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Abstract

This paper is concerned with ranking many pre-trained
deep neural networks (DNNs), called checkpoints, for the
transfer learning to a downstream task. Thanks to the broad
use of DNNs, we may easily collect hundreds of checkpoints
from various sources. Which of them transfers the best to
our downstream task of interest? Striving to answer this
question thoroughly, we establish a neural checkpoint rank-
ing benchmark (NeuCRaB) and study some intuitive rank-
ing measures. These measures are generic, applying to the
checkpoints of different output types without knowing how
the checkpoints are pre-trained on which datasets. They
also incur low computation cost, being practically mean-
ingful. Our results suggest that the linear separability of
the features extracted by the checkpoints is a strong indi-
cator of transferability. We also arrive at a new ranking
measure, NLEEP, which gives rise to the best performance
in the experiments. Code will be made publicly available.

1. Introduction

There is an increasing number of pre-trained deep neural
networks (DNNs), which we call checkpoints. We may pro-
duce hundreds of intermediate checkpoints when we sweep
through various learning rates, optimizers, and losses to
train a DNN. Furthermore, semi-supervised [10, 4, 49, 36,
58, 39, 37, 8] and self-supervised [15, 26, 11, 62, 43] learn-
ing make it feasible to harvest DNN checkpoints with scarce
or no labels. Fine-tuning [65, 44] has become a de facto
standard to adapt the pre-trained checkpoints to target tasks.
It leads to faster convergence [16, 27, 51] and better perfor-
mance [35] on the downstream tasks.

However, not all checkpoints are equally useful for a tar-
get task, and some could even under-perform a randomly
initialized checkpoint (cf. Section 2.2). This paper is con-
cerned with ranking neural checkpoints, which aims to
measure how effectively fine-tuning can transfer knowledge

*This work was done while the first author was an intern at Google.

from the pre-trained checkpoints to the target task. The
measurement should be generic enough for all the neu-
ral checkpoints, meaning that it works without knowing
any pre-training details (e.g., pre-training examples, hyper-
parameters, losses, early stopping stages, etc.) of the check-
points. It also should be lightweight, ideally without train-
ing on the downstream task, to make it practically useful.
We may use the measurement to choose the top few check-
points before running fine-tuning, which is computationally
more expensive than calculating the measurements.

Ranking neural checkpoints is crucial. Some domains or
applications lack large-scale human-curated data, like med-
ical images [48], raising a pressing need for high-quality
pre-trained checkpoints as a warm start for fine-tuning. For-
tunately, there exist hundreds of thousands of checkpoints
of popular neural network architectures. For instance,
many computer vision models are built upon ResNet [28],
Inception-ResNet [56], and VGG [52]. As a result, we can
construct a candidate pool by collecting the checkpoints re-
leased by different groups, for various tasks, and over dis-
tinct datasets.

It is nontrivial to rank the checkpoints for a down-
stream task. We explain this point by drawing insights from
the related, yet arguably easier, task transferability prob-
lem [1, 20, 66, 41], which aims to provide high-level guid-
ance about how well a neural network pre-trained in one
task might transfer to another. However, not all checkpoints
pre-trained in the same source task transfer equally well
to the target task [70, 35]. The pre-training strategy also
matters. Zhai et al. [68] find that combining supervision
with self-supervision improves a network’s transfer results
on downstream tasks. He et al. [26] also show that self-
supervised pre-training benefits object detection more than
its supervised counterpart under the same fine-tuning setup.

We may also appreciate the challenge in ranking neu-
ral checkpoints by comparing it with another related line
of work: predicting DNNs’ generalization gaps [40, 31, 5].
Jiang et al. [30] use a linear regressor to predict a DNN’s
generalization gap, i.e., the discrepancy between its training
and test accuracies, by exploring the training data’s margin
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distributions. Other signals studied in the literature include
network complexity and noise stability. Ranking neural
checkpoints is more challenging than predicting a DNN’s
generalization gap. Unlike the training and test sets that
share the same underlying distribution, the downstream task
may be arbitrarily distant from the source task over which
a checkpoint is pre-trained. Moreover, we do not have ac-
cess to the pre-training data at all. Finally, instead of keep-
ing the networks static, fine-tuning dramatically changes all
weights of the checkpoints.

We establish a neural checkpoint ranking benchmark
(NeuCRaB) to study the problem systematically. Neu-
CRaB covers various checkpoints pre-trained on widely
used, large-scale datasets by different training strategies
and architectures at a range of early stopping stages. It
also contains diverse downstream tasks, whose training
sets are medium-sized, making it practically meaningful to
rank and fine-tune existing checkpoints. Pairing up all the
checkpoints and downstream tasks, we conduct careful fine-
tuning with thorough hyper-parameter sweeping to obtain
the best transfer accuracy for each checkpoint-downstream-
task pair. Hence, we know the groundtruth ranking of the
checkpoints for each downstream task according to the final
accuracies (over the test/validation sets).

A functional checkpoint ranking measurement should be
highly correlated with the groundtruth ranking and, equally
importantly, incurs as low computation cost as possible.
We study several intuitive methods for ranking the neural
checkpoints. One is to freeze the checkpoints as feature ex-
tractors and use a linear classifier to evaluate the features’
separability on the target task. Another is to run fine-tuning
for only a few epochs (to avoid heavy computation) and then
evaluate the resulting networks on the target task’s valida-
tion set. We also estimate the mutual information between
labels and the features extracted from a checkpoint.

Finally, we propose a lightweight measure, named
Gaussian LEEP (NLEEP), to rank checkpoints based on
the recently proposed log expected empirical prediction
(LEEP) [41]. LEEP was originally designed to measure
between-task transferabilities. It cannot handle the check-
points pre-trained by unsupervised or self-supervised learn-
ing since it requires all checkpoints to have a classification
head. Its computation cost could blow up when the classifi-
cation head corresponds to a large output space. Moreover,
it depends on the classification head’s probabilistic output,
which, unfortunately, is often overly confident [25].

