacent

frames does not change much. These prior knowledge sometimes

helps refine tracking results and relocates objects. 

Motivated by the above discussion, we try to design a Siamese

network based tracker named as AS-Siamfc (Attention Shake

Siamfc, AS-Siamfc), And it mainly focuses on the following three

aspects: how to improve the expression power of AlexNet based

Siamese network without increasing the depth or the layers of the

network, how to introduce the prior knowledge of visual object

tracking into the Siamese network based tracker to refine and im-

prove the tracking results, and how to monitor the tracking process

and detect the tracking failure. In order to solve the three problems

above, firstly, a novel Attention Shake (AS) layer is proposed in this

paper to replace the max pooling layer and improve the expres-

sion power of Siamese network. Different from the other atten-

tion methods, the proposed AS layer combines two different atten-

tion modules with a shake-shake framework [14] . The shake-shake

framework replaces the standard summation of parallel branches

in a multi-branch network with a stochastic affine combination

[14] . This also helps to train the two different attention modules

automatically and avoid over-fitting in the training process at the

same time. Due to the AS layer, the proposed tracker pays more

attention on real objects rather than the hard negative samples,

which also means the AS layer helps to improve the expression

power of Siamese network. Secondly, considering the prior as-

sumptions of visual object tracking, an auxiliary relocation branch

is proposed to refine the location of object when the proposed

tracker runs under untrusted state. In the auxiliary relocation

branch, there are some weights to meet the prior assumptions of

visual object tracking, such as structure similarity weight, motion

similarity weight, motion smoothness weight and object saliency

weight. The additional prior knowledge could refine the tracking

results and bring benefits, especially when the failure occurs or a

tracker runs under untrusted state. Contrarily, it may also bring

the noise and interferes with the tracking results. Hence, moni-

toring tracking process and detecting failure become very impor-
ant. Thirdly, in order to monitor tracking process, we propose a re-

ponse map based switch function. When the value of switch func-

ion is below a certain threshold, we believe the tracker runs under

ntrusted state, and the weights in auxiliary relocation branch will

elp this tracker to refine tracking results. Moreover, noticing that

ew works discuss the impact of pooling layer on Siamese network,

e also propose 9 kinds of pooling and attention architectures and

how some empirical results in the experiment part. 

The main contributions of this paper can be summarized as

ollows: 

• A novel AS layer is proposed to improve the expression power

without increasing the depth or the layers of AlexNet based

Siamese network. By combining two different attention mod-

ules with a shake-shake framework, The proposed AS layer

could train these two different attention modules at the same

time. 
• An auxiliary relocation branch is proposed to refine the track-

ing results and introduce some prior knowledge of visual ob-

ject tracking into Siamese network based trackers. This auxil-

iary relocation branch involves some weights, such as structure

similarity weight, motion similarity weight, motion smoothness

weight and object saliency weight, to meet the prior assump-

tions of visual object tracking and relocate the object when the

tracker runs under an untrusted state. 
• A switch function is proposed to monitor the tracking pro-

cess and determine whether the weights in auxiliary relocation

branch affect the tracking results. When the switch function

score is over a certain threshold, we believe the tracker runs

under a trusted state, and auxiliary relocation branch is not re-

quired to assist in tracking results. Otherwise, auxiliary reloca-

tion branch helps to refine the tracking results. 
• The impact of pooling layer on Siamese network is discussed in

this paper. 9 pooling and attention architectures are proposed

in this paper and relative empirical results are shown in the

experiment part. 

The organization of this paper is as follows: Section 1 shows

he motivations and contributions of the proposed tracker. Then,

ome related works are discussed in Section 2 . Section 3 illus-

rates the detailed information and process of the proposed tracker.

he analyses of the contributions in this paper and the experi-

ents on widely used benchmarks are shown in Section 4 . Finally,

ection 5 concludes this paper. 

. Related works 

Usually, according to the number of objects which need to

e tracked, visual object tracking can be divided into multi-

bject tracking and single object tracking. For multi-object tracking

15–18] , there are multiple objects to be tracked, however, these

bjects are usually known in advance, such as pedestrian track-

ng, vehicle tracking. Thus, multi-object tracking is always formu-

ated as a data association problem. For single object tracking

1,19–23] the object to be tracked is single, but unknown in ad-

ance. Thus, single object tracking is formulated as an online learn-

ng problem. In this paper, we mainly focus on the single object

racking. However, some methods in single object tracking can be

pplied in the multi-object tracking as well. For instance, Shen

t al. [17] try to apply minimum output sum of squared error fil-

er which is widely used in single object tracking in multi-object

racking. For single object tacking, Survey [19] and [1] divided

racking methods into two categories and three components. The

wo categories are generative methods [24–26] and discriminative

ethods [2,27,28] . Generative tracking methods regard tracking as

 templet matching problem and build the model of joint prob-

bility. While discriminative tracking methods treat tracking as a
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lassification problem and build the model of posterior probabil-

ty. For both of these two kinds of tracking methods, large num-

ers of manually designed features and traditional machine learn-

ng methods are used in visual object tracking, such as patch based

ethods [29–32] , sparse representation based methods [22,33,34] ,

upport Vector Machine (SVM) based methods [35,36] Correlation

ilter (CF) based methods [2–4] , etc. Huang et al. [32] represent

bject by a part space with two online learned probabilities to cap-

ure the structure of object. Ma et al. do a lot research on sparse

epresentation based tracking methods [20–23] . Based on the glob-

lly linear approximation, a discriminative visual dictionary and a

onlinear classifier in sparse coding manner is proposed for track-

ng in [20] . Besides, Ma et al. [21] also presented a joint blur

tate estimation and multi-task reverse sparse learning framework.

hile, the three components are appearance model, motion model

nd update model respectively. Among these three components,

ppearance model, which is used to describe object and distinguish

bject from background, plays an important role in visual object

racking for both generative and discriminative methods. 

Recently, along with the development of correlation filter and

eep learning, large numbers of CF based methods [37–39] , deep

etwork based methods [7,13,40,41] and their hybrid methods

5,10,42,43] are proposed to construct the appearance model of 

bject in visual object tracking. Normally, deep learning based

rackers can be divided into two kinds: the deep feature based

rackers [5,6] and the deep classification based trackers [7,44] . For

eep feature based trackers, well pre-trained networks are applied

o extract the features of objects and construct the appearance

odel, then the extracted deep features are introduced into

he traditional tracking frameworks. For deep classification based

racker, the deep networks are used as classifiers. The hyperparam-

ter optimization is also one of the drawbacks in deep network

ased trackers. Dong et al. [45] proposed a continuous Deep

-Learning based action-prediction network for hyperparameter

ptimization. In order to evaluate the proposed trackers reasonably

nd enhance the comparability among different trackers, many

enchmarks are applied in visual object tracking, such as OTB50

46] , OTB100 [47] , TC128 [48] , UAV123 [49] , GOT-10K [50] , Lasot

51] , etc. The presentation of these data sets also provides a large

nd diverse training samples for deep network based trackers.

ince the proposed tracker in this paper is based on the combina-

ion of CF based methods and deep network based methods, we

ainly discuss the CF based trackers, deep network based trackers

nd the combination of these two kind of trackers in this section. 

CF based trackers: David et al. [52] firstly introduce Correlation

lters into the visual object tracking field. The correlation filter in

52] is trained by the state of object given at the first frame with

 loss function to minimum the output sum of squared error. Thus

he location of object has the largest correlation response score. In

rder to increase training samples and improve the robustness of

orrelation filter. Henriques et al. [37] propose a cyclic matrix to

rain the correlation filter. Instead of the sing-channel feature used

n [37] , they also propose a way to integrate multi-channel fea-

ures into correlation filtering framework with a kernel method in

2] . This Kernelized Correlation Filter based tracker is also known

s KCF. Martin et al. [39] apply two correlation filers to track the

bject. One is the translation filter which is used to obtain the

ocation of object. The other is the scale filter which is proposed

o estimate the scale of object and help the tracker to cope with

he scale changing challenge. Chao et al. [38] find that the corre-

ation between temporal context improves the accuracy and relia-

ility for translation estimation, and train two different correlation

lters from one frame. One is the filter of object, the other is the

emporal context which is a correlation filter of surrounding con-

ext with spatial weights. Besides, an online re-detection module is

roposed in [38] to monitor the tracking process in case of track-
ng failure. Generally, the CF based trackers are very effective and

ast (more than 100 fps) which leave room for improvement, such

s introducing some complex modules into the CF based trackers.

ong et al. [53] propose a two-stage classifier with kernelized cir-

ulant structure for occlusion-aware. Besides, a classifier pool is

uilt to save classifiers with noisy updates and to redetect object

hen object is in occlusion. 