To tackle the above problems, we replace the check-
points’ output layer with a Gaussian mixture model
(GMM). This simple change kills two birds with one
stone. On the one hand, GMM’s soft assignment of in-
put to clusters seamlessly applies to LEEP, resulting in the
lightweight, effective NLEEP measure that works regard-
less of the checkpoints’ output types. On the other hand,

since we fit GMM to the target task’s data, instead of the
pre-training data of a different source task, the cluster as-
signment probabilities are likely more calibrated than the
classification probabilities for the target task, if there exist
classification heads.

2. The Neural Checkpoint Ranking Bench-
mark (NeuCRaB)

We formalize ranking neural checkpoints as follows.
Suppose we have m pre-trained neural networks, called
checkpoints, C := {θi}mi=1. Denote by T a distribution
of tasks. Without loss of generality, we mainly study clas-
sification downstream tasks, each of which, t ∼ T , con-
tains a training set and a test set. An evaluation procedure,
G : C×T 7→ R, replaces the output layer of a checkpoint θi
with a linear classifier for a downstream task t, followed by
fine-tuning using the task’s training set. It employs hyper-
parameter sweeping and returns the best accuracy on the
test set. We apply this evaluation procedure to all the check-
points for task t and obtain their test accuracies:

Gt := {G(θi, t)}mi=1 ∈ Rm, (1)

which defines the groundtruth ranking list for task t.
Denote byR all measures that return a ranking score for

any checkpoint-task pair under a computation budget b. A
measure R ∈ R gives rise to the following ranking scores
for a task t,

Rt := {R(θi, t;b)}mi=1 ∈ Rm, (2)

where we underscore the computation budget b in the mea-
sure R(·, ·;b).

Our objective in ranking neural checkpoints is to find the
best ranking measure in expectation,

R∗ ← arg max
R∈R

Et∼T M(Rt,Gt) (3)

where M is a metric evaluating the ranking scores Rt

against the test accuracies Gt. Section 2.3 details the eval-
uation methods used in this work. Equipped with such a
ranking measure R∗, we can identify the checkpoints that
potentially transfer to a downstream task better than the oth-
ers without resorting to heavy computation.

2.1. Downstream Tasks T

Following the design principle of [68], we study di-
verse downstream tasks including Caltech101 [22], Flow-
ers102 [42], Sun397 [63], and Patch Camelyon [62]. These
tasks are representative of general object recognition, fine-
grained object recognition, scenery image classification,
and medical image classification, respectively. Table 1 in
Appendix A.1 provides more details of these tasks. A
common theme is that their training sets are all medium-
sized, making it especially beneficial to leverage pre-trained
checkpoints to avoid overfitting.

2



Sun397Camelyon

Caltech101 Flowers102

Figure 1. Fine-tuning the checkpoints in Group I on four downstream tasks. We keep the best fine-tuning accuracy for each checkpoint-
task pair after hyper-parameter sweeping. For better visualization, the values are offset by their mean (cf. Table 4 in Appendix for the
absolute values). (Best viewed in color. Red: generative models. Black: From-Scratch. Green: self-supervised models. Blue: semi-
supervised models. Yellow, Pink, and Orange: supervised models trained on ImageNet, Inatualist, and Places365, respectively. Cyan: a
hybridly-supervised model.)

2.2. Neural Checkpoints C

Thanks to the broad use of DNNs, one may collect neural
checkpoints of various types from multiple sources. To sim-
ulate this situation, we construct a rich set of checkpoints
and separate them into three groups according to the pre-
training strategies and network architectures.

Group I: Checkpoints of mixed supervision. The first
group of checkpoints are pre-trained with mixed supervi-
sion till convergence, including supervised learning, self-
supervised learning, semi-supervised learning, and the dis-
criminators or encoders in deep generative models. It con-
sists of 16 ResNet-50s [28]. We borrow 14 models pre-
trained on ImageNet [14] from [68]. Among them, four are
pre-trained by self-supervised learning (Jigsaw [43], Rela-
tive Patch Location [15], Exemplar [17], and Rotation [23]),
six are the discriminators of generative models (WAE-
UKL [50], WAE-GAN, WAE-MMD [59], Cond-BigGAN,
Uncond-BigGAN [9], and VAE [34]), two are based on
semi-supervised learning (Semi-Rotation-10% and Semi-
Exemplar-10% [67]), one is by fully supervised learning
(Sup-100%-Img [28]), and one is trained with a hybrid
supervised loss (Sup-Exemplar-100% [67]). We also add
two supervised checkpoints pre-trained on iNaturalist (Sup-
100%-Inat) [61] and Places365 (Sup-100%-Pla) [69], re-
spectively. Using the evaluation procedure G(θi, t) (cf.
equation (1)), we obtain their final accuracies on the down-
stream tasks described in Section 2.1.

Figure 1 shows the best fine-tuning accuracies offset by
their mean for better visualization, and Table 4 (in Ap-
pendix) contains the absolute accuracy values. We in-
clude the training from scratch (From-Scratch) for compar-
ison. Most of the checkpoints yield significantly better fine-
tuning results than From-Scratch. Some of the discrimina-
tors in generative models, however, under-perform From-
Scratch. The highest-performance checkpoints change from
one downstream task to another.

Group II: Checkpoints at different pre-training
stages. This group comprises 12 ResNet-50s pre-trained
by fully supervised learning on ImageNet, iNaturalist, and
Places-365. We save a checkpoint right after each learning
rate decay, resulting in four checkpoints per dataset. Fig-
ure 2 and Table 5 in Appendix show the best fine-tuning
accuracies over the four downstream tasks, where Img-90k
refers to the checkpoint trained on ImageNet for 90k iter-
ations. Interestingly, the downstream tasks favor different
pre-training sources, indicating the necessity of studying
between-task transferabilities [68, 66]. However, the source
task information may be not known for all checkpoints.
Moreover, the converged model over a source task does
not always transfer the best to a downstream task (cf. Img-
270k vs. Img-300k on Camelyon, Inat-270k vs. Inet-300k
on Flowers102, etc.). We hence construct this NeuCRaB for
studying the ranking of neural checkpoints without access-
ing how one pre-trained the checkpoints over which dataset.