Deep network based trackers: Along with the successful ap-

lication of deep learning in other research fields, such as clas-

ification, object detection, image caption, etc., many deep net-

ork based tracking methods are proposed [7,13,40,44,54,55] . -

am et al. [7] propose a tracker based on Convolutional Neural

etwork (CNN) which is trained for classification tasks. This net-

ork is composed of two parts: the shared layers and domain-

pecific layers. The shared layers contain the generic object rep-

esentations. While, the domain-specific layers which are updated

nline show representations of individual sequences. Considering

hat online updating deep network is very time consuming, David

t al. [44] apply a simple feed-forward network without online

raining and updating to improve the tracking speed to 100 fps.

nstead of treating the deep network as a classifier, this network

s trained to regress the state of bounding-box of object. In addi-

ion to the trackers mentioned above, another kind of widely used

racking methods is based on Siamese network [8] . Siamese net-

ork with pairwise inputs could measure the similarity of two im-

ge patches without knowing the category labels [56] . Therefore,

ao et al. [9] propose a tracker based on templet matching and vi-

lence search. In this tracker, Siamese network is applied to mea-

ure the similarity between templet and instance images. Li et al.

13] and Zhu et al. [57] try to combine the Siamese network with a

egion Proposal Network (RPN) to make the tracking task an end-

o-end learning process. In order to improve the expression power

f Siamese RPN network, Li et al. [40] replace the backbone net-

ork of Siamese with a deeper network. While, Fan et al. [55] de-

ign the Siamese network by cascading the RPN networks. Further-

ore, Wang et al. [54] try to add an image segmentation branch to

he Siamese network to improve the tracking success rate of the

roposed tracker. 

Combination of CF based trackers and deep network based

rackers: There are two ways to combine CF based trackers and

eep network based trackers. One way is treating deep networks as

eature extractors and applying the deep features directly to train

orrelation filters without training [5,6,42] . Ma et al. [5] analyse

he impact of convolutional features from different layers on vi-

ual object tacking and train three correlation filters of different

ayers. While, Danelljan et al. [42] try to fuse the convolution fea-

ures from different layers with an interpolation operator and ap-

ly this fusion feature to train correlation filter. According to the

iscussion above, these combinatorial methods are simple and di-

ect. However, the expression power of the deep features may be

educed, since the well-trained deep network is trained for classi-

cation task rather than tracking task. The other way is Siamese

etwork based combination methods [10–12,58,59] . These meth-

ds make full use of the pairwise inputs and pairwise training of

iamese network. They are usually separated into two parts: the

raining process and the tracking process. And the network param-

ters which are more suitable for tracking problem are trained by

airwise training methods. Bertinetto et al. [10] propose a tracker

amed as SiameseFC which is similar to CF based tracker by us-

ng the fully convolutional Siamese network. Dong et al. [12] try

o replace the training loss with a triplet loss by considering the

elationship between positive instances and negative instances. A

ovel design principle of Siamese network is proposed in [11] to

eplace the backbone network with a deeper and wider one. Thus,

he expression power of Siamese network is also improved. In

rder to achieve the online learning of Siamese network based
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trackers, Guo et al. [58] propose a dynamic Siamese network with

a fast general transformation learning model which enables online

learning. Dong et al. [59] increase the two shared sub-branches in

Siamese network to four sub-branches to take advantage of the un-

derlying structure of data and relationship. 

There are also some similar works [43,60,61] , which try to

introduce attention module into the Siamese network. He et al.

[43] propose a twofold Siamese network for visual object tracking,

this network is composed of two branches: the semantic branch

and appearance branch. In the semantic branch, a channel atten-

tion based module is proposed to obtain the semantic information

of object. While, Wang et al. [60] add three kinds of attention mod-

ules into the Siamese network: the residual attention, channel at-

tention and general attention to improve the tracking performance.

However, all these three attention modules are added in the ex-

emplar branch of the Siamese network, and Siamese network is

used as feature extractor. Shen et al. [61] obtain attention weights

with proposed Attention Net(A-Net). Unlike traditional Siamese

network, the feature maps of different layers in Siamese network

are feeded into A-Net to calculate the attentive feature maps for

cross correlation. Different from these Three trackers mentioned

above, our proposed attention shake Siamese network could train

two different kinds of attention modules at the same time, and

the parameters of these two attention modules could be trained

dynamically. This could help to obtain the benefits of these two at-

tention modules and avoid over fitting problems. Furthermore, our

proposed tracker can monitor the tracking process and introduce

the prior knowledge of visual object tracking to refine the tracking

results when the tracker runs under untrusted state. The specific

details of the proposed tracker are presented in the following sec-

tion. 

3. Our approach 

In this section, we present the architecture and details of our

proposed Attention Shake based Siamfc (AS-Siamfc) tracker. Firstly,

we present the architecture of the proposed tracker. Then, the fol-

lowing three subsections mainly focus on the details of proposed

tracker respectively, such as attention shake layer, auxiliary reloca-

tion branch and switch function. Finally, we show the training and

tracking procedures of AS-Siamfc. 

3.1. Architecture of the proposed tracker 

The Siamese network based trackers treat visual object track-

ing as a cross-correlation problem and compute the response map

from Siamese network based deep model. They usually have two

branches for the pairwise input. One branch is to learn the pre-

sentation of object z ′ in a semantic embedding space �(), and the

other branch shows the presentation of the search area x ′ . Thus the
response map can be calculated by Eq. (1) . 

f (z ′ , x ′ ) = �(z ′ ) � �(x ′ ) + b (1)

where b is bias term and ◦ledast denotes the cross-correlation op-
eration. The goal is to match the maximum value in response map

to the object location. 

In this subsection, we describe the architecture of the proposed

tracker. As shown in Fig. 1 , the architecture of AS-Siamfc can be

mainly divided into three parts: attention shake network, reloca-

tion branch and switch function. Moreover, at the right side of

Fig. 1 , a weight based fusion method controlled by switch func-

tion is proposed to introduce the prior knowledge of visual object

tracking into the proposed tracker and calculate the final response

map, R T . � and ◦ledast in Fig. 1 denote element-wise product and

cross-correlation operation respectively. 
For the part of attention shake network Fig. 1 (a), a novel atten-

ion shake layer is proposed to replace the max pooling layer in

he AlexNet based Siamese network. This proposed attention layer

ould combine two different attention modules and improve the

xpression power. For the part of relocation branch Fig. 1 (b), many

eight maps, such as structure similarity weight, motion similarity

eight, motion smoothness weight and object saliency weight, are

pplied to introduce some prior knowledge into AS-Siamfc. These

ypes of prior knowledge could refine and relocate object when

he proposed tracker runs under an untrusted state. For the switch

unction part Fig. 1 (c), by observing the relationship between the

core of response map of AS network and the success rate of AS-

iamfc, we design a switch function to monitor the tracking pro-

ess online and control the effect of auxiliary relocation branch on

racking results. 

The whole process can be summarized as follows: firstly, we

eed the exemplar image, I z (also templet obtained from the first

mage) and instance image, I x (also candidate search image which

s larger than exemplar image and represents the search area)

nto the proposed AS network and obtain the response map. Then,

he switch function is used to monitor the tracking process ac-

ording to the response map. If the tracker runs under a trusted

tate, the tracking results could be obtained according to the re-

ponse maps directly. Otherwise, the response map of AS net-

ork is updated by the weight map of auxiliary relocation branch

hrough element-wise product to refine and relocate the tracking

esults. 