Group III: Checkpoints of heterogeneous architec-
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tures. Kornblith et al. [35] show that better network ar-
chitectures can learn better features that can be transferred
across vision-based tasks. Therefore, we construct the third
group of checkpoints by using different neural architec-
tures. Four of them belong to the Inception family [57], one
is Inception-ResNet-v2 [56], six come from the MobileNet
family [29], and two are from the ResNet-v1 family [28].
We train them on ImageNet till convergence. Figure 3 and
Table 6 in Appendix visualize their fine-tuning accuracies
on the four downstream tasks.

2.3. Evaluation MetricsM

We use multiple metrics (cf. M in eq. (3)) to evaluate
the checkpoint ranking measures.

Recall@k: A practitioner may have resources to test up to
k checkpoints for their task of interest. We consider it
a success if a measure ranks the highest-performance
checkpoint into the top k. A measure’s Recall@k is
the ratio between the number of downstream tasks on
which it succeeds and the total number of tasks. We
employ k = 1 and k = 3 in the experiments.

Top-k relative accuracy (Rel@k): Given a task, a ranking
measure returns an ordered list of the checkpoints. If
the measure selects a high-performing checkpoint to
the top k despite that it misses the highest-performance
one, we do not want to overly penalize it. This Rel@k
is the ratio between the best fine-tuning accuracy on
the downstream task with the top k checkpoints and the
the best fine-tuning accuracy with all the checkpoints.

Pearson correlation: We incorporate Pearson’s r [45] to
compute the linear correlation between a measure’
ranking scores Rt and the evaluation procedure’s final
accuracies Gt.

Kendall ranking correlation: We also include Kendall’s
τ [32] to measure the ordinal association between a
ranking measure R and the evaluation procedure G
for each task. After all, what matter is the order of the
checkpoints rather than the precise ranking scores.

3. Checkpoint Ranking Methods
In this section, we describe some intuitive neural check-

point ranking methods. These methods strive to achieve
high correlation with the checkpoint evaluation procedure
G at low computation cost.

3.1. Fine-tuning with Early Stopping

If there is no constraint over computing, the evalua-
tion procedure G itself becomes the gold ranking mea-
sure. Hence, a natural ranking method is the fine-tuning
with early stopping, by which the model is far from con-
vergence. The premature models’ test accuracies are the

ranking scores. Experiments reveal that it is hard to fore-
cast from the premature models.

3.2. Linear Classifiers

We derive the second ranking method also from the eval-
uation procedure G, which replaces a checkpoint’s output
layer by a linear classifier tailored for the downstream task.
We train the linear classifier while freezing the other layers.
The ranking score equals the classifier’s test accuracy. It is
worth mentioning that self-supervised learning [11, 26, 24]
often adopts this practice as well to evaluate the learned fea-
ture representations. We shall see that the linear separability
of the features extracted from a checkpoint is a strong indi-
cator of the performance of fine-tuning the full checkpoint.

3.3. Mutual Information

Suppose the extracted features’ quality well correlates
with a checkpoint’s final accuracy on a downstream task.
Besides the linear separability above, we can rank the
checkpoints by their mutual information between the high-
dimensional features and discrete labels of the downstream
task. We employ the state-of-the-art Iα mutual informa-
tion estimator [46], where α controls the trade-off between
variance and bias. It is a variational lower bound parameter-
ized by a neural network. Belghazi et al. [6] report that the
neural estimators generally outperform prior mutual infor-
mation estimations, especially when the variables are high-
dimensional. We use the code released by the authors to
calculate Iα [46].

3.4. LEEP for the Checkpoints with Classification
Heads

To rank the checkpoints pre-trained over classification
source tasks, the recently proposed LEEP [41] measure is
directly applicable despite that it was originally designed
for between-task transfer. Denote by Z the classification
space of a checkpoint θ. We can interpret θ(x)z , the z-th
(softmax) output element, as the probability of classifying
the input x into the class z ∈ Z . Given a downstream task
t ∼ T and its test set {(xj , yj)}nj=1, the LEEP ranking score
for the checkpoint θ is calculated by

RLEEP(θ, t) :=
1

n

n∑
j=1

logP (yj |xj , θ, t)

P (y|x, θ, t) :=
∑
z∈Z

P̂ (y|z)θ(x)z (4)

where P̂ (y|z) is the empirical conditional distribution of the
downstream task’s label y given the source label z ∈ Z , and
P (y|x, θ, t) is a “dummy” classifier, which firstly draws a
label z from the checkpoint θ(x) and then draws a class y
from the conditional distribution P̂ (y|z).
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Denote by {xj , yj}ñj=1, y ∈ Y , the downstream task’s
training set. LEEP computes the conditional distribution
P̂ (y|z) by “counting”. The joint distribution P̂ (y, z) due to
the checkpoint θ is

P̂ (y, z) =
1

ñ

∑
j:yj=y

θ(xj)z, (5)

which gives rise to the conditional distribution P̂ (y|z) =
P̂ (y, z)/P̂ (z) = P̂ (y, z)/

∑
y∈Y P̂ (y, z).

In the experiments, LEEP and the linear classifier are
the second best ranking methods for the checkpoints pre-
trained for classification. However, LEEP’s computation
cost is high when a checkpoint’s classification output is
high-dimensional (e.g., iNaturalist contains more than 8000
classes). Besides, its softmax estimation of the classifica-
tion probability θ(x)z is often poorly calibrated [25]. Fi-
nally, it does not apply to the checkpoints with no classifi-
cation heads.