.2. Attention shake in siamese network 

The expression power of Siamese network directly affects the

erformance of tracking and attention modules are proved to be

ffective in classification tasks. Thus, we try to introduce attention

odules into Siamese network to improve the expression power.

n this section, a novel attention shake layer is proposed to replace

he max pooling layer in Siamese network. Pooling layer in deep

etwork helps to reduce the dimension of convolutional features,

hich is like a process of feature selection. Max pooling layer se-

ects the maximum impact within an area (the max value). This

ould reduce the error of estimated mean which is caused by er-

or of parameters in convolution layers and retain more useful in-

ormation. While, average pooling layer considers the average ef-

ect of all elements in a certain area (the mean value). Thus, the

verage pooling layer pays more attention to the integrity of infor-

ation, and helps to reduce the estimated variance caused by the

onstraints of neighborhood size. Considering the analyses above,

he proposed AS layer can have the advantages of both max pool-

ng layer and average pooling layer at the same time. 

As shown in Fig. 2 , the AS layer can be mainly divided into

wo parts: the attention part and the shake part. In the atten-

ion part, there are two modified Squeeze and Excitation block

SE block) [62] based attention modules: the max-attention mod-

le (left side of Fig. 2 (a)) and the average-attention module (right

ide of Fig. 2 (a)). Different from the traditional SE block, the mod-

fied SE blocks in this paper is applied to further refine the fea-

ure maps of max pooling and average pooling. The architectures of

ax-attention module and average-attention module can be found

n Fig. 2 (a). The max pooling and average pooling are used as the

patial attention in AS layer. After the max pooling layer (or aver-

ge pooling layer), another global pooling layer is used to trans-

er the feature map of max pooling (or average pooling) from

((H − 3) / 2 + 1) ∗ ((H − 3) / 2 + 1) ∗C to 1 ∗ 1 ∗C, where H, W and C

enote the height, width and channel of convolution feature map,

 . Then two fully convolutional layers are used to reduce and then

ncrease the number of channels with a penalty coefficient, r , re-

pectively. Finally, the channel attention weight can be calculated
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Fig. 1. The main framework of the proposed AS-Siamfc. It basically consists of 3 parts: (a) the attention shake network with proposed attention shake layer. (b) the auxiliary 

relocation branch which contains structure similarity weight, motion similarity weight, motion smoothness weight and object saliency weight. (c) the switch function which 

is used to control the four weights in relocation branch.- 

Fig. 2. The architecture of the proposed attention shake layer. It can be divided into two parts (a) the attention part and (b) the shake part. 
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Fig. 3. The response maps of instance image and the whole image, using Siamfc and AS-Siamfc. (a) and (e) show the instance image of Frame 490 and the whole image 

respectively. (b) and (f) are the response map of Siamfc. (c) and (g) are the response map of AS-Siamfc. 
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by a sigmoid function. The feature map of max-attention, AT max ,

and average-attention, AT avg , can be obtained by Eqs. (2) and (3) . 

AT max (X ) = sig(W m 1 (W m 0 (maxpool(X )))) � maxpool(X ) (2)

AT a v g (X ) = sig(W a 1 (W a 0 (a v gpool(X )))) � a v gpool(X ) (3)

where W m 0 and W a 0 are the operations of the first fully connected

layers of max-attention and average-attention, which try to reduce

the channels from C to C / r . While, W m 1 and W m 2 are the operations

of the second fully connected layers of max-attention and average-

attention, which try to rise raise the channels from C / r back to

C. sig () denotes the sigmoid function, and � is the channel-wise

product. 

In order to make the proposed attention shake network contain

the advantages of both max-attention and average-attention, the

shake-shake model [14] is introduced into the AS layer. As shown

in Fig. 2 (b), the shake part in AS layer combines the feature map

of max-attention and average-attention by a weighted sum. One

benefit of the shake part is that the weight coefficient is dynamic

in the train process, which could cause the attention part to adjust

its parameters dynamically and prevent over fitting problems. The

feature map of the AS layer can be computed by Eq. (4) . 

M AS (X ) = 
ˆ X = γ ∗ AT max (X ) + (1 − γ ) ∗ AT a v g (X ) (4)

where M AS ( X ) denotes the feature map of AS layer, and γ denotes

the weight coefficient. In the training process, γ varies according

to uniform distribution from 0 to 1. In the tracking process, γ is set

to be a fixed scalar, like 0.5. Since the proposed attention shake

network is based on the Siamese network, the response map of

attention shake network can be calculated by Eq. (5) . 

f (I z , I x ) = g(ϕ(I z ) , ϕ(I x )) 

= ϕ(I z ) � ϕ(I x ) + b (5)

where ϕ() denotes the attention shake network, ◦ledast denotes
the cross-correlation operation and b denotes a bias term. I z and

I x are the exemplar image and instance image respectively. 

Fig. 3 shows the response maps of Siamfc [10] and the pro-

posed AS-Siamfc respectively. Fig. 3 (b) and (c) are the response

maps of instance image. In order to show the effect of attention

shake layer persuasively, the response maps of the whole frame

are shown in Fig. 3 (f) and (g). By comparing the response maps

between Siamfc and the proposed AS-Siamfc, we find that Siamfc

only focus on the center part of object and cannot cover the whole

object. While, AS-Siamfc could focus on the whole object. Further-

more, AS-Siamfc makes the object area of the response map redder
nd the background area bluer, which means the proposed method

ould increase the discrimination between object and background,

nd the attention shake layer could improve the expression power

f Siamese network. 

.3. Auxiliary relocation branch 

For tracking tasks, especially for some specific scenarios, there

re some prior assumptions about the tracking object. For example,

e always assume that the motion of tracking object is smooth,

hich means the state of object between two adjacent frames does

ot vary much. And people tend to choose some conspicuous ob-

ects as tracking objects. Moreover, the sequential relationship of

bject can also help to refine the tracking results. Thus, the pur-

ose of the auxiliary relocation branch is to introduce some prior

nowledge into AS-Siamfc, and relocate objects when the tracker

uns under untrusted state. The auxiliary relocation branch along

ith the switch function (mentioned below) can be viewed as the

ailure detection and relocation part of AS-Siamfc. According to the

rior assumptions mentioned above, some weight maps are intro-

uced into the auxiliary relocation branch, such as structure simi-

arity weight, motion similarity weight, motion smoothness weight

nd object saliency weight. The detail procedure is shown in Fig. 4 .

From Fig. 4 , we can see that the auxiliary relocation

ranch can be divided into four sub-branches: motion similarity

eight sub-branch, motion smoothness weight sub-branch, object

aliency weight sub-branch and structure similarity weight sub-

ranch.Firstly, we calculate the weight maps of these four sub-

ranches respectively. Then, in order to merge the weight maps

btained from the four sub-branches, we normalize the weight

aps of these four sub-branches. Finally, the response maps are

erged by an element-wise function. Thus, we obtain the weight

ap of auxiliary relocation branch. Noticing that the auxiliary re-

ocation only works on the instance images. 

For motion similarity weight sub-branch, we apply Lucas-

anade method(LK) [63] to calculate the optical flow, Op(i, i − 1) ,

etween instance image i and instance image i − 1 , and we also

ompute the optical flow, Op(i − 1 , i − 2) , between instance images

 − 1 and i − 2 . Then, according to the state of object at instance

mage i − 1 , we select an area of optical flow Op(i − 1 , i − 2) , and

he Histograms of Oriented Optical Flow feature (HOF) [64] of this

rea is viewed as the motion characteristic of object. Similarly, we

lso extract the HOF of the optical flow Op(i, i − 1) . Thus, the mo-

ion similarity weight can be calculated by the cross-correlation

etween the HOF of the selected area and optical flow Op(i, i − 1) ,
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Fig. 4. The procedure of the relocation branch. It can be divided into 4 sub-branches: (a) the motion similarity weight sub-branch, (b) the motion smoothness weight 

sub-branch, (c) the object saliency weight sub-branch and (d) the structure similarity weight sub-branch. 
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s shown in Eq. (6) . 

 O = HOF (select(Op(i − 1 , i − 2))) � HOF (Op(i, i − 1)) + b o (6)

here R O is the weight map of motion similarity weight sub-

ranch, and it is the motion similarity weight used in this pa-

er. select(Op(i − 1 , i − 2)) represents the optical flow of object

alculated by instance image i − 1 and instance image i − 2 . HOF ()

eans the extraction of HOF feature. b o denotes the bias term of

otion similarity weight sub-branch. 

For object saliency weight sub-branch, the Frequency Tuned

alient region detection method (FT) [65] is applied to compute the

eight map of object saliency weight sub-branch, R S , which could

e obtained by Eq. (7) . 

 S (x, y ) = ‖ I μ − I whc (x, y ) ‖ (7)

here I μ is the average value of all pixels in the instance image,

nd I whc denotes the smooth image of instance image after Gaus-

ian filtering. Thus, I whc ( x, y ) is the corresponding score of I whc at

 x, y ). 

For motion smoothness weight sub-branch, the traditional two-

imensional Gaussian distribution function which is centered at

 x c , y c ) is used to construct the weight map of motion smooth-

ess weight sub-branch. ( x c , y c ) can be obtained by the location of

bject center in the previous frame. The two-dimensional Gaussian

istribution function is shown in Eq. (8) . 

 G (x, y ) = 

1 

2 πσ 2 
e −

( x −x c ) 
2 + ( y −y c ) 

2 

2 σ2 (8)

here σ is standard deviation of Gaussian distribution function,

nd R G is the weight map of motion smoothness weight sub-

ranch. 

For structure similarity weight, The Histograms of Oriented Gra-

ients feature (HOG) [66] is applied to describe the structure in-

ormation of object. Firstly, we extract the HOG feature of both the

nstance image i, I x ( i ) and the object image of instance image i − 1 ,

 o (i − 1) . The object image of instance image i − 1 can be obtained
y the state of object at frame i − 1 . Thus, the structure similar-

ty weight can be calculated by the cross-correlation between the

OG feature of I o (i − 1) and I x ( i ), as shown in Eq. (9) 

 St = HOG (I o (i − 1)) � HOG (I x (i )) + b St (9)

here R St is the weight map of structure similarity weight sub-

ranch, and it is the structure similarity weight used in this pa-

er. HOG () means the extraction of HOG feature, and b St denotes

he bias term of structure similarity weight sub-branch. Thus the

eight map of auxiliary relocation branch can be calculated by

q. (10) through element-wise product. 

 r = R O � R G � R S � R St (10)

Fig. 5 shows the weight maps of object saliency weight, motion

imilarity weight, motion smoothness weight, structure similarity

eight and the total weight map of auxiliary relocation branch re-

pectively. From Fig. 5 , we find that the object saliency weight in

ig. 5 (b) focuses on detecting the entire object, especially when

he difference between object and background is obvious. The mo-

ion similarity weight in Fig. 5 (c) pays more attention to the areas

hich have similar movement of object. And this makes the re-

ponse map of optical flow more suitable for tracking the moving

igid objects. While, the motion smoothness weight in Fig. 5 (d) es-

imates the probabilities of the locations of objects in instance im-

ge. It is consistent with the assumption that the motion of objet is

mooth. Similar to the motion similarity weight, the structure sim-

larity weight in Fig. 5 (e) pays more attention to the areas which

ave similar structure of object. This may help the tracker handle

ome tracking challenges, such as illumination variation, color vari-

tion, etc. More analyses about these three sub-branches can be

ound in Section 4.2.2 . From Fig. 5 (f), we find that the weight map

f auxiliary relocation branch can not only outline the object, but

lso estimate the location of object center accurately. Thus, we be-

ieve the auxiliary relocation branch could refine and relocate the

bjects when the proposed tracker runs under untrusted state. 
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Fig. 5. The visualization of the four weight sub-branches in auxiliary relocation branch. (a) is the original image, (b) is the object saliency weight, (c) is the motion similarity 

weight, (d) is the motion smoothness weight, (e) is the structure similarity weight, and (f) is the weight of auxiliary relocation branch. 
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3.4. Switch function 

Considering that introducing prior knowledge into AS-Siamfc

may also bring noises, and sometimes, the prior knowledge itself

is the noise which could impact tracking performance, we should

monitor the tracking process of the proposed tracker, and ensure

that the prior knowledge presented in auxiliary relocation branch

affects the response map of AS Siamese network and further refine

and relocate the objects only when the tracker runs under the un-

trusted state. Thus, in this section, a novel switch function which is

based on the response map of AS Siamese network is proposed to

monitor the tracking process and control the effect of auxiliary re-

location branch on the tracking performance. The proposed switch

function is shown in Eq. (11) . 

s (R A ) = ε 

(
max (R A ) − a v g(R A ) 
max (R A ) − min (R A ) 

− s t 

)
(11)

where R A represents the response map of AS Siamese network.

Thus, max ( R A ), avg ( R A ) and min ( R A ) are the maximum, average and

minimum values of R A . 
max (R A ) −a v g(R A ) 
max (R A ) −min (R A ) 

is the confidence percent-

age, which is used to assess the reliability of tracking process. ε()
denotes the unit step function and s t is the threshold. When con-

fidence percentage is over s t , the switch function score is 1. other-

wise, the switch function score is 0. Thus, the final response map

of AS-Siamfc can be calculated by Eq. (12) , which is controlled by

the switch function. 

R T = s (R A ) R A + (1 − s (R A )) R r � R A (12)

Where R T is the final response map of AS-Siamfc. R r and R A are the

weight map of auxiliary relocation branch and the response map

of AS network respectively. From Eq. (12) , we can see that when

confidence percentage is under the threshold s t , we believe that

the tracker runs under an untrusted state, and the weight map of

auxiliary relocation branch helps to refine and relocate the object.

Thus, the final response map R T is computed by an element-wise

product, R T = R r � R A . Otherwise, we think the tracker runs under

a trusted state, and the final response map is equal to the response

map of AS network, R T = R A . Another benefit of the proposed func-

tion is that we do not need to calculate the response map of aux-

iliary relocation branch in every frame. Instead, we only compute

the response maps of auxiliary relocation branch, when the tracker

runs under an untrusted state. This may also increase the tracking

speed and reducing the amount of calculation. 

Fig. 6 shows the relationship among response scores of R A ,

scores of switch function, precision scores and success scores in

two different sequences. The horizontal axes are the indexes of

frames, and the vertical axes are the corresponding scores. Fig. 6 (a)

and (e) show plots of the maximum, minimum and average val-

ues of R A of every frame. From these plots, we find that the av-

erage and minimum values of R A in every frame do not change

much. While, the maximum values vary with the frames. In both

Fig. 6 (a) and (e), we can see significant decline in the maximum

values of R . Fig. 6 (b) and (f) are the values of confidence percent-
A 
ge in switch function, which can be computed by 
max (R A ) −a v g(R A ) 
max (R A ) −min (R A ) 

.

rom these plots we can also see the significant decline which is

onsistent with the decline in Fig. 6 (a) and (e). By comparing the

lots, Fig. 6 (a) and (b), Fig. 6 (e) and (f), the confidence percentage

epresents the ratio of the distance between the peak value and

ean value of R A to the distance between the peak value and the

alley value of R A , and it can be applied to monitor tracking pro-

ess and measure the confidence of the tracking results. When the

onfidence percentage is under a certain threshold, the maximum

alue of R A is low, which means the tracker is hard to tell the ob-

ect from the background and the tracker runs under an untrusted

tate. By comparing the precision and success scores of Siamfc and

S-Siamfc in Fig. 6 (c) and (d), Fig. 6 (g) and (h), we find that the

recision and success scores of AS-Siamfc with switch function and

elocation branch become smoother and higher, which also means

he switch function and auxiliary relocation branch could monitor

he tracking process, detect failure and relocate the object when

he tracker runs under an untrusted state. 

.5. Training and tracking 

Similar to Siamfc [10] , the proposed AS-Siamfc can be divided

nto the offline training process and online tracking process. Dur-

ng the training process, we try to optimize the parameters of the

roposed AS network by reducing the loss of the whole data set.

hile, in tracking process, the pre-trained AS network is used to

alculate R A and obtain the final response map R T along with the

eight map of auxiliary relocation branch R r . The state of object

an be estimated by searching the index of peak value in R T . 