3.5. NLEEP

We propose a variation to LEEP that applies to all types
of checkpoints including those obtained from unsupervised
learning and self-supervised learning. It can also avoids the
overly confident softmax.

Feeding the training data of a downstream task into a
checkpoint, we obtain their feature representations. The
representations are thousands of dimensions, depending on
the checkpoint’s neural architecture. We reduce their di-
mension by using the principal component analysis (PCA).
Denote by s the resultant low-dimensional representation of
the input x.

We then fit a Gaussian mixture model (GMM), P (s) =∑
v∈V πvN (s|µv,Σv), to the training set {sj}ñj=1, where V

is a collection of all the Gaussian components, and πv, v ∈
V, are the mixture weights. It is convenient to compute the
posterior distribution:

P (v|x) = P (v|s) ∝ πvN (s|µv,Σv), (6)

which is arguably more reliable than the class assignment
probability θ(x)z output by the softmax classifier because
we fit GMM to the downstream task’s training data, whereas
the softmax classifier is learned from a different source task.

Hence, we arrive at an improved ranking measure,
namedNLEEP, by replacing θ(x)z , the probability of clas-
sifying an input x to the class z, in equations (4–5) by the
posterior distribution P (v|x).

4. Experiments on NeuCRaB
There are free parameters in each of the ranking meth-

ods. Before presenting the main results, we study how
the free parameters in NLEEP affect its checkpoint rank-
ing performance. Figure 2 illustratesNLEEP’s Kendall’s τ

values over Groups I and II with different PCA feature di-
mensions and the numbers of Gaussian components. Each
Kendall’s τ is averaged across all the downstream tasks;
the higher, the better. Along the vertical axes, we change
the feature dimensions by keeping different percentages of
the PCA energies; PCA50 means the percentage is 50%.
Along the horizontal axes, we adopt different numbers of
Gaussian components in GMM; 2× means the number is
twice the class number of the downstream task. Notably,
the Kendall’s τ values remain relatively stable. In the re-
maining experiments with NLEEP, we fix the PCA energy
to 80% and the number of Gaussian components five times
the class number of a downstream task.

4.1. Comparison Results

Tables 1, 2, and 3 show the checkpoint ranking methods’
performance on Groups I (checkpoints of mixed supervi-
sion), II (different pre-training stages), and III (heteroge-
neous architectures), respectively. We also union the three
groups and present the corresponding ranking performance
in Table 2 in Appendix. The numbers in the tables are the
average over all downstream tasks. In addition to the eval-
uation metrics detailed in Section 2.3, the GFLOPS column
measures the ranking methods’ computing performance; the
lower, the better.

We report multiple variations of the ranking methods in
the tables. Fine-tuning is computationally expensive, so we
stop it after one or five epochs. The linear classifiers are
less so as we save the feature representations of downstream
tasks’ after one forward pass to the checkpoints. We report
the linear classifiers’ ranking results after training them for
one epoch, five epochs, and convergence. We test α = 0.01
and α = 0.50 in the Iα mutual information estimator. Ad-
ditionally, we experiment with Iα after reducing the feature
dimensions by using PCA.

4.2. Main Findings

In each column of Tables 1, 2, 3, and Table 2 in Ap-
pendix, we highlight the best and second best by the bold
font and underscore, respectively.
The mutual information fails to rank high-performing
checkpoints to the top and even produces negative Pear-
son and Kendall correlations, probably because of the fea-
tures’ high dimensions. Reducing the feature dimensions by
PCA significantly improves the mutual information’s rank-
ing performance; MI w/ PCA (α=0.01) leads to the sec-
ond best Rel@1, Recall@3 and Rel@3 among the rank-
ing methods in Group III, the checkpoints of heterogeneous
neural architectures. Varying α in the Iα mutual informa-
tion estimator [46] can control the trade-off between vari-
ance and bias. MI w/ and w/o PCA (α=0.01) perform better
than MI w/ and w/o PCA (α=0.50), respectively. It indi-
cates that neural checkpoint ranking requires low-bias MI
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Group I Group II

Figure 2. NLEEP’ checkpoint ranking performance, evaluated by Kendall’s τ , on Groups I and II in NeuCRaB. We vary the PCA feature
dimension and the number of Gaussian components in GMM.

estimator since smaller α means low-bias but high-variance
estimation.

Fine-tuning up to some epochs turns out the worst rank-
ing methods because it leads to low correlation with the
groundtruth ranking and yet incurs heavy computation.
Similarly, training the linear classifier up to one or five
epochs does not perform well except in Group II. These re-
sults indicate that it is difficult to forecast the checkpoints’
final performance from premature models. Fine-tuning (5
epochs) and Linear (5 epochs) perform better than Fine-
tuning (1 epoch) and Linear (1 epoch) in terms of Person
and Kendall correlation, respectively. However, they all
fail to select the top checkpoint in Group I and Group III
since they produce lower Recall@1 and Recall@3 than oth-
ers. One possible reason is that the evaluation accuracies of
checkpoints in the early stage tend to have large variance.

Feature qualities before fine-tuning the checkpoints. If
we train the linear classifiers till convergence, they become
the best in Group II, and the second best checkpoint rank-
ing method in Groups I and III in terms of Pearson and
Kendall correlations. It can also produce better Recall@1
and Recall@3 than Linear (1 epoch) and Linear (5 epoch)
in Groups I, II and III since the evaluation accuracies of
converged models are more stable than models in the early
training stage. Note that the linear classifiers’ accuracies,
i.e., the ranking scores, imply the linear separability of the
features extracted by the checkpoints. Recall that the mu-
tual information with PCA feature dimension reduction is
among the second best (Rel@1, Recall@3 and Rel@3) in
Group III. Since both methods measure the feature repre-
sentations’ quality by the downstream tasks’ labels, we con-
jecture that the quality of the features is a strong indicator of
the checkpoints’ final fine-tuning performance on the down-
stream tasks. It would be interesting to study other feature

quality measures beyond the linear separability and mutual
information in future work.