For training process, we adopt the logistic loss as the loss func-

ion, and train the proposed AS network on positive and negative

airs. The obtaining of positive and negative pairs is similar to

iamfc [10] . The loss function of a single response map is shown

n Eq. 13 . 

 (l y , v x,z ) = 

1 

| D | 
∑ 

u ∈ D 
log(1 + e −l y [ u ] v x,z [ u ] ) (13)

here l y is the set which contains all the labels of a response map,

nd v x, z is the set which contains all the real values of a response

ap. Thus, l y [ u ] and v x, z [ u ] represent the u th label and real value

f a response map. The loss function of a response map is the

ean value of logistic losses of all elements in the response map.

 is the set of index in a response map, and | D | is the number of

ndexes in D . For each index u in a response map, the label l y [ u ]

an be obtained by Eq. 14 . 

 y [ u ] = I (|| u − c|| − r � 0) − I (|| u − c|| − r > 0) (14)

here c is the center of object, and r is the radius. I (∗) denotes
he indicate function. When ∗ is true, I (∗) = 1 , otherwise, I (∗) =
 . Thus, when the distance between u and c is longer than the

adius r , the label l y [ u ] = −1 , otherwise, l y [ u ] = 1 . Furthermore, the

arameter θ of AS network can be optimized by minimizing the

ean value of all response maps in the data set with Stochastic
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Fig. 6. Visualization of the response scores, scores of the switch function, precision scores and success scores on 2 sequences.(a) and (e) are the response scores of proposed 

attention shake network. (b) and (f) show the values of confidence percentage in switch function. (c) and (g) are the precision scores of Siamfc and AS-Siamfc. (d) and (h) 

are the success scores of Siamfc and AS-Siamfc. 
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radient Descent (SGD). The equation is shown in Eq. (15) . 

= arg min 
θ

∑ 

(I z ,I x ,l y ) ∈ Da L (l y , f (I z , I x ; θ )) 

| Da | (15) 

here Da and | Da | represent the data set and the number of data

et which is used to train the proposed AS network. ( I z , I x , l y ) is a

raining sample in the data set. I z , I x and I y are the exemplar image,

nstance image and label of training data respectively. 

For tracking process, we try to estimate the state of object

hrough the response map R A which is obtained by the pre-trained

S network along with the weight map of auxiliary relocation

ranch R r . The pseudo code is shown in Algorithm 1 . 

lgorithm 1 Pseudo code of AS-Siamfc. 

nput: The exemplar image, I z ; The initial object state, X G ; The pre-

trained AS network, Threshold, s t ; Number of frames, N f ; 

utput: The states of object X t , t ∈ 

{
1 , 2 , ., N f 

}
; 

1: Calculating the feature map of exemplar image by feeding I z 
into The AS network; 

2: Initializing the object state, X 1 = X G ; 

3: for t = 2 ; t < N f ; t + + do 

4: Calculating the instance image I x , according to X t−1 ; 

5: Feeding the instance image I x into AS network and comput-

ing the response map by Eq. 5; 

6: Resizing the response map to (255 ∗ 255 ∗ 1) and obtaining

R A . 

7: Computing the score of switch function S(R A ) , by Eq. 11; 

8: if S(R A ) > 0 then 

9: Estimating the location of object through R A ; 

10: Updating the state of object X t ; 

11: else 

12: Calculating the response map of auxiliary relocation

branch, R r , by Eqs. 6, 7, 8, 9, 10; 

13: computing the final response map, R T , by Eq. 12; 

14: Estimating the location of object through R T ; 

15: Updating the state of object X t ; 

16: end if 

17: end for 

18: return X t , t ∈ 

{
1 , 2 , ., N f 

}
; 

The tracking process can be summarized as follows: firstly, we

eed the exemplar image, I z (also templet obtained from the first
mage) and instance image, I x (also candidate search image which

s larger than exemplar image and represents the search area) into

he proposed AS network to compute the response map R A by

q. (5) . Then, we calculate the score of the proposed switch func-

ion S ( R A ). If S ( R A ) is larger than 0, we believe that the tracker runs

nder a trusted state. Therefore, we could estimate the state of ob-

ect only by the response map R A . If not, the tracker runs under

n untrusted state. The weight map of auxiliary relocation branch

 r which is obtained by Eqs. (6) –(10) helps to refine and relocate

bject with R A . Thus, the final response map R T is calculated by

n element-wise product, Eq. (12) . Finally, we estimate the state of

bject by the final response map R T and update the instance image

f the next frame by the state of object. 

. Experiments 

This section provides some experimental results of the pro-

osed AS-Siamfc tracker. Generally, there are three subsections

n this section: The implementation subsection which describes

he settings and parameters of the experiments; The basic experi-

ents which discuss and analyze the effectiveness and availabil-

ty of the proposed AS network and auxiliary relocation branch

espectively; The Experiments on widely used benchmark which

hows some quantitative and qualitative comparison experiments

n some widely used benchmarks. 

.1. Implementation 

In this subsection, we show some details about the settings and

mplementation of the proposed AS-Siamfc tracker. All the experi-

ents run on a remote server with 64G memory and one GeForce

TX Titan X. The proposed AS network is trained on GOT-10K

50] benchmark which contains 10,0 0 0 video sequences and 1.5

illion manually labeled boxes. Unlike some other training data

ets, the tracking objects in this data set belong to more than 560

ategories, which is helpful to improve the classification ability of

S-Siamfc. During the training process, the weight coefficient γ in

ttention shake layer varies randomly from 0 to 1. While, in the

racking process, γ is set to be 0.5. Moreover, the widely used

enchmarks, OTB2013 [46] , OTB100 [47] , and OTB50, along with

heir evaluation criteria are applied in this paper to test the per-

ormance of the proposed AS-Siamfc tracker. OTB50 is composed

f 50 hard-to-track sequences selected from the OTB100. Besides,
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Fig. 7. 9 kinds of attention shake network architectures for comparison. 
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some state-of-the-art trackers are used for the comparison experi-

ments, such as Siamfc [10] , SAMF [67] , DSST [39] , Struck [27] , TLD

[68] , CSK [37] , ASLA [69] , OAB [70] and IVT [71] . 

The proposed tracker could track objects in real time. The av-

erage tracking speed of AS-Siamfc on OTB100 data set is 70.625

fps, which is slightly slower than Siamfc [10] , which is 84 fps. We

believe the reasons are as follows: Firstly, the proposed tracker is

based on the Siamfc tracker. Since the tracking speed of SimaFC

is more than 80 fps, the proposed tracker is easy to track in real

time. Secondly, computing the weight map of auxiliary relocation

branch are very time consuming, especially the motion similarity

weight. This makes the proposed tracker run slower than Siamfc

tracker. However, we can reduce this time consumption by calcu-

lating the weight maps of instance images rather than the whole

frame. Because of the proposed switch function, we only calculate

the weight maps of auxiliary relocation branch when the proposed

tracker runs under untrusted state. This also reduces the time con-

sumption and increases the tracking speed of AS-Siamfc. 

4.2. Basic experiments 

In order to illustrate the feasibility and effectiveness of our pro-

posed AS network, auxiliary relocation branch and switch function,
ome basic experiments and analyses are set and provided in this

ection. These basic experiments and analyses can be divided into

wo subsections: some analyses of the attention shake method and

ome analyses of the auxiliary relocation branch. For the subsec-

ion of attention shake method, we compare the proposed AS net-

ork with some other possible attention shake based networks.

or the subsection of auxiliary relocation branch, we present the

racking comparisons between the trackers with and without aux-

liary relocation branch. 

.2.1. Some analyses of the attention shake method 

In this section, we show some results and analyses of differ-

nt attention shake methods. In order to discuss the influence of

ooling layer on Siamese network, the results of the Siamese net-

orks with different pooling layers are also shown in this subsec-

ion. Firstly, we design 9 kinds of Siamese network architectures

or comparison. These 9 kinds of designed networks contain dif-

erent pooling layers and attention shake methods. Secondly, we

resent the precision and success plots of these 9 networks in

TB100. 

As shown in Fig. 7 , there are 9 kinds of Siamese network archi-

ectures which are designed for comparison. The Pro_A_Avg layer

nd Pro_A_Max layer at the right side of Fig. 7 are the proposed
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Fig. 8. The precision and success plots of OPE in OTB2013, OTB100 and OTB50. 
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ax-attention module and average-attention module respectively.

ig. 7 (a) is the backbone architecture of Siamfc network, and AS-

iamfc in Fig. 7 (i) is the proposed AS-Siamfc network. The oth-

rs are some possible variants of this network. In order to discuss

he influences of pooling layers in Siamese network, we also con-

truct two networks SA3 in Fig. 7 (b) and Sap in Fig. 7 (c) by replac-

ng the max pooling layers in Fig. 7 (a) with convolutional layers

nd average pooling layers respectively. Besides, we also combine

he max pooling layers and average pooling layers with a shake

odule and construct the Sap_s network in Fig. 7 (d). In order to

nalyse the proposed max-attention module and average-attention

odule Separately, we construct the SA2_a network which only

ontains average-attention module and SA2_m network which only

ontains max-attention module in Fig. 7 (f) and (g) respectively. we

lso design a spacial attention model, SA1, by merging the feature

aps of max pooling layer and average pooling layer in Fig. 7 (e).

oticing that SA3, Sap_s, SA2_a and SA2_m can also be viewed as

ome modified attention methods, we can show the comparisons

f different attention methods. SA2_s in Fig. 7 (h)and AS-Siamfc

n Fig. 7 (i) show two possible network architectures of attention

hake network. 

Fig. 8 shows the precision and success plots of the 9 network

rchitectures above in OTB2013, OTB100 and OTB50 data set. In

rder to ensure the comparability of the experiment and better re-

ect the influence of different networks on the tracking results, all

he 9 network architectures are applied in the tracking framework

ith auxiliary relocation branch. Especially, Siamfc_R is the Siamfc

racker with auxiliary relocation branch, and it is also trained in

OT-10K data set. As shown in Fig. 8 , we can see that comparing

ith the other 8 network architectures, AS-Siamfc shows the best

erformance of both precision and success plots in all the three

ata sets. Compared with Siamfc_R, the proposed AS-Siamfc has an

verage increase of 6.63% and 7.13% in terms of precision plots and

uccess plots. Comparing SA2_s, Sap_s, AS-Siamfc with the other

etwork architectures, we find that the network architectures with

hake module are more likely to have good tracking performance.

his also illustrates the effectiveness and rationality of attention

hake module and the proposed AS-Siamfc tracker. 
Table 1 shows the precision and success scores of 11 tracking

hallenges in OTB100 data set. In Table 1 , each tracker is evaluated

y the precision and success score, and these two sets of scores

re divided into two rows in the Table. The precision scores are in

he row above. While, the success scores are in the following row.

V, SV, OCC, DEF, MB, FM, IPR, OPR, OV, BC and LR in Table 1 repre-

ent illumination variation, scale variation, occlusion, deformation,

otion blur, fast motion, in-plane rotation, out-of-plane rotation,

ut-of-view, background clutters and low resolution respectively.

y comparing the precision and success scores of Siamfc_R, SA3,

ap and Sap_s, we can get some empirical conclusions about

he influence of pooling layers on Siamese network. It is that

omparing with Sap and SA3, the Siamese network with max

ooling layers can obtain relatively better results. However, the

erformance of the designed Sap_s which contains the shake

odule are better than Siamfc_R in the tracking challenge of

ut-of-plane, scale variation, deformation, motion blur, in-plane

otation, etc. This also presents the shake module could improve

he expression power of Siamese network. Generally, the attention

hake based backbone network architectures, SA2_s and AS-Siamfc

an rank in the top three of the 9 network architectures in all

racking challenges. This illustrates the effectiveness of attention

hake based network architectures. Comparing with the other

etwork architectures, the proposed AS-Siamfc tracker shows a

etter performance in all tracking challenges. 

In order to analysis the effectiveness of the shake part in atten-

ion shake layer, we also designed four different training and track-

ng methods for the proposed tracker. The first one is training with

andom weight coefficients of shake part, but tracking with a fixed

eight coefficient. It is also known as AS-Siamfc_W which is ap-

lied in this paper. The second one is training with random weight

oefficients of shake part, and tracking with random weight coeffi-

ients as well (AS-Siamfc_RR). In contrast, the third one is training

ith a fixed weight coefficient, but tracking with random weights

AS-Siamfc_SR), and the last one, AS-Siamfc_SS, is both training

nd tracking with a fixed weight coefficient. Fig. 9 shows the per-

ormance of these four training and tracking methods. To ensure

he experiment is clear and fair, all these trackers run without
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Table 1 

The precision and success scores of 11 tracking challenges in OTB100. For each tracker, the precision scores are in the first row, and the 

success scores are in the following row. 

IV SV OCC DEF MB FM IPR OPR OV BC LR 

SA1 Pre 0.713 0.720 0.630 0.702 0.675 0.698 0.738 0.721 0.561 0.681 0.708 

Suc 0.562 0.556 0.506 0.537 0.556 0.569 0.566 0.551 0.451 0.534 0.535 

Sap Pre 0.670 0.674 0.648 0.671 0.680 0.670 0.696 0.697 0.477 0.642 0.631 

Suc 0.523 0.525 0.516 0.524 0.556 0.545 0.537 0.537 0.374 0.503 0.460 

Sap_s Pre 0.750 0.773 0.714 0.770 0.743 0.742 0.761 0.783 0.617 0.727 0.671 

Suc 0.571 0.585 0.556 0.578 0.598 0.592 0.572 0.590 0.487 0.554 0.479 

SA2_a Pre 0.529 0.586 0.520 0.635 0.606 0.562 0.588 0.602 0.403 0.461 0.490 

Suc 0.417 0.453 0.409 0.482 0.496 0.455 0.457 0.459 0.309 0.362 0.354 

SA2_m Pre 0.675 0.747 0.672 0.723 0.687 0.730 0.750 0.753 0.610 0.618 0.697 

Suc 0.528 0.574 0.531 0.553 0.568 0.583 0.571 0.569 0.476 0.476 0.526 

SA2_s Pre 0.702 0.743 0.684 0.735 0.693 0.711 0.788 0.748 0.603 0.667 0.686 

Suc 0.541 0.569 0.543 0.561 0.564 0.566 0.572 0.571 0.464 0.518 0.498 

SA3 Pre 0.601 0.633 0.658 0.663 0.608 0.643 0.684 0.698 0.453 0.645 0.587 

Suc 0.474 0.489 0.517 0.512 0.490 0.512 0.519 0.530 0.358 0.497 0.434 

Siamfc_R Pre 0.745 0.761 0.685 0.715 0.733 0.750 0.771 0.757 0.626 0.662 0.700 

Suc 0.584 0.590 0.542 0.545 0.603 0.602 0.594 0.577 0.500 0.514 0.537 

Siamfc Pre 0.746 0.751 0.667 0.694 0.721 0.732 0.752 0.733 0.621 0.669 0.751 

Suc 0.567 0.562 0.514 0.509 0.570 0.567 0.560 0.539 0.481 0.500 0.541 

AS-Siamfc Pre 0.791 0.837 0.784 0.824 0.810 0.812 0.835 0.833 0.708 0.753 0.705 

Suc 0.631 0.675 0.633 0.657 0.685 0.677 0.668 0.669 0.569 0.599 0.561 

AS-Siamfc_W Pre 0.760 0.806 0.739 0.797 0.786 0.774 0.800 0.798 0.664 0.726 0.693 

Suc 0.563 0.602 0.566 0.589 0.625 0.610 0.597 0.599 0.500 0.599 0.493 

Fig. 9. The precision and success plots of OPE in OTB2013, OTB100 and OTB50. 
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auxiliary relocation branch. From Fig. 9 , we can see that the pre-

cision and success scores of AS-Siamfc_W and AS-Siamfc_RR are

higher than those of AS-Siamfc_SR and AS-Siamfc_SS, which means

the trackers which train with random weight coefficients have bet-

ter performance. Thus, the shake part in attention shake layer

may help to improve the performance of AS-Siamfc. Though, AS-

Siamfc_RR may also get high precision and success scores. Some-

times, it is even better than AS-Siamfc_W, such as the precision

in OTB2013. However, AS-Siamfc_RR seems less robust and AS-

Siamfc_W shows the better performance in most cases. Thus, the

method that training with random weight coefficients and tracking

with a fixed weight coefficient is applied in the proposed tracker. 