NLEEP performs consistently well in all the groups of
checkpoints over all the evaluation metrics with the low-
est computation cost . In contrast, the original LEEP mea-
sure is not applicable to Group I, the checkpoints of mixed
supervision, because it requires that the checkpoints have
a classification output layer. Overall, LEEP is the second
best over all evaluation metrics among the ranking methods
in Groups II and III, whose checkpoints all have a classi-
fication output layer. Specifically, LEEP can produce the
second best Recall@1, Recall@3 and Rel@3 in Group II,
and the best Recall@3, the best Rel@3 and the second best
Kendall correlation in Group III. It is a more consistent indi-
cator than fine-tuning, linear classifier, or MI based ranking
methods. However, LEEP can not produce better results
thanNLEEP, and it requires slightly larger GFLOPS due to
the extra computation cost from the classification head.

We conjecture that NLEEP outperforms LEEP mainly
because GMMs calibrate the posterior probabilities better
than the checkpoints’ softmax classifiers. The checkpoint
ranking quality of LEEP score hinges on the performance
of the ‘dummy classifier’ – P (y|x, θ, t), and θ(x)z is the
key element to calculate it. However, θ(x) can be poorly
calibrated [41] and it can not represent a true probability. In
contrast, P (v|x) used in NLEEP is indeed the probability
that the sample belongs to one cluster from a mixture of
Gaussian distributions and it can remedy the poor-calibrated
problem in LEEP.

Computational costs. Moreover, we highlight the
GFLOPS column in the tables. NLEEP and LEEP exhibit a
clear advantage over the other checkpoint ranking methods
in terms of computing. The main reason is thatNLEEP and
LEEP can avoid intensive computation from neural network
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Method Recall@1 Rel@1 Recall@3 Rel@3 Pearson Kendall GFLOPS
Linear (1 epoch) 0.00 96.97 25.00 98.79 23.56 18.44 4.95E4
Linear (5 epoch) 25.00 98.79 50.00 98.94 49.77 32.33 4.97E4
Linear (converged) 50.00 99.63 75.00 99.65 68.97 53.43 5.33E4
Fine-tune (1 epoch) 25.00 97.45 25.00 97.66 30.25 22.15 6.51E5
Fine-tune (5 epoch) 0.00 91.09 25.00 98.61 48.19 36.78 4.28E6
MI (α=0.01) [46] 0.00 64.67 0.00 87.96 2.39 -0.31 1.62E5
MI (α=0.50) 0.00 66.71 25.00 90.31 -4.91 -13.05 1.62E5
MI w/ PCA (α=0.01) 0.00 89.45 50.00 99.27 16.16 20.67 5.58E4
MI w/ PCA (α=0.50) 0.00 86.49 25.00 94.28 -24.72 -16.06 5.58E4
LEEP [41] – – – – – – –
NLEEP 75.00 99.65 75.00 99.65 84.30 76.00 12.85

Table 1. Checkpoint ranking results on Group I, the checkpoints of mixed supervision (GFLOPS excludes a forward pass on training data,
which takes 3.04E5 GFLOPS shared by all methods)

Method Recall@1 Rel@1 Recall@3 Rel@3 Pearson Kendall GFLOPS
Linear (1 epoch) 0.00 96.46 25.00 98.79 27.01 24.24 4.95E4
Linear (5 epochs) 50.00 99.57 100.00 100.00 55.07 51.28 4.97E4
Linear (converged) 75.00 99.95 100.00 100.00 79.30 68.60 5.33E4
Fine-tune (1 epoch) 25.00 99.05 25.00 99.47 19.61 15.52 6.51E5
Fine-tune (5 epochs) 25.00 99.55 100.00 100.00 68.47 58.33 4.28E6
MI (α=0.01) [46] 0.00 94.84 25.00 97.43 -29.41 -17.81 1.62E5
MI (α=0.50) 0.00 96.66 0.00 97.03 -11.36 -10.21 1.62E5
MI w/ PCA (α=0.01) 50.00 99.60 75.00 99.85 52.14 51.34 5.58E4
MI w/ PCA (α=0.50) 0.00 96.68 50.00 99.52 23.73 17.09 5.58E4
LEEP [41] 75.00 99.44 75.00 99.90 50.36 55.49 378.31
NLEEP 100.00 100.00 100.00 100.00 72.84 67.49 12.95

Table 2. Checkpoint ranking results on Group II, the checkpoints at different pre-training stages (GFLOPS excludes a forward pass on
training data, which takes 3.04E5 GFLOPS shared by all)

Method Recall@1 Rel@1 Recall@3 Rel@3 Pearson Kendall GFLOPS
Linear (1 epoch) 25.00 98.17 25.00 99.35 30.14 13.80 3.37E4
Linear (5 epoch) 25.00 98.98 25.00 99.63 33.45 18.95 3.38E4
Linear (converged) 25.00 99.66 25.00 99.72 63.55 36.91 3.62E4
Fine-tune (1 epoch) 0.00 98.28 25.00 99.80 17.61 11.59 4.43E5
Fine-tune (5 epoch) 25.00 98.62 25.00 99.68 25.72 15.72 2.91E6
MI (α=0.01) [46] 25.00 98.29 25.00 99.34 4.42 2.94 1.30E5
MI (α=0.50) 25.00 98.36 25.00 99.37 -9.79 -6.81 1.30E5
MI w/ PCA (α=0.01) 0.00 99.18 50.00 99.82 61.94 38.83 5.56E4
MI w/ PCA (α=0.50) 0.00 96.34 0.00 98.47 33.17 21.26 5.56E4
LEEP [41] 25.00 97.36 75.00 99.90 42.99 45.06 247.56
NLEEP 25.00 99.66 25.00 99.70 66.94 51.14 12.68

Table 3. Checkpoint ranking results on Group III, the checkpoints of heterogeneous architectures (GFLOPS excludes a forward pass on
training data, which takes 2.73E5 GFLOPS shared by all)

training, and they only require one forward pass through the
training data.

Comparing different groups of the checkpoints. Check-
point ranking on different groups of checkpoints varies in
degrees of difficulty. The most challenging group is Group
III, the checkpoints of heterogeneous neural architectures.

All the ranking methods produce lower correlations with
the groundtruth ranking, and they can barely select the top
checkpoints in this group. The main reason is that the neu-
ral architectures matter for transfer learning [35]. Besides,
heterogeneous neural architectures can demonstrate various
performance even if we train them from scratch on down-
stream tasks. Ranking neural checkpoints by the feature
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representations of the last layer is not sufficient for those
checkpoints. We may explore more advanced ranking meth-
ods considering the structures of the deep neural networks
in the future.

Checkpoint ranking on Group II is easier than on Group
I since all the ranking methods can achieve relatively bet-
ter results over all evaluation metrics in Group II. The re-
sults indicate that checkpoints with various training strate-
gies (Group I) can bring more complex knowledge from
source domains, comparing with checkpoints with different
early stopping stages (Group II). In addition, fine-tuning the
entire models and training linear classifiers up to one or five
epochs perform significantly better on Group II since those
ranking methods are based on early stopping as well.

Additional experiments in the supplementary materials.
To simulate a sufficiently large pool of checkpoints in the
real applications, we finally combine the checkpoints in
Group I, II, and III into one large group and conduct check-
point ranking experiments on it. We also add one more
group of checkpoints with ResNet-101s [28] to evaluate the
checkpoint ranking on deeper models. Please see more de-
tails in Appendix A.3 and A.4. We also take object detection
and instance segmentation as downstream tasks and conduct
preliminary experiments on VOC [12] and Cityscapes [13].
Please refer to Appendix A.6 to see detailed discussions.

Although the benchmark can be easily extended to many
downstream tasks in other modalities, e.g., voice, text, and
cross-modal modalities, we steer our attention into compar-
ing several intuitive ranking measures on the variants of
checkpoints, covering different training strategies, source
domains, and architectures at a range of early stopping
stages. We formalize the checkpoint ranking idea, demon-
strate the existence of an effective yet lightweight measure,
NLEEP, and hope it can shed light on more efficient rank-
ing methods and practical applications.

5. Related Work

Our work is broadly related to task transferability and
neural networks’ generalization gap.
Task transferability. A task usually refers to a joint dis-
tribution over input and label. Task transferability aims
to predict how well a deep neural network pre-trained on
a source task transfers to the target task. One may esti-
mate the task transferability by data similarities regardless
of models being used. Some work in this line includes con-
ditional entropy [60], data set distance as optimal trans-
port [2], F -relatedness [7], A-distance [33], and discrep-
ancy distance [38]. Besides, Poole et al. [46] derived in-
formation theoretic bounds. These methods are generally
hard to compute in practice and rely on the availability of
the source data. Some recent task transferability estima-
tors involve both data and the models. Taskonomy [66] is

a fully computation method, where task similarity scores
are obtained by transfer learning experiments. Dwivedi et
al. [19] analyzed the representation similarities to construct
a task taxonomy. Besides the models trained on source
tasks, all these methods also require a fine-tuned or inde-
pendently trained model from the target task. In contrast,
our work aims to find checkpoint ranking measures that
are lightweight in computing and requires no access to the
source tasks.

Recent works demonstrated that using pre-trained check-
points that have similar feature representations as the tar-
get task’s representations can improve transfer learning [19,
54, 55]. Song et al. [54, 55] employed attribution maps to
compare two models and then quantified transferabilities by
the similarity of two models. Those approaches all require
a converged model on target datasets, incurring intensive
computation. However, we want to design a lightweight
method for ranking checkpoints, ideally without any train-
ing procedures.
Predicting neural networks’ generation gap. The differ-
ence between a model’s performance on the training data
versus its performance on test data is known as the general-
ization gap. It is practically useful and theoretically impact-
ful to predict a neural network’s generalization gap. Most
recent work does so by finding a set of features that is pre-
dictive of the generalization, e.g., by estimating data mar-
gins [5, 21, 53]. Jiang et al. [30] and Yak et al. [64] demon-
strate how the margin signatures of a neural network can
predict the generalization gap with small errors. Besides,
the network complexity and noise stability are also useful
cues [40, 31, 5, 3]. Our problem substantially differs from
predicting the neural networks’ generalization gap, which
is concerned with the training and test data sets that share
the same underlying distribution. We instead care about the
results after fine-tuning a network’s checkpoint.

6. Conclusion
Deep learning has triumphed over many fields in both

research and real-world applications. There must exist hun-
dreds of thousands of DNNs trained and released by var-
ious groups. To this end, it is natural to select an exist-
ing, promising DNN checkpoint as a warm start to a train-
ing procedure when solving a new task. How to identify
useful checkpoints from a large pool for the target task?
Towards answering this question, we present NeuCRaB,
a thorough benchmark covering diverse downstream tasks
and pre-trained DNN checkpoints, along with NLEEP, a
lightweight, effective checkpoint ranking measure.

The experiments with linear classifiers and mutual infor-
mation (after PCA) reveal that the features extracted from
the checkpoints are good indicators of the checkpoints’
potential in transfer learning. It is worth exploring other
ways of evaluating the features’ quality in future work. It
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is also interesting to investigate the checkpoints’ inherent
signatures, such as topology and stability to noise, which
might be informative of their transferabilities. Finally, some
learning-based methods in predicting networks’ generaliza-
tion gaps are also promising for the checkpoint ranking
problem.
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A. Appendix

In this appendix, we provide the following details to sup-
port the main text:

Section A.1: Descriptions of the 4 downstream tasks.