4.2.2. Some analyses of the auxiliary relocation branch 

In this section, we discuss the impacts of the prior assump-

tions of visual object tracking on Siamese network based track-
rs. Furthermore, we also present some analyses and results of the

roposed auxiliary relocation branch and switch function. Accord-

ng to the prior assumptions that the movement of the object is

mooth, the object is obvious in a certain range and the move-

ent and structure of the object are consistent to a certain ex-

ent, we apply motion smoothness weight, object saliency weight,

otion similarity weight and structure similarity weight to fit the

rior assumptions above. All these methods are merged into the

roposed auxiliary relocation branch. 

Fig. 10 shows the effects of saliency, optical flow, HOG feature

nd the final response map of AS-Siamfc qualitatively. The first row

f each sub-figure represents the original image. The second row

f each sub-figure is the object saliency. The third and fourth rows

f each sub-figure represent the optical flow and HOG feature of

bject respectively. While, the last row shows the final response

ap of AS-Siamfc. From Fig. 10 , we can see that each method in
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Fig. 10. The saliency, optical flow, HOG feature and response map of proposed tracker for 6 sequences in OTB50 and OTB100. 
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uxiliary relocation branch has its own applicable video sequences

nd scenarios. As shown in Fig. 10 (a), both saliency detection and

ptical flow could outline the object in some simple sequences or

he difference between object and background is large. Since the

elmet in Fig. 10 (b) is more prominent than the background, the

aliency detection method is more suitable to locate the object

han optical flow. On the contrary, Fig. 10 (c) shows that optical

ow is good at dealing with background clutter sequences which

aliency detection method cannot handle. Fig. 10 (d) and (f) show

he sequences which are not applicable to saliency detection

ethod and optical flow. However, the structure (the HOG feature)

f objects in these two sequences does not change much. Fig. 10 (e)

hows a complex sequence. In this sequence, the motion of object

s not regular, the object is not very salient and there are many

ther people who have the similar structure with the object

n this sequence. Thus, in this sequence, the saliency detection

ethod, optical flow and HOG feature is hard to estimate the

ocation of the object accurately. However, with the help of motion

moothness weight we can still estimate the state of object. 

In order to further explore the impact of the proposed auxiliary

elocation branch and switch function, Fig. 11 shows the precision

nd success plots of trackers with and without auxiliary reloca-
ion branch and switch function. Siamfc_R and Siamfc represent

he Siamfc trackers with and without auxiliary relocation branch

espectively. While, AS-Siamfc and AS-Siamfc_W are the proposed

rackers with and without auxiliary relocation branch respectively.

ll these trackers are tested in OTB2013, OTB100 and OTB50 data

et. From Fig. 11 , we find that the propose AS-Siamfc tracker (with

uxiliary relocation branch) achieves the best tracking performance

mong all these four trackers. By comparing the precision and suc-

ess plots of AS-Siamfc and AS-Siamfc_W, we find that the preci-

ion score and success score of AS-Siamfc are increased by 2.87%

nd 6.80% on average. Comparing the precision and success plots

f Siamfc_R and Siamfc, we can also find the slight improvements.

hese experiments validate the effectiveness and availability of the

roposed auxiliary relocation branch. 

Table 1 also provides the precision and success scores of AS-

iamfc, AS-Siamfc_W, Siamfc and Siamfc_R under 11 tracking chal-

enges in OTB100. By comparing the precision and success scores

f these four trackers, we can see that in most cases, the perfor-

ances of the trackers with auxiliary relocation branch are better

han those trackers without auxiliary relocation branch. Thus, we

an say that the proposed auxiliary relocation branch along with

he switch function could monitor the tracking process, refine and
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Fig. 11. The precision and success plots of OPE in OTB2013, OTB100 and OTB50. 

Fig. 12. The precision and success plots of OPE in OTB2013, OTB100 and OTB50. 
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relocate objects when the tracker runs under untrusted state and

improve tracking performance. 

In order to discuss the effectiveness of the four sub-branches

in auxiliary relocation branch specifically, the performances of

AS-Siamfc without motion smoothness weight (AS-Siamfc_msm),

AS-Siamfc without motion similarity (AS-Siamfc_msi), AS-Siamfc

without object saliency weight (AS-Siamfc_os) and AS-Siamfc

without structure similarity (AS-Siamfc_ss) are shown in the

Fig. 12 along with the performance without the whole auxiliary

relocation branch (AS-Siamfc_W) and the proposed tracker AS-

Siamfc. From all the precision and success plots in Fig. 12 , we
an see that AS-Siamfc_ss shows the worst performance except

S-Siamfc_W, and AS-Siamfc_msm gets the highest precision and

uccess score except AS-Siamfc, which indicates that the structure

imilarity weight plays a relatively important role in the auxiliary

elocation branch. 

Furthermore, we also show the effectiveness of the threshold of

witch function in OTB100 data set in Fig. 13 . The first two figures

n Fig. 13 are the precision and success plots of OPE respectively.

he numbers in the brackets in legend indicate the corresponding

hresholds applied in AS-Siamfc. Notice that the thresholds of

S-Siamfc and AS-Siamfc_W are 0.6 and 0. The third figure is
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Fig. 13. The analyses of the threshold of switch function in OTB100. 

Fig. 14. The precision and success plots of OPE in OTB2013. 

Fig. 15. The precision and success plots of OPE in OTB100. 

Fig. 16. The precision and success plots of OPE in OTB50. 
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Fig. 17. The AR plot for experiment baseline of VOT2018. 
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the trend map of precision and success score. The abscissa of

this figure is thresholds, while, the ordinate is the corresponding

precision and success scores. From Fig. 13 , we can see that when

the threshold is less than 0.5, the plots of precision and success

score rise steadily, and reach the peaks at 0.6. Then, the plots

begin to plunge. The precision and scores may even lower than

AS-Siamfc_W, when the threshold is over 0.7. We believe the

reason is when the threshold is over 0.7, the performance of

AS-Siamfc is more dependent on auxiliary relocation branch than

on AS network. Thus, the auxiliary relocation branch may bring

some noise and wrong knowledge, which leads to the error of

AS-Siamfc and reduces the tracking performance. 

4.3. Experiments on widely used benchmark 

In order to compare the proposed AS-Siamfc tracker with some

state-of-the-art trackers, we show some quantitative and qualita-

tive experiments on the widely used benchmarks, OTB2013 [46] ,

OTB100 [47] , OTB50 and VOT2018 [72] in this section. Firstly,

we show the precision and success plots of One-Pass Evaluation

(OPE) in benchmark OTB2013, OTB100 and OTB50, along with

the Accuracy-Robustness plots (AR plots) in VOT2018. The perfor-

mances of the proposed tracker under 10 tracking challenges are

also analysed in this section. Secondly, we provide the tracking

bounding boxes of 10 sequences to show the qualitative analyses

of the proposed AS-Siamfc tracker. 

4.3.1. Quantitative analyses 

We provide some quantitative analyses in this subsection.

We also selected some state-of-the-art trackers including some

Siamese network based trackers for comparison which is con-

ducted on the widely used benchmark, OTB2013, OTB100 and

OTB50. Two metrics, precision and Area Under Curve (AUC), are

used to rank these trackers. Firstly, we show the comparison re-

sults of OTB2013, OTB100 and OTB50 respectively. Then, we anal-

yse the performance of the proposed AS-Siamfc tracker under 10

tracking challenges. 

Experiments on OTB2013 data set: OTB2013 is one of the

widely used benchmark with 52 fully annotated sequences. In or-

der to facilitate the comparison test, the author also provides two

evaluation criteria and a toolkit. Fig. 14 shows the precision and

success plots of One-Pass Evaluation (OPE) in OTB2013 data set.