Section A.2: Training details of pre-training and fine-
tuning.

Section A.3: Comparison results on the combined group of
checkpoints in Groups I, II and III.

Section A.4: Another group of checkpoints with
ResNet101s at different pre-training stages.

Section A.5: More experiment results on Groups I-IV.

Section A.6: Neural checkpoints ranking on object detec-
tion and instance segmentation.

A.1. Downstream tasks

In this section, we describe the datasets used for the
downstream tasks as shown in Table 4. More specifically,
Caltech101 [22] contains 101 classes, including animals,
airplanes, chairs and etc, the image size varies from 200
to 300 pixels per edge. Flowers102 [42] have 102 classes,
with 40 to 248 training images per class, each image has at
least 500 pixels. Patch Camelyon [62] contains 327,680
images of histopathologic scans of lymph node sections
with image size of 96x96, which is collected to predict the
presence of metastatic tissue. Sun397 [63] is a scenery
benchmark with 397 classes, including cathedral, staircase,
shelter, river, or archipelago. There are at least 100 images
per class. The images are in 200x200 or higher resolutions.
We believe the dataset portfolio well represents a broad set
of vision tasks.

A.2. Hyper-parameter Sweep

We adopt the similar experiment setting as in [68] to
fine-tune the neural networks on the downstream tasks.
Specifically, we set the batch size to 512 and use SGD
with momentum of 0.9. We do not use weight decay for
fine-tuning, and we set it to be 0.01 times the learning
rate [71] when training from scratch. We perform per-
task hyper-parameter search. For each task, we sweep the
learning rate in {0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2,
0.5} and the training step in {2500, 5000, 10000, 15000,
20000, 400000}. We incorporate inception data augmen-
tation [56] for pre-training checkpoints and we do not use
data-augmentation when we fine-tune the neural networks
on the downstream tasks to emphasize the effect of transfer
learning.

A.3. Comparison results on all checkpoints in
Groups I, II, III

To obtain a comprehensive analysis, we also consolidate
the checkpoints from Group I, II and III into one group (in-
cluding 41 checkpoints in total) and then apply the ranking
methods on it. Table 5 shows the comparison results. The
results further evaluate our observations in Section 4 of the
main text. NLEEP performs consistently well on the big
group of checkpoints with lowest computation cost. Lin-
ear separability of the feature representation is also a good
indicator for ranking a large group of neural checkpoints.
Fine-tuning with early stopping and mutual information es-
timator produce poor correlations. The ranking qualities of
different ranking methods on the large group of checkpoints
are in sharper contrast than on small groups. For instance,
the Pearson’s r of NLEEP vs. Finetune (5 epochs) on the
large group is 83.71 vs. 27.84 but they perform 72.84 vs.
68.47 on Group II (Table 2 in the main text). It indicates that
NLEEP is a low-variance and low-bias checkpoint ranking
estimator, while early stopping may produce high-variance
ranking results.

A.4. Group IV: Supervised ResNet101s

We incorporate another group of checkpoints, including
12 ResNet101 [28] models pre-trained by fully supervised
learning on ImageNet [14], iNaturalist [61], and Places-
365 [69]. We obtain the checkpoints in the same way as
we have done for Group II, but with ResNet101 architec-
ture. We want to study how different model architecture
and model size affect the ranking quality.

Figure 3 and Table 10 show the fine-tuning accuracy on
4 downstream tasks. The relative fine-tuning accuracies are
similar to the accuracies on Group II. We also observe that
a converged checkpoint does not necessarily demonstrates
the best performance on the downstream tasks (cf. Img-
270k is better than Img-300k on Flowers102 [42]). Ta-
ble 6 shows the comparison results of ranking methods on
those checkpoints. The relative performance among the
ranking methods is similar to what they do in Group II
(Table 2 in the main text). Except that they perform bet-
ter on ResNet101s, e.g., Linear (converged) can achieve
68.60 in terms of Kendall’s τ on ResNet50s versus 73.48 on
ResNet101s, NLEEP can get 72.84 in terms of Pearson’s r
on ResNet50s versus 83.22 on ResNet101s. The observa-
tion reveals that the ranking of deeper checkpoints may be
more predictable than shallow ones.

A.5. More experimental results on Groups I-IV

We show more comparison results on NeuCRaB in this
section. Figures 4 and 5 show the best fine-tuning accura-
cies offset by their mean (for better visualization) on Groups
II and III, respectively. Table 7, 8, 9, 10 demonstrate the
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absolute best fine-tuning accuracies on Groups I-IV, respec-
tively.

A.6. Neural checkpoint ranking for object detection
and instance segmentation

We also evaluate on object detection and segmentation
tasks, and show the results in Tables 11. Specifically,
we incorporate the recent self-supervised MoCo models
(MoCov1, MoCov2, MoCov2-800epoch) and a ResNet50
model (supervised pretrained on ImageNet) into a new
group of checkpoints. We evaluate checkpoint ranking on
Pascal VOC (object detection) and Cityscapes (instance
segmentation). In order to adapt NLEEP to detection and
segmentation tasks, we assign multiple ground truth labels
for one image if it includes multiple object categories and
extract the image-level features to perform GMM. We adapt
NLEEP to detection and segmentation tasks by assigning
multi-labels to images with multiple object categories. The
experiment results demonstrate that NLEEP consistently
outperforms the fine-tune and linear evaluation based ap-
proachs. We plan to include more diverse downstream tasks
in NeuCRaB to facilitate future research.
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Dataset Training Evaluation Number of Classes
Caltech101 [22] 3060 6084 101
Flower102 [42] 2040 6149 102
Patch-Camelyon [62] 262144 32768 2
Sun397 [63] 76128 10875 397

Table 4. Statistics of the datasets associated with the downstream tasks
Method Recall@1 Rel@1 Recall@3 Rel@3 Pearson Kendall GFLOPS
Linear (1 epoch) 0.00 99.13 25.00 99.46 22.30 13.42 4.45E4
Linear (5 epochs) 0.00 99.13 25.00 99.21 42.99 31.64 4.47E4
Linear (converged) 25.00 99.42 50.00 99.73 76.22 61.22 4.79E4
Fine-tune (1 epoch) 0.00 96.69 0.00 98.16 3.84 6.50 5.85E5
Fine-tune (5 epochs) 0.00 99.49 0.00 99.49 27.20 27.16 3.84E6
MI (α=0.01) [46] 0.00 77.50 0.00 81.44 1.12 7.16 1.52E5
MI (α=0.50) 0.00 66.51 0.00 90.07 -4.05 -14.22 1.52E5
MI w/ PCA (α=0.01) 0.00 89.18 50.00 99.84 12.14 20.99 5.57E4
MI w/ PCA (α=0.50) 0.00 97.07 0.00 98.70 -14.03 -2.39 5.57E4
LEEP [41] – – – – – – –
NLEEP 50.00 99.47 50.00 99.78 83.71 68.18 12.86

Table 5. Comparison results on all checkpoints in Group I, II, III (GFLOPS excludes a forward pass on training data, which takes 2.73E5
GFLOPS shared by all).

Sun397Camelyon

Caltech101 Flowers102

Figure 3. Difference between the fine-tuning accuracy of each checkpoint and the mean fine-tuning accuracy on Group IV. Black bar means
From-Scratch. Red, green and orange bars represent ImageNet models, iNaturalist models and Places365 models, respectively. Img-90k
means the checkpoint obtained by early stopping at the 90k-th iteration on ImageNet, and so on.

Method Recall@1 Rel@1 Recall@3 Rel@3 Pearson Kendall GFLOPS
Linear (1 epoch) 0.00 98.58 25.00 98.99 46.75 27.27 1.021E5
Linear (5 epochs) 0.00 98.72 75.00 99.95 59.27 41.32 1.023E5
Linear (converged) 25.00 99.81 75.00 99.95 82.17 73.48 1.06E5
Fine-tune (1 epoch) 0.00 96.19 25.00 99.34 29.64 21.21 1.34E6
Fine-tune (5 epochs) 75.00 99.98 75.00 99.94 69.19 50.00 8.81E6
MI (α=0.01) [46] 0.00 97.25 75.00 98.46 12.96 13.21 1.62E5
MI (α=0.50) 25.00 98.60 50.00 99.54 30.16 18.21 1.62E5
MI w/ PCA (α=0.01) 0.00 99.85 75.00 99.95 51.85 48.91 5.58E4
MI w/ PCA (α=0.50) 0.00 95.99 50.00 98.41 48.64 44.31 5.58E4
LEEP [41] 25.00 99.52 75.00 99.72 54.54 46.43 378.31
NLEEP 75.00 99.98 100.00 100.00 83.22 73.80 12.95

Table 6. Comparison results on Group IV (GFLOPS excludes a forward pass on training data, which takes 6.27E5 GFLOPS shared by all).
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Caltech101 Flowers102

Sun397Camelyon

Figure 4. Difference between the fine-tuning accuracy of each checkpoint and the mean fine-tuning accuracy on Group II. Black bar means
From-Scratch. Red, green and orange bars represent ImageNet models, iNaturalist models and Places365 models, respectively. Img-90k
means the checkpoint obtained by early stopping at the 90k-th iteration on ImageNet, and so on.

Caltech101 Flowers102

Camelyon Sun397

Figure 5. Difference between the fine-tuning accuracy of each checkpoint and the mean fine-tuning accuracy on Group III. The colors of
bars represent the models trained with different architectures. Brown: Inception-ResNet-V2. Red: Inception family. Green: MobileNet
family and their variants. Orange: ResNet-v1 family.
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Table 7. Absolute fine-tuning accuracy on Group I.
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Table 8. Absolute fine-tuning accuracy on Group II.
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Sun397 71.52 67.82 69.95 71.23 71.41 69.03 56.88 69.22 62.7 69.61 64.63 72.74 71.44

Table 9. Absolute fine-tuning accuracy on Group III.
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Caltech101 54.47 92.56 93.91 94.23 94.32 86.68 87.64 88.51 88.28 86.22 88.09 88.44 88.14
Flowers102 49.85 89.13 92.45 92.37 91.47 93.46 95.44 95.7 95.26 79.96 84.05 84.72 84.62
Camelyon 82.14 84.95 85.81 85.87 85.35 84.64 84.87 85.08 84.16 86.03 85.59 85.13 85.09
Sun397 46.87 67.36 70.83 71.41 71.44 64.6 66.97 67.44 67.42 68.78 73.21 74.22 74.24

Table 10. Absolute fine-tuning accuracy on Group IV.

Method Recall@1 Pearson Kendall
Linear (1 epoch) 7 18.45 -33.33
Linear (5 epoch) 7 40.77 0.00
Linear (converged) 3 61.57 54.77
Fine-tune (1 epoch) 7 20.55 0.00
Fine-tune (5 epoch) 3 50.46 33.33
NLEEP 3 66.59 66.67

Method Recall@1 Pearson Kendall
Linear (1 epoch) 7 23.55 -33.33
Linear (5 epoch) 7 55.43 0.00
Linear (converged) 3 68.32 33.33
Fine-tune (1 epoch) 7 38.85 -33.33
Fine-tune (5 epoch) 7 51.22 33.33
NLEEP 3 82.66 66.67

Table 11. Left: Checkpoint ranking results on the Pascal VOC Object Detection Benchmark (trained on VOC 2007 train+val + VOC 2012
train+val, tested on VOC 2007 using AP). Right: Checkpoint ranking for Cityscapes instance segmentation.
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