From Fig. 14 , we can see that our proposed AS-Siamfc tracker

achieves the best tracking performance against the other compar-

ative trackers at the average speed of 70.625 fps. The precision

score and success score are 0.820 and 0.667 respectively. Com-

paring with Siamfc tracker, the performance of the proposed AS-
iamfc tracker exceeds the performance of Siamfc tracker 0.058

nd 0.092 on the precision score and success score respectively. 

Experiments on OTB100 data set: In order to increase the

umber of sequences of OTB2013 data set and to evaluate the

isual object trackers more accurately, Wu et al. [47] add some

ully annotated sequences into OTB2013 data set to construct the

TB100 data set. Thus, OTB100 data set expends OTB2013 data

et from 52 sequences to 100 sequences. Similarly, the evaluation

riteria and toolkits in OTB2013 data set are also applicable in

TB100. Fig. 15 shows the precision and success plots of OPE in

TB100 data set. From Fig. 15 , we can see that the precision score

nd success score of the proposed AS-Siamfc are 0.844 and 0.680,

hich are also the highest scores in Fig. 15 . The precision score

nd success score of the proposed tracker are 0.087 and 0.108

arger than that of Siamfc. By comparing the scores of AS-Siamfc

racker in OTB2013 and OTB100, we find that the scores of AS-

iamfc in OTB100 are average 1.85% higher than that in OTB2013.

e believe the reason is that the number of sequences in OTB2013

ata set is relatively small, which will have a great impact on the

verall precision and success scores if the tracking performances

f a certain sequence are not good. On the contrary, there are

ore sequences in OTB100 and the distribution of the sequences

n OTB100 is relatively uniform. Thus, the tracking results of a

ingle video sequence have little influence on the overall precision

nd success scores. This also illustrates the effectiveness and

pplicability of the proposed AS-Siamfc tracker. 

Experiments on OTB50 data set: OTB50 is composed of 50

ard-to-track sequences selected from the OTB100. It is one of the

idely used benchmark with 50 fully annotated sequences. The

oolkit proposed in OTB2013 [46] can also applied in OTB50 data

et. Fig. 16 shows the precision and success plots of OPE in OTB50

ata set. As shown in Fig. 16 , our performance of the proposed

racker is better than the other state-of-the-art trackers. The pre-

ision score and success score are 0.764 and 0.604 respectively.

omparing with Siamfc tracker, the performance of the proposed

S-Siamfc tracker exceeds the performance of Siamfc tracker 0.071

nd 0.091 on the precision score and success score respectively. 

Experiments on VOT2018 data set: VOT2018 [72] is also one of

he widely used benchmarks, which contents 60 sequences, includ-

ng many tiny, similar tracking objects. Fig. 17 shows the mean AR

lot and pooled AR plot for experiment baseline of VOT2018 data

et respectively. According to the definition of AR plot in VOT2018

72] , the trackers which locate at the upper right quarter of AR

lot perform better than the ones locate at the lower left quar-

er. As shown in Fig. 17 , though the proposed AS-Siamfc tracker

as a relatively low score on robustness, its accuracy score is the

ighest among the trackers for comparison. Generally, when com-

aring with some state-of-the-art trackers, AS-Siamfc could give a
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Fig. 18. The precision and success plots of 10 tracking challenges in OTB100, using proposed tracker and 8 state-of-the-art trackers. 
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omparable performance in VOT2018, which illustrates the effi-

iency of the proposed tracker. 

Experiments of 10 tracking challenges in OTB100: In order

o analyse the applicability of the proposed AS-Siamfc tracker

n different sequences in detail. The sequences in OTB100 data

et are divided into 11 tracking challenges, including illumination
ariation, out-of-plane rotation, scale variation, occlusion, defor-

ation, motion blur, fast motion, in-plane rotation, out of view,

ackground clutter and low resolution. Fig. 18 shows the precision

nd success plots of AS-Siamfc under these challenges along with

ome state-of-the-art trackers. In order to make the figure neat,

e select 10 challenges in Fig. 18 instead of all 11 challenges.
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Fig. 19. Qualitative results of 10 typical video sequences in OTB2013, OTB100 and OTB50, using the proposed tracker and 9 state-of-the-art trackers. 
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From Fig. 18 , we can see that the proposed AS-SimaFC tracker

performs the best than the other trackers under all the 10 track-

ing challenges. By comparing the performances of the proposed

tracker and Simafc tacker, we find that the proposed tracker shows

better performances under the challenges of out-of-plane rotation,

scale variation, deformation and fast motion,etc. especially the

deformation. From Fig. 18 (d), we can see that our proposed tracker

shows a relatively good performance in the tracking challenge of

occlusion, even though AS-Siamfc does not deliberately design a

module to deal with this challenge. We believe the reason is the

proposed switch function could indirectly detect the occurrence

of occlusion to some extent, and using auxiliary relocation branch

to refine the tracking results, since when occlusion occurs, the

response map of AS Siamese network may get a low response

score, which also means the tracker is running under an untrusted

state. Indeed, there are also many occlusion aware methods in

visual object tracking and motion segmentation [53,73,74] . How to

integrate these occlusion aware methods in the proposed tracking

framework to further improve the tracking performance will be

our future work. In Fig. 18 (e), the precision score and success score

of AS-Siamfc are 0.13 and 0.148 higher than that of Siamfc and

are 0.125 and 0.145 higher than that of SAMF tracker [67] , which

is also the second-ranking tracker in Fig. 18 (e). We believe this

also proves that the proposed AS network and auxiliary relocation

branch with switch function could improve the expression power

of Siamese network and provide good tracking performances. 

4.3.2. Qualitative analyses 

In addition to the above-mentioned quantitative analyses ex-

periments, we also show some tracking bounding boxes of the se-

quences in OTB2013, OTB100 and OTB50 for qualitative analyses in

this subsection. 

As shown in Fig. 19 , we select 10 typical video sequences in

OTB2013, OTB100 and OTB50. The names of these 10 sequences are

CarScale, Matrix, DragonBaby, Skiing, Jump, Diving, Girl2, FleetFace,

Soccer and David3 in order from left to right and from top to bot-

tom. These 10 sequences basically contain all the 11 tracking chal-

lenges (one sequence may contain multiple challenges). However,
n order to show the advantages of the proposed AS-Siamfc tacker

etter, these sequences focus more on the challenges of deforma-

ion, scale variation and fast motion. From the sequence CarScale,

e can see that AS-Siamfc could estimate the state of object bet-

er, when the car runs from far to near and gradually larger. In the

equences of Diving and Jump, the athletes have obvious and fast

eformations. Even so, the proposed tracker can still track the ath-

etes well. Meanwhile, the sequences of Matrix, DragonBaby and

kiing show the challenge of fast motion, since the people in the

ghting or skiing always move fast. The proposed tracker can also

rovide a relatively accurate tracking performance. Generally, all

he quantitative and qualitative experiments can prove the appli-

ability and effectiveness of the proposed AS-Siamfc tracker. 

. Conclusions 

In this paper, we proposed a novel Attention shake based

racker which is based on a modified Siamese network. The pro-

osed tracker which is named as AS-Siamfc tracks the object in

eal-time, whose average tracking speed is 70.625 fps. Moreover,

S-Siamfc tracker can improve the expression power of Siamese

etwork by merging two different attention modules into Siamese

etwork, introducing the prior knowledge into the proposed

racking framework and monitoring the tracking process. Firstly,

n order to improve the expression power of Siamese network,

 novel attention shake layer which combines two different at-

ention modules with shake-shake framework is proposed in the

rchitecture of the backbone network. Secondly, the auxiliary relo-

ation branch which contains structure similarity weight, motion

imilarity weight, motion smoothness weight and object saliency

eight is proposed to introduce the prior knowledge into the

racking framework and relocate the objects when the tracker runs

nder untrusted state. Finally, a novel switch function which is

ased on the response map of AS network is proposed to monitor

he tracking process and detect the tracking failure. The qualitative

nd quantitative experiments as well as the basic experiments

how the effectiveness and applicability of the proposed tracking

lgorithm. 
